Patents by Inventor Yukio Nishida

Yukio Nishida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150206920
    Abstract: The performance of a semiconductor device is improved by preventing 1/f noise from being generated in a peripheral transistor, in the case where the occupation area of photodiodes, which are included in each of a plurality of pixels that form an image pickup device, is expanded. In the semiconductor device, the gate electrode of an amplification transistor is formed by both a gate electrode part over an active region and a large width part that covers the boundary between the active region and an element isolation region and the active region near the boundary and that. has a gate length larger than that of the gate electrode part.
    Type: Application
    Filed: November 10, 2014
    Publication date: July 23, 2015
    Inventors: Yuki YAMAMOTO, Yukio NISHIDA, Tomohiro YAMASHITA
  • Publication number: 20150123178
    Abstract: The present invention improves the performance of an image sensor. In a planar view, fluorine is introduced into a part overlapping with a channel region in a gate electrode GE1 of an amplification transistor and is not introduced into the interior of a semiconductor substrate 1S. Concretely as shown in FIG. 20, a resist film FR1 is patterned in the manner of opening the part planarly overlapping with the channel region in the gate electrode GE1. Then fluorine is injected into the interior of the gate electrode GE1 exposed from an opening OP1 by an ion implantation method using the resist film FR1 in which the opening OP1 is formed as a mask.
    Type: Application
    Filed: October 25, 2014
    Publication date: May 7, 2015
    Inventors: Yukio Nishida, Tomohiro Yamashita, Yuki Yamamoto
  • Publication number: 20140239377
    Abstract: To enhance the performance of a semiconductor device. In a method for manufacturing a semiconductor device, a metal film is formed over a semiconductor substrate having an insulating film formed on a surface thereof, and then the metal film is removed in a memory cell region, whereas, in a part of a peripheral circuit region, the metal film is left. Next, a silicon film is formed over the semiconductor substrate, then the silicon film is patterned in the memory cell region, and, in the peripheral circuit region, the silicon film is left so that an outer peripheral portion of the remaining metal film is covered with the silicon film. Subsequently, in the peripheral circuit region, the silicon film, the metal film, and the insulating film are patterned for forming an insulating film portion formed of the insulating film, a metal film portion formed of the metal film, and a conductive film portion formed of the silicon film.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 28, 2014
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Yukio NISHIDA, Tomohiro Yamashita
  • Patent number: 8796780
    Abstract: Provided is a semiconductor device capable of having a single metal/dual high-k structure with a good shape and having flat band voltages suited for nMOS and pMOS, respectively. The semiconductor device according to the one embodiment of the present invention has a first conductivity type MOSFET and a second conductivity type MOSFET. The first and second conductivity type MOSFETs are each equipped with a first insulating film formed over a semiconductor substrate, a second insulating film formed over the first insulating film and made of an insulating material having a higher dielectric constant than the first insulating film, and a gate electrode formed over the second insulating film and having, as a lower layer of the gate electrode, a metal layer containing a material which diffuses into the second insulating film to control a work function thereof.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: August 5, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Yoshiki Yamamoto, Yukio Nishida, Jiro Yugami
  • Publication number: 20140035055
    Abstract: MISFETs after the 32 nm technology node have a High-k gate insulating film and a metal gate electrode. Such MISFETs have the problem that the absolute value of the threshold voltage of n-MISFET and p-MISFET inevitably increases by the subsequent high temperature heat treatment. The threshold voltage is therefore controlled by forming various threshold voltage adjusting metal films on a High-k gate insulating film and introducing a film component from them into the High-k gate insulating film. The present inventors have however revealed that lanthanum or the like introduced into the High-k gate insulating film of the n-MISFET is likely to transfer to the STI region by the subsequent heat treatment. The semiconductor integrated circuit device according to the present invention is provided with an N channel threshold voltage adjusting element outward diffusion preventing region in the surface portion of the element isolation region below and at the periphery of the gate stack of the n-MISFET.
    Type: Application
    Filed: April 9, 2012
    Publication date: February 6, 2014
    Inventors: Hirofumi Shinohara, Yukio Nishida, Katsuyuki Horita, Tomohiro Yamashita, Hidekazu Oda
  • Publication number: 20120193726
    Abstract: A semiconductor device including an n-channel-type MISFET (Qn) having an Hf-containing insulating film (5), which is a high dielectric constant gate insulating film containing hafnium, a rare-earth element, and oxygen as main components, and a gate electrode (GE1), which is a metal gate electrode, is manufactured. The Hf-containing insulating film (5) is formed by forming a first Hf-containing film containing hafnium and oxygen as main components, a rare-earth containing film containing a rare-earth element as a main component, and a second Hf-containing film containing hafnium and oxygen as main components sequentially from below and then causing these to react with one another.
    Type: Application
    Filed: October 6, 2009
    Publication date: August 2, 2012
    Inventors: Tomohiro Yamashita, Yukio Nishida, Takashi Hayashi, Yoshiki Yamamoto, Masao Inoue
  • Publication number: 20100102395
    Abstract: Provided is a semiconductor device capable of having a single metal/dual high-k structure with a good shape and having flat band voltages suited for nMOS and pMOS, respectively. The semiconductor device according to the one embodiment of the present invention has a first conductivity type MOSFET and a second conductivity type MOSFET. The first and second conductivity type MOSFETs are each equipped with a first insulating film formed over a semiconductor substrate, a second insulating film formed over the first insulating film and made of an insulating material having a higher dielectric constant than the first insulating film, and a gate electrode formed over the second insulating film and having, as a lower layer of the gate electrode, a metal layer containing a material which diffuses into the second insulating film to control a work function thereof.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 29, 2010
    Inventors: Yoshiki Yamamoto, Yukio Nishida, Jiro Yugami
  • Publication number: 20080308869
    Abstract: The technology which can control a threshold value appropriately, adopting the material which fitted each gate electrode of the MOS structure from which a threshold value differs without making the manufacturing process complicated, and does not make remarkable diffusion to the channel region from the gate electrode is offered. The PMOS transistor has a gate electrode GP, and an N type well which confronts each other via a gate insulating film with this, and the NMOS transistor has a gate electrode GN, and an P type well which confronts each other via a gate insulating film with this. While gate electrode GN includes a polycrystalline silicon layer, gate electrode GP is provided with the laminated structure of a metal layer/polycrystalline silicon layer.
    Type: Application
    Filed: August 20, 2008
    Publication date: December 18, 2008
    Applicant: Renesas Technology Corp.
    Inventors: Hidekazu ODA, Takahisa Eimori, Jiro Yugami, Takahiro Maruyama, Tomohiro Yamashita, Yukio Nishida, Shinichi Yamanari, Takashi Hayashi, Kenichi Mori
  • Publication number: 20080113480
    Abstract: A semiconductor substrate is covered with a resist mask and then an opening for exposing a whole upper surface of a polysilicon gate is formed by photo lithography and dry etching. Thereafter, nitrogen ions are implanted into the polysilicon gate through the opening. Implantation energy at this time is set so that the implanted ions may not break through the polysilicon gate.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 15, 2008
    Applicant: Renesas Technology Corp.
    Inventors: Yukio NISHIDA, Takashi Hayashi, Tomohiro Yamashita, Katsuyuki Horita, Katsumi Eikyu
  • Publication number: 20070111427
    Abstract: The semiconductor device which can apply the stress application technology to a channel part by a liner film to MISFET including a full silicidation gate electrode, and its manufacturing method are realized. The first liner silicon nitride film is formed on the semiconductor substrate MISFET formed. Insulating films, such as a silicon oxide film, are formed on the first liner silicon nitride film so that it may fully fill up the side of a gate electrode. Next, flattening processing is performed to an insulating film and the first liner silicon nitride film, and a polysilicon gate electrode is exposed. An insulating film is removed leaving the first liner silicon nitride film. The full silicidation of the exposed gate electrode is done, and the second liner silicon nitride film that covers the first liner silicon nitride film and the exposed full silicidation gate electrode is formed.
    Type: Application
    Filed: November 15, 2006
    Publication date: May 17, 2007
    Inventors: Tomohiro Yamashita, Yukio Nishida, Hidekazu Oda
  • Publication number: 20070007602
    Abstract: The technology which can control a threshold value appropriately, adopting the material which fitted each gate electrode of the MOS structure from which a threshold value differs without making the manufacturing process complicated, and does not make remarkable diffusion to the channel region from the gate electrode is offered. The PMOS transistor has a gate electrode GP, and an N type well which confronts each other via a gate insulating film with this, and the NMOS transistor has a gate electrode GN, and an P type well which confronts each other via a gate insulating film with this. While gate electrode GN includes a polycrystalline silicon layer, gate electrode GP is provided with the laminated structure of a metal layer/polycrystalline silicon layer.
    Type: Application
    Filed: July 3, 2006
    Publication date: January 11, 2007
    Applicant: Renesas Technology Corp.
    Inventors: Hidekazu Oda, Takahisa Eimori, Jiro Yugami, Takahiro Maruyama, Tomohiro Yamashita, Yukio Nishida, Shinichi Yamanari, Takashi Hayashi, Kenichi Mori
  • Patent number: 6872628
    Abstract: A gate structure (4), an LDD region (6) and a sidewall (7) are provided in this order. Arsenic ions (8) are thereafter implanted into the upper surface of a silicon substrate (1) by tilted implantation. The next step is annealing for forming an MDD region (9) in the upper surface of the silicon substrate (1). The MDD region (9) and the gate structure (4) do not overlap one another in plan view. Further, the MDD region (9) formed into a depth shallower than that of the LDD region (6) is higher in concentration than the LDD region (6). Thereafter a source/drain region (11) higher in concentration than the MDD region (9) is provided by vertical implantation into a depth greater than that of the LDD region (6).
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: March 29, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Masayoshi Shirahata, Yukio Nishida
  • Patent number: 6864128
    Abstract: A gate insulating film 4, two polysilicon films 5 and 7, and a silicon nitride film 9 are successively laminated on a semiconductor substrate 1 in this order. Each of the polysilicon films 5 and 7 contains phosphorus. The polysilicon film 5 has a region having a phosphorus concentration higher than that of the polysilicon film 7. Gate electrodes 10n, 10p, 40n, and 40p are formed on the gate insulating film 4 by partly etching the polysilicon films 5 and 7 and the silicon nitride film 9. In this case, the etching rate of the region of the polysilicon film 5, having a phosphorus concentration higher than that of the polysilicon film 7, is higher than that of the polysilicon film 7. Due to this difference, notches are formed at the bottom portions on side surfaces of respective gate electrodes 10p, 40n, and 40p.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: March 8, 2005
    Assignee: Renesas Technology Corp.
    Inventors: Yukio Nishida, Kazunobu Ohta
  • Patent number: 6812536
    Abstract: A smile oxide film, serving as a gate oxide film, is formed under a three-layer poly-metal gate consisting of a doped polysilicon layer, a tungsten layer, and a SiON layer. The smile oxide film has a first region located beneath an edge of the poly-metal gate and a second region located beneath a central portion of the poly-metal gate. A film thickness of the first region is larger than a film thickness of the second region. An anti-oxidizing film, having a small oxygen diffusion rate compared with the polysilicon layer, entirely covers the poly-metal gate without exposing.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: November 2, 2004
    Assignee: Renesas Technology Corp.
    Inventors: Shuichi Ueno, Yukio Nishida, Hiroshi Umeda, Kenichi Ohto, Takashi Terauchi, Shigeru Shiratake, Akinori Kinugasa
  • Publication number: 20040180522
    Abstract: A gate insulating film 4, two polysilicon films 5 and 7, and a silicon nitride film 9 are successively laminated on a semiconductor substrate 1 in this order. Each of the polysilicon films 5 and 7 contains phosphorus. The polysilicon film 5 has a region having a phosphorus concentration higher than that of the polysilicon film 7. Gate electrodes 10n, 10p, 40n, and 40p are formed on the gate insulating film 4 by partly etching the polysilicon films 5 and 7 and the silicon nitride film 9. In this case, the etching rate of the region of the polysilicon film 5, having a phosphorus concentration higher than that of the polysilicon film 7, is higher than that of the polysilicon film 7. Due to this difference, notches are formed at the bottom portions on side surfaces of respective gate electrodes 10p, 40n, and 40p.
    Type: Application
    Filed: July 22, 2003
    Publication date: September 16, 2004
    Applicant: Renesas Technology Corp.
    Inventors: Yukio Nishida, Kazunobu Ohta
  • Patent number: 6740939
    Abstract: CMOS transistors which can satisfy demand for size reduction and demand for reliability and a manufacturing method thereof are provided. A buried-channel type PMOS transistor is provided only in a CMOS transistor (100B) designed for high voltage; surface-channel type NMOS transistors are formed in a low-voltage NMOS region (LNR) and a high-voltage NMOS region (HNR), and a surface-channel type PMOS transistor is formed in a low-voltage PMOS region (LPR).
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: May 25, 2004
    Assignee: Renesas Technology Corp.
    Inventors: Hirokazu Sayama, Yukio Nishida, Kazunobu Ohta, Hidekazu Oda
  • Publication number: 20040046219
    Abstract: A smile oxide film, serving as a gate oxide film, is formed under a three-layer poly-metal gate consisting of a doped polysilicon layer, a tungsten layer, and a SiON layer. The smile oxide film has a first region located beneath an edge of the poly-metal gate and a second region located beneath a central portion of the poly-metal gate. A film thickness of the first region is larger than a film thickness of the second region. An anti-oxidizing film, having a small oxygen diffusion rate compared with the polysilicon layer, entirely covers the poly-metal gate without exposing.
    Type: Application
    Filed: March 10, 2003
    Publication date: March 11, 2004
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Shuichi Ueno, Yukio Nishida, Hiroshi Umeda, Kenichi Ohto, Takashi Terauchi, Shigeru Shiratake, Akinori Kinugasa
  • Publication number: 20030151098
    Abstract: By forming a doped polysilicon layer (PS2) containing boron through the CVD method in a material gas including a compound containing boron such as BCl3 (boron trichloride), an opening left after removing a gate electrode (11) in a region (PR) is filled with the doped polysilicon layer (PS2). In the doped polysilicon layer (PS2), boron atoms are uniformly distributed with high activation rate. Thus provided is a method of manufacturing a semiconductor device, which is capable of suppressing depletion of a gate electrode of a P-channel MOS transistor and suppressing penetration of impurity in a CMOS transistor of dual-gate structure.
    Type: Application
    Filed: August 9, 2002
    Publication date: August 14, 2003
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventors: Yukio Nishida, Katsuyuki Horita
  • Patent number: 6600195
    Abstract: A semiconductor device capable of preventing variations in threshold voltage and having high reliability is provided. The semiconductor device includes a semiconductor substrate having a semiconductor region, and a field-effect transistor. The field-effect transistor includes a gate electrode, source and drain regions, and a channel region. The channel region includes a pair of lightly doped impurity regions having a relatively low impurity concentration as well as a heavily doped impurity region located between the lightly doped impurity regions and having a relatively high impurity concentration.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: July 29, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yukio Nishida, Hirokazu Sayama, Hidekazu Oda, Toshiyuki Oishi
  • Patent number: 6576965
    Abstract: Arsenic is ion-implanted through a thin insulative through film formed on an active region in the vicinity of a gate insulating film towards the inside of a semiconductor substrate at a dose of 3E13 cm−2 at an energy of 100 keV at a tilt angle, which is made by an ion implantation direction and a normal direction (NL), of 45 degrees with respect to a (100) surface of the semiconductor substrate, with which a channeling phenomenon can be caused. Next, phosphorus is ion-implanted towards the inside of the semiconductor substrate at a dose of 1E13 cm−2 at an energy of 50 keV at an angle with which no channeling phenomenon can be caused. After that, a sidewall is formed and then arsenic is ion-implanted towards the inside of the semiconductor substrate at a dose of 4E15 cm−2 at an energy of 50 keV at an angle with which no channeling phenomenon can be caused, to form n+ layers.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: June 10, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Katsumi Eikyu, Yukio Nishida