Patents by Inventor Yun-Yu Wang

Yun-Yu Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20010019884
    Abstract: A damascene structure, such as a conductive line or via, having a liner with a roughened surface between the substrate and the conductive fill and, preferably, a smooth bottom. The substrate underneath the liner may also have a roughened sidewall and smooth bottom. Such a structure provides enhanced adhesion between one or more layers of the damascene structure. The damascene structure may be manufactured by applying a photoresist over a substrate top surface, exposing the photoresist under conditions that create a standing wave in the resist, and developing the photoresist to provide a pattern having the desired roughened or serrated outline. The pattern is transferred into the substrate, the liner is applied over the substrate bottom and sidewalls, and the liner is filled with conductive material. A roughened liner surface may be achieved by applying a partial layer of liner material over the substrate, removing a portion of the partial layer, and repeating the application and removal steps.
    Type: Application
    Filed: August 18, 1999
    Publication date: September 6, 2001
    Inventors: JOHN A. MILLER, ANDREW SIMON, JILL SLATTERY, CYPRIAN E. UZOH, YUN-YU WANG
  • Patent number: 6261951
    Abstract: The present invention utilizes a reducing plasma treatment step to enhance the adhesion of a subsequently deposited inorganic barrier film to a copper wire or via present in a semiconductor interconnect structure such as a dual damascene structure. Interconnect structure comprising a material layer of Cu, Si and O, as essential elements, is formed between said copper wire or via and the inorganic barrier film.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: July 17, 2001
    Assignee: International Business Machines Corporation
    Inventors: Leena P. Buchwalter, Barbara Luther, Paul D. Agnello, John P. Hummel, Terence Lawrence Kane, Dirk Karl Manger, Paul Stephen McLaughlin, Anthony Kendall Stamper, Yun Yu Wang
  • Patent number: 6207584
    Abstract: A method for forming a dielectric layer includes exposing a surface to a first dielectric material in gaseous form at a first temperature. Nuclei of the first dielectric material are formed on the surface. A layer of a second dielectric material is deposited on the surface by employing the nuclei as seeds for layer growth wherein the depositing is performed at a second temperature which is greater than the first temperature.
    Type: Grant
    Filed: January 5, 2000
    Date of Patent: March 27, 2001
    Assignees: International Business Machines Corp., Infineon Technologies North America Corp.
    Inventors: Hua Shen, David E. Kotecki, Robert Laibowitz, Katherine Lynn Saenger, Satish D. Athavale, Jenny Lian, Martin Gutsche, Yun-Yu Wang, Thomas Shaw
  • Patent number: 6194736
    Abstract: Reduced scale structures of improved reliability and/or increased composition options are enabled by the creation and use of quantum conductive recrystallization barrier layers. The quantum conductive layers are preferably used in trench capacitors to act as recrystallization barriers.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: February 27, 2001
    Assignees: International Business Machines Corporation, Infineon Technologies North America Corp.
    Inventors: Susan E. Chaloux, Tze-Chiang Chen, Johnathan E. Faltermeier, Ulrike Gruening, Rajarao Jammy, Jack A. Mandelman, Christopher C. Parks, Paul C. Parries, Paul A. Ronsheim, Yun-Yu Wang
  • Patent number: 6180521
    Abstract: A process for forming a conductive contact having a flat interface. A layer containing niobium and titanium is deposited on a silicon substrate and the resulting structure is annealed in a nitrogen-containing atmosphere at about 500° C. to about 700° C. By this process, a flatter interface between silicide and silicon, which is less likely to cause junction leakage, is formed on annealing. The step of annealing also produces a more uniform bilayer, which is a better barrier against tungsten encroachment during subsequent tungsten deposition. Larger silicide grains are also formed so that fewer grain boundaries are produced, reducing metal diffusion in grain boundaries. The process can be used to form contacts for very small devices and shallow junctions, such as are required for current and future semiconductor devices.
    Type: Grant
    Filed: January 6, 1999
    Date of Patent: January 30, 2001
    Assignee: International Business Machines Corporation
    Inventors: Patrick W. DeHaven, Anthony G. Domenicucci, Lynne M. Gignac, Glen L. Miles, Prabhat Tiwari, Yun-Yu Wang, Horatio S. Wildman, Kwong Hon Wong
  • Patent number: 6124639
    Abstract: A method for forming a conductive contact having an atomically flat interface is disclosed. A layer containing cobalt and titanium is deposited on a silicon substrate and the resulting structure annealed in a nitrogen containing atmosphere at about 500.degree. C. to about 700.degree. C. A conductive material is deposited on top of the structure formed on anneal. A flat interface, which prevents diffusion of conductive materials into the underlying silicon substrate is formed. The method can be used to form contacts for very small devices and shallow junctions, such as are required for ULSI shallow junctions.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: September 26, 2000
    Assignee: International Business Machines Corporation
    Inventors: Anthony G. Domenicucci, Lynne M. Gignac, Yun-Yu Wang, Horatio S. Wildman, Kwong Hon Wong
  • Patent number: 6022801
    Abstract: A method for forming a conductive contact having an atomically flat interface is disclosed. A layer containing cobalt and titanium is deposited on a silicon substrate and the resulting structure annealed in a nitrogen containing atmosphere at about 500.degree. C. to about 700.degree. C. A conductive material is deposited on top of the structure formed on anneal. A flat interface, which prevents diffusion of conductive materials into the underlying silicon substrate is formed. The method can be used to form contacts for very small devices and shallow junctions, such as are required for ULSI shallow junctions.
    Type: Grant
    Filed: February 18, 1998
    Date of Patent: February 8, 2000
    Assignee: International Business Machines Corporation
    Inventors: Anthony G. Domenicucci, Lynne M. Gignac, Yun-Yu Wang, Horatio S. Wildman, Kwong Hon Wong