Patents by Inventor Yun-Yu Wang

Yun-Yu Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050067745
    Abstract: Disclosed is a method and structure for forming a silicide on a silicon material. The invention places the silicon material in a vacuum environment, forms metal on the silicon material, and then heats the silicon surface and the metal without breaking the vacuum environment. The processes of forming the metal and heating the silicon can be performed simultaneously without breaking the vacuum environment to form the silicide as the metal is being deposited. After the foregoing processing, the invention can remove the silicon surface from the vacuum environment and perform additional heating of the silicon surface. The first heating process forms a monosilicide and the additional heating forms a disilicide.
    Type: Application
    Filed: September 30, 2003
    Publication date: March 31, 2005
    Inventors: Kenneth Giewont, Bradley Jones, Christian Lavoie, Robert Purtell, Yun-Yu Wang, Kwong Wong
  • Publication number: 20050051854
    Abstract: A structure and method for a metal replacement gate of a high performance device is provided. A sacrificial gate structure is first formed on an etch stop layer provided on a semiconductor substrate. A pair of spacers is provided on sidewalls of the sacrificial gate structure. The sacrificial gate structure is then removed, forming an opening. Subsequently, a metal gate including an first layer of metal such as tungsten, a diffusion barrier such as titanium nitride, and a second layer of metal such as tungsten is formed in the opening between the spacers.
    Type: Application
    Filed: September 9, 2003
    Publication date: March 10, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral, Paul Jamison, Victor Ku, Ying Li, Vijay Narayanan, An Steegen, Yun-Yu Wang, Kwong Wong
  • Publication number: 20040224494
    Abstract: The invention provides a method of forming a wiring layer in an integrated circuit structure that forms an organic insulator, patterns the insulator, deposits a liner on the insulator, and exposes the structure to a plasma to form pores in the insulator in regions next to the liner. The liner is formed thin enough to allow the plasma to pass through the liner and form the pores in the insulator. During the plasma processing, the plasma passes through the liner without affecting the liner. After the plasma processing, additional liner material may be deposited. After this, a conductor is deposited and excess of portions of the conductor are removed from the structure such that the conductor only remains within patterned portions of the insulator. This method produces an integrated circuit structure that has an organic insulator having patterned features, a liner lining the patterned features, and a conductor filling the patterned features.
    Type: Application
    Filed: May 8, 2003
    Publication date: November 11, 2004
    Applicant: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Stephen E. Greco, Keith T. Kwietniak, Soon-Cheon Seo, Chih-Chao Yang, Yun-Yu Wang, Kwong H. Wong
  • Patent number: 6809030
    Abstract: A method of producing electrical contacts having reduced interface roughness as well as the electrical contacts themselves are disclosed herein. The method of the present invention comprises (a) forming an alloy layer having the formula MX, wherein M is a metal selected from the group consisting of Co and Ni and X is an alloying additives over a silicon-containing substrate; (b) optionally forming an optional oxygen barrier layer over said alloy layer; (c) annealing said alloy layer at a temperature sufficient to form a MXSi layer in said structure; (d) removing said optional oxygen barrier layer and any remaining alloy layer; and optionally (e) annealing said MXSi layer at a temperature sufficient to form a MXSi2 layer in said structure.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: October 26, 2004
    Assignee: International Business Machines Corporation
    Inventors: Paul David Agnello, Cyril Cabral, Jr., Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Kirk David Peterson, Robert Joseph Purtell, Ronnen Andrew Roy, Jean Louise Jordan-Sweet, Yun Yu Wang
  • Publication number: 20040195695
    Abstract: A method of reducing the contact resistance of metal suicides to the p+ silicon area or the n+ silicon area of the substrate comprising: (a) forming a metal germanium (Ge) layer over a silicon-containing substrate, wherein said metal is selected from the group consisting of Co, Ti, Ni and mixtures thereof; (b) optionally forming an oxygen barrier layer over said metal germanium layer; (c) annealing said metal germanium layer at a temperature which is effective in converting at least a portion thereof into a substantially non-etchable metal silicide layer, while forming a Si—Ge interlayer between said silicon-containing substrate and said substantially non-etchable metal silicide layer; and (d) removing said optional oxygen barrier layer and any remaining alloy layer. When a Co or Ti alloy is employed, e.g.
    Type: Application
    Filed: April 19, 2004
    Publication date: October 7, 2004
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Cyril Cabral,, Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Ronnen Andrew Roy, Yun Yu Wang
  • Publication number: 20040195506
    Abstract: An inline electron holograph method for observing a specimen with a transmission electron microscope having an electron gun, a collimating lens system, two spaced objective lenses, a biprism, and an imaging means comprises the steps of: with the first objective lens forming a virtual image of a portion of the specimen; with the second objective lens focussing the virtual image at an intermediate image plane to form an intermediate image; and projecting the intermediate image onto the imaging means.
    Type: Application
    Filed: January 9, 2004
    Publication date: October 7, 2004
    Applicants: IBM Corporation, JEOL USA, Inc.
    Inventors: Yun-Yu Wang, Masahiro Kawasaki, John Bruley, Anthony G. Domenicucci, Michael A. Gribelyuk, John G. Gaudiello
  • Publication number: 20040173907
    Abstract: An advanced back-end-of-line (BEOL) metallization structure is disclosed. The structure includes a bilayer diffusion barrier or cap, where the first cap layer is formed of a dielectric material preferably deposited by a high density plasma chemical vapor deposition (HDP CVD) process, and the second cap layer is formed of a dielectric material preferably deposited by a plasma-enhanced chemical vapor deposition (PE CVD) process. A method for forming the BEOL metallization structure is also disclosed. The invention is particularly useful in interconnect structures comprising low-k dielectric material for the inter-layer dielectric (ILD) and copper for the conductors.
    Type: Application
    Filed: March 23, 2004
    Publication date: September 9, 2004
    Inventors: Tze-Chiang Chen, Brett H. Engel, John A. Fitzsimmons, Terence Kane, Naftall E. Lustig, Ann McDonald, Vincent McGahay, Soon-Cheon Seo, Anthony K. Stamper, Yun Yu Wang, Erdem Kaltalioglu
  • Patent number: 6753606
    Abstract: A method of reducing the contact resistance of metal silicides to the p+ silicon area or the n+ silicon area of the substrate comprising: (a) forming a metal germanium (Ge) layer over a silicon-containing substrate, wherein said metal is selected from the group consisting of Co, Ti, Ni and mixtures thereof; (b) optionally forming an oxygen barrier layer over said metal germanium layer; (c) annealing said metal germanium layer at a temperature which is effective in converting at least a portion thereof into a substantially non-etchable metal silicide layer, while forming a Si—Ge interlayer between said silicon-containing substrate and said substantially non-etchable metal silicide layer; and (d) removing said optional oxygen barrier layer and any remaining alloy layer. When a Co or Ti alloy is employed, e.g.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: June 22, 2004
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Ronnen Andrew Roy, Yun Yu Wang
  • Publication number: 20040115921
    Abstract: Disclosed is a method for depositing a metal layer on an interconnect structure for a semiconductor wafer. In the method, a metal conductor is covered by a capping layer and a dielectric layer. The dielectric layer is patterned so as to expose the capping layer. The capping layer is then sputter etched to remove the capping layer and expose the metal conductor. In the process of sputter etching, the capping layer is redeposited onto the sidewall of the pattern. Lastly, at least one layer is deposited into the pattern and covers the redeposited capping layer.
    Type: Application
    Filed: December 11, 2002
    Publication date: June 17, 2004
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, Infineon Technologies North America Corp.
    Inventors: Larry Clevenger, Timothy Joseph Dalton, Mark Hoinkis, Staffen K. Kaldor, Kaushik Kumar, Douglas C. La Tulipe, Soon-Cheon Seo, Andrew Herbert Simon, Yun-Yu Wang, Chih-Chao Yang, Haining Yang
  • Publication number: 20040115873
    Abstract: An advanced back-end-of-line (BEOL) metallization structure is disclosed. The structure includes a bilayer diffusion barrier or cap, where the first cap layer is formed of a dielectric material preferably deposited by a high density plasma chemical vapor deposition (HDP CVD) process, and the second cap layer is formed of a dielectric material preferably deposited by a plasma-enhanced chemical vapor deposition (PE CVD) process. A method for forming the BEOL metallization structure is also disclosed. The invention is particularly useful in interconnect structures comprising low-k dielectric material for the inter-layer dielectric (ILD) and copper for the conductors.
    Type: Application
    Filed: August 28, 2003
    Publication date: June 17, 2004
    Inventors: Tze-Chiang Chen, Brett H. Engel, John A. Fitzsimmons, Terence Kane, Naftall E. Lustig, Ann McDonald, Vincent McGahay, Soon-Cheon Seo, Anthony K. Stamper, Yun Yu Wang, Erdem Kaltalioglu
  • Patent number: 6740568
    Abstract: In a method of forming a contact, a liner reactive ion etch is affected on a substrate to remove silicon nitride and silicon oxide. An oxygen plasma ex-situ clean, a Huang AB clean, and a dilute hydrofluric acid (DHF) clean are affected. Amorphous silicon is deposited and an anneal is performed to regrow and recrystallize amorphous silicon.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: May 25, 2004
    Assignees: Infineon Technologies AG, International Business Machines Corporation
    Inventors: Yun Yu Wang, Johnathan Faltermeier, Colleen M. Snavely, Michael Maldei, Michael M. Iwatake, David M. Dobuzinsky, Ravikumar Ramachandran, Viraj Y. Sardesai, Philip L. Flaitz, Lisa Y. Ninomiya
  • Publication number: 20040087160
    Abstract: A method of producing electrical contacts having reduced interface roughness as well as the electrical contacts themselves are disclosed herein. The method of the present invention comprises (a) forming an alloy layer having the formula MX, wherein M is a metal selected from the group consisting of Co and Ni and X is an alloying additive, over a silicon-containing substrate; (b) optionally forming an optional oxygen barrier layer over said alloy layer; (c) annealing said alloy layer at a temperature sufficient to form a MXSi layer in said structure; (d) removing said optional oxygen barrier layer and any remaining alloy layer; and optionally (e) annealing said MXSi layer at a temperature sufficient to form a MXSi2 layer in said structure.
    Type: Application
    Filed: October 22, 2003
    Publication date: May 6, 2004
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Paul David Agnello, Cyril Cabral, Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Kirk David Peterson, Robert Joseph Purtell, Ronnen Andrew Roy, Jean Louise Jordan-Sweet, Yun Yu Wang
  • Patent number: 6707086
    Abstract: In accordance with the present invention, a method for forming a crystalline silicon nitride layer, includes the steps of providing a crystalline silicon substrate with an exposed surface, precleaning the exposed surface by employing a hydrogen prebake and exposing the exposed surface to nitrogen to form a crystalline silicon nitride layer. Also, a trench capacitor, in accordance with the present invention, includes a crystalline silicon substrate including deep trenches having surface substantially free of native oxide. A dielectric stack, including a crystalline silicon nitride layer, is formed on the sidewalls of the trenches. The dielectric stack forms a node dielectric between electrodes of the trench capacitor.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: March 16, 2004
    Assignees: Infineon Technologies AG, International Business Machines Corp.
    Inventors: Rajarao Jammy, Philip L. Flaitz, Philip E. Batson, Hua Shen, Yun Yu Wang
  • Patent number: 6703641
    Abstract: A semiconductor device monitor structure is described which can detect localized defects due to floating-body effects, particularly on SOI device wafers. The monitor structure includes a plurality of cells containing PFET or NFET devices, disposed at a perimeter of the structure which is bordered by an insulating region such as shallow trench isolation (STI). Each cell includes polysilicon gate structures having a characteristic spacing given by a first distance, and a portion extending beyond the perimeter a second distance. The cells are constructed in accordance with progressively varying ground rules, so that the first distance and second distance are non-uniform between cells. The cells may be bit fail mapped for single-cell failures, thereby enabling detection of localized defects due to floating-body effects.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: March 9, 2004
    Assignee: International Business Machines Corporation
    Inventors: Terence L. Kane, Yun Yu Wang, Malcolm P. Cambra, Jr., Michael P. Tenney
  • Publication number: 20040018680
    Abstract: In a method of preparing a DRAM wherein doped poly-Si is used as a CB contact as well as a source of doping in the contact region, and where
    Type: Application
    Filed: July 29, 2002
    Publication date: January 29, 2004
    Inventors: Yun Yu Wang, Johnathan Faltermeier, Colleen M. Snavely, Michael Maldei, Michael M. Iwatake, David M. Dobuzinsky, Ravikumar Ramachandran, Viraj Y. Sardesai, Philip L. Flaitz, Lisa Y. Ninomiya
  • Patent number: 6661097
    Abstract: In copper backend integrated circuit technology, advanced technology using low-k organic-based interlayer dielectrics have a problem of carbon contamination that dos not occur in circuits using oxide as dielectric. A composite liner layer for the copper lines uses Ti as the bottom layer, which has the property of gettering carbon and other contaminants. The known problem with Ti of reacting with copper to form a high resistivity compound is avoided by adding a layer of TiN, which isolates the Ti and the copper.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: December 9, 2003
    Assignee: International Business Machines Corporation
    Inventors: Larry Clevenger, Stanley J. Klepeis, Hsiao-Ling Lu, Jeffrey R. Marino, Andrew Herbert Simon, Yun-Yu Wang, Kwong Hon Wong, Chih-Chao Yang
  • Publication number: 20030134495
    Abstract: An advanced back-end-of-line (BEOL) metallization structure is disclosed. The structure includes a diffusion barrier or cap layer having a low dielectric constant (low-k). The cap layer is formed of amorphous nitrogenated hydrogenated silicon cabride, and has a dielectric constant (k) of less than about 5. A method for forming the BEOL metallization structure is also disclosed, where the cap layer is deposited using a plasma-enhanced chemical vapor deposition (PE CVD) process. The invention is particularly useful in interconnect structure comprising low-k dielectric material for the inter-layer dielectric (ILD) and copper for the conductors.
    Type: Application
    Filed: January 15, 2002
    Publication date: July 17, 2003
    Applicant: International Business Machines Corporation
    Inventors: Stephen Gates, Birendra N. Agarwala, John A. Fitzsimmons, Jia Lee, Naftali E. Lustig, Yun Yu Wang
  • Publication number: 20030134499
    Abstract: An advanced back-end-of-line (BEOL) metallization structure is disclosed. The structure includes a bilayer diffusion barrier or cap, where the first cap layer is formed of a dielectric material preferably deposited by a high density plasma chemical vapor deposition (HDP CVD) process, and the second cap layer is formed of a dielectric material preferably deposited by a plasma-enhanced chemical vapor deposition (PE CVD) process. A method for forming the BEOL metallization structure is also disclosed. The invention is particularly useful in interconnect structures comprising low-k dielectric material for the inter-layer dielectric (ILD) and copper for the conductors.
    Type: Application
    Filed: January 15, 2002
    Publication date: July 17, 2003
    Applicant: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Brett H. Engel, John A. Fitzsimmons, Terence Kane, Naftali E. Lustig, Ann McDonald, Vincent McGahay, Soon-Cheon Seo, Anthony K. Stamper, Yun Yu Wang, Erdem Kaltalioglu
  • Patent number: 6593660
    Abstract: The present invention utilizes a reducing plasma treatment step to enhance the adhesion of a subsequently deposited inorganic barrier film to a copper wire or via present in a semiconductor interconnect structure such as a dual damascene structure. Interconnect structure including a material layer of Cu, Si and O, as essential elements, is formed between said copper wire or via and the inorganic barrier film.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: July 15, 2003
    Assignee: International Business Machines Corporation
    Inventors: Leena P. Buchwalter, Barbara Luther, Paul D. Agnello, John P. Hummel, Terence Lawrence Kane, Dirk Karl Manger, Paul Stephen McLaughlin, Anthony Kendall Stamper, Yun Yu Wang
  • Publication number: 20030094609
    Abstract: A semiconductor device monitor structure is described which can detect localized defects due to floating-body effects, particularly on SOI device wafers. The monitor structure includes a plurality of cells containing PFET or NFET devices, disposed at a perimeter of the structure which is bordered by an insulating region such as shallow trench isolation (STI). Each cell includes polysilicon gate structures having a characteristic spacing given by a first distance, and a portion extending beyond the perimeter a second distance. The cells are constructed in accordance with progressively varying ground rules, so that the first distance and second distance are non-uniform between cells. The cells may be bit fail mapped for single-cell failures, thereby enabling detection of localized defects due to floating-body effects.
    Type: Application
    Filed: November 16, 2001
    Publication date: May 22, 2003
    Applicant: International Business Machines Corporation
    Inventors: Terence L. Kane, Yun Yu Wang, Malcolm P. Cambra, Michael P. Tenney