Patents by Inventor Yun-Yu Wang

Yun-Yu Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060163671
    Abstract: A suicide cap structure and method of fabricating a suicide cap having a low sheet resistance. The method provides a semiconductor substrate and a MOSFET structure comprising a gate insulator on the substrate, an Si-containing gate electrode on the gate insulator layer, and source/drain diffusions. Atop the gate electrode and source/drain diffusions is formed a layer of metal used in forming a silicide region atop the transistor gate electrode and diffusions; an intermediate metal barrier layer formed atop the silicide forming metal layer; and, an oxygen barrier layer formed atop the intermediate metal barrier layer. As a result of annealing the MOSFET structure, resulting formed silicide regions exhibit a lower sheet resistance. As the intermediate metal barrier layer comprises a material exhibiting tensile stress, the oxygen barrier layer may comprise a compressive material for minimizing a total mechanical stress of the cap structure and underlying layers during the applied anneal.
    Type: Application
    Filed: January 27, 2005
    Publication date: July 27, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Levent Gulari, Kevin Mello, Robert Purtell, Yun-Yu Wang, Keith Wong
  • Patent number: 7081676
    Abstract: A method of producing electrical contacts having reduced interface roughness as well as the electrical contacts themselves are disclosed herein. The method of the present invention comprises (a) forming an alloy layer having the formula MX, wherein M is a metal selected from the group consisting of Co and Ni and X is an alloying additive, over a silicon-containing substrate; (b) optionally forming an optional oxygen barrier layer over said alloy layer; (c) annealing said alloy layer at a temperature sufficient to form a MXSi layer in said structure; (d) removing said optional oxygen barrier layer and any remaining alloy layer; and optionally (e) annealing said MXSi layer at a temperature sufficient to form a MXSi2 layer in said structure.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: July 25, 2006
    Assignee: International Business Machines Corporation
    Inventors: Paul David Agnello, Cyril Cabral, Jr., Roy Arthur Carruthers, James McKell Edwin Harper, Christian Lavoie, Kirk David Peterson, Robert Joseph Purtell, Ronnen Andrew Roy, Jean Louise Jordan-Sweet, Yun Yu Wang
  • Publication number: 20060113672
    Abstract: A cap nitride stack which prevents etch penetration to the HDP nitride while maintaining the electromigration benefits of HDP nitride atop Cu. In one embodiment, the stack comprises a first layer of HDP nitride and a second layer of a Si—C—H compound disposed over the first layer. The Si—C—H compound is for example BLoK, or N-BLoK (Si—C—H—N), and is selected from a group of materials that has high selectivity during via RIE such that RIE chemistry from the next wiring level does not punch through. Carbon and nitrogen are the key elements. In another embodiment, the stack comprises a first layer of HDP nitride, followed by a second layer of UVN (a plasma nitride), and a third layer comprising HDP nitride disposed over the second layer.
    Type: Application
    Filed: December 1, 2004
    Publication date: June 1, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yun-Yu Wang, Richard Conti, Chung-Ping Eng, Matthew Nicholls
  • Publication number: 20060108609
    Abstract: The present invention provides a semiconducting device including a gate dielectric atop a semiconducting substrate, the semiconducting substrate containing source and drain regions adjacent the gate dielectric; a gate conductor atop the gate dielectric; a conformal dielectric passivation stack positioned on at least the gate conductor sidewalls, the conformal dielectric passivation stack comprising a plurality of conformal dielectric layers, wherein no electrical path extends entirely through the stack; and a contact to the source and drain regions, wherein the discontinuous seam through the conformal dielectric passivation stack substantially eliminates shorting between the contact and the gate conductor. The present invention also provides a method for forming the above-described semiconducting device.
    Type: Application
    Filed: November 22, 2004
    Publication date: May 25, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brett Engel, Stephen Lucarini, John Sylvestri, Yun-Yu Wang
  • Publication number: 20060098862
    Abstract: Fail sites in a semiconductor are isolated through a difference image of a fail area and a healthy area. The fail area comprises an image of a semiconductor with a fail. The healthy area comprises an image of a semiconductor absent the fail or, in other words, an image of a semiconductor with healthy structure. Instructions cause a variation in the intensities of the difference image to appear at the fail site.
    Type: Application
    Filed: November 10, 2004
    Publication date: May 11, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James Demarest, Kaushik Chanda, Derren Dunn, Yun-Yu Wang
  • Publication number: 20060097167
    Abstract: A method for enhancing spatial resolution of a transmission electron microscopy TEM) system configured for electron holography. In an exemplary embodiment, the method includes configuring a first lens to form an initial virtual source with respect to an incident parallel beam, the initial virtual source positioned at a back focal plane of said first lens. A second lens is configured to form an intermediate virtual source with respect to the incident parallel beam, the position of said intermediate virtual source being dependent upon a focal length of the first lens and a focal length of the second lens. A third lens is configured to form a final virtual source with respect to the incident parallel beam, wherein the third lens has a focal length such that a front focal plane of the third lens lies beyond the position of the intermediate virtual source, with respect to a biprism location.
    Type: Application
    Filed: October 25, 2004
    Publication date: May 11, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony Domenicucci, Yun-Yu Wang
  • Publication number: 20060065830
    Abstract: A method for preparing a transmission electron microscopy (TEM) sample for electron holography includes forming a sacrificial material over an area of interest on the sample, and polishing the sample to a desired thickness, wherein the area of interest is protected from rounding during the polishing. The sacrificial material is removed from the sample following the polishing.
    Type: Application
    Filed: September 30, 2004
    Publication date: March 30, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas Bauer, Steven Boettcher, Anthony Domenicucci, John Gaudiello, Leon Kimball, Jeffrey McMurray, Yun-Yu Wang
  • Patent number: 7015469
    Abstract: An inline electron holograph method for observing a specimen with a transmission electron microscope having an electron gun, a collimating lens system, two spaced objective lenses, a biprism, and an imaging means comprises the steps of: with the first objective lens forming a virtual image of a portion of the specimen; with the second objective lens focussing the virtual image at an intermediate image plane to form an intermediate image; and projecting the intermediate image onto the imaging means.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: March 21, 2006
    Assignees: Jeol USA, Inc., IBM Corporation
    Inventors: Yun-Yu Wang, Masahiro Kawasaki, John Bruley, Anthony G. Domenicucci, Michael A. Gribelyuk, John G. Gaudiello
  • Publication number: 20060057844
    Abstract: The present invention provides a method for enhancing uni-directional diffusion of a metal during silicidation by using a metal-containing silicon alloy in conjunction with a first anneal in which two distinct thermal cycles are performed. The first thermal cycle of the first anneal is performed at a temperature that is capable of enhancing the uni-directional diffusion of metal, e.g., Co and/or Ni, into a Si-containing layer. The first thermal cycle causes an amorphous metal-containing silicide to form. The second thermal cycle is performed at a temperature that converts the amorphous metal-containing silicide into a crystallized metal rich silicide that is substantially non-etchable as compared to the metal-containing silicon alloy layer or a pure metal-containing layer. Following the first anneal, a selective etch is performed to remove any unreacted metal-containing alloy layer from the structure.
    Type: Application
    Filed: September 14, 2004
    Publication date: March 16, 2006
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony Domenicucci, Bradley Jones, Christian Lavoie, Robert Purtell, Yun Yu Wang, Kwong Hon Wong
  • Publication number: 20060001162
    Abstract: A conductive structure in an integrated circuit (12), and a method of forming the structure, is provided that includes a polysilicon layer (30), a thin layer containing titanium over the polysilicon, a tungsten nitride layer (34) over the titanium-containing layer and a tungsten layer over the tungsten nitride layer. The structure also includes a silicon nitride interfacial region (38) between the polysilicon layer and the titanium-containing layer. The structure withstands high-temperature processing without substantial formation of metal silicides in the polysilicon layer (30) and the tungsten layer (32), and provides low interface resistance between the tungsten layer and the polysilicon layer.
    Type: Application
    Filed: March 18, 2005
    Publication date: January 5, 2006
    Inventors: Ronald Schutz, Werner Robl, Rajeev Malik, Lawrence Clevenger, Oleg Gluschenkov, Cyril Cabral, Roy Iggulden, Yun-Yu Wang, Keith Wong, Irene McStay
  • Publication number: 20050255699
    Abstract: A method for forming a metal suicide contact for a semiconductor device includes forming a refractory metal layer over a substrate, including active and non-active area of said substrate, and forming a cap layer over the refractory metal layer. A counter tensile layer is formed over the cap layer, wherein the counter tensile layer is selected from a material such that an opposing directional stress is created between the counter tensile layer and the cap layer, with respect to a directional stress created between the refractory metal layer and the cap layer.
    Type: Application
    Filed: May 12, 2004
    Publication date: November 17, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bradley Jones, Christian Lavoie, Robert Purtell, Yun-Yu Wang, Keith Wong
  • Publication number: 20050230831
    Abstract: An interconnect structure in which the adhesion between an upper level low-k dielectric material, such as a material comprising elements of Si, C, O, and H, and an underlying diffusion capping dielectric, such as a material comprising elements of C, Si, N and H, is improved by incorporating an adhesion transition layer between the two dielectric layers. The presence of the adhesion transition layer between the upper level low-k dielectric and the diffusion barrier capping dielectric can reduce the chance of delamination of the interconnect structure during the packaging process. The adhesion transition layer provided herein includes a lower SiOx— or SiON-containing region and an upper C graded region. Methods of forming such a structure, in particularly the adhesion transition layer, are also provided.
    Type: Application
    Filed: April 19, 2004
    Publication date: October 20, 2005
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence Clevenger, Stefanie Chiras, Timothy Dalton, James Demarest, Derren Dunn, Chester Dziobkowski, Philip Flaitz, Michael Lane, James Lloyd, Darryl Restaino, Thomas Shaw, Yun-Yu Wang, Chih-Chao Yang
  • Publication number: 20050200024
    Abstract: The invention provides a method of forming a wiring layer in an integrated circuit structure that forms an organic insulator, patterns the insulator, deposits a liner on the insulator, and exposes the structure to a plasma to form pores in the insulator in regions next to the liner. The liner is formed thin enough to allow the plasma to pass through the liner and form the pores in the insulator. During the plasma processing, the plasma passes through the liner without affecting the liner. After the plasma processing, additional liner material may be deposited. After this, a conductor is deposited and excess of portions of the conductor are removed from the structure such that the conductor only remains within patterned portions of the insulator. This method produces an integrated circuit structure that has an organic insulator having patterned features, a liner lining the patterned features, and a conductor filling the patterned features.
    Type: Application
    Filed: May 10, 2005
    Publication date: September 15, 2005
    Applicant: International Business Machines Corporation
    Inventors: Lawrence Clevenger, Stephen Greco, Keith Kwietniak, Soon-Cheon Seo, Chih-Chao Yang, Yun-Yu Wang, Kwong Wong
  • Patent number: 6921711
    Abstract: A structure and method for a metal replacement gate of a high performance device is provided. A sacrificial gate structure is first formed on an etch stop layer provided on a semiconductor substrate. A pair of spacers is provided on sidewalls of the sacrificial gate structure. The sacrificial gate structure is then removed, forming an opening. Subsequently, a metal gate including an first layer of metal such as tungsten, a diffusion barrier such as titanium nitride, and a second layer of metal such as tungsten is formed in the opening between the spacers.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: July 26, 2005
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Paul C. Jamison, Victor Ku, Ying Li, Vijay Narayanan, An L Steegen, Yun-Yu Wang, Kwong H. Wong
  • Patent number: 6921978
    Abstract: The invention provides a method of forming a wiring layer in an integrated circuit structure that forms an organic insulator, patterns the insulator, deposits a liner on the insulator, and exposes the structure to a plasma to form pores in the insulator in regions next to the liner. The liner is formed thin enough to allow the plasma to pass through the liner and form the pores in the insulator. During the plasma processing, the plasma passes through the liner without affecting the liner. After the plasma processing, additional liner material may be deposited. After this, a conductor is deposited and excess of portions of the conductor are removed from the structure such that the conductor only remains within patterned portions of the insulator. This method produces an integrated circuit structure that has an organic insulator having patterned features, a liner lining the patterned features, and a conductor filling the patterned features.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: July 26, 2005
    Assignee: International Business Machines Corporation
    Inventors: Lawrence A. Clevenger, Stephen E. Greco, Keith T. Kwietniak, Soon-Cheon Seo, Chih-Chao Yang, Yun-Yu Wang, Kwong H. Wong
  • Patent number: 6914320
    Abstract: An advanced back-end-of-line (BEOL) metallization structure is disclosed. The structure includes a bilayer diffusion barrier or cap, where the first cap layer is formed of a dielectric material preferably deposited by a high density plasma chemical vapor deposition (HDP CVD) process, and the second cap layer is formed of a dielectric material preferably deposited by a plasma-enhanced chemical vapor deposition (PE CVD) process. A method for forming the BEOL metallization structure is also disclosed. The invention is particularly useful in interconnect structure comprising low-k dielectric material for the inter-layer dielectric (ILD) and copper for the conductors.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: July 5, 2005
    Assignees: International Business Machines Corporation, Infineon Technologies AG
    Inventors: Tze-Chiang Chen, Brett H. Engel, John A. Fitzsimmons, Terence Kane, Naftall E. Lustig, Ann McDonald, Vincent McGahay, Soon-Cheon Seo, Anthony K. Stamper, Yun Yu Wang, Erdem Kaltalioglu
  • Publication number: 20050112864
    Abstract: An interconnect structure in the back end of the line of an integrated circuit forms contacts between successive layers by removing material in the top surface of the lower interconnect in a cone-shaped aperture, the removal process extending through the liner of the upper aperture, and depositing a second liner extending down into the cone-shaped aperture, thereby increasing the mechanical strength of the contact, which then enhance the overall reliability of the integrated circuit.
    Type: Application
    Filed: November 21, 2003
    Publication date: May 26, 2005
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, INFINEON TECHNOLOGIES NORTH AMERICA CORP
    Inventors: Lawrence Clevenger, Andrew Cowley, Timothy Dalton, Mark Hoinkis, Steffen Kaldor, Erdem Kaltalioglu, Kaushik Kumar, Douglas La Tulipe, Jr., Jochen Schacht, Andrew Simon, Terry Spooner, Yun-Yu Wang, Clement Wann, Chih-Chao Yang
  • Patent number: 6887783
    Abstract: An advanced back-end-of-line (BEOL) metallization structure is disclosed. The structure includes a bilayer diffusion barrier or cap, where the first cap layer is formed of a dielectric material preferably deposited by a high density plasma chemical vapor deposition (HDP CVD) process, and the second cap layer is formed of a dielectric material preferably deposited by a plasma-enhanced chemical vapor deposition (PE CVD) process. A method for forming the BEOL metallization structure is also disclosed. The invention is particularly useful in interconnect structures comprising low-k dielectric material for the inter-layer dielectric (ILD) and copper for the conductors.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: May 3, 2005
    Assignees: International Business Machines Corporation, Infineon Technologies AG
    Inventors: Tze-Chiang Chen, Brett H. Engel, John A. Fitzsimmons, Terence Kane, Naftall E. Lustig, Ann McDonald, Vincent McGahay, Soon-Cheon Seo, Anthony K. Stamper, Yun Yu Wang, Erdem Kaltalioglu
  • Patent number: 6884641
    Abstract: This invention relates to a method for electrically localizing site-specific defective sub 130 nm node MOSFET devices with shallow (less than 80 nm deep) source/drain junctions utilizing bulk silicon, or Silicon on Insulator (SOI), or strained silicon (SE), followed by optimized sample preparation steps that permits imaging, preferably high resolution electron holographic imaging, in an electron microscope to detect blocked implants, asymmetric doping, or channel length variations affecting MOSFET device performance. Detection of such defects in such shallow junctions enables further refinements in process simulation models and permits optimization of MOSFET device designs.
    Type: Grant
    Filed: September 18, 2003
    Date of Patent: April 26, 2005
    Assignee: International Business Machines Corporation
    Inventors: John Bruley, Terence Kane, Michael P. Tenney, Yun Yu Wang
  • Patent number: 6878624
    Abstract: The present invention provides a method for forming an interconnect to a cobalt or nickel silicide having a TiN diffusion barrier. The inventive method comprises providing an initial structure having vias to exposed silicide regions positioned on a substrate; annealing the initial structure in a nitrogen-containing ambient, wherein a nitrogen passivation layer is formed atop the exposed silicide region; depositing Ti atop the nitrogen passivation layer; annealing the Ti in a nitrogen-containing ambient to form a TiN diffusion barrier and an amorphous Ti cobalt silicide between the TiN diffusion layer and the cobalt or nickel silicide and depositing an interconnect metal within the vias and atop the TiN diffusion barrier. The nitrogen passivation layer substantially restricts diffusion between the Ti and silicide layers minimizing the amorphous Ti cobalt silicide layer that forms. Therefore, the amorphous Ti cobalt or Ti nickel silicide is restricted to a thickness of less than about 3.0 nm.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: April 12, 2005
    Assignee: International Business Machines Corporation
    Inventors: John Bruley, Cyril Cabral, Jr., Christian Lavoie, Tina J. Wagner, Yun Yu Wang, Horati S. Wildman, Wong Kwong Hon