Patents by Inventor Yung-Feng Chang

Yung-Feng Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200051972
    Abstract: A mandrel is formed over an active region that includes a first region and a second region. The first region and the second region are reserved for the formation of a source and a drain of a FinFET, respectively. A portion of the mandrel formed over the second region is broken up into a first segment and a second segment separated from the first segment by a gap. Spacers are formed on opposite sides of the mandrel. Using the spacers, fins are defined. The fins protrude upwardly out of the active region. A portion of the second region corresponding to the gap has no fins formed thereover. The source is epitaxially grown on the fins in the first region. At least a portion of the drain is epitaxially grown on the portion of the second region having no fins.
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Inventors: Tzung-Chi Lee, Tung-Heng Hsieh, Bao-Ru Young, Yung Feng Chang
  • Patent number: 10522681
    Abstract: A method and structure for mitigating strain loss (e.g., in a FinFET channel) includes providing a semiconductor device having a substrate having a substrate fin portion, an active fin region formed over a first part of the substrate fin portion, a pickup region formed over a second part of the substrate fin portion, and an anchor formed over a third part of the substrate fin portion. In some embodiments, the substrate fin portion includes a first material, and the active fin region includes a second material different than the first material. In various examples, the anchor is disposed between and adjacent to each of the active fin region and the pickup region.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: December 31, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Hsiung Wang, Yung Feng Chang, Tung-Heng Hsieh
  • Patent number: 10453837
    Abstract: A mandrel is formed over an active region that includes a first region and a second region. The first region and the second region are reserved for the formation of a source and a drain of a FinFET, respectively. A portion of the mandrel formed over the second region is broken up into a first segment and a second segment separated from the first segment by a gap. Spacers are formed on opposite sides of the mandrel. Using the spacers, fins are defined. The fins protrude upwardly out of the active region. A portion of the second region corresponding to the gap has no fins formed thereover. The source is epitaxially grown on the fins in the first region. At least a portion of the drain is epitaxially grown on the portion of the second region having no fins.
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: October 22, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tzung-Chi Lee, Tung-Heng Hsieh, Bao-Ru Young, Yung Feng Chang
  • Publication number: 20190252370
    Abstract: A mandrel is formed over an active region that includes a first region and a second region. The first region and the second region are reserved for the formation of a source and a drain of a FinFET, respectively. A portion of the mandrel formed over the second region is broken up into a first segment and a second segment separated from the first segment by a gap. Spacers are formed on opposite sides of the mandrel. Using the spacers, fins are defined. The fins protrude upwardly out of the active region. A portion of the second region corresponding to the gap has no fins formed thereover. The source is epitaxially grown on the fins in the first region. At least a portion of the drain is epitaxially grown on the portion of the second region having no fins.
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Inventors: Tzung-Chi Lee, Tung-Heng Hsieh, Bao-Ru Young, Yung Feng Chang
  • Patent number: 10276559
    Abstract: A mandrel is formed over an active region that includes a first region and a second region. The first region and the second region are reserved for the formation of a source and a drain of a FinFET, respectively. A portion of the mandrel formed over the second region is broken up into a first segment and a second segment separated from the first segment by a gap. Spacers are formed on opposite sides of the mandrel. Using the spacers, fins are defined. The fins protrude upwardly out of the active region. A portion of the second region corresponding to the gap has no fins formed thereover. The source is epitaxially grown on the fins in the first region. At least a portion of the drain is epitaxially grown on the portion of the second region having no fins.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: April 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tzung-Chi Lee, Tung-Heng Hsieh, Bao-Ru Young, Yung Feng Chang
  • Patent number: 10276718
    Abstract: A method and structure for mitigating strain loss (e.g., in a FinFET channel) includes providing a semiconductor device having a substrate having a substrate fin portion, an active fin region formed over a first part of the substrate fin portion, a pickup region formed over a second part of the substrate fin portion, and an anchor formed over a third part of the substrate fin portion. In some embodiments, the substrate fin portion includes a first material, and the active fin region includes a second material different than the first material. In various examples, the anchor is disposed between and adjacent to each of the active fin region and the pickup region.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Sheng-Hsiung Wang, Yung Feng Chang, Tung-Heng Hsieh
  • Publication number: 20190067481
    Abstract: A method and structure for mitigating strain loss (e.g., in a FinFET channel) includes providing a semiconductor device having a substrate having a substrate fin portion, an active fin region formed over a first part of the substrate fin portion, a pickup region formed over a second part of the substrate fin portion, and an anchor formed over a third part of the substrate fin portion. In some embodiments, the substrate fin portion includes a first material, and the active fin region includes a second material different than the first material. In various examples, the anchor is disposed between and adjacent to each of the active fin region and the pickup region.
    Type: Application
    Filed: July 27, 2018
    Publication date: February 28, 2019
    Inventors: Sheng-Hsiung WANG, Yung Feng CHANG, Tung-Heng HSIEH
  • Publication number: 20190065654
    Abstract: Various examples of integrated circuit layouts with line-end extensions are disclosed herein. In an example, a method includes receiving an integrated circuit layout that contains: a first and second set of shapes extending in parallel in a first direction, wherein a pitch of the first set of shapes is different from a pitch of the second set of shapes. A cross-member shape is inserted into the integrated circuit layout that extends in a second direction perpendicular to the first direction, and a set of line-end extensions is inserted into the integrated circuit layout that extend from each shape of the first set of shapes and the second set of shapes to the cross-member shape. The integrated circuit layout containing the first set of shapes, the second set of shapes, the cross-member shape, and the set of line-end extensions is provided for fabricating an integrated circuit.
    Type: Application
    Filed: August 29, 2017
    Publication date: February 28, 2019
    Inventors: Hsien-Huang Liao, Tung-Heng Hsieh, Bao-Ru Young, Yung Feng Chang
  • Publication number: 20190067479
    Abstract: A method and structure for mitigating strain loss (e.g., in a FinFET channel) includes providing a semiconductor device having a substrate having a substrate fin portion, an active fin region formed over a first part of the substrate fin portion, a pickup region formed over a second part of the substrate fin portion, and an anchor formed over a third part of the substrate fin portion. In some embodiments, the substrate fin portion includes a first material, and the active fin region includes a second material different than the first material. In various examples, the anchor is disposed between and adjacent to each of the active fin region and the pickup region.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Inventors: Sheng-Hsiung WANG, Yung Feng CHANG, Tung-Heng HSIEH
  • Publication number: 20180130792
    Abstract: A mandrel is formed over an active region that includes a first region and a second region. The first region and the second region are reserved for the formation of a source and a drain of a FinFET, respectively. A portion of the mandrel formed over the second region is broken up into a first segment and a second segment separated from the first segment by a gap. Spacers are formed on opposite sides of the mandrel. Using the spacers, fins are defined. The fins protrude upwardly out of the active region. A portion of the second region corresponding to the gap has no fins formed thereover. The source is epitaxially grown on the fins in the first region. At least a portion of the drain is epitaxially grown on the portion of the second region having no fins.
    Type: Application
    Filed: January 5, 2018
    Publication date: May 10, 2018
    Inventors: Tzung-Chi Lee, Tung-Heng Hsieh, Bao-Ru Young, Yung Feng Chang
  • Patent number: 9865589
    Abstract: A mandrel is formed over an active region that includes a first region and a second region. The first region and the second region are reserved for the formation of a source and a drain of a FinFET, respectively. A portion of the mandrel formed over the second region is broken up into a first segment and a second segment separated from the first segment by a gap. Spacers are formed on opposite sides of the mandrel. Using the spacers, fins are defined. The fins protrude upwardly out of the active region. A portion of the second region corresponding to the gap has no fins formed thereover. The source is epitaxially grown on the fins in the first region. At least a portion of the drain is epitaxially grown on the portion of the second region having no fins.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: January 9, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tzung-Chi Lee, Tung-Heng Hsieh, Bao-Ru Young, Yung Feng Chang
  • Patent number: 9681584
    Abstract: The present invention relates to a rapidly removable thermal connector including a retainer and a clamper. The retainer has a first wedge connected with a convexity of a first two-convexity tenon and a second wedge. At the outer end of the first wedge has a mortise to allocate a convexity of the first two-convexity tenon; at the inner end of the second wedge has a mortise to allocate a convexity of a second two-convexity tenon. The clamper is used to hold the retainer. At the interior of the outer end of the clamper has a movable unit which is connected to the clamper with a bolt at one end and has a vertical concavity at the other end to match the first convexity of the first two-convexity tenon. At the interior of the inner end of the clamper has a mortise which allocates the fourth convexity of the second two-convexity tenon. The third convexity of the second two-convexity tenon is connected to a mortise at the inner end of the second wedge.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: June 13, 2017
    Assignee: National Tsing Hua University
    Inventors: Shwin-Chung Wong, Wei-Yuan Hsu, Chin-Fu Chen, Yung Feng Chang
  • Publication number: 20160242322
    Abstract: The present invention relates to a rapidly removable thermal connector including a retainer and a damper. The retainer has a first wedge connected with a convexity of a first two-convexity tenon and a second wedge. At the outer end of the first wedge has a mortise to allocate a convexity of the first two-convexity tenon; at the inner end of the second wedge has a mortise to allocate a convexity of a second two-convexity tenon. The damper is used to hold the retainer. At the interior of the outer end of the damper has a movable unit which is connected to the damper with a bolt at one end and has a vertical concavity at the other end to match the first convexity of the first two-convexity tenon. At the interior of the inner end of the clamper has a mortise which allocates the fourth convexity of the second two-convexity tenon. The third convexity of the second two-convexity tenon is connected to a mortise at the inner end of the second wedge.
    Type: Application
    Filed: January 27, 2016
    Publication date: August 18, 2016
    Inventors: Shwin-Chung Wong, Wei-Yuan Hsu, Chin-Fu Chen, Yung Feng Chang
  • Patent number: 6231792
    Abstract: A porous composite product comprised of a network of fibers is produced by forming an unsintered preformed network of fibers and a gasifiable structure forming agent, followed by gasification of the structure forming agent prior to sintering of the fibers at appropriate junction points. The preferred structure forming agent is a cellulosic material.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: May 15, 2001
    Assignee: ABB Lummus Global Inc.
    Inventors: Rudolf A. Overbeek, Ali M. Khonsari, Yung-Feng Chang, Lawrence L. Murrell, Bruce J. Tatarchuk, Michael W. Meffert