Patents by Inventor Yuta Urano

Yuta Urano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130155400
    Abstract: A defect inspecting method is provided which comprises a pre-scan defect inspecting process including a pre-scan irradiating step for casting irradiation light onto the surface of a sample, a pre-scan detecting step for detecting the scattered lights, and a pre-scan defect information collecting step for obtaining information on preselected defects present on the sample surface on the basis of the scattered lights; a near-field defect inspecting process including a near-field irradiating step in which the distance between the sample surface and a near-field head is adjusted so that the sample surface is irradiated, a near-field detecting step for detecting near-field light response, and a near-field defect information collecting step for obtaining information on the preselected defects on the basis of the near-field light response; and a merging process for inspecting defects present on the sample surface by merging the pieces of information on the preselected defects.
    Type: Application
    Filed: May 20, 2011
    Publication date: June 20, 2013
    Inventors: Toshiyuki Nakao, Junguo Xu, Yuki Shimizu, Toshihiko Nakata, Toshifumi Honda, Yukihiro Shibata, Yuta Urano
  • Patent number: 8462330
    Abstract: A method and apparatus for detecting defects are provided for detecting defects or foreign matter on an object to be inspected. The apparatus includes a movable stage for mounting a specimen, an illumination system for irradiating a circuit pattern with light from an inclined direction, and an image-forming optical system for forming an image of an irradiated detection area on a detector from the upward and oblique directions. With this arrangement, diffracted light and scattered light caused on the circuit pattern through the illumination by the illumination system is collected. A spatial filter is provided on a Fourier transform surface for blocking the diffracted light from a linear part of the circuit pattern. The scattered and reflected light received by the detector is converted into an electrical signal. The converted electrical signal of one chip is compared with that of the other adjacent chip.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: June 11, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyuki Nakano, Toshihiko Nakata, Sachio Uto, Akira Hamamatsu, Shunji Maeda, Yuta Urano
  • Publication number: 20130141715
    Abstract: Proposed is a defect inspection method whereby: illuminating light having a substantially uniform illumination intensity distribution in one direction of a sample surface irradiated on the sample surface; multiple scattered light components, which are output in multiple independent directions, are detected among the scattered light from the sample surface and multiple corresponding scattered light detection signals are obtained; at least one of the multiple scattered light detection signals is processed and the presence of defects is determined; at least one of the multiple scattered light detection signals that correspond to each of the points determined by the processing as a defect is processed and the dimensions of the defect are determined; and the position and dimensions of the defect on the sample surface, at each of the points determined as a defect, are displayed.
    Type: Application
    Filed: May 20, 2011
    Publication date: June 6, 2013
    Inventors: Yuta Urano, Shigenobu Maruyama, Toshiyuki Nakao, Toshifumi Honda, Yukihiro Shibata
  • Publication number: 20130114078
    Abstract: Disclosed is a defect inspection method which makes it possible to scan the entire surface of a sample and detect minute defects without causing thermal damage to the sample. A defect inspection method in which a pulse laser emitted from a light source is subjected to pulse division and irradiated on the surface of a sample which moves in one direction while the divided-pulse pulse laser is rotated, reflection light from the sample irradiated by the divided-pulse pulse laser is detected, the signal of the detected reflection light is processed to detect defects on the sample, and information regarding a detected defect is output to a display screen, wherein the barycentric position of the light intensity of the divided-pulse pulse laser is monitored and adjusted.
    Type: Application
    Filed: May 25, 2011
    Publication date: May 9, 2013
    Inventors: Toshifumi Honda, Yuta Urano, Yukihiro Shibata, Toshiyuki Nakao
  • Publication number: 20130107247
    Abstract: An inspecting method and apparatus for inspecting a substrate surface includes illuminating a light to the substrate surface having a film, detection of a scattered light or reflected light from a plurality of positions of the substrate surface to obtain a plurality of electrical signals, comparison of the plurality of electrical signals and a database which indicates a relationship between the electrical signals and surface roughness, and calculation of a surface roughness value based on the result of comparison.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 2, 2013
    Inventors: Akira Hamamatsu, Yoshimasa Oshima, Shunji Maeda, Hisae Shibuya, Yuta Urano, Toshiyuki Nakao, Shigenobu Maruyama
  • Patent number: 8427634
    Abstract: A pattern inspection apparatus is provided to compare images of regions, corresponding to each other, of patterns that are formed so as to be identical and judge that non-coincident portions in the images are defects. The pattern inspection apparatus is equipped with an image comparing section which plots individual pixels of an inspection subject image in a feature space and detects excessively deviated points in the feature space as defects. Defects can be detected correctly even when the same patterns in images have a brightness difference due to a difference in the thickness of a film formed on a wafer.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: April 23, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yuta Urano, Akira Hamamatsu, Shunji Maeda, Kaoru Sakai
  • Publication number: 20130010281
    Abstract: An inspection method and an inspection device, or apparatus each capable of conducting composition analysis of a defect detected by elastic or stokes scattered light, an inspection surface or defect on the surface of the inspection surface, or a defect on the surface of the inspection object and its internal composition. A surface inspection method for optically detecting elastic or stokes scattering or inelastic or anti-stokes scattered light from inside the surface of the inspection object, for detecting existence of defects of the inspection object and features of the defects, for detecting positions of the detected defects on the surface of the inspection object, classifying and analyzing the detected defects in accordance with their features on the basis of the positions of the defects and the features of the defects or the classification result of the defects.
    Type: Application
    Filed: September 15, 2012
    Publication date: January 10, 2013
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Izuo Horai, Hirokazu Koyabu, Yuta Urano, Takahiro Jingu
  • Publication number: 20130003052
    Abstract: A defect inspection device has: an illumination optical system which irradiates a predetermined region of an inspection target with illumination light; a detection optical system which has a detector provided with a plurality of pixels by which scattered light from the predetermined region of the inspection target due to illumination light from the illumination optical system can be detected; and a signal processing portion which is provided with a correction portion which corrects pixel displacement caused by change in a direction perpendicular to a surface of the inspection target with respect to a detection signal based on the scattered light detected by the detector of the detection optical system, and a defect determination portion which determines a defect on the surface of the inspection target based on the detection signal corrected by the correction portion.
    Type: Application
    Filed: January 17, 2011
    Publication date: January 3, 2013
    Inventors: Toshiyuki Nakao, Shigenobu Maruyama, Yuta Urano, Toshifumi Honda
  • Publication number: 20120320373
    Abstract: An inspection method and apparatus for detecting defects or haze of a sample, includes illuminating light to the sample from an oblique direction relative to a surface of the sample with an illuminator, detecting first scattered light at a forward position relative to an illuminating direction from the sample with a first detector, detecting sec and scattered light at a sideward or backward position relative to the illuminating direction from the sample with a second detection, and processing a first signal of the first scattered light and a second signal of the second scattered light with different weighting for the first signal and for the second signal with a processor.
    Type: Application
    Filed: August 29, 2012
    Publication date: December 20, 2012
    Inventors: Yoshimasa Oshima, Yuta Urano, Toshiyuki Nakao
  • Patent number: 8314929
    Abstract: A defect inspection apparatus is capable of inspecting an extremely small defect present on the top and edge surfaces of a sample such as a semiconductor substrate or a thin film substrate with high sensitivity and at high speed. The defect inspection apparatus has an illumination optical system, a plurality of detection optical units and a signal processor. One or more of the detection optical units receives either light diffracted from an edge portion of the sample or light diffracted from an edge grip holding the sample. The one or more of the detection optical units shields the diffracted light received by the detection optical unit based on a signal obtained by monitoring an intensity of the diffracted light received by the detection optical unit in order to inspect a sample portion located near the edge portion and a sample portion located near the edge grip.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: November 20, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yuta Urano, Toshiyuki Nakao, Yoshimasa Oshima
  • Patent number: 8310665
    Abstract: An inspecting method and apparatus for inspecting a substrate surface includes application of a light to the substrate surface, detection of scattered light or reflected light from the substrate surface due to the applied light at a plurality of positions to obtain a plurality of electrical signals, extraction of a signal in a mutually different frequency band from each of the plurality of electrical signals, and calculation of a value regarding a state of film of the substrate through an arithmetical operation process of a plurality of extracted signals in the frequency bands.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: November 13, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Akira Hamamatsu, Yoshimasa Oshima, Shunji Maeda, Hisae Shibuya, Yuta Urano, Toshiyuki Nakao, Shigenobu Maruyama
  • Publication number: 20120275681
    Abstract: When multiple kinds of bacterial colonies are present in a petri dish and, for example, a drug tolerance is to be measured, harvesting of mixed colonies of different types of bacteria makes it impossible to accurately determine the drug tolerance. Also, it is required to improve the throughput of a device for harvesting a bacterial colony. From images illuminated from multiple directions, isolating bacterial colonies are automatically extracted. Next, the image feature amounts are calculated from the multiple images that are illuminated from multiple directions and colonies are grouped depending on the feature amounts. Then, bacterial colonies to be harvested are determined based on the results of the grouping.
    Type: Application
    Filed: November 5, 2010
    Publication date: November 1, 2012
    Inventors: Toshifumi Honda, Hiroko Fujita, Muneo Maeshima, Akira Maekawa, Yoshiko Ishida, Yuta Urano, Shinya Murakami
  • Patent number: 8274652
    Abstract: In an inspection subject substrate, there is a problem that a defect signal is overlooked due to scattered light from a pattern and sensitivity decreases in an irregular circuit pattern part. The inventors propose a defect inspection method, characterized by comprising: an illumination step of guiding light emitted from a light source to a predetermined area on an inspection subject substrate under a plurality of predetermined optical conditions; a detection step of obtaining an electric signal by guiding scattered light components propagating in a predetermined range of azimuthal angle and in a predetermined range of elevation angle to a detector for each of a plurality of scattered light distributions occurred correspondingly to the plurality of optical conditions in the predetermined area; and a defect determination step of determining a defect based on the plurality of electric signals obtained in the detection step.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: September 25, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yuta Urano, Kaoru Sakai, Shunji Maeda
  • Patent number: 8264679
    Abstract: An inspection apparatus and method for detecting defects and haze on a surface of a sample includes illumination optics which emit light to illuminate an inspection region on the surface of the sample from an oblique direction relative to the inspection region, first detection optics which detect first scattered light from the inspection region and having a beam analyzer through an optical path, second detection optics which detect second scattered light from the inspection region, the second scattered light being scattered from a direction different than a direction of the first scattered light, and a signal-processing unit which treats different processings for a first signal of the detected first scattered light and for a second signal of the detected second scattered light and detecting defects and haze on the surface of the sample on the basis of at least one of the first signal and the second signal.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: September 11, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yoshimasa Oshima, Yuta Urano, Toshiyuki Nakao
  • Publication number: 20120194809
    Abstract: A method and apparatus for detecting defects are provided for detecting defects or foreign matter on an object to be inspected. The apparatus includes a movable stage for mounting a specimen, an illumination system for irradiating a circuit pattern with light from an inclined direction, and an image-forming optical system for forming an image of an irradiated detection area on a detector from the upward and oblique directions. With this arrangement, diffracted light and scattered light caused on the circuit pattern through the illumination by the illumination system is collected. A spatial filter is provided on a Fourier transform surface for blocking the diffracted light from a linear part of the circuit pattern. The scattered and reflected light received by the detector is converted into an electrical signal. The converted electrical signal of one chip is compared with that of the other adjacent chip.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 2, 2012
    Inventors: Hiroyuki Nakano, Toshihiko Nakata, Sachio Uto, Akira Hamamatsu, Shunji Maeda, Yuta Urano
  • Publication number: 20120194807
    Abstract: In order to maximize the effect of signal addition during inspection of foreign substances in wafers, a device structure including line sensors arranged in plural directions is effective. Low-angle detection optical systems that detect light beams in plural azimuth directions, the light beams being scattered in low angle directions among those scattered from a linear area on a sample illuminated by illuminating means, each include a combination of a first imaging lens group (330) and a diffraction grating (340) and a combination of a second imaging lens group (333) and an image detector (350) having a plurality of light receiving surfaces. A signal processing unit processes signals from the image detectors of the low-angle detection optical systems by adding the signals from the light receiving surfaces corresponding between the image detectors.
    Type: Application
    Filed: July 28, 2010
    Publication date: August 2, 2012
    Inventors: Shigenobu Maruyama, Toshifumi Honda, Toshiyuki Nakao, Yuta Urano
  • Patent number: 8218138
    Abstract: A defect inspection apparatus and method includes utilizing an irradiation optical system that focuses a beam flux emitted from a laser light source and formed into a slit-shaped beam so as to irradiate the beam onto the surface of the substrate to be inspected, utilizing a detection optical system that detects light from the substrate that has been irradiated with the slit-shaped beam, and utilizing a signal processor that processes a signal output from the detection optical system. The irradiation optical system includes a cylindrical lens for focusing the beam that has been emitted from the laser light source onto the substrate to be inspected, as the slit-shaped beam, wherein the cylindrical lens is disposed so as to obtain a distance between an incidence surface or emitting surface thereof and the slit-shaped beam upon the substrate to be inspected to be equal to a focal distance of the cylindrical lens.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: July 10, 2012
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyuki Nakano, Akira Hamamatsu, Sachio Uto, Yoshimasa Oshima, Hidetoshi Nishiyama, Yuta Urano, Shunji Maeda
  • Publication number: 20120162665
    Abstract: An inspecting method and apparatus for inspecting a substrate surface includes application of a light to the substrate surface, detection of scattered light or reflected light from the substrate surface due to the applied light at a plurality of positions to obtain a plurality of electrical signals, extraction of a signal in a mutually different frequency band from each of the plurality of electrical signals, and calculation of a value regarding a state of film of the substrate through an arithmetical operation process of a plurality of extracted signals in the frequency bands.
    Type: Application
    Filed: February 24, 2012
    Publication date: June 28, 2012
    Inventors: Akira Hamamatsu, Yoshimasa Oshima, Shunji Maeda, Hisae Shibuya, Yuta Urano, Toshiyuki Nakao, Shigenobu Maruyama
  • Publication number: 20120140211
    Abstract: An inspection apparatus and method for detecting defects and haze on a surface of a sample includes illumination optics which emit light to illuminate an inspection region on the surface of the sample from an oblique direction relative to the inspection region, first detection optics which detect first scattered light from the inspection region and having a beam analyzer through an optical path, second detection optics which detect second scattered light from the inspection region, the second scattered light being scattered from a direction different than a direction of the first scattered light, and a signal-processing unit which treats different processings for a first signal of the detected first scattered light and for a second signal of the detected second scattered light and detecting defects and haze on the surface of the sample on the basis of at least one of the first signal and the second signal.
    Type: Application
    Filed: February 8, 2012
    Publication date: June 7, 2012
    Inventors: Yoshimasa OSHIMA, Yuta URANO, Toshiyuki NAKAO
  • Publication number: 20120133928
    Abstract: A defect inspection method wherein illumination light having a substantially uniform illumination intensity distribution in a certain direction on the surface of a specimen is radiated onto the surface of the specimen; wherein multiple components of those scattered light beams from the surface of the specimen which are emitted mutually different directions are detected, thereby obtaining corresponding multiple scattered light beam detection signals; wherein the multiple scattered light beam detection signals is subjected to processing, thereby determining the presence of defects; wherein the corresponding multiple scattered light detecting signals is processed with respect to all of the spots determined to be defective by the processing, thereby determining the sizes of defects; and wherein the defect locations on the specimen and the defect sizes are displayed with respect to all of the spots determined to be defective by the processing.
    Type: Application
    Filed: June 9, 2010
    Publication date: May 31, 2012
    Inventors: Yuta Urano, Shigenobu Maruyama, Toshiyuki Nakao, Toshifumi Honda