Patents by Inventor Yutaka Hoshino

Yutaka Hoshino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11036024
    Abstract: A method for manufacturing an intermittent bonding type optical fiber ribbon which is capable of forming non-connection portions and intermittent connection portions between adjacent coated optical fibers formed into an optical fiber ribbon by performing a laser processing for the ribbon through irradiation with a pulse laser light, thereby making it possible to rapidly form the intermittent connection portions and the non-connection portions while maintaining high linear velocity of the coated optical fiber. The non-connection portions and the intermittent connection portions are formed in the obtained intermittent bonding type optical fiber ribbon through the irradiation with the pulse laser light, so the intermittent bonding type optical fiber ribbon becomes the intermittent bonding type optical fiber ribbon, which is capable of securing operability during collective connection and surely being subjected to an intermediate branching without damaging cable characteristics during high density mounting.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: June 15, 2021
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hiroki Tanaka, Kenji Yokomizo, Tomohiro Ishimura, Yutaka Hoshino, Masaki Iwama, Eisuke Otani, Shunichi Matsushita, Yoshihiro Arashitani, Takeshi Yagi
  • Patent number: 10882783
    Abstract: An optical fiber ribbon is intermittently connected in a length direction by an intermittent connection which includes a polyol having a weight-average molecular weight of 3000 to 4000 in a specific amount relative to the entire intermittent connection and which has Young's modulus at 23° C. within a specific range. When collectively unitizing optical fiber ribbons to form an optical fiber cable, an optical fiber ribbon is formed which maintains advantages of the optical fiber ribbon and which prevents cracks of the intermittent connection and detachment of the intermittent connection from a colored optical fiber core when the cable is subjected to repetitive ironing.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: January 5, 2021
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hiroki Tanaka, Yutaka Hoshino, Hirotaka Watanabe, Yoshihiro Arashitani, Kenji Yokomizo, Tomohiro Ishimura
  • Patent number: 10859780
    Abstract: Two bundle materials are provided on the outer periphery of a plurality of optical fibers. The bundle materials are twisted back while reversing the winding from front to back and vice versa to thus wind the bundle materials around the plurality of optical fibers. That is, the bundle materials are not wound spirally around the plurality of optical fibers. The bundle materials are bonded at a bonding portion where both bundle materials intersect. The bonding portion is provided along a center line of an optical fiber unit. The bundle materials are arranged in ranges which are each approximately 180° and partitioned by the center line.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: December 8, 2020
    Assignees: FURUKAWA ELECTRIC CO., LTD., NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tomohiro Ishimura, Yutaka Hoshino, Shinya Hamaguchi, Naoki Nakagawa, Yohei Endo, Yukihiko Shibata, Yuji Aoyagi
  • Patent number: 10823930
    Abstract: An optical fiber cable is a slot-less type optical fiber cable not using a slot, and is provided with: a plurality of optical fiber core wires; a presser-winding member; a linear body; a tension member; a tear cord; a jacket, etc. The presser-winding member is provided to the outer circumference of the optical fiber core wires. A cable core on which the linear body is wound is formed on the outer circumference of the presser-winding member. The linear member wound on the outside of the presser-winding member has a thermal shrinkage of 0.2% or lower at a temperature of ?40° C. to +85° C.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: November 3, 2020
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventor: Yutaka Hoshino
  • Publication number: 20190384027
    Abstract: An optical fiber cable is a slot-less type optical fiber cable not using a slot, and is provided with: a plurality of optical fiber core wires; a presser-winding member; a linear body; a tension member; a tear cord; a jacket, etc. The presser-winding member is provided to the outer circumference of the optical fiber core wires. A cable core on which the linear body is wound is formed on the outer circumference of the presser-winding member. The linear member wound on the outside of the presser-winding member has a thermal shrinkage of 0.2% or lower at a temperature of ?40° C. to +85° C.
    Type: Application
    Filed: August 30, 2019
    Publication date: December 19, 2019
    Inventor: Yutaka Hoshino
  • Publication number: 20190302384
    Abstract: Two bundle materials are provided on the outer periphery of a plurality of optical fibers. The bundle materials are twisted back while reversing the winding from front to back and vice versa to thus wind the bundle materials around the plurality of optical fibers. That is, the bundle materials are not wound spirally around the plurality of optical fibers. The bundle materials are bonded at a bonding portion where both bundle materials intersect. The bonding portion is provided along a center line of an optical fiber unit. The bundle materials are arranged in ranges which are each approximately 180° and partitioned by the center line.
    Type: Application
    Filed: June 20, 2019
    Publication date: October 3, 2019
    Inventors: Tomohiro Ishimura, Yutaka Hoshino, Shinya Hamaguchi, Naoki Nakagawa, Yohei Endo, Yukihiko Shibata, Yuji Aoyagi
  • Publication number: 20190285823
    Abstract: A method for manufacturing an intermittent bonding type optical fiber ribbon which is capable of forming non-connection portions and intermittent connection portions between adjacent coated optical fibers formed into an optical fiber ribbon by performing a laser processing for the ribbon through irradiation with a pulse laser light, thereby making it possible to rapidly form the intermittent connection portions and the non-connection portions while maintaining high linear velocity of the coated optical fiber. The non-connection portions and the intermittent connection portions are formed in the obtained intermittent bonding type optical fiber ribbon through the irradiation with the pulse laser light, so the intermittent bonding type optical fiber ribbon becomes the intermittent bonding type optical fiber ribbon, which is capable of securing operability during collective connection and surely being subjected to an intermediate branching without damaging cable characteristics during high density mounting.
    Type: Application
    Filed: May 31, 2019
    Publication date: September 19, 2019
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Hiroki TANAKA, Kenji YOKOMIZO, Tomohiro ISHIMURA, Yutaka HOSHINO, Masaki IWAMA, Eisuke OTANI, Shunichi MATSUSHITA, Yoshihiro ARASHITANI, Takeshi YAGI
  • Patent number: 10101549
    Abstract: Optical fiber ribbons each comprise a plurality of optical fiber strands bonded in parallel. In the optical fiber ribbons, adjacent optical fiber strands are bonded by bonding sections that are intermittently bonded at prescribed intervals. The positions of the bonding section for all optical fiber ribbons are mutually offset in the longitudinal direction. In other words, the longitudinal-direction positions of the bonding section for the optical fiber ribbons never exactly match.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: October 16, 2018
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yutaka Hoshino, Noboru Okada
  • Publication number: 20180273427
    Abstract: An optical fiber ribbon is intermittently connected in a length direction by an intermittent connection which includes a polyol having a weight-average molecular weight of 3000 to 4000 in a specific amount relative to the entire intermittent connection and which has Young's modulus at 23° C. within a specific range. When collectively unitizing optical fiber ribbons to form an optical fiber cable, an optical fiber ribbon is formed which maintains advantages of the optical fiber ribbon and which prevents cracks of the intermittent connection and detachment of the intermittent connection from a colored optical fiber core when the cable is subjected to repetitive ironing.
    Type: Application
    Filed: June 1, 2018
    Publication date: September 27, 2018
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Hiroki TANAKA, Yutaka HOSHINO, Hirotaka WATANABE, Yoshihiro ARASHITANI, Kenji YOKOMIZO, Tomohiro ISHIMURA
  • Patent number: 10061095
    Abstract: An indoor cable is composed of an optical fiber core, tension members, an outer sheath, and so forth. The optical fiber core and the tension members are integrated by the outer sheath. The outer sheath is composed of a transparent material. The optical fiber core includes a glass wire and a resin coating (a primary resin layer and a secondary resin layer). The optical fiber core does not have a colored layer that is conventionally formed on the outer periphery of the resin coating layer. That is, the optical fiber core is composed entirely of transparent materials. On both sides of the optical fiber core, separate from the optical fiber core, is arranged a pair of tension members. The tension members are composed of transparent materials.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: August 28, 2018
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masayoshi Tsukamoto, Yutaka Hoshino
  • Patent number: 9989723
    Abstract: An optical fiber ribbon comprises a plurality of optical fiber strands that are arranged side-by-side in one direction and integrated. The optical fiber ribbon comprises a plurality of optical fiber strands that are bonded in parallel. In the optical fiber ribbon, the adjacent optical fiber strands are bonded using a bonding section in which the same are continuously bonded along the entire length thereof and a bonding section in which the same are intermittently bonded at prescribed intervals. In other words, either of the bonding sections is formed between the adjacent optical fiber strands.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: June 5, 2018
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yutaka Hoshino, Noboru Okada, Tatsuya Oyama
  • Patent number: 9795549
    Abstract: Provided is a composition containing, as an alkane polyol, a C4-18 1,2-alkane polyol in which the degradation over time of the C4-18 1,2-alkane polyol, which has inferior chemical stability and degrades easily, is suppressed, the composition being suitable for use in a cosmetic, an inkjet ink, a fiber or a coating material such as a paint. A composition containing 1,2-alkane polyol that can be used in a cosmetic, an inkjet ink, a raw material for fibers or a coating material, the alkane polyol being a C4-18 1,2-alkane polyol, and the composition containing a radical scavenger.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: October 24, 2017
    Assignee: OSAKA ORGANIC CHEMICAL INDUSTRY LTD.
    Inventors: Yutaka Hoshino, Takahiro Mukaiyama
  • Publication number: 20170299833
    Abstract: An indoor cable is composed of an optical fiber core, tension members, an outer sheath, and so forth. The optical fiber core and the tension members are integrated by the outer sheath. The outer sheath is composed of a transparent material. The optical fiber core includes a glass wire and a resin coating (a primary resin layer and a secondary resin layer). The optical fiber core does not have a colored layer that is conventionally formed on the outer periphery of the resin coating layer. That is, the optical fiber core is composed entirely of transparent materials. On both sides of the optical fiber core, separate from the optical fiber core, is arranged a pair of tension members. The tension members are composed of transparent materials.
    Type: Application
    Filed: March 16, 2015
    Publication date: October 19, 2017
    Inventors: Masayoshi Tsukamoto, Yutaka Hoshino
  • Publication number: 20170299829
    Abstract: An optical fiber ribbon comprises a plurality of optical fiber strands that are arranged side-by-side in one direction and integrated. The optical fiber ribbon comprises a plurality of optical fiber strands that are bonded in parallel. In the optical fiber ribbon, the adjacent optical fiber strands are bonded using a bonding section in which the same are continuously bonded along the entire length thereof and a bonding section in which the same are intermittently bonded at prescribed intervals. In other words, either of the bonding sections is formed between the adjacent optical fiber strands.
    Type: Application
    Filed: January 13, 2015
    Publication date: October 19, 2017
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yutaka Hoshino, Noboru Okada, Tatsuya Oyama
  • Publication number: 20170299832
    Abstract: An optical fiber cable is composed of an optical fiber core, a tension member, an outer sheath, and so forth. The optical fiber core includes a glass wire and a resin-coated part, which is further coated by a transparent member on its outer periphery. The transparent member is, for example, urethane acrylate, PVC, nylon, and so forth. The transparent member preferably has a total light transmittance, defined by JIS K7361-1, of 60% or higher. The reason is that when the total light transmittance is less than 60%, the color tone of the optical fiber core (transparent member) becomes intense and stands out. Additionally, it is preferable that the total light transmittance of the transparent member is 80% or more.
    Type: Application
    Filed: March 16, 2015
    Publication date: October 19, 2017
    Inventors: Masayoshi Tsukamoto, Yutaka Hoshino
  • Publication number: 20170285285
    Abstract: Optical fiber ribbons each comprise a plurality of optical fiber strands bonded in parallel. In the optical fiber ribbons, adjacent optical fiber strands are bonded by bonding sections that are intermittently bonded at prescribed intervals. The positions of the bonding section for all optical fiber ribbons are mutually offset in the longitudinal direction. In other words, the longitudinal-direction positions of the bonding section for the optical fiber ribbons never exactly match.
    Type: Application
    Filed: January 13, 2015
    Publication date: October 5, 2017
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yutaka Hoshino, Noboru Okada
  • Patent number: 9324734
    Abstract: A semiconductor device has a first element region, a second element region, and a first isolation region in a thin film region and a third element region, a fourth element region, and a second isolation region in a thick film region. It is manufactured with step (a) of providing a substrate having a silicon layer formed via an insulating layer, step (b) of forming element isolation insulating films in the silicon layer in the first isolation region and the second isolation region of the substrate step (c) of forming a hard mask in the thin film region, step (d) of forming silicon films over the silicon layer exposed from the hard mask in the third element region and the fourth element region, and step (e) of forming element isolation insulating films between the silicon films in the third element region and the fourth element region.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: April 26, 2016
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventor: Yutaka Hoshino
  • Publication number: 20160045414
    Abstract: Provided is a composition containing, as an alkane polyol, a C4-18 1,2-alkane polyol in which the degradation over time of the C4-18 1,2-alkane polyol, which has inferior chemical stability and degrades easily, is suppressed, the composition being suitable for use in a cosmetic, an inkjet ink, a fiber or a coating material such as a paint. A composition containing 1,2-alkane polyol that can be used in a cosmetic, an inkjet ink, a raw material for fibers or a coating material, the alkane polyol being a C4-18 1,2-alkane polyol, and the composition containing a radical scavenger.
    Type: Application
    Filed: October 9, 2015
    Publication date: February 18, 2016
    Applicant: OSAKA ORGANIC CHEMICAL INDUSTRY LTD.
    Inventors: Yutaka Hoshino, Takahiro Mukaiyama
  • Patent number: 9159807
    Abstract: The reliability of a semiconductor device including a MOSFET formed over an SOI substrate is improved. A manufacturing method of the semiconductor device is simplified. A semiconductor device with n-channel MOSFETsQn formed over an SOI substrate SB includes an n+-type semiconductor region formed as a diffusion layer over an upper surface of a support substrate under a BOX film, and a contact plug CT2 electrically coupled to the n+-type semiconductor region and penetrating an element isolation region, which can control the potential of the support substrate. At a plane of the SOI substrate SB, the n-channel MOSFETsQn each extend in a first direction, and are arranged between the contact plugs CT2 formed adjacent to each other in the first direction.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: October 13, 2015
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Komaki Inoue, Yutaka Hoshino
  • Publication number: 20150155300
    Abstract: A semiconductor device has a first element region, a second element region, and a first isolation region in a thin film region and a third element region, a fourth element region, and a second isolation region in a thick film region. It is manufactured with step (a) of providing a substrate having a silicon layer formed via an insulating layer, step (b) of forming element isolation insulating films in the silicon layer in the first isolation region and the second isolation region of the substrate step (c) of forming a hard mask in the thin film region, step (d) of forming silicon films over the silicon layer exposed from the hard mask in the third element region and the fourth element region, and step (e) of forming element isolation insulating films between the silicon films in the third element region and the fourth element region.
    Type: Application
    Filed: January 9, 2015
    Publication date: June 4, 2015
    Inventor: Yutaka HOSHINO