Patents by Inventor Yutaka Hoshino

Yutaka Hoshino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7479681
    Abstract: A semiconductor device including a MISFET formed in a well at a main surface of a substrate, a second MISFET formed at a main surface of the substrate, and a passive element formed over the main surface of the substrate and having two terminals. A conductive film is formed at a rear face of the semiconductor substrate. The conductive film is connected with a fixed potential and also electrically connected with the conductive film.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: January 20, 2009
    Assignee: Renesas Eastern Technology Corp.
    Inventors: Fumitaka Nakayama, Masatoshi Morikawa, Yutaka Hoshino, Tetsuo Uchiyama
  • Publication number: 20080061381
    Abstract: In a complete CMOS SRAM having a memory cell composed of six MISFETs formed over a substrate, a capacitor element having a stack structure is formed of a lower electrode covering the memory cell, an upper electrode, and a capacitor insulating film (dielectric film) interposed between the lower electrode and the upper electrode. One electrode (the lower electrode) of the capacitor element is connected to one storage node of a flip-flop circuit, and the other electrode (the upper electrode) is connected to the other storage node. As a result, the storage node capacitance of the memory cell of the SRAM is increased to improve the soft error resistance.
    Type: Application
    Filed: October 29, 2007
    Publication date: March 13, 2008
    Inventors: Naotaka Hashimoto, Yutaka Hoshino, Shuji Ikeda
  • Patent number: 7323735
    Abstract: In a complete CMOS SRAM having a memory cell composed of six MISFETs formed over a substrate, a capacitor element having a stack structure is formed of a lower electrode covering the memory cell, an upper electrode, and a capacitor insulating film (dielectric film) interposed between the lower electrode and the upper electrode. One electrode (the lower electrode) of the capacitor element is connected to one storage node of a flip-flop circuit, and the other electrode (the upper electrode) is connected to the other storage node. As a result, the storage node capacitance of the memory cell of the SRAM is increased to improve the soft error resistance.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: January 29, 2008
    Assignee: Renesas Technology Corp.
    Inventors: Naotaka Hashimoto, Yutaka Hoshino, Shuji Ikeda
  • Publication number: 20070194407
    Abstract: A semiconductor device including a MISFET formed in a well at a main surface of a substrate, a second MISFET formed at a main surface of the substrate, and a passive element formed over the main surface of the substrate and having two terminals. A conductive film is formed at a rear face of the semiconductor substrate. The conductive film is connected with a fixed potential and also electrically connected with the conductive film.
    Type: Application
    Filed: April 12, 2007
    Publication date: August 23, 2007
    Inventors: Fumitaka Nakayama, Masatoshi Morikawa, Yutaka Hoshino, Tetsuo Uchiyama
  • Publication number: 20070114606
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Application
    Filed: January 4, 2007
    Publication date: May 24, 2007
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Patent number: 7217987
    Abstract: A semiconductor device includes a transmission power amplifier having cascaded MOSFET amplification stages disposed over a main surface of a semiconductor substrate. A CMOSFET control circuit controls the amplification stages. A first capacitor is also provided having upper and lower metal film electrodes formed over the main surface of the semiconductor substrate. The amplification stages are electrically coupled to one another via an inter-stage matching circuit which includes the first capacitor.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: May 15, 2007
    Assignees: Renesas Technology Corp., Renesas Eastern Japan Semiconductor, Inc.
    Inventors: Fumitaka Nakayama, Masatoshi Morikawa, Yutaka Hoshino, Tetsuo Uchiyama
  • Publication number: 20070102757
    Abstract: To reduce the size and improve the power added efficiency of an RF power module having an amplifier element composed of a silicon power MOSFET, the on resistance and feedback capacitance, which were conventionally in a trade-off relationship, are reduced simultaneously by forming the structure of an offset drain region existing between a gate electrode and an n+ type drain region of the power MOSFET into a double offset one. More specifically, this is accomplished by adjusting the impurity concentration of an n? type offset drain region, which is closest to the gate electrode, to be relatively low and adjusting the impurity concentration of an n type offset drain region, which is distant from the gate electrode, to be relatively high.
    Type: Application
    Filed: December 27, 2006
    Publication date: May 10, 2007
    Inventors: Tomoyuki Miyake, Masatoshi Morikawa, Yutaka Hoshino, Makoto Hatori
  • Patent number: 7199433
    Abstract: In a complete CMOS SRAM having a memory cell composed of six MISFETs formed over a substrate, a capacitor element having a stack structure is formed of a lower electrode covering the memory cell, an upper electrode, and a capacitor insulating film (dielectric film) interposed between the lower electrode and the upper electrode. One electrode (the lower electrode) of the capacitor element is connected to one storage node of a flip-flop circuit, and the other electrode (the upper electrode) is connected to the other storage node. As a result, the storage node capacitance of the memory cell of the SRAM is increased to improve the soft error resistance.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: April 3, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Naotaka Hashimoto, Yutaka Hoshino, Shuji Ikeda
  • Patent number: 7176523
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: February 13, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa
  • Patent number: 7176520
    Abstract: To reduce the size and improve the power added efficiency of an RF power module having an amplifier element composed of a silicon power MOSFET, the on resistance and feedback capacitance, which were conventionally in a trade-off relationship, are reduced simultaneously by forming the structure of an offset drain region existing between a gate electrode and an n+ type drain region of the power MOSFET into a double offset one. More specifically, this is accomplished by adjusting the impurity concentration of an n? type offset drain region, which is closest to the gate electrode, to be relatively low and adjusting the impurity concentration of an n type offset drain region, which is distant from the gate electrode, to be relatively high.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: February 13, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Tomoyuki Miyake, Masatoshi Morikawa, Yutaka Hoshino, Makoto Hatori
  • Publication number: 20060261442
    Abstract: A semiconductor device includes a transmission power amplifier having cascaded MOSFET amplification stages disposed over a main surface of a semiconductor substrate. A CMOSFET control circuit controls the amplification stages. A first capacitor is also provided having upper and lower metal film electrodes formed over the main surface of the semiconductor substrate. The amplification stages are electrically coupled to one another via an inter-stage matching circuit which includes the first capacitor.
    Type: Application
    Filed: July 27, 2006
    Publication date: November 23, 2006
    Inventors: Fumitaka Nakayama, Masatoshi Morikawa, Yutaka Hoshino, Tetsuo Uchiyama
  • Patent number: 7087977
    Abstract: Plural elements forming a high frequency device in one chip are provided by forming a resistor element and the lower electrode of a capacitor element from one identical polycrystal silicon film over a substrate; forming the gate electrode of a power MISFET, upper electrode of the capacitor element, gate electrode of an n-channel type MISFET and gate electrode of a p-channel type MISFET from an identical polycrystal silicon film different from the other polycrystal silicon film and a WSi film; forming a capacitor element having a wiring formed on a silicon oxide film deposited over the substrate as a lower electrode and a wiring formed on the silicon oxide film as the upper electrode in the region MIN; forming a spiral coil in a region IND using an aluminum alloy film identical with that deposited on a silicon oxide film; and forming a bonding pad in a region PAD.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: August 8, 2006
    Assignees: Renesas Technology Corp., Renesas Eastern Japan Semiconductor, Inc.
    Inventors: Fumitaka Nakayama, Masatoshi Morikawa, Yutaka Hoshino, Tetsuo Uchiyama
  • Patent number: 7030449
    Abstract: In a complete CMOS SRAM having a memory cell composed of six MISFETs formed over a substrate, a capacitor element having a stack structure is formed of a lower electrode covering the memory cell, an upper electrode, and a capacitor insulating film (dielectric film) interposed between the lower electrode and the upper electrode. One electrode (the lower electrode) of the capacitor element is connected to one storage node of a flip-flop circuit, and the other electrode (the upper electrode) is connected to the other storage node. As a result, the storage node capacitance of the memory cell of the SRAM is increased to improve the soft error resistance.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: April 18, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Naotaka Hashimoto, Yutaka Hoshino, Shuji Ikeda
  • Publication number: 20060057793
    Abstract: The invention improves the performance of a semiconductor device. A metal silicide film is formed by a silicide process on a gate electrode and an n+-type source region of an LDMOSFET, and no such metal silicide film is formed on an n?-type offset drain region, an n-type offset drain region, and an n+-type drain region. A side wall spacer comprising a silicon film is formed via an insulating film on the side wall of the gate electrode over the drain side thereof, and a field plate electrode is formed by this side wall spacer. The field plate electrode does not extend above the gate electrode, and a metal silicide film is formed over the entire upper surface of the gate electrode in the silicide process.
    Type: Application
    Filed: September 12, 2005
    Publication date: March 16, 2006
    Inventors: Makoto Hatori, Yutaka Hoshino
  • Publication number: 20050242405
    Abstract: In a complete CMOS SRAM having a memory cell composed of six MISFETs formed over a substrate, a capacitor element having a stack structure is formed of a lower electrode covering the memory cell, an upper electrode, and a capacitor insulating film (dielectric film) interposed between the lower electrode and the upper electrode. One electrode (the lower electrode) of the capacitor element is connected to one storage node of a flip-flop circuit, and the other electrode (the upper electrode) is connected to the other storage node. As a result, the storage node capacitance of the memory cell of the SRAM is increased to improve the soft error resistance.
    Type: Application
    Filed: July 5, 2005
    Publication date: November 3, 2005
    Inventors: Naotaka Hashimoto, Yutaka Hoshino, Shuji Ikeda
  • Publication number: 20050173738
    Abstract: Provided is a technology capable of reducing the on-resistance of a power MISFET while suppressing the generation of defects in a strained silicon layer. A strained silicon layer is formed only over an underlying strained silicon layer in the drain region by epitaxial growth. Large portions of a lightly-doped n type impurity diffusion region, offset region and heavily-doped n type impurity diffusion region are formed in these strained silicon layers, having a higher electron mobility than a conventional silicon layer.
    Type: Application
    Filed: February 4, 2005
    Publication date: August 11, 2005
    Inventors: Masao Kondo, Yutaka Hoshino, Kazuhiro Ohnishi, Isao Yoshida, Masatoshi Morikawa
  • Publication number: 20050098851
    Abstract: Plural elements forming a high frequency device in one chip are provided by forming a resistor element and the lower electrode of a capacitor element from one identical polycrystal silicon film over a substrate; forming the gate electrode of a power MISFET, upper electrode of the capacitor element, gate electrode of an n-channel type MISFET and gate electrode of a p-channel type MISFET from an identical polycrystal silicon film different from the other polycrystal silicon film and above and a WSi film; forming a capacitor element having a wiring formed on a silicon oxide film deposited over the substrate as a lower electrode and a wiring formed on the silicon oxide film as the upper electrode in the region MIN; forming a spiral coil in a region IND using an aluminum alloy film identical with that deposited on a silicon oxide film; and forming a bonding pad in a region PAD.
    Type: Application
    Filed: September 26, 2003
    Publication date: May 12, 2005
    Inventors: Fumitaka Nakayama, Masatoshi Morikawa, Yutaka Hoshino, Tetsuo Uchiyama
  • Publication number: 20050051814
    Abstract: To reduce the size and improve the power added efficiency of an RF power module having an amplifier element composed of a silicon power MOSFET, the on resistance and feedback capacitance, which were conventionally in a trade-off relationship, are reduced simultaneously by forming the structure of an offset drain region existing between a gate electrode and an n+ type drain region of the power MOSFET into a double offset one. More specifically, this is accomplished by adjusting the impurity concentration of an n? type offset drain region, which is closest to the gate electrode, to be relatively low and adjusting the impurity concentration of an n type offset drain region, which is distant from the gate electrode, to be relatively high.
    Type: Application
    Filed: July 30, 2004
    Publication date: March 10, 2005
    Inventors: Tomoyuki Miyake, Masatoshi Morikawa, Yutaka Hoshino, Makoto Hatori
  • Publication number: 20050042827
    Abstract: In a complete CMOS SRAM having a memory cell composed of six MISFETs formed over a substrate, a capacitor element having a stack structure is formed of a lower electrode covering the memory cell, an upper electrode, and a capacitor insulating film (dielectric film) interposed between the lower electrode and the upper electrode. One electrode (the lower electrode) of the capacitor element is connected to one storage node of a flip-flop circuit, and the other electrode (the upper electrode) is connected to the other storage node. As a result, the storage node capacitance of the memory cell of the SRAM is increased to improve the soft error resistance.
    Type: Application
    Filed: September 29, 2004
    Publication date: February 24, 2005
    Inventors: Naotaka Hashimoto, Yutaka Hoshino, Shuji Ikeda
  • Publication number: 20050017296
    Abstract: In a high frequency amplifying MOSFET having a drain offset region, the size is reduced and the on-resistance is decreased by providing conductor plugs 13 (P1) for leading out electrodes on a source region 10, a drain region 9 and leach-through layers 3 (4), to which a first layer wirings 11a, 11d (M1) are connected and, further, backing second layer wirings 12a to 12d are connected on the conductor plugs 13 (P1) to the first layer wirings 11s, 11d (M1).
    Type: Application
    Filed: August 19, 2004
    Publication date: January 27, 2005
    Inventors: Yutaka Hoshino, Shuji Ikeda, Isao Yoshida, Shiro Kamohara, Megumi Kawakami, Tomoyuki Miyake, Masatoshi Morikawa