Patents by Inventor Zhan Zhan

Zhan Zhan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190304856
    Abstract: A test element group includes a test element including a plurality of test transistors connected in series between a first node and a second node, the second node being connected to a ground node; a first transistor connected between the first node and a power supply node; and a second transistor configured to generate an output current, proportional to a voltage at the first node, and connected to the first node and the power supply node.
    Type: Application
    Filed: October 1, 2018
    Publication date: October 3, 2019
    Inventors: Zhan Zhan, Ju Hyun Kim, Sung Gun Kang, Hwa Sung Rhee
  • Publication number: 20180012814
    Abstract: A semiconductor device includes first and second pads separated from each other, first and second test elements connected to the first and second pads and connected to each other in parallel between the first and second pads, a first diode connected to the first test element in series, and a second diode connected to the second test element in series.
    Type: Application
    Filed: April 27, 2017
    Publication date: January 11, 2018
    Inventors: Zhan ZHAN, Hwa Sung RHEE, Myung Jo CHUN
  • Publication number: 20160079400
    Abstract: The present invention discloses a junction-modulated tunneling field effect transistor and a fabrication method thereof, belonging to a field of field effect transistor logic device and the circuit in connection with CMOS ultra large scale integrated circuit (ULSI). The PN junction provided by a highly-doped source region surrounding three sides of the vertical channel region of the tunneling field effect transistor can deplete effectively the channel region, so that the energy band of the surface channel under the gate is lifted, therefore the device may obtain a steeper energy band and a narrower tunneling barrier width than the conventional TFET when the band-to-band tunneling occurs, equivalently achieving the effect of a steep doping concentration gradient at the source tunneling junction, and thereby the sub-threshold characteristics are significantly improved while the turn-on current of the device is improved relative to the conventional TFET.
    Type: Application
    Filed: January 9, 2014
    Publication date: March 17, 2016
    Inventors: Ru Huang, Qianqian Huang, Chunlei Wu, Jiaxin Wang, Zhan Zhan, Yangyuan Wang
  • Publication number: 20160035889
    Abstract: The present invention discloses a strip-shaped gate tunneling field effect transistor using composite mechanism and a fabrication method thereof, which belongs to a field of field effect transistor logic devices and circuits in the CMOS ultra large scale integrated circuit (ULSI). According to the tunneling field effect transistor, the energy band of the channel underneath the gate is elevated by means of a change of the gate morphology and the PN junction depletion effect occurred at both sides of the strip-shaped gate, so that the sub-threshold characteristics of the transistor are improved. Meanwhile, the on-state current of the transistor is effectively increased by means of the composite mechanism introduced by the two parts of the doped source region.
    Type: Application
    Filed: January 8, 2014
    Publication date: February 4, 2016
    Inventors: Ru HUANG, Qianqian HUANG, Chunlei WU, Jiaxin WANG, Zhan ZHAN, Yangyuan WANG
  • Patent number: 9171944
    Abstract: The present invention provides a tunneling field effect transistor and a method for fabricating the same which refer to a field effect transistor logic device and circuit in a CMOS ultra-large integrated circuit (ULSI). The inventive concept of the invention lies in that, in a case of an N-type transistor, a side portion of a doped source region adjacent to an edge of the control gate is further implanted with P+ impurities on a basis of the doped source region being initially doped N? impurities, so that the initial N? impurities in the implanted portion are completely compensated by the P+ impurities, and in a case of a P-type transistor, a side portion of the doped source region adjacent to an edge of the control gate is implanted with N+ impurities on a basis of the doped source region being initially doped P? impurities, so that the initial P? impurities in the implanted portion are completely compensated by the N+ impurities.
    Type: Grant
    Filed: April 27, 2013
    Date of Patent: October 27, 2015
    Assignee: Peking University
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yingxin Qiu, Yangyuan Wang
  • Publication number: 20150236139
    Abstract: The present invention provides a tunneling field effect transistor and a method for fabricating the same which refer to a field effect transistor logic device and circuit in a CMOS ultra-large integrated circuit (ULSI). The inventive concept of the invention lies in that, in a case of an N-type transistor, a side portion of a doped source region adjacent to an edge of the control gate is further implanted with P+ impurities on a basis of the doped source region being initially doped N? impurities, so that the initial N? impurities in the implanted portion are completely compensated by the P+ impurities, and in a case of a P-type transistor, a side portion of the doped source region adjacent to an edge of the control gate is implanted with N+ impurities on a basis of the doped source region being initially doped P? impurities, so that the initial P? impurities in the implanted portion are completely compensated by the N+ impurities.
    Type: Application
    Filed: April 27, 2013
    Publication date: August 20, 2015
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yingxin Qiu, Yangyuan Wang
  • Patent number: 9054075
    Abstract: The present invention discloses a strip-shaped gate-modulated tunneling field effect transistor with double-diffusion and a preparation method thereof, belonging to a field of CMOS field effect transistor logic device and the circuit.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: June 9, 2015
    Assignee: PEKING UNIVERSITY
    Inventors: Ru Huang, Qianqian Huang, Yingxin Qiu, Zhan Zhan, Yangyuan Wang
  • Patent number: 8981421
    Abstract: The present invention discloses a strip-shaped gate-modulated tunneling field effect transistor and a preparation method thereof, belonging to a field of field effect transistor logic device and the circuit in CMOS ultra large scale integrated circuit (ULSI). The tunneling field effect transistor includes a control gate, a gate dielectric layer, a semiconductor substrate, a highly-doped source region and a highly-doped drain region, where the highly-doped source region and the highly-doped drain region lie on both sides of the control gate, respectively, the control gate has a strip-shaped structure with a gate length greater than a gate width, and at one side thereof is connected to the highly-doped drain region and at the other side thereof extends laterally into the highly-doped source region; a region located below the control gate is a channel region; and the gate width of the control gate is less than twice width of a source depletion layer.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: March 17, 2015
    Assignee: Peking University
    Inventors: Ru Huang, Qianqian Huang, Yingxin Qiu, Zhan Zhan, Yangyuan Wang
  • Publication number: 20150048313
    Abstract: The present invention discloses a strip-shaped gate-modulated tunneling field effect transistor with double-diffusion and a preparation method thereof, belonging to a field of CMOS field effect transistor logic device and the circuit.
    Type: Application
    Filed: July 8, 2013
    Publication date: February 19, 2015
    Inventors: Ru Huang, Qianqian Huang, Yingxin Qiu, Zhan Zhan, Yangyuan Wang
  • Patent number: 8921174
    Abstract: Disclosed herein is a method for fabricating a complementary tunneling field effect transistor based on a standard CMOS IC process, which belongs to the field of logic devices and circuits of field effect transistors in ultra large scaled integrated (ULSI) circuits. In the method, an intrinsic channel and body region of a TFET are formed by means of complementary P-well and N-well masks in the standard CMOS IC process to form a well doping, a channel doping and a threshold adjustment by implantation. Further, a bipolar effect in the TFET can be inhibited via a distance between a gate and a drain on a layout so that a complementary TFET is formed. In the method according to the invention, the complementary tunneling field effect transistor (TFET) can be fabricated by virtue of existing processes in the standard CMOS IC process without any additional masks and process steps.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: December 30, 2014
    Assignee: Peking University
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yingxin Qiu, Yangyuan Wang
  • Patent number: 8895980
    Abstract: The present invention discloses a tunneling current amplification transistor, which relates to an area of field effect transistor logic devices in CMOS ultra large scale semiconductor integrated circuits (ULSI). The tunneling current amplification transistor includes a semiconductor substrate, a gate dielectric layer, an emitter, a drain, a floating tunneling base and a control gate, wherein the drain, the floating tunneling base and the control gate forms a conventional TFET structure, and a doping type of the emitter is opposite to that of the floating tunneling base. A position of the emitter is at the other side of the floating tunneling base with respect to the drain. A type of the semiconductor between the emitter and the floating tunneling base is the same as that of the floating tunneling base.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: November 25, 2014
    Assignee: Peking University
    Inventors: Ru Huang, Zhan Zhan, Qianqian Huang, Yangyuan Wang
  • Publication number: 20140220748
    Abstract: Disclosed herein is a method for fabricating a complementary tunneling field effect transistor based on a standard CMOS IC process, which belongs to the field of logic devices and circuits of field effect transistors in ultra large scaled integrated (ULSI) circuits. In the method, an intrinsic channel and body region of a TFET are formed by means of complementary P-well and N-well masks in the standard CMOS IC process to form a well doping, a channel doping and a threshold adjustment by implantation. Further, a bipolar effect in the TFET can be inhibited via a distance between a gate and a drain on a layout so that a complementary TFET is formed. In the method according to the invention, the complementary tunneling field effect transistor (TFET) can be fabricated by virtue of existing processes in the standard CMOS IC process without any additional masks and process steps.
    Type: Application
    Filed: June 14, 2012
    Publication date: August 7, 2014
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yingxin Qiu, Yangyuan Wang
  • Publication number: 20140203324
    Abstract: The present invention discloses a strip-shaped gate-modulated tunneling field effect transistor and a preparation method thereof, belonging to a field of field effect transistor logic device and the circuit in CMOS ultra large scale integrated circuit (ULSI). The tunneling field effect transistor includes a control gate, a gate dielectric layer, a semiconductor substrate, a highly-doped source region and a highly-doped drain region, where the highly-doped source region and the highly-doped drain region lie on both sides of the control gate, respectively, the control gate has a strip-shaped structure with a gate length greater than a gate width, and at one side thereof is connected to the highly-doped drain region and at the other side thereof extends laterally into the highly-doped source region; a region located below the control gate is a channel region; and the gate width of the control gate is less than twice width of a source depletion layer.
    Type: Application
    Filed: July 8, 2013
    Publication date: July 24, 2014
    Applicant: Peking University
    Inventors: Ru Huang, Qianqian Huang, Yingxin Qiu, Zhan Zhan, Yangyuan Wang
  • Patent number: 8710557
    Abstract: The present invention discloses a MOS transistor having a combined-source structure with low power consumption, which relates to a field of field effect transistor logic devices and circuits in CMOS ultra-large-scaled integrated circuits. The MOS transistor includes a control gate electrode layer, a gate dielectric layer, a semiconductor substrate, a Schottky source region, a highly-doped source region and a highly-doped drain region. An end of the control gate extends to the highly-doped source region to form a T shape, wherein the extending region of the control gate is an extending gate and the remaining region of the control gate is a main gate. The active region covered by the extending gate is a channel region, and material thereof is the substrate material. A Schottky junction is formed between the Schottky source region and the channel under the extending gate.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: April 29, 2014
    Assignee: Peking University
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Xin Huang, Yangyuan Wang
  • Patent number: 8507959
    Abstract: The present invention discloses a combined-source MOS transistor with a Schottky Barrier and a comb-shaped gate structure, and a method for manufacturing the same.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: August 13, 2013
    Assignee: Peking University
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yangyuan Wang
  • Publication number: 20120313154
    Abstract: The present invention discloses a MOS transistor having a combined-source structure with low power consumption, which relates to a field of field effect transistor logic devices and circuits in CMOS ultra-large-scaled integrated circuits. The MOS transistor includes a control gate electrode layer, a gate dielectric layer, a semiconductor substrate, a Schottky source region, a highly-doped source region and a highly-doped drain region. An end of the control gate extends to the highly-doped source region to form a T shape, wherein the extending region of the control gate is an extending gate and the remaining region of the control gate is a main gate. The active region covered by the extending gate is a channel region, and material thereof is the substrate material. A Schottky junction is formed between the Schottky source region and the channel under the extending gate.
    Type: Application
    Filed: October 14, 2011
    Publication date: December 13, 2012
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Xin Huang, Yangyuan Wang
  • Publication number: 20120267700
    Abstract: The present invention discloses a tunneling current amplification transistor, which relates to an area of field effect transistor logic devices in CMOS ultra large scale semiconductor integrated circuits (ULSI). The tunneling current amplification transistor includes a semiconductor substrate, a gate dielectric layer, an emitter, a drain, a floating tunneling base and a control gate, wherein the drain, the floating tunneling base and the control gate forms a conventional TFET structure, and a doping type of the emitter is opposite to that of the floating tunneling base. A position of the emitter is at the other side of the floating tunneling base with respect to the drain. A type of the semiconductor between the emitter and the floating tunneling base is the same as that of the floating tunneling base.
    Type: Application
    Filed: May 26, 2011
    Publication date: October 25, 2012
    Applicant: PEKING UNIVERSITY
    Inventors: Ru Huang, Zhan Zhan, Qianqian Huang, Yangyuan Wang
  • Publication number: 20120223361
    Abstract: The present invention discloses a low-power consumption tunnelling field-effect transistor (TFET). The TFET according to the invention includes a source, a drain and a control gate, wherein the control gate extends towards the source to form a finger-type control gate, which includes an extended gate region and an original control gate region, and an active region covered by the extended gate region is also an channel region and is made of the substrate material. The invention employs a finger-shaped gate structure, and the source region of the TFET surrounds the channel so that the on-state current of the device is improved. In comparison with the conventional planar TFET, a higher on-state current and a steeper subthreshold slope may be obtained under the same process conditions and with the same active region size.
    Type: Application
    Filed: May 19, 2011
    Publication date: September 6, 2012
    Inventors: Ru Huang, Zhan Zhan, Qianqian Huang, Yangyuan Wang
  • Publication number: 20120181584
    Abstract: The invention discloses a resistive field effect transistor (ReFET) having an ultra-steep subthreshold slope, which relates to a field of field-effect-transistor logic device and circuit in CMOS ultra-large-scale-integrated circuit (ULSI). The resistive field effect transistor comprises a control gate electrode layer, a gate dielectric layer, a semiconductor substrate, a doped source region and a doped drain region, wherein the control gate is configured to adopt a stacked gate structure in which a bottom layer or a bottom electrode layer, a middle layer or a resistive material layer, and a top layer or a top electrode layer are sequentially formed. Compared with the existing methods for breaking the conventional subthreshold slope limititation, the device of the invention has a larger on-current, a lower operation voltage, and a better subthreshold feature.
    Type: Application
    Filed: April 1, 2011
    Publication date: July 19, 2012
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yangyuan Wang
  • Publication number: 20120181585
    Abstract: The present invention discloses a combined-source MOS transistor with a Schottky Barrier and a comb-shaped gate structure, and a method for manufacturing the same.
    Type: Application
    Filed: April 1, 2011
    Publication date: July 19, 2012
    Inventors: Ru Huang, Qianqian Huang, Zhan Zhan, Yangyuan Wang