Patents by Inventor Zheng John Ye
Zheng John Ye has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11501993Abstract: Exemplary support assemblies may include an electrostatic chuck body defining a substrate support surface. The assemblies may include a support stem coupled with the electrostatic chuck body. The assemblies may include a heater embedded within the electrostatic chuck body. The assemblies may also include an electrode embedded within the electrostatic chuck body between the heater and the substrate support surface. The substrate support assemblies may be characterized by a leakage current through the electrostatic chuck body of less than or about 4 mA at a temperature of greater than or about 500° C. and a voltage of greater than or about 600 V.Type: GrantFiled: July 22, 2020Date of Patent: November 15, 2022Assignee: Applied Materials, Inc.Inventors: Jian Li, Juan Carlos Rocha-Alvarez, Zheng John Ye, Daemian Raj Benjamin Raj, Shailendra Srivastava, Xinhai Han, Deenesh Padhi, Kesong Hu, Chuan Ying Wang
-
Publication number: 20220119952Abstract: Exemplary deposition methods may include electrostatically chucking a semiconductor substrate at a first voltage within a processing region of a semiconductor processing chamber. The methods may include performing a deposition process. The deposition process may include forming a plasma within the processing region of the semiconductor processing chamber. The methods may include halting formation of the plasma within the semiconductor processing chamber. The methods may include, simultaneously with the halting, increasing the first voltage of electrostatic chucking to a second voltage. The methods may include purging the processing region of the semiconductor processing chamber.Type: ApplicationFiled: October 20, 2020Publication date: April 21, 2022Applicant: Applied Materials, Inc.Inventors: Rana Howlader, Hang Yu, Madhu Santosh Kumar Mutyala, Zheng John Ye, Abhigyan Keshri, Sanjay Kamath, Daemian Raj Benjamin Raj, Deenesh Padhi
-
Publication number: 20220102179Abstract: Exemplary semiconductor processing systems may include a processing chamber and an electrostatic chuck disposed at least partially within the processing chamber. The electrostatic chuck may include at least one electrode and a heater. A semiconductor processing system may include a power supply to provide a signal to the electrode to provide electrostatic force to secure a substrate to the electrostatic chuck. The system may also include a filter communicatively coupled between the power supply and the electrode. The filter is configured to remove or reduce noise introduced into the chucking signal by operating the heater while the electrostatic force on the substrate is maintained. The filter may include active circuitry, passive circuitry, or both, and may include an adjustment circuit to set the gain of the filter so that an output signal level from the filter corresponds to an input signal level for the filter.Type: ApplicationFiled: September 29, 2020Publication date: March 31, 2022Applicant: Applied Materials, Inc.Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Rana Howlader, Abhigyan Keshri, Sanjay G. Kamath, Dmitry A. Dzilno, Juan Carlos Rocha-Alvarez, Shailendra Srivastava, Kristopher R. Enslow, Xinhai Han, Deenesh Padhi, Edward P. Hammond
-
Patent number: 11276562Abstract: A system for modifying the uniformity pattern of a thin film deposited in a plasma processing chamber includes a single radio-frequency (RF) power source that is coupled to multiple points on the discharge electrode of the plasma processing chamber. Positioning of the multiple coupling points, a power distribution between the multiple coupling points, or a combination of both are selected to at least partially compensate for a consistent non-uniformity pattern of thin films produced by the chamber. The power distribution between the multiple coupling points may be produced by an appropriate RF phase difference between the RF power applied at each of the multiple coupling points.Type: GrantFiled: March 2, 2020Date of Patent: March 15, 2022Assignee: Applied Materials, Inc.Inventors: Zheng John Ye, Ganesh Balasubramanian, Thuy Britcher, Jay D. Pinson, II, Hiroji Hanawa, Juan Carlos Rocha-Alvarez, Kwangduk Douglas Lee, Martin Jay Seamons, Bok Hoen Kim, Sungwon Ha
-
Publication number: 20210375586Abstract: Embodiments of the present disclosure generally relate to semiconductor processing apparatus. More specifically, embodiments of the disclosure relate to an ICP process chamber. The ICP process chamber includes a chamber body and a lid disposed over the chamber body. The lid is fabricated from a ceramic material. The lid has a monolithic body, and one or more heating elements and one or more coils are embedded in the monolithic body of the lid. The number of components disposed over the lid is reduced with the one or more heating elements and one or more coils embedded in the lid. Furthermore, with the embedded one or more heating elements, the controlling of the thermal characteristics of the lid is improved.Type: ApplicationFiled: April 9, 2019Publication date: December 2, 2021Inventors: Abhijit KANGUDE, Jay D. PINSON, II, Zheng John YE
-
Patent number: 11189517Abstract: Embodiments described herein relate to apparatus and methods for substantially reducing an occurrence of radio frequency (RF) coupling through a chucking electrode. The chucking electrode is disposed in an electrostatic chuck positioned on a substrate support. The substrate support is coupled to a process chamber body. An RF source is used to generate a plasma in a process volume adjacent to the substrate support. An impedance matching circuit is disposed between the RF source and the chucking electrode is disposed in the electrostatic chuck. An electrostatic chuck filter is coupled between the chucking electrode and the chucking power source.Type: GrantFiled: February 14, 2020Date of Patent: November 30, 2021Assignee: Applied Materials, Inc.Inventors: Zheng John Ye, Edward Haywood, Adam Fischbach, Timothy Joseph Franklin
-
Publication number: 20210313147Abstract: The disclosure pertains to a capacitively coupled plasma source in which VHF power is applied through an impedance-matching coaxial resonator having a symmetrical power distribution.Type: ApplicationFiled: June 21, 2021Publication date: October 7, 2021Inventors: Kartik Ramaswamy, Igor Markovsky, Zhigang Chen, James D. Carducci, Kenneth S. Collins, Shahid Rauf, Nipun Misra, Leonid Dorf, Zheng John Ye
-
Patent number: 11130142Abstract: Embodiments of showerheads having a detachable gas distribution plate are provided herein. In some embodiments, a showerhead for use in a substrate processing chamber includes a body having a first side and an opposing second side; a gas distribution plate disposed proximate the second side of the body; and a clamp disposed about a peripheral edge of the gas distribution plate to removably couple the gas distribution plate to the body, wherein the body is electrically coupled to the gas distribution plate through the clamp.Type: GrantFiled: April 10, 2020Date of Patent: September 28, 2021Assignee: APPLIED MATERIALS, INC.Inventors: Dmitry Lubomirsky, Vladimir Knyazik, Hamid Noorbakhsh, Jason Della Rosa, Zheng John Ye, Jennifer Y. Sun, Sumanth Banda
-
Publication number: 20210296144Abstract: A method and apparatus for a heated substrate support pedestal is provided. In one embodiment, a substrate support pedestal includes a ceramic body having a top surface and a bottom surface. The substrate support pedestal has a stem coupled to the bottom surface of the ceramic body. A top electrode is disposed within the ceramic body. A conductive rod is disposed through the stem and coupled to the top electrode. A plurality of heater elements is disposed within the ceramic body below the top electrode. A ground mesh is disposed within the ceramic body, below the plurality of heater elements, and above the bottom surface of the ceramic body.Type: ApplicationFiled: May 27, 2021Publication date: September 23, 2021Inventors: Xing LIN, Vijay D. PARKHE, Jianhua ZHOU, Edward P. HAMMOND, IV, Jaeyong CHO, Zheng John YE, Zonghui SU, Juan Carlos ROCHA-ALVAREZ
-
Patent number: 11043361Abstract: The disclosure pertains to a capacitively coupled plasma source in which VHF power is applied through an impedance-matching coaxial resonator having a symmetrical power distribution.Type: GrantFiled: October 25, 2017Date of Patent: June 22, 2021Assignee: Applied Materials, Inc.Inventors: Kartik Ramaswamy, Igor Markovsky, Zhigang Chen, James D. Carducci, Kenneth S. Collins, Shahid Rauf, Nipun Misra, Leonid Dorf, Zheng John Ye
-
Publication number: 20210159048Abstract: A plasma processing system is described. The system may include a showerhead. The system may further include a first RF generator in electrical communication with the showerhead. The first RF generator may be configured to deliver a first voltage at a first frequency to the showerhead. Additionally, the system may include a second RF generator in electrical communication with a pedestal. The second RF generator may be configured to deliver a second voltage at a second frequency to the pedestal. The second frequency may be less than the first frequency. The system may also include a terminator in electrical communication with the showerhead. The terminator may provide a path to ground for the second voltage. Methods of depositing material using the plasma processing system are described. A method of seasoning a chamber by depositing silicon oxide and silicon nitride on the wall of the chamber is also described.Type: ApplicationFiled: November 25, 2019Publication date: May 27, 2021Applicant: Applied Materials, Inc.Inventors: Venkata Sharat Chandra Parimi, Xiaoquan Min, Zheng John Ye, Prashant Kumar Kulshreshtha, Vinay K. Prabhakar, Lu Xu, Kwangduk Douglas Lee
-
Publication number: 20210111000Abstract: Implementations of the present disclosure generally relate to methods and apparatus for generating and controlling plasma, for example RF filters, used with plasma chambers. In one implementation, a plasma processing apparatus is provided. The plasma processing apparatus comprises a chamber body, a powered gas distribution manifold enclosing a processing volume and a radio frequency (RF) filter. A pedestal having a substrate-supporting surface is disposed in the processing volume. A heating assembly comprising one or more heating elements is disposed within the pedestal for controlling a temperature profile of the substrate-supporting surface. A tuning assembly comprising a tuning electrode is disposed within the pedestal between the one or more heating elements and the substrate-supporting surface. The RF filter comprises an air core inductor, wherein at least one of the heating elements, the tuning electrode, and the gas distribution manifold is electrically coupled to the RF filter.Type: ApplicationFiled: November 30, 2020Publication date: April 15, 2021Inventors: Zheng John Ye, Abdul Aziz Khaja, Amit Kumar Bansal, Kwangduk Douglas Lee, Xing Lin, Jianhua Zhou, Addepalli Sai Susmita, Juan Carlos Rocha-Alvarez
-
Patent number: 10950477Abstract: Embodiments of the present disclosure provide an improved electrostatic chuck for supporting a substrate. The electrostatic chuck comprises a chuck body coupled to a support stem, the chuck body having a substrate supporting surface, a plurality of tabs projecting from the substrate supporting surface of the chuck body, wherein the tabs are disposed around the circumference of the chuck body, an electrode embedded within the chuck body, the electrode extending radially from a center of the chuck body to a region beyond the plurality of tabs, and an RF power source coupled to the electrode through a first electrical connection.Type: GrantFiled: July 18, 2016Date of Patent: March 16, 2021Assignee: Applied Materials, Inc.Inventors: Xing Lin, Jianhua Zhou, Zheng John Ye, Jian Chen, Juan Carlos Rocha-Alvarez
-
Publication number: 20210059037Abstract: A method and apparatus for controlling RF plasma attributes is disclosed. Some embodiments of the disclosure provide RF sensors within processing chambers operable at high temperatures. Some embodiments provide methods of measuring RF plasma attributes using RF sensors within a processing chamber to provide feedback control for an RF generator.Type: ApplicationFiled: August 19, 2020Publication date: February 25, 2021Applicant: Applied Materials, Inc.Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Shailendra Srivastava, Nikhil Sudhindrarao Jorapur, Ndanka O. Mukuti, Dmitry A. Dzilno, Juan Carlos Rocha
-
Patent number: 10930475Abstract: The present disclosure generally relates to processing chamber seasoning layers having a graded composition. In one example, the seasoning layer is a boron-carbon-nitride (BCN) film. The BCN film may have a greater composition of boron at the base of the film. As the BCN film is deposited, the boron concentration may approach zero, while the relative carbon and nitrogen concentration increases. The BCN film may be deposited by initially co-flowing a boron precursor, a carbon precursor, and a nitrogen precursor. After a first period of time, the flow rate of the boron precursor may be reduced. As the flow rate of boron precursor is reduced, RF power may be applied to generate a plasma during deposition of the seasoning layer.Type: GrantFiled: November 13, 2018Date of Patent: February 23, 2021Assignee: APPLIED MATERIALS, INC.Inventors: Prashant Kumar Kulshreshtha, Ziqing Duan, Abdul Aziz Khaja, Zheng John Ye, Amit Kumar Bansal
-
Patent number: 10923334Abstract: One or more embodiments described herein generally relate to selective deposition of substrates in semiconductor processes. In these embodiments, a precursor is delivered to a process region of a process chamber. A plasma is generated by delivering RF power to an electrode within a substrate support surface of a substrate support disposed in the process region of the process chamber. In embodiments described herein, delivering the RF power at a high power range, such as greater than 4.5 kW, advantageously leads to greater plasma coupling to the electrode, resulting in selective deposition to the substrate, eliminating deposition on other process chamber areas such as the process chamber side walls. As such, less process chamber cleans are necessary, leading to less time between depositions, increasing throughput and making the process more cost-effective.Type: GrantFiled: May 3, 2019Date of Patent: February 16, 2021Assignee: Applied Materials, Inc.Inventors: Satya Thokachichu, Edward P. Hammond, IV, Viren Kalsekar, Zheng John Ye, Sarah Michelle Bobek, Abdul Aziz Khaja, Vinay K. Prabhakar, Venkata Sharat Chandra Parimi, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee
-
Publication number: 20210025056Abstract: Embodiments of the disclosure relate to an improved electrostatic chuck for use in a processing chamber to fabricate semiconductor devices. In one embodiment, a processing chamber includes a chamber body having a processing volume defined therein and an electrostatic chuck disposed within the processing volume. The electrostatic chuck includes a support surface with a plurality of mesas located thereon, one or more electrodes disposed within the electrostatic chuck, and a seasoning layer deposited on the support surface over the plurality of mesas. The support surface is made from an aluminum containing material. The one or more electrodes are configured to form electrostatic charges to electrostatically secure a substrate to the support surface. The seasoning layer is configured to provide cushioning support to the substrate when the substrate is electrostatically secured to the support surface.Type: ApplicationFiled: October 8, 2018Publication date: January 28, 2021Inventors: Prashant Kumar KULSHRESHTHA, Zheng John YE, Kwangduk Douglas LEE, Dong Hyung LEE, Vinay PRABHAKAR, Juan Carlos ROCHA-ALVAREZ, Xiaoquan MIN
-
Patent number: 10879041Abstract: Implementations of the present disclosure generally relate to methods and apparatus for generating and controlling plasma, for example RF filters, used with plasma chambers. In one implementation, a plasma processing apparatus is provided. The plasma processing apparatus comprises a chamber body, a powered gas distribution manifold enclosing a processing volume and a radio frequency (RF) filter. A pedestal having a substrate-supporting surface is disposed in the processing volume. A heating assembly comprising one or more heating elements is disposed within the pedestal for controlling a temperature profile of the substrate-supporting surface. A tuning assembly comprising a tuning electrode is disposed within the pedestal between the one or more heating elements and the substrate-supporting surface. The RF filter comprises an air core inductor, wherein at least one of the heating elements, the tuning electrode, and the gas distribution manifold is electrically coupled to the RF filter.Type: GrantFiled: July 19, 2016Date of Patent: December 29, 2020Assignee: Applied Materials, Inc.Inventors: Zheng John Ye, Abdul Aziz Khaja, Amit Kumar Bansal, Kwangduk Douglas Lee, Xing Lin, Jianhua Zhou, Addepalli Sai Susmita, Juan Carlos Rocha-Alvarez
-
Publication number: 20200343123Abstract: Embodiments described herein relate to apparatus and methods for substantially reducing an occurrence of radio frequency (RF) coupling through a chucking electrode. The chucking electrode is disposed in an electrostatic chuck positioned on a substrate support. The substrate support is coupled to a process chamber body. An RF source is used to generate a plasma in a process volume adjacent to the substrate support. An impedance matching circuit is disposed between the RF source and the chucking electrode is disposed in the electrostatic chuck. An electrostatic chuck filter is coupled between the chucking electrode and the chucking power source.Type: ApplicationFiled: February 14, 2020Publication date: October 29, 2020Inventors: Zheng John YE, Edward HAYWOOD, Adam FISCHBACH, Timothy Joseph FRANKLIN
-
Publication number: 20200238303Abstract: Embodiments of showerheads having a detachable gas distribution plate are provided herein. In some embodiments, a showerhead for use in a substrate processing chamber includes a body having a first side and an opposing second side; a gas distribution plate disposed proximate the second side of the body; and a clamp disposed about a peripheral edge of the gas distribution plate to removably couple the gas distribution plate to the body, wherein the body is electrically coupled to the gas distribution plate through the clamp.Type: ApplicationFiled: April 10, 2020Publication date: July 30, 2020Inventors: Dmitry LUBOMIRSKY, Vladimir KNYAZIK, Hamid NOORBAKHSH, Jason DELLA ROSA, Zheng John YE, Jennifer Y. SUN, Sumanth BANDA