Patents by Inventor Zhibin Ren

Zhibin Ren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7993995
    Abstract: Metal-oxide semiconductor field effect transistor (MOSFET) devices having metal gate stacks and techniques for improving performance thereof are provided. In one aspect, a metal-oxide semiconductor device is provided comprising a substrate having a buried oxide layer at least a portion of which is configured to serve as a primary background oxygen getterer of the device; and a gate stack separated from the substrate by an interfacial oxide layer. The gate stack comprises a high-K layer over the interfacial oxide layer; and a metal gate layer over the high-K layer.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: August 9, 2011
    Assignee: International Business Machines Corporation
    Inventors: Amlan Majumdar, Renee Tong Mo, Zhibin Ren, Jeffrey Sleight
  • Patent number: 7989297
    Abstract: The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming a gate structure on top of a semiconductor substrate, the gate structure including a gate stack and spacers adjacent to sidewalls of the gate stack, and having a first side and a second side opposite to the first side; performing angled ion-implantation from the first side of the gate structure in the substrate, thereby forming an ion-implanted region adjacent to the first side, wherein the gate structure prevents the angled ion-implantation from reaching the substrate adjacent to the second side of the gate structure; and performing epitaxial growth on the substrate at the first and second sides of the gate structure. As a result, epitaxial growth on the ion-implanted region is much slower than a region experiencing no ion-implantation.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: August 2, 2011
    Assignee: International Business Machines Corporation
    Inventors: Haizhou Yin, Xinhui Wang, Kevin K. Chan, Zhibin Ren
  • Publication number: 20110180896
    Abstract: A method of forming a bonded wafer structure includes providing a first semiconductor wafer substrate having a first silicon oxide layer at the top surface of the first semiconductor wafer substrate; providing a second semiconductor wafer substrate; forming a second silicon oxide layer on the second semiconductor wafer substrate; forming a silicon nitride layer on the second silicon oxide layer; and bringing the first silicon oxide layer of the first semiconductor wafer substrate into physical contact with the silicon nitride layer of the second semiconductor wafer substrate to form a bonded interface between the first silicon oxide layer and the silicon nitride layer. Alternatively, a third silicon oxide layer may be formed on the silicon nitride layer before bonding. A bonded interface is then formed between the first and third silicon oxide layers. A bonded wafer structure formed by such a method is also provided.
    Type: Application
    Filed: January 25, 2010
    Publication date: July 28, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gerd Pfeiffer, Haizhou Yin, Edmund J. Sprogis, Subramanian Iyer, Zhibin Ren, Dae-Gyu Park, Oleg Gluschenkov
  • Publication number: 20110180872
    Abstract: The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming a gate structure on top of a semiconductor substrate, the gate structure including a gate stack and spacers adjacent to sidewalls of the gate stack, and having a first side and a second side opposite to the first side; performing angled ion-implantation from the first side of the gate structure in the substrate, thereby forming an ion-implanted region adjacent to the first side, wherein the gate structure prevents the angled ion-implantation from reaching the substrate adjacent to the second side of the gate structure; and performing epitaxial growth on the substrate at the first and second sides of the gate structure. As a result, epitaxial growth on the ion-implanted region is much slower than a region experiencing no ion-implantation.
    Type: Application
    Filed: April 6, 2011
    Publication date: July 28, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Haizhou Yin, Xinhui Wang, Kevin K. Chan, Zhibin Ren
  • Publication number: 20110171788
    Abstract: A method for forming a field effect device includes forming a gate portion on a silicon-on-insulator layer (SOI), forming first spacer members on the SOI layer adjacent to the gate portion, depositing a layer of spacer material on the SOI layer, the first spacer members, and the gate portion, removing portions of the layer of spacer material to form second spacer members on the SOI layer adjacent to the first spacer members, forming a source region and a drain region on the SOI layer by implanting ions in the SOI layer, and etching to remove the second spacer members.
    Type: Application
    Filed: January 11, 2010
    Publication date: July 14, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Zhibin Ren, Xinhui Wang, Haizhou Yin
  • Publication number: 20110165739
    Abstract: A method for improving channel carrier mobility in ultra-thin Silicon-on-oxide (UTSOI) FET devices by integrating an embedded pFET SiGe extension with raised source/drain regions. The method includes selectively growing embedded SiGe (eSiGe) extensions in pFET regions and forming strain-free raised Si or SiGe source/drain (RSD) regions on CMOS. The eSiGe extension regions enhance hole mobility in the pFET channels and reduce resistance in the pFET extensions. The strain-free raised source/drain regions reduce contact resistance in both UTSOI pFETs and nFETs.
    Type: Application
    Filed: March 21, 2011
    Publication date: July 7, 2011
    Applicants: INTERNATIONAL BUSINESS MACHINES CORPORATION, ADVANCED MICRO DEVICES, INC.
    Inventors: Amlan Majumdar, Gen Pei, Zhibin Ren, Dinkar Singh, Jeffrey W. Sleight
  • Patent number: 7968459
    Abstract: This invention teaches methods of combining ion implantation steps with in situ or ex situ heat treatments to avoid and/or minimize implant-induced amorphization (a potential problem for source/drain (S/D) regions in FETs in ultrathin silicon on insulator layers) and implant-induced plastic relaxation of strained S/D regions (a potential problem for strained channel FETs in which the channel strain is provided by embedded S/D regions lattice mismatched with an underlying substrate layer). In a first embodiment, ion implantation is combined with in situ heat treatment by performing the ion implantation at elevated temperature. In a second embodiment, ion implantation is combined with ex situ heat treatments in a “divided-dose-anneal-in-between” (DDAB) scheme that avoids the need for tooling capable of performing hot implants.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: June 28, 2011
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Joel P. DeSouza, Zhibin Ren, Alexander Reznicek, Devandra K. Sadana, Katherine L. Saenger, Ghavam Shahidi
  • Patent number: 7955928
    Abstract: A CMOS FinFET device and a method of manufacturing the same using a three dimensional doping process is provided. The method of forming the CMOS FinFET includes forming fins on a first side and a second side of a structure and forming spacers of a dopant material having a first dopant type on the fins on the first side of the structure. The method further includes annealing the dopant material such that the first dopant type diffuses into the fins on the first side of the structure. The method further includes protecting the first dopant type from diffusing into the fins on the second side of the structure during the annealing.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Zhibin Ren, Xinhui Wang
  • Patent number: 7955950
    Abstract: A diffusion barrier layer is incorporated between a top semiconductor layer and buried oxide layer. The diffusion barrier layer blocks diffusion of dopants into or out of buried oxide layer. The diffusion barrier layer may comprise a dielectric material such as silicon oxynitride or a high-k gate dielectric material. Alternately, the diffusion barrier layer may comprise a semiconductor material such as SiC. Such materials provide less charge trapping than a silicon nitride layer, which causes a high level of interface trap density and charge in the buried oxide layer. Thus, diffusion of dopants from and into semiconductor devices through the buried oxide layer is suppressed by the diffusion barrier layer without inducing a high interface trap density or charge in the buried oxide layer.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: June 7, 2011
    Assignee: International Business Machines Corporation
    Inventors: Junedong Lee, Dominic J. Schepis, Jeffrey W. Sleight, Zhibin Ren
  • Publication number: 20110108918
    Abstract: The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming a gate structure on top of a semiconductor substrate, the gate structure including a gate stack and spacers adjacent to sidewalls of the gate stack, and having a first side and a second side opposite to the first side; performing angled ion-implantation from the first side of the gate structure in the substrate, thereby forming an ion-implanted region adjacent to the first side, wherein the gate structure prevents the angled ion-implantation from reaching the substrate adjacent to the second side of the gate structure; and performing epitaxial growth on the substrate at the first and second sides of the gate structure. As a result, epitaxial growth on the ion-implanted region is much slower than a region experiencing no ion-implantation.
    Type: Application
    Filed: November 9, 2009
    Publication date: May 12, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Haizhou Yin, Xinhui Wang, Kevin K. Chan, Zhibin Ren
  • Publication number: 20110079855
    Abstract: FinFETs are merged together by a metal. The method of manufacturing the FinFETs include forming a plurality of fin bodies on a substrate and merging the fin bodies with a metal. The method further includes implanting source and drain regions through the metal.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 7, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. CHAN, Zhibin REN, Xinhui WANG, Keith Kwong Hon WONG
  • Publication number: 20110073961
    Abstract: A method of forming a self-aligned well implant for a transistor includes forming a patterned gate structure over a substrate, including a gate conductor, a gate dielectric layer and sidewall spacers, the substrate including an undoped semiconductor layer beneath the gate dielectric layer and a doped semiconductor layer beneath the undoped semiconductor layer; removing portions of the undoped semiconductor layer and the doped semiconductor layer left unprotected by the patterned gate structure, wherein a remaining portion of the undoped semiconductor layer beneath the patterned gate structure defines a transistor channel and a remaining portion of the doped semiconductor layer beneath the patterned gate structure defines the self-aligned well implant; and growing a new semiconductor layer at locations corresponding to the removed portions of the undoped semiconductor layer and the doped semiconductor layer, the new semiconductor layer corresponding to source and drain regions of the transistor.
    Type: Application
    Filed: September 28, 2009
    Publication date: March 31, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert H. Dennard, Brian J. Greene, Zhibin Ren, Xinlin Wang
  • Publication number: 20110062518
    Abstract: A method of fabricating and a structure of a merged multi-fin finFET. The method includes forming single-crystal silicon fins from the silicon layer of an SOI substrate having a very thin buried oxide layer and merging the end regions of the fins by growing vertical epitaxial silicon from the substrate and horizontal epitaxial silicon from ends of the fins such that vertical epitaxial silicon growth predominates.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 17, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Thomas Safron Kanarsky, Jinghong Li, Christine Qiqing Ouyang, Dae-Gyu Park, Zhibin Ren, Xinhui Wang, Haizhou Yin
  • Publication number: 20110027948
    Abstract: A method for manufacturing a FinFET device includes: providing a substrate having a mask disposed thereon; covering portions of the mask to define a perimeter of a gate region; removing uncovered portions of the mask to expose the substrate; covering a part of the exposed substrate with another mask to define at least one fin region; forming the at least one fin and the gate region through both masks and the substrate, the gate region having side walls; disposing insulating layers around the at least one fin and onto the side walls; disposing a conductive material into the gate region and onto the insulating layers to form a gate electrode, and then forming source and drain regions.
    Type: Application
    Filed: July 31, 2009
    Publication date: February 3, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhibin Ren, Xinhui Wang, Kevin K. Chan, Ying Zhang
  • Publication number: 20100244103
    Abstract: A CMOS FinFET device and a method of manufacturing the same using a three dimensional doping process is provided. The method of forming the CMOS FinFET includes forming fins on a first side and a second side of a structure and forming spacers of a dopant material having a first dopant type on the fins on the first side of the structure. The method further includes annealing the dopant material such that the first dopant type diffuses into the fins on the first side of the structure. The method further includes protecting the first dopant type from diffusing into the fins on the second side of the structure during the annealing.
    Type: Application
    Filed: March 30, 2009
    Publication date: September 30, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Zhibin Ren, Xinhui Wang
  • Publication number: 20100207213
    Abstract: Contact with a floating body of an FET in SOI may be formed in a portion of one of the two diffusions of the FET, wherein the portion of the diffusion (such as N?, for an NFET) which is “sacrificed” for making the contact is a portion of the diffusion which is not immediately adjacent (or under) the gate. This works well with linked body FETs, wherein the diffusion does not extend all the way to BOX, hence the linked body (such as P?) extends under the diffusion where the contact is being made. An example showing making contact for ground to two NFETs (PG and PD) of a 6T SRAM cell is shown.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 19, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yue Tan, Zhibin Ren, Richard A. Wachnik, Haining S. Yang
  • Patent number: 7776624
    Abstract: A semiconductor fabrication method. The method includes providing a semiconductor substrate, wherein the semiconductor substrate includes a semiconductor material. Next, a top portion of the semiconductor substrate is removed. Next, a first semiconductor layer is epitaxially grown on the semiconductor substrate, wherein a first atomic percent of a first semiconductor material in the first semiconductor layer is equal to a substrate atomic percent of the substrate semiconductor material in the semiconductor substrate.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ashima B. Chakravarti, Judson Robert Holt, Jeremy John Kempisty, Suk Hoon Ku, Woo-Hyeong Lee, Amlan Majumdar, Ryan Matthew Mitchell, Renee Tong Mo, Zhibin Ren, Dinkar Singh
  • Publication number: 20100140707
    Abstract: Metal-oxide semiconductor field effect transistor (MOSFET) devices having metal gate stacks and techniques for improving performance thereof are provided. In one aspect, a metal-oxide semiconductor device is provided comprising a substrate having a buried oxide layer at least a portion of which is configured to serve as a primary background oxygen getterer of the device; and a gate stack separated from the substrate by an interfacial oxide layer. The gate stack comprises a high-K layer over the interfacial oxide layer; and a metal gate layer over the high-K layer.
    Type: Application
    Filed: January 5, 2010
    Publication date: June 10, 2010
    Applicant: International Business Machines Corporation
    Inventors: Amlan Majumdar, Renee Tong Mo, Zhibin Ren, Jeffrey Sleight
  • Publication number: 20100105187
    Abstract: An oxynitride pad layer and a masking layer are formed on an ultrathin semiconductor-on-insulator substrate containing a top semiconductor layer comprising silicon. A first portion of a shallow trench is patterned in a top semiconductor layer by lithographic masking of an NFET region and an etch, in which exposed portions of the buried insulator layer is recessed and the top semiconductor layer is undercut. A thick thermal silicon oxide liner is formed on the exposed sidewalls and bottom peripheral surfaces of a PFET active area to apply a high laterally compressive stress. A second portion of the shallow trench is formed by lithographic masking of a PFET region including the PFET active area. A thin thermal silicon oxide or no thermal silicon oxide is formed on exposed sidewalls of the NFET active area, which is subjected to a low lateral compressive stress or no lateral compressive stress.
    Type: Application
    Filed: January 6, 2010
    Publication date: April 29, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Zhibin Ren, Ghavam Shahidi, Dinkar V. Singh, Jeffrey W. Sleight, Xinhui Wang
  • Patent number: 7704839
    Abstract: A field effect transistor (FET) comprises a substrate; a buried oxide (BOX) layer over the substrate; a current channel region over the BOX layer; source/drain regions adjacent to the current channel region; a buried high-stress film in the BOX layer and regions of the substrate, wherein the high-stress film comprises any of a compressive film and a tensile film; an insulating layer covering the buried high-stress film; and a gate electrode over the current channel region, wherein the high-stress film is adapted to create mechanical stress in the current channel region, wherein the high-stress film is adapted to stretch the current channel region in order to create the mechanical stress in the current channel region; wherein the mechanical stress comprises any of compressive stress and tensile stress, and wherein the mechanical stress caused by the high-stress film causes an increased charge carrier mobility in the current channel region.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: April 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: MeiKei Ieong, Zhibin Ren, Haizhou Yin