Patents by Inventor Zhimin Wan

Zhimin Wan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100310341
    Abstract: A system and a method for moving a wafer during scanning the wafer by an ion beam. The proposed system includes an extendable/retractable arm, a holding apparatus and a driving apparatus. At least a length of the extendable/retractable arm is adjustable. The holding apparatus is capable of holding a wafer and is fixed on a specific portion of the extendable/retractable arm. Furthermore, the driving apparatus is capable of extending and/or retracting the extendable/retractable arm, such that the holding apparatus is moved together with the specific portion. In addition, the proposed method includes the following steps. First, hold the wafer by a holding apparatus fixed on a specific portion of an extendable/retractable arm. After that, adjust a length of the extendable/retractable. Therefore, the holding apparatus, i.e. the wafer, can be moved by the extension/retraction of the extendable/retractable arm.
    Type: Application
    Filed: June 5, 2009
    Publication date: December 9, 2010
    Inventors: Peter MOK, Ko-Chuan Jen, Zhimin Wan
  • Patent number: 7807986
    Abstract: An ion implanter and method for adjusting the shape of an ion beam are disclosed. After an ion beam is outputted from an analyzer magnet unit, at least one set of bar magnets is used to adjust the shape of the ion beam when the ion beam passes through a space enclosed by the bar magnets. The set of bar magnets can apply a multi-stage magnetic field on the ion beam. Hence, different portions of the ion beam will have different deformations or alterations, because the multi-stage magnetic field will apply a non-uniform force to change the trajectory of ions. Moreover, each bar magnet of the set is powered by one and only one power source, such that the set of bar magnets essentially only can adjust the magnitude of the multi-stage magnetic field. Particular structures and techniques for achieving the multi-stage magnetic field are not limited.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: October 5, 2010
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Ko-Chuan Jen, York Yang, Zhimin Wan
  • Patent number: 7750323
    Abstract: An ion implanter and a method for implanting a wafer are provided, wherein the method includes the following steps. First, a wafer has at least a first portion requiring a first doping density and a second portion requiring a second doping density is provided. The first doping density is larger than the second doping density. Thereafter, the first portion is scanned by an ion beam with a first scanning parameter value, and the second portion is scanned by the ion beam with a second scanning parameter value. The first scanning parameter value can be a first scan velocity, and the second scanning parameter value can be a second scan velocity different than the first scan velocity. Alternatively, the first scanning parameter value can be a first beam current, and the second scanning parameter value can be a second beam current different than the first beam current.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: July 6, 2010
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Zhimin Wan, Cheng-Hui Shen, Ko-Chuan Jen
  • Patent number: 7745804
    Abstract: An ion implantation method for achieving angular uniformity throughout a workpiece and application thereof are provided. The ion beam has at least one beamlet striking the workpiece surface with corresponding incident angles. The workpiece is mapped to an imaginary planar coordinate system. The incident angle of a center beamlet of the ion beam has a projection on the coordinate system forming a projection angle with an axis thereof. A workpiece orientation of the workpiece is adjusted based on the projection angle such that the contribution of each beamlet to the overall ion beam intensity upon striking the workpiece surface is rendered substantially the same from respective directions of each of the coordinate axes.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: June 29, 2010
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventor: Zhimin Wan
  • Patent number: 6918351
    Abstract: This invention discloses an ion implantation apparatus that has an ion source and an ion extraction device for extracting an ion beam therefrom. The ion implantation apparatus includes an ion beam sweeping-and-deflecting device disposed immediately next to the ion extraction device. The ion implantation apparatus further includes a magnetic analyzer for guiding the ion beam passed through the deflecting-and-sweeping device. The mass analyzer is also used for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. The sweeping-and-deflecting device is applied to deflect the ion beam to project through the magnetic mass analyzer and the mass slit for sweeping the ion beam over a surface of the substrate to carry out an ion implantation.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: July 19, 2005
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Jiong Chen, Zhimin Wan
  • Patent number: 6806479
    Abstract: A method to rotate individual pad of a batch disk to an implant angle and lock them in place, with the pad surface having conical or near conical surface to minimize the implant angle variation across a wafer on the pad for both tilt angle and twist angle, at large tilt angle implant. The implanter includes a disk with multiple attached pads that can hold substrates securely when the hub is at rest or rotates. The disk rotates around its spin axis, which moves laterally at a programmed speed profile so that all substrates on the hub can get evenly touched by the fixed ion beam. The pad rotation axis is at an angle with the disk spin axis, and the angle is preferable 90 degrees. The nominal of the pad surface is at an angle, i.e., a tilt angle, relative to the incident ion beam. A rotation mechanism is applied to each individual pad to rotate the pad to the desired tilt angle.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: October 19, 2004
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Zhimin Wan, Jiong Chen, John D. Pollock
  • Publication number: 20030200930
    Abstract: This invention discloses an ion implantation apparatus that has an ion source and an ion extraction means for extracting an ion beam therefrom. The ion implantation apparatus further includes an ion beam sweeping-and-deflecting means disposed immediately next to the ion extraction means. The ion implantation apparatus further includes a magnetic analyzer for guiding the ion beam passed through the deflecting-and-sweeping means. The mass analyzer is also used for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. The sweeping-and-deflecting means is applied to deflect the ion beam to project through the magnetic mass analyzer and the mass slit for sweeping the ion beam over a surface of the substrate to carry out an ion implantation.
    Type: Application
    Filed: April 26, 2002
    Publication date: October 30, 2003
    Applicant: Advanced Ion Beam Technology, Inc.
    Inventors: Jiong Chen, Zhimin Wan
  • Patent number: 6579420
    Abstract: A thin film deposition apparatus and method are disclosed in this invention. The apparatus includes a depositing thin-film particle source, a beam-defining aperture between the particle source and the deposited substrate(s), and a substrate holder to rotate the substrate(s) around its center and move the center along a lateral path so that the substrate(s) can scan across the particle beam from one substrate edge to the other edge. The method includes a step of providing a vacuum chamber for containing a thin-film particle source for generating thin-film particles to deposit a thin-film on the substrates. The method further includes a step of containing a substrate holder in the vacuum chamber for holding a plurality of substrates having a thin-film deposition surface of each substrate facing the beam of thin-film particles.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: June 17, 2003
    Assignee: Advanced Optical Solutions, Inc.
    Inventors: Zhimin Wan, Jiong Chen, Peiching Ling, Jianmin Qiao
  • Publication number: 20020134668
    Abstract: A thin film deposition apparatus and method are disclosed in this invention. The apparatus includes a depositing thin-film particle source, a beam-defining aperture between the particle source and the deposited substrate(s), and a substrate holder to rotate the substrate(s) around its center and move the center along a lateral path so that the substrate(s) can scan across the particle beam from one substrate edge to the other edge. The method includes a step of providing a vacuum chamber for containing a thin-film particle source for generating thin-film particles to deposit a thin-film on the substrates. The method further includes a step of containing a substrate holder in the vacuum chamber for holding a plurality of substrates having a thin-film deposition surface of each substrate facing the beam of thin-film particles.
    Type: Application
    Filed: February 9, 2001
    Publication date: September 26, 2002
    Applicant: Advanced Optics Solutions, Inc.
    Inventors: Zhimin Wan, Jiong Chen, Peiching Ling, Jianmin Qiao
  • Patent number: 6291828
    Abstract: An electrostatic quadrupole lens assembly (60) is provided for an ion implanter (10) having an axis (86) along which an ion beam passes, comprising: (i) four electrodes (84a-84d) oriented radially outward from the axis (86), approximately 90° apart from each other, such that a first pair of electrodes (84a and 84c) oppose each other approximately 180° apart, and a second pair of electrodes (84b and 84d) also oppose each other approximately 180° apart; (ii) a housing (62) having a mounting surface (64) for mounting the assembly (60) to the implanter, the housing at least partially enclosing the four electrodes (84a-84d); (iii) a first electrical lead (104) for providing electrical power to the first pair of electrodes (84a and 84c); (iv) a second electrical lead (108) for providing electrical power to the second pair of electrodes (84b and 84d); and (v) a plurality of electrically insulating members (92) formed of a glass-like material, comprising at least a first electrically insulating member for
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: September 18, 2001
    Assignee: Axchlisrtechnologies, Inc.
    Inventors: Kourosh Saadatmand, David R. Swenson, William F. DiVergilio, Stephen M. Quinn, Zhimin Wan, Victor M. Benveniste