Patents by Inventor Zhimin Wan

Zhimin Wan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160293734
    Abstract: In forming a punch-through stopper region in a fin field effect transistor (finFET) device, a substrate may be etched to form a pair of trenches that define a fin structure. A portion of a first dose of ions may be implanted into the substrate through a bottom wall of each trench to form a pair of first dopant regions that at least partially extend under a channel region of the fin structure. The substrate at the bottom wall of each trench may be etched to increase a depth of each trench. Etching the substrate at the bottom wall of each trench may remove a portion of each first dopant region under each trench. A remaining portion of the pair of first dopant regions under the fin structure may at least partially define the punch-through stopper region of the finFET device.
    Type: Application
    Filed: April 3, 2015
    Publication date: October 6, 2016
    Inventors: Daniel TANG, Zhimin WAN, Ching-I LI, Ger-Pin LIN
  • Patent number: 9450078
    Abstract: In forming a punch-through stopper region in a fin field effect transistor (finFET) device, a substrate may be etched to form a pair of trenches that define a fin structure. A portion of a first dose of ions may be implanted into the substrate through a bottom wall of each trench to form a pair of first dopant regions that at least partially extend under a channel region of the fin structure. The substrate at the bottom wall of each trench may be etched to increase a depth of each trench. Etching the substrate at the bottom wall of each trench may remove a portion of each first dopant region under each trench. A remaining portion of the pair of first dopant regions under the fin structure may at least partially define the punch-through stopper region of the finFET device.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: September 20, 2016
    Assignee: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Daniel Tang, Zhimin Wan, Ching-I Li, Ger-Pin Lin
  • Patent number: 9431247
    Abstract: A method for an ion implantation is provided. First, a non-parallel ion beam is provided. Thereafter, a relative motion between a workpiece and the non-parallel ion beam, so as to enable each region of the workpiece to be implanted by different portions of the non-parallel ion beam successively. Particularly, when at least one three-dimensional structure is located on the upper surface of the workpiece, both the top surface and the side surface of the three-dimensional structure may be implanted properly by the non-parallel ion beam when the workpiece is moved across the non-parallel ion beam one and only one times. Herein, the non-parallel ion beam can be a divergent ion beam or a convergent ion beam (both may be viewed as the integrated divergent beam), also can be generated directly from an ion source or is modified from a parallel ion beam, a divergent ion beam or a convergent ion beam.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: August 30, 2016
    Assignee: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Zhimin Wan, Kourosh Saadatmand, Wilhelm P. Platow, Ger-Pin Lin, Ching-I Li, Rekha Padmanabhan, Gary N. Cai
  • Publication number: 20160225577
    Abstract: The time-averaged ion beam profile of an ion beam for implanting ions on a work piece may be smoothed to reduce noise, spikes, peaks, and the like and to improve dosage uniformity. Auxiliary magnetic field devices, such as electromagnets, may be located along an ion beam path and may be driven by periodic signals to generate a fluctuating magnetic field to smooth the ion beam profile (i.e., beam current density profile). The auxiliary magnetic field devices may be positioned outside the width and height of the ion beam, and may generate a non-uniform fluctuating magnetic field that may be strongest near the center of the ion beam where the highest concentration of ions may be positioned. The fluctuating magnetic field may cause the beam profile shape to change continuously, thereby averaging out noise over time.
    Type: Application
    Filed: April 13, 2016
    Publication date: August 4, 2016
    Inventors: Xiao BAI, Zhimin WAN, Donald Wayne BERRIAN
  • Patent number: 9340870
    Abstract: The time-averaged ion beam profile of an ion beam for implanting ions on a work piece may be smoothed to reduce noise, spikes, peaks, and the like and to improve dosage uniformity. Auxiliary magnetic field devices, such as electromagnets, may be located along an ion beam path and may be driven by periodic signals to generate a fluctuating magnetic field to smooth the ion beam profile (i.e., beam current density profile). The auxiliary magnetic field devices may be positioned outside the width and height of the ion beam, and may generate a non-uniform fluctuating magnetic field that may be strongest near the center of the ion beam where the highest concentration of ions may be positioned. The fluctuating magnetic field may cause the beam profile shape to change continuously, thereby averaging out noise over time.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: May 17, 2016
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Xiao Bai, Zhimin Wan, Donald Wayne Berrian
  • Publication number: 20160133469
    Abstract: A method for an ion implantation is provided. First, a non-parallel ion beam is provided. Thereafter, a relative motion between a workpiece and the non-parallel ion beam, so as to enable each region of the workpiece to be implanted by different portions of the non-parallel ion beam successively. Particularly, when at least one three-dimensional structure is located on the upper surface of the workpiece, both the top surface and the side surface of the three-dimensional structure may be implanted properly by the non-parallel ion beam when the workpiece is moved across the non-parallel ion beam one and only one times. Herein, the non-parallel ion beam can be a divergent ion beam or a convergent ion beam (both may be viewed as the integrated divergent beam), also can be generated directly from an ion source or is modified from a parallel ion beam, a divergent ion beam or a convergent ion beam.
    Type: Application
    Filed: June 26, 2015
    Publication date: May 12, 2016
    Inventors: Zhimin WAN, Kourosh SAADATMAND, Wilhelm P. PLATOW, Ger-Pin LIN, Ching-I LI, Rekha PADMANABHA, Gary N. CAI
  • Publication number: 20150371857
    Abstract: In an exemplary process for lower dose rate ion implantation of a work piece, an ion beam may be generated using an ion source and an extraction manipulator. The extraction manipulator may be positioned at a gap distance from an exit aperture of the ion source. A current of the ion beam exiting the extraction manipulator may be maximized when the extraction manipulator is positioned at an optimal gap distance from the exit aperture. The gap distance at which the extraction manipulator is positioned from the exit aperture may differ from the optimal gap distance by at least 10 percent. A first potential may be applied to a first set of electrodes. An x-dimension of the ion beam may increase as the ion beam passes through the first set of electrodes. The work piece may be positioned in the ion beam to implant ions into the work piece.
    Type: Application
    Filed: June 23, 2014
    Publication date: December 24, 2015
    Inventors: Zhimin WAN, Rekha PADMANABHAN, Xiao BAI, Gary N. CAI, Ching-I LI, Ger-Pin LIN, Shao-Yu HU, David HOGLUND, Robert E. KAIM, Kourosh SAADATMAND
  • Patent number: 9147550
    Abstract: A gas mixture method and apparatus of prolonging lifetime of an ion source for generating an ion beam particularly an ion beam containing carbon is proposed here. By mixing the dopant gas and the minor gas together to generate an ion beam, undesired reaction between the gas species and the ion source can be mitigated and thus lifetime of the ion source can be prolonged. Accordingly, quality of ion beam can be maintained.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: September 29, 2015
    Assignee: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Wei-Cheng Lin, Zhimin Wan, Koulin Hu
  • Patent number: 9117629
    Abstract: In a multi-energy ion implantation process, an ion implanting system having an ion source, an extraction assembly, and an electrode assembly is used to implant ions into a target. An ion beam having a first energy may be generated using the ion source and the extraction assembly. A first voltage may be applied across the electrode assembly. The ion beam may enter the electrode assembly at the first energy, exit the electrode assembly at a second energy, and implant ions into the target at the second energy. A second voltage may be applied across the electrode assembly. The ion beam may enter the electrode assembly at the first energy, exit the electrode assembly at a third energy, and implants ions into the target at the third energy. The third energy may be different from the second energy.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: August 25, 2015
    Assignee: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventor: Zhimin Wan
  • Patent number: 9057129
    Abstract: A variable aperture within an aperture device is used to shape the ion beam before the substrate is implanted by shaped ion beam, especially to finally shape the ion beam in a position right in front of the substrate. Hence, different portions of a substrate, or different substrates, can be implanted respectively by different shaped ion beams without going through using multiple fixed apertures or retuning the ion beam each time. In other words, different implantations may be achieved respectively by customized ion beams without high cost (use multiple fixed aperture devices) and complex operation (retuning the ion beam each time). Moreover, the beam tune process for acquiring a specific ion beam to be implanted may be accelerated, to be faster than using multiple fixed aperture(s) and/or retuning the ion beam each time, because the adjustment of the variable aperture may be achieved simply by mechanical operation.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: June 16, 2015
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Zhimin Wan, John D. Pollock, Donald Wayne Berrian, Causon Ko-Chuan Jen
  • Publication number: 20150136967
    Abstract: A deceleration apparatus capable of decelerating a short spot beam or a tall ribbon beam is disclosed. In either case, effects tending to degrade the shape of the beam profile are controlled. Caps to shield the ion beam from external potentials are provided. Electrodes whose position and potentials are adjustable are provided, on opposite sides of the beam, to ensure that the shape of the decelerating and deflecting electric fields does not significantly deviate from the optimum shape, even in the presence of the significant space-charge of high current low-energy beams of heavy ions.
    Type: Application
    Filed: January 26, 2015
    Publication date: May 21, 2015
    Inventors: Nicholas WHITE, Zhimin WAN, Erik COLLART
  • Patent number: 9009939
    Abstract: A system and a method for moving a wafer during scanning the wafer by an ion beam. The proposed system includes an extendable/retractable arm, a holding apparatus and a driving apparatus. At least a length of the extendable/retractable arm is adjustable. The holding apparatus is capable of holding a wafer and is fixed on a specific portion of the extendable/retractable arm. Furthermore, the driving apparatus is capable of extending and/or retracting the extendable/retractable arm, such that the holding apparatus is moved together with the specific portion. In addition, the proposed method includes the following steps. First, hold the wafer by a holding apparatus fixed on a specific portion of an extendable/retractable arm. After that, adjust a length of the extendable/retractable. Therefore, the holding apparatus, i.e. the wafer, can be moved by the extension/retraction of the extendable/retractable arm.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: April 21, 2015
    Assignee: Advanced Ion Beam Technology, Inc (TW)
    Inventors: Peter Mok, Ko-Chuan Jen, Zhimin Wan
  • Patent number: 8987691
    Abstract: An ion implanter and an ion implant method are disclosed. Essentially, the wafer is moved along one direction and an aperture mechanism having an aperture is moved along another direction, so that the projected area of an ion beam filtered by the aperture is two-dimensionally scanned over the wafer. Thus, the required hardware and/or operation to move the wafer may be simplified. Further, when a ribbon ion beam is provided, the shape/size of the aperture may be similar to the size/shape of a traditional spot beam, so that a traditional two-dimensional scan may be achieved. Optionally, the ion beam path may be fixed without scanning the ion beam when the ion beam is to be implanted into the wafer, also the area of the aperture may be adjustable during a period of moving the aperture across the ion beam.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: March 24, 2015
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Zhimin Wan, John D. Pollock, Don Berrian
  • Publication number: 20150056380
    Abstract: An ion source uses at least one induction coil to generate ac magnetic field to couple rf/VHF power into a plasma within a vessel, where the excitation coil may be a single set of turns each turn having lobes or multiple separate sets of windings. The excitation coil is positioned outside and proximate that side of the vessel that is opposite to the extraction slit, and elongated parallel to the length dimension of the extraction slit. The conducting shield(s) positioned outside or integrated with the well of the vessel are used to block the capacitive coupling to the plasma and/or to collect any rf/VHF current may be coupled into the plasma. The conducting shield positioned between the vessel and the coil set can either shield the plasma from capacitive coupling from the excitation coils, or be tuned to have a higher rf/VHF voltage to ignite or clean the source.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Applicant: ADVANCED ION BEAM TECHNOLOGY , INC.
    Inventors: Stephen Edward Savas, Xiao Bai, Zhimin Wan, Peter M. Kopalidis
  • Patent number: 8941077
    Abstract: A deceleration apparatus capable of decelerating a short spot beam or a tall ribbon beam is disclosed. In either case, effects tending to degrade the shape of the beam profile are controlled. Caps to shield the ion beam from external potentials are provided. Electrodes whose position and potentials are adjustable are provided, on opposite sides of the beam, to ensure that the shape of the decelerating and deflecting electric fields does not significantly deviate from the optimum shape, even in the presence of the significant space-charge of high current low-energy beams of heavy ions.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: January 27, 2015
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Nicholas White, Zhimin Wan, Erik Collart
  • Patent number: 8907301
    Abstract: A gas mixture method for generating an ion beam is provided here. By dynamically tuning the mixture ratio of the gas mixture, lifetime of the ion source of an ion implanter can be prolonged. Accordingly, quality of ion beam can be maintained and maintenance fee is reduced.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: December 9, 2014
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Koulin Hu, Zhimin Wan, Wei-Cheng Lin
  • Patent number: 8890506
    Abstract: Techniques for measuring ion beam current, especially for measuring low energy ion beam current, are disclosed. The technique may be realized as an ion beam current measurement apparatus having at least a planar Faraday cup and a voltage assembly. The planar Faraday cup is located close to an inner surface of a chamber wall, and intersects an ion beam path. The voltage assembly is located outside a chamber having the chamber wall. Therefore, by properly adjusting the electric voltage applied on the planar Faraday cup by the voltage assembly, some undesired charged particles may be adequately suppressed. Further, the planar Faraday cup may surround an opening of a non-planar Faraday cup which may be any conventional Faraday cup. Therefore, the whole ion beam may be received and measured well by the larger cross-section area of the planar Faraday cup on the ion beam path.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: November 18, 2014
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Peter M. Kopalidis, Zhimin Wan
  • Patent number: 8835882
    Abstract: The invention provides a method to real time monitor the ion beam. Initially, turn on an ion implanter which has a wafer holder, a Faraday cup and a measurement device positioned close to a special portion of a pre-determined ion beam path of the ion beam, wherein the Faraday cup is positioned downstream the wafer holder and the measurement device is positioned upstream the wafer holder. Then, measure a first ion beam current received by the Faraday cup and a second ion beam current received by the measurement device. By continuously measuring the first and second ion beam current, the ion beam is real-time monitored even the Faraday cup is at least partially blocked during the period of moving the wafer holder across the ion beam. Accordingly, the on-going implantation process and the operation of the implanter can be adjusted.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: September 16, 2014
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Wei-Cheng Lin, Zhimin Wan
  • Publication number: 20140212595
    Abstract: The time-averaged ion beam profile of an ion beam for implanting ions on a work piece may be smoothed to reduce noise, spikes, peaks, and the like and to improve dosage uniformity. Auxiliary magnetic field devices, such as electromagnets, may be located along an ion beam path and may be driven by periodic signals to generate a fluctuating magnetic field to smooth the ion beam profile (i.e., beam current density profile). The auxiliary magnetic field devices may be positioned outside the width and height of the ion beam, and may generate a non-uniform fluctuating magnetic field that may be strongest near the center of the ion beam where the highest concentration of ions may be positioned. The fluctuating magnetic field may cause the beam profile shape to change continuously, thereby averaging out noise over time.
    Type: Application
    Filed: February 15, 2013
    Publication date: July 31, 2014
    Applicant: ADVANCED ION BEAM TECHNOLOGY, INC.
    Inventors: Xiao BAI, Zhimin WAN, Donald Wayne BERRIAN
  • Publication number: 20140161987
    Abstract: A variable aperture within an aperture device is used to shape the ion beam before the substrate is implanted by shaped ion beam, especially to finally shape the ion beam in a position right in front of the substrate. Hence, different portions of a substrate, or different substrates, can be implanted respectively by different shaped ion beams without going through using multiple fixed apertures or retuning the ion beam each time. In other words, different implantations may be achieved respectively by customized ion beams without high cost (use multiple fixed aperture devices) and complex operation (retuning the ion beam each time). Moreover, the beam tune process for acquiring a specific ion beam to be implanted may be accelerated, to be faster than using multiple fixed aperture(s) and/or retuning the ion beam each time, because the adjustment of the variable aperture may be achieved simply by mechanical operation.
    Type: Application
    Filed: February 18, 2014
    Publication date: June 12, 2014
    Applicant: ADVANCED ION BEAM TECHNOLOGY., INC.
    Inventors: ZHIMIN WAN, JOHN D. POLLOCK, DONALD WAYNE BERRIAN, CAUSON KO-CHUAN JEN