Patents by Inventor Zhiqiang Lin
Zhiqiang Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20180098008Abstract: Apparatuses and methods for image sensors with pixels that reduce or eliminate flicker induced by high intensity illumination are disclosed. An example image sensor may include a photodiode, a transfer gate, an anti-blooming gate, and first and second source follower transistors. The photodiode may capture light and generate charge in response, and the photodiode may have a charge capacity. The transfer gate may selectively transfer charge to a first floating diffusion, and the anti-blooming gate may selectively transfer excess charge to a second floating diffusion when the generated charge is greater than the photodiode charge capacity.Type: ApplicationFiled: October 4, 2016Publication date: April 5, 2018Inventors: Duli Mao, Trygve Willassen, Johannes Solhusvik, Keiji Mabuchi, Gang Chen, Sohei Manabe, Dyson H. Tai, Bill Phan, Oray Orkun Cellek, Zhiqiang Lin
-
Patent number: 9936153Abstract: Apparatuses and methods for image sensors with pixels that reduce or eliminate flicker induced by high intensity illumination are disclosed. An example image sensor may include a photodiode, a transfer gate, an anti-blooming gate, and first and second source follower transistors. The photodiode may capture light and generate charge in response, and the photodiode may have a charge capacity. The transfer gate may selectively transfer charge to a first floating diffusion, and the anti-blooming gate may selectively transfer excess charge to a second floating diffusion when the generated charge is greater than the photodiode charge capacity.Type: GrantFiled: October 4, 2016Date of Patent: April 3, 2018Assignee: OmniVision Technologies, Inc.Inventors: Duli Mao, Trygve Willassen, Johannes Solhusvik, Keiji Mabuchi, Gang Chen, Sohei Manabe, Dyson H. Tai, Bill Phan, Oray Orkun Cellek, Zhiqiang Lin
-
Publication number: 20170347047Abstract: An image sensor for detecting light-emitting diode (LED) without flickering includes a pixel array with pixels. Each pixel including subpixels including a first and a second subpixel, dual floating diffusion (DFD) transistor, and a capacitor coupled to the DFD transistor. First subpixel includes a first photosensitive element to acquire a first image charge, and a first transfer gate transistor to selectively transfer the first image charge from the first photosensitive element to a first floating diffusion (FD) node. Second subpixel includes a second photosensitive element to acquire a second image charge, and a second transfer gate transistor to selectively transfer the second image charge from the second photosensitive element to a second FD node. DFD transistor coupled to the first and the second FD nodes. Other embodiments are also described.Type: ApplicationFiled: May 25, 2016Publication date: November 30, 2017Inventors: Duli Mao, Trygve Willassen, Johannes Solhusvik, Keiji Mabuchi, Gang Chen, Sohei Manabe, Dyson H. Tai, Bill Phan, Oray Orkun Cellek, Zhiqiang Lin, Siguang Ma, Dajiang Yang, Boyd Albert Fowler
-
Patent number: 9818791Abstract: A stacked image sensor includes a first plurality of photodiodes, including a first photodiode and a second photodiode, disposed in a first semiconductor material. A thickness of the first semiconductor material proximate to the first photodiode is less than the thickness of the first semiconductor material proximate to the second photodiode. A second plurality of photodiodes is disposed in a second semiconductor material. The second plurality of photodiodes is optically aligned with the first plurality of photodiodes. An interconnect layer is disposed between the first semiconductor material and the second semiconductor material. The interconnect layer includes an optical shield disposed between the second photodiode and a third photodiode included in the second plurality of photodiodes. The optical shield prevents a first portion of image light from reaching the third photodiode.Type: GrantFiled: October 4, 2016Date of Patent: November 14, 2017Assignee: OmniVision Technologies, Inc.Inventors: Duli Mao, Zhiqiang Lin, Keiji Mabuchi, Gang Chen, Dyson H. Tai, Bill Phan, Oray Orkun Cellek, Dajiang Yang
-
Publication number: 20170275092Abstract: The present disclosure provides a material feeding bag which comprises an inner bag. The inner bag has: an inner bag upper port portion, an inner bag main receiving portion and an inner bag lower port portion. The inner bag upper port portion has an upper port; the inner bag main receiving portion is connected to a lower end of the inner bag upper port portion along an axial direction; the inner bag lower port portion is connected to a lower end of the inner bag main receiving portion along the axial direction and has a lower port for controllable communication with an external hopper entrance. It doe not need to shear the material feeding bag by a scissors when materials is fed, so that it avoids generation of metal debris, and the mating and feeding material operation is fast and simple, and the working environment for an operator is improved.Type: ApplicationFiled: March 13, 2017Publication date: September 28, 2017Inventors: Zhongxin ZHOU, Wutang ZHANG, Taosheng ZHU, Jian SI, Zhiqiang LIN, Xie WANG
-
Patent number: 9529614Abstract: Disclosed are various embodiments that facilitate automatically bridging the semantic gap in machine introspection. It may be determined that a program executed by a first virtual machine is requested to introspect a second virtual machine. A system call execution context of the program may be determined in response to determining that the program is requested to introspect the second virtual machine. Redirectable data in a memory of the second virtual machine may be identified based at least in part on the system call execution context of the program. The program may be configured to access the redirectable data. In various embodiments, the program may be able to modify the redirectable data, thereby facilitating configuration, reconfiguration, and recovery operations to be performed on the second virtual machine from within the first virtual machine.Type: GrantFiled: March 5, 2013Date of Patent: December 27, 2016Assignee: Board of Regents The University of Texas SystemsInventors: Zhiqiang Lin, Yangchun Fu
-
Patent number: 9312299Abstract: An image sensor pixel includes a photosensitive element, a floating diffusion region, a transfer gate, a dielectric charge trapping region, and a first metal contact. The photosensitive element is disposed in a semiconductor layer to receive electromagnetic radiation along a vertical axis. The floating diffusion region is disposed in the semiconductor layer, while the transfer gate is disposed on the semiconductor layer to control a flow of charge produced in the photosensitive element to the floating diffusion region. The dielectric charge trapping device is disposed on the semiconductor layer to receive electromagnetic radiation along the vertical axis and to trap charges in response thereto. The dielectric charge trapping device is further configured to induce charge in the photosensitive element in response to the trapped charges. The first metal contact is coupled to the dielectric charge trapping device to provide a first bias voltage to the dielectric charge trapping device.Type: GrantFiled: April 10, 2014Date of Patent: April 12, 2016Assignee: OmniVision Technologies, Inc.Inventors: Oray Orkun Cellek, Dajiang Yang, Sing-Chung Hu, Philip John Cizdziel, Dyson Tai, Gang Chen, Cunyu Yang, Zhiqiang Lin
-
Publication number: 20150295007Abstract: An image sensor pixel includes a photosensitive element, a floating diffusion region, a transfer gate, a dielectric charge trapping region, and a first metal contact. The photosensitive element is disposed in a semiconductor layer to receive electromagnetic radiation along a vertical axis. The floating diffusion region is disposed in the semiconductor layer, while the transfer gate is disposed on the semiconductor layer to control a flow of charge produced in the photosensitive element to the floating diffusion region. The dielectric charge trapping device is disposed on the semiconductor layer to receive electromagnetic radiation along the vertical axis and to trap charges in response thereto. The dielectric charge trapping device is further configured to induce charge in the photosensitive element in response to the trapped charges. The first metal contact is coupled to the dielectric charge trapping device to provide a first bias voltage to the dielectric charge trapping device.Type: ApplicationFiled: April 10, 2014Publication date: October 15, 2015Applicant: OMNIVISION TECHNOLOGIES, INC.Inventors: Oray Orkun Cellek, Dajiang Yang, Sing-Chung Hu, Philip John Cizdziel, Dyson Tai, Gang Chen, Cunyu Yang, Zhiqiang Lin
-
Patent number: 9160949Abstract: A photon detection device includes a photodiode having a planar junction disposed in a first region of semiconductor material. A deep trench isolation (DTI) structure is disposed in the semiconductor material. The DTI structure isolates the first region of the semiconductor material on one side of the DTI structure from a second region of the semiconductor material on an other side of the DTI structure. The DTI structure includes a dielectric layer lining an inside surface of the DTI structure and doped semiconductor material disposed over the dielectric layer inside the DTI structure. The doped semiconductor material disposed inside the DTI structure is coupled to a bias voltage to isolate the photodiode in the first region of the semiconductor material from the second region of the semiconductor material.Type: GrantFiled: April 1, 2013Date of Patent: October 13, 2015Assignee: OmniVision Technologies, Inc.Inventors: Bowei Zhang, Zhiqiang Lin
-
Publication number: 20150242636Abstract: Disclosed are systems and methods for performing automatic, large-scale analysis mobile applications to determine and analyze application vulnerability. The disclosed systems and methods include identifying potentially vulnerable applications, identifying the application entry points that lead to vulnerable behavior, and generating smart input for text fields. Thus, a fully automated framework is implemented to run in parallel on multiple emulators, while collecting vital information.Type: ApplicationFiled: February 24, 2015Publication date: August 27, 2015Inventors: Latifur Khan, Zhiqiang Lin, Bhavani Thuraisingham, Justin Sahs, David Sounthiraraj, Garrett Greenwood
-
Patent number: 8969775Abstract: A pixel cell for use in a high dynamic range image sensor includes a photodiode disposed in semiconductor material to accumulate charge in response to light incident upon the photodiode. A transfer transistor is disposed in the semiconductor material and is coupled between a floating diffusion and the photodiode. A first amplifier transistor is disposed in the semiconductor material having a gate terminal coupled to the floating diffusion and a source terminal coupled to generate a first output signal of the pixel cell. A second amplifier transistor is disposed in the semiconductor material having a gate terminal coupled to the floating diffusion and a source terminal coupled to generate a second output signal of the pixel cell.Type: GrantFiled: February 28, 2013Date of Patent: March 3, 2015Assignee: OmniVision Technologies, Inc.Inventors: Gang Chen, Zhiqiang Lin, Sing-Chung Hu, Duli Mao, Hsin-Chih Tai
-
Publication number: 20150033227Abstract: Disclosed are various embodiments that facilitate automatically bridging the semantic gap in machine introspection. It may be determined that a program executed by a first virtual machine is requested to introspect a second virtual machine. A system call execution context of the program may be determined in response to determining that the program is requested to introspect the second virtual machine. Redirectable data in a memory of the second virtual machine may be identified based at least in part on the system call execution context of the program. The program may be configured to access the redirectable data. In various embodiments, the program may be able to modify the redirectable data, thereby facilitating configuration, reconfiguration, and recovery operations to be performed on the second virtual machine from within the first virtual machine.Type: ApplicationFiled: March 5, 2013Publication date: January 29, 2015Inventors: Zhiqiang Lin, Yangchun Fu
-
Publication number: 20140291481Abstract: A photon detection device includes a photodiode having a planar junction disposed in a first region of semiconductor material. A deep trench isolation (DTI) structure is disposed in the semiconductor material. The DTI structure isolates the first region of the semiconductor material on one side of the DTI structure from a second region of the semiconductor material on an other side of the DTI structure. The DTI structure includes a dielectric layer lining an inside surface of the DTI structure and doped semiconductor material disposed over the dielectric layer inside the DTI structure. The doped semiconductor material disposed inside the DTI structure is coupled to a bias voltage to isolate the photodiode in the first region of the semiconductor material from the second region of the semiconductor material.Type: ApplicationFiled: April 1, 2013Publication date: October 2, 2014Applicant: OMNIVISION TECHNOLOGIES, INC.Inventors: Bowei Zhang, Zhiqiang Lin
-
Publication number: 20140239154Abstract: A pixel cell for use in a high dynamic range image sensor includes a photodiode disposed in semiconductor material to accumulate charge in response to light incident upon the photodiode. A transfer transistor is disposed in the semiconductor material and is coupled between a floating diffusion and the photodiode. A first amplifier transistor is disposed in the semiconductor material having a gate terminal coupled to the floating diffusion and a source terminal coupled to generate a first output signal of the pixel cell. A second amplifier transistor is disposed in the semiconductor material having a gate terminal coupled to the floating diffusion and a source terminal coupled to generate a second output signal of the pixel cell.Type: ApplicationFiled: February 28, 2013Publication date: August 28, 2014Applicant: OMNIVISION TECHNOLOGIES, INC.Inventors: Gang Chen, Zhiqiang Lin, Sing-Chung Hu, Duli Mao, Hsin-Chih Tai
-
Patent number: 8253178Abstract: An example complementary metal oxide semiconductor (CMOS) image sensor includes an epitaxial layer, an array of pixels, and a trench capacitor. The array of pixels are formed on a front side of the epitaxial layer in an pixel array area of the image sensor. The array of pixels includes one or more shallow trench isolation structures disposed between adjacent pixels for isolating the pixels in the pixel array area. The trench capacitor is formed on the front side of the epitaxial layer in a peripheral circuitry area of the image sensor.Type: GrantFiled: August 2, 2011Date of Patent: August 28, 2012Assignee: OmniVision Technologies, Inc.Inventors: Rongsheng Yang, Zhiqiang Lin
-
Patent number: D722593Type: GrantFiled: October 9, 2013Date of Patent: February 17, 2015Assignee: Bass Egg LLCInventors: Zhiqiang Lin, Jonathan Bouchlas