Patents by Inventor Ziwei Fang

Ziwei Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10431670
    Abstract: Source and drain formation techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes forming a fin structure, wherein the fin structure include a channel region disposed between a source region and a drain region; forming a gate structure over the channel region of the fin structure; forming a solid phase diffusion (SPD) layer over the source region and the drain region of the fin structure; and performing a microwave annealing (MWA) process to diffuse a dopant from the SPD layer into the source region and the drain region of fin structure. In some implementations, the SPD layer is disposed over the fin structure, such that the dopant diffuses laterally and vertically into the source region and the drain region to form heavily doped source/drain features.
    Type: Grant
    Filed: April 6, 2017
    Date of Patent: October 1, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Chun Hsiung Tsai, Kuo-Feng Yu, Ziwei Fang
  • Publication number: 20190252527
    Abstract: Doping techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes forming a fin structure, forming a doped amorphous layer over a portion of the fin structure, and performing a knock-on implantation process to drive a dopant from the doped amorphous layer into the portion of the fin structure, thereby forming a doped feature. The doped amorphous layer includes a non-crystalline form of a material. In some implementations, the knock-on implantation process crystallizes at least a portion of the doped amorphous layer, such that the portion of the doped amorphous layer becomes a part of the fin structure. In some implementations, the doped amorphous layer includes amorphous silicon, and the knock-on implantation process crystallizes a portion of the doped amorphous silicon layer.
    Type: Application
    Filed: April 29, 2019
    Publication date: August 15, 2019
    Inventors: Sai-Hooi Yeong, Sheng-Chen Wang, Bo-Yu Lai, Ziwei Fang, Feng-Cheng Yang, Yen-Ming Chen
  • Publication number: 20190252381
    Abstract: The present disclosure provides a method that includes providing a semiconductor substrate having a first region and a second region; forming a first gate within the first region and a second gate within the second region on the semiconductor substrate; forming first source/drain features of a first semiconductor material with an n-type dopant in the semiconductor substrate within the first region; forming second source/drain features of a second semiconductor material with a p-type dopant in the semiconductor substrate within the second region. The second semiconductor material is different from the first semiconductor material in composition. The method further includes forming first silicide features to the first source/drain features and second silicide features to the second source/drain features; and performing an ion implantation process of a species to both the first and second regions, thereby introducing the species to first silicide features and the second source/drain features.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Su-Hao Liu, Yan-Ming Tsai, Chung-Ting Wei, Ziwei Fang, Chih-Wei Chang, Chien-Hao Chen, Huicheng Chang
  • Publication number: 20190229012
    Abstract: A method of forming a semiconductor device includes depositing a flowable dielectric layer on a substrate and annealing the flowable dielectric layer. The method further includes performing a high temperature (HT) doping process on the flowable dielectric layer. The HT doping process may include implanting dopant ions into the flowable dielectric layer and heating the substrate during the implanting of the dopant ions. The heating of the substrate may include heating a substrate holder upon which the substrate is disposed and maintaining the substrate at a temperature above 100° C. An example benefit reduced the wet etch rate (WER) of the flowable dielectric layer.
    Type: Application
    Filed: April 1, 2019
    Publication date: July 25, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsan-Chun WANG, De-Wei YU, Ziwei FANG, Yi-Fan CHEN
  • Publication number: 20190148151
    Abstract: A method includes removing a dummy gate stack to form an opening between gate spacers, selectively forming an inhibitor film on sidewalls of the gate spacers, with the sidewalls of the gate spacers facing the opening, and selectively forming a dielectric layer over a surface of a semiconductor region. The inhibitor film inhibits growth of the dielectric layer on the inhibitor film. The method further includes removing the inhibitor film, and forming a replacement gate electrode in a remaining portion of the opening.
    Type: Application
    Filed: July 2, 2018
    Publication date: May 16, 2019
    Inventors: Yasutoshi Okuno, Teng-Chun Tsai, Ziwei Fang, Fu-Ting Yen
  • Publication number: 20190140089
    Abstract: A method includes forming a first channel region and a first gate structure formed over the first channel region. A first source/drain region is formed adjacent the first channel region and the first source/drain region includes a crystalline structure doped with a first dopant. A first silicide is formed over the first source/drain region. The first source/drain region includes a first concentration of the first dopant between 2.0×1021 atoms per centimeter cubed and 4.0×1021 atoms per centimeter cubed at a depth of 8 to 10 nanometers.
    Type: Application
    Filed: December 17, 2018
    Publication date: May 9, 2019
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Patent number: 10276691
    Abstract: Doping techniques for fin-like field effect transistors (FinFETs) are disclosed herein. An exemplary method includes forming a fin structure, forming a doped amorphous layer over a portion of the fin structure, and performing a knock-on implantation process to drive a dopant from the doped amorphous layer into the portion of the fin structure, thereby forming a doped feature. The doped amorphous layer includes a non-crystalline form of a material. In some implementations, the knock-on implantation process crystallizes at least a portion of the doped amorphous layer, such that the portion of the doped amorphous layer becomes a part of the fin structure. In some implementations, the doped amorphous layer includes amorphous silicon, and the knock-on implantation process crystallizes a portion of the doped amorphous silicon layer.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: April 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sai-Hooi Yeong, Sheng-Chen Wang, Bo-Yu Lai, Ziwei Fang, Feng-Cheng Yang, Yen-Ming Chen
  • Patent number: 10269799
    Abstract: The present disclosure provides a method that includes providing a semiconductor substrate having a first region and a second region; forming a first gate within the first region and a second gate within the second region on the semiconductor substrate; forming first source/drain features of a first semiconductor material with an n-type dopant in the semiconductor substrate within the first region; forming second source/drain features of a second semiconductor material with a p-type dopant in the semiconductor substrate within the second region. The second semiconductor material is different from the first semiconductor material in composition. The method further includes forming first silicide features to the first source/drain features and second silicide features to the second source/drain features; and performing an ion implantation process of a species to both the first and second regions, thereby introducing the species to first silicide features and the second source/drain features.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: April 23, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Su-Hao Liu, Yan-Ming Tsai, Chung-Ting Wei, Ziwei Fang, Chih-Wei Chang, Chien-Hao Chen, Huicheng Chang
  • Publication number: 20190103476
    Abstract: A method includes depositing a silicon layer on a plurality of strips. The silicon layer is etched back to remove top portions of the silicon layer, and to expose some portions of the plurality of strips. Some bottom portions of the silicon layer at bottoms of trenches between the plurality of strips remain after the etching back. A germanium layer is selectively grown from remaining portions of the silicon layer, and exposed portions of the plurality of strips remain exposed after the germanium layer is selectively grown.
    Type: Application
    Filed: November 1, 2017
    Publication date: April 4, 2019
    Inventors: De-Wei Yu, Chien-Hao Chen, Ziwei Fang, Yee-Chia Yeo
  • Patent number: 10249530
    Abstract: A method of forming a semiconductor device includes depositing a flowable dielectric layer on a substrate and annealing the flowable dielectric layer. The method further includes performing a high temperature (HT) doping process on the flowable dielectric layer. The HT doping process may include implanting dopant ions into the flowable dielectric layer and heating the substrate during the implanting of the dopant ions. The heating of the substrate may include heating a substrate holder upon which the substrate is disposed and maintaining the substrate at a temperature above 100° C. An example benefit reduced the wet etch rate (WER) of the flowable dielectric layer.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: April 2, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsan-Chun Wang, De-Wei Yu, Ziwei Fang, Yi-Fan Chen
  • Publication number: 20190097051
    Abstract: A FinFET device structure is provided. The FinFET device structure includes a fin structure extended above a substrate and a gate structure formed over a middle portion of the fin structure. The middle portion of the fin structure is wrapped by the gate structure. The FinFET device structure includes a source/drain (S/D) structure adjacent to the gate structure, and the S/D structure includes a doped region at an outer portion of the S/D structure, and the doped region includes gallium (Ga). The FinFET device structure includes a metal silicide layer formed over the doped region of the S/D structure, and the metal silicide layer is in direct contact with the doped region of the S/D structure.
    Type: Application
    Filed: February 9, 2018
    Publication date: March 28, 2019
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Hsiung TSAI, Shahaji B. MORE, Cheng-Yi PENG, Yu-Ming LIN, Kuo-Feng YU, Ziwei FANG
  • Publication number: 20190067083
    Abstract: A method of semiconductor device fabrication includes providing a substrate having a hardmask layer thereover. The hardmask layer is patterned to expose the substrate. The substrate is etched through the patterned hardmask layer to form a first fin element and a second fin element extending from the substrate. An isolation feature between the first and second fin elements is formed, where the isolation feature has a first etch rate in a first solution. A laser anneal process is performed to irradiate the isolation feature with a pulsed laser beam. A pulse duration of the pulsed laser beam is adjusted based on a height of the isolation feature. The isolation feature after performing the laser anneal process has a second etch rate less than the first etch rate in the first solution.
    Type: Application
    Filed: October 29, 2018
    Publication date: February 28, 2019
    Inventors: De-Wei YU, Tsu-Hsiu PERNG, Ziwei FANG
  • Publication number: 20190035691
    Abstract: A semiconductor device includes a field effect transistor (FET). The FET includes a channel region and a source/drain region disposed adjacent to the channel region. The FET also includes a gate electrode disposed over the channel region. The FET is an n-type FET and the channel region is made of Si. The source/drain region includes an epitaxial layer including Si1-x-yM1xM2y, where M1 is one or more of Ge and Sn, and M2 is one or more of P and As, and 0.01?x?0.1.
    Type: Application
    Filed: July 31, 2017
    Publication date: January 31, 2019
    Inventors: YASUTOSHI OKUNO, CHENG-YI PENG, ZIWEI FANG, I-MING CHANG, AKIRA MINEJI, YU-MING LIN, MENG-HSUAN HSIAO
  • Publication number: 20190006483
    Abstract: A gate structure, a semiconductor device, and the method of forming a semiconductor device are provided. In various embodiments, the gate structure includes a gate stack and a doped spacer overlying a sidewall of the gate stack. The gate stack contains a doped work function metal (WFM) stack and a metal gate electrode overlying the doped WFM stack.
    Type: Application
    Filed: July 31, 2018
    Publication date: January 3, 2019
    Inventors: Chun-Hsiung Tsai, Kuo-Feng Yu, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
  • Publication number: 20180366585
    Abstract: A FinFET device and a method of forming the same are disclosed. In accordance with some embodiments, a FinFET device includes a substrate having at least one fin, a gate stack across the at least one fin, a strained layer aside the gate stack and a silicide layer over the strained layer. The strained layer has a boron surface concentration greater than about 2E20 atom/cm3 within a depth range of about 0-5 nm from a surface of the strained layer.
    Type: Application
    Filed: August 26, 2018
    Publication date: December 20, 2018
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun Hsiung Tsai, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
  • Patent number: 10158019
    Abstract: A device includes a first channel region and a first gate structure formed over the first channel region. A first source/drain region is adjacent the first channel region and the first source/drain region includes a crystalline structure doped with a first dopant. A first silicide is formed over the first source/drain region. The first source/drain region includes a first concentration of the first dopant between 2.0×1021 atoms per centimeter cubed and 4.0×1021 atoms per centimeter cubed at a depth of 8 to 10 nanometers. A gradient of decreasing concentration of the first dopant is one decade for every 5.5 to 7.5 nanometers deeper than the first concentration.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: December 18, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Patent number: 10141417
    Abstract: A gate structure, a semiconductor device, and the method of forming a semiconductor device are provided. In various embodiments, the gate structure includes a gate stack and a doped spacer overlying a sidewall of the gate stack. The gate stack contains a doped work function metal (WFM) stack and a metal gate electrode overlying the doped WFM stack.
    Type: Grant
    Filed: March 5, 2016
    Date of Patent: November 27, 2018
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hsiung Tsai, Kuo-Feng Yu, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
  • Patent number: 10115624
    Abstract: A method of semiconductor device fabrication includes providing a substrate having a hardmask layer thereover. The hardmask layer is patterned to expose the substrate. The substrate is etched through the patterned hardmask layer to form a first fin element and a second fin element extending from the substrate. An isolation feature between the first and second fin elements is formed, where the isolation feature has a first etch rate in a first solution. A laser anneal process is performed to irradiate the isolation feature with a pulsed laser beam. A pulse duration of the pulsed laser beam is adjusted based on a height of the isolation feature. The isolation feature after performing the laser anneal process has a second etch rate less than the first etch rate in the first solution.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 30, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: De-Wei Yu, Tsu-Hsiu Perng, Ziwei Fang
  • Publication number: 20180308765
    Abstract: A method includes providing a substrate including a first fin element and a second fin element extending from the substrate. A first layer including an amorphous material is formed over the first and second fin elements, where the first layer includes a gap disposed between the first and second fin elements. An anneal process is performed to remove the gap in the first layer. The amorphous material of the first layer remains amorphous during the performing of the anneal process.
    Type: Application
    Filed: June 25, 2018
    Publication date: October 25, 2018
    Inventors: De-Wei YU, Chia Ping LO, Liang-Gi YAO, Weng CHANG, Yee-Chia YEO, Ziwei FANG
  • Publication number: 20180301453
    Abstract: A fin-type field effect transistor comprising a substrate, at least one gate stack and epitaxy material portions is described. The substrate has fins and insulators located between the fins, and the fins include channel portions and flank portions beside the channel portions. The at least one gate stack is disposed over the insulators and over the channel portions of the fins. The epitaxy material portions are disposed over the flank portions of the fins and at two opposite sides of the at least one gate stack. The epitaxy material portions disposed on the flank portions of the fins are separate from one another.
    Type: Application
    Filed: June 19, 2018
    Publication date: October 18, 2018
    Inventors: Chun Hsiung Tsai, Ziwei Fang, Tsan-Chun Wang, Kei-Wei Chen