Patents by Inventor Ziwei Fang

Ziwei Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10861751
    Abstract: A method includes providing a substrate including a first fin element and a second fin element extending from the substrate, and forming a first layer including a first material over the first and second fin elements, wherein the first layer includes a gap disposed between the first and second fin elements. An anneal process is performed to remove the gap in the first layer, wherein performing the anneal process includes adjusting an energy applied to the first layer during the anneal process. The gap is filled by a portion of the first material around the gap reaching a sub-melt temperature that is different from a melting point of the first material.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: December 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: De-Wei Yu, Chia Ping Lo, Liang-Gi Yao, Weng Chang, Yee-Chia Yeo, Ziwei Fang
  • Publication number: 20200381529
    Abstract: A gate structure, a semiconductor device, and the method of forming a semiconductor device are provided. In various embodiments, the gate structure includes a gate stack and a doped spacer overlying a sidewall of the gate stack. The gate stack contains a doped work function metal (WFM) stack and a metal gate electrode overlying the doped WFM stack.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventors: Chun-Hsiung Tsai, Kuo-Feng Yu, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang
  • Patent number: 10854729
    Abstract: The present disclosure relates to a method of forming a transistor device. In this method, first and second well regions are formed within a semiconductor substrate. The first and second well regions have first and second etch rates, respectively, which are different from one another. Dopants are selectively implanted into the first well region to alter the first etch rate to make the first etch rate substantially equal to the second etch rate. The first, selectively implanted well region and the second well region are etched to form channel recesses having equal recess depths. An epitaxial growth process is performed to form one or more epitaxial layers within the channel recesses.
    Type: Grant
    Filed: September 22, 2019
    Date of Patent: December 1, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsan-Chun Wang, Ziwei Fang, Chii-Horng Li, Tze-Liang Lee, Chao-Cheng Chen, Syun-Ming Jang
  • Patent number: 10854503
    Abstract: The present disclosure provides a method of fabricating a semiconductor structure in accordance with some embodiments. The method includes receiving a substrate having an active region and an isolation region; forming gate stacks on the substrate and extending from the active region to the isolation region; forming an inner gate spacer and an outer gate spacer on sidewalls of the gate stacks; forming an interlevel dielectric (ILD) layer on the substrate; removing the outer gate spacer in the isolation region, resulting in an air gap between the inner gate spacer and the ILD layer; and performing an ion implantation process to the ILD layer, thereby expanding the ILD layer to cap the air gap.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: December 1, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hung-Chang Sun, Akira Mineji, Ziwei Fang
  • Publication number: 20200373400
    Abstract: The embodiments described herein are directed to a method for the fabrication of transistors with aluminum-free n-type work function layers as opposed to aluminum-based n-type work function layers. The method includes forming a channel portion disposed between spaced apart source/drain epitaxial layers and forming a gate stack on the channel portion, where forming the gate stack includes depositing a high-k dielectric layer on the channel portion and depositing a p-type work function layer on the dielectric layer. After depositing the p-type work function layer, forming without a vacuum break, an aluminum-free n-type work function layer on the p-type work function layer and depositing a metal on the aluminum-free n-type work function layer. The method further includes depositing an insulating layer to surround the spaced apart source/drain epitaxial layers and the gate stack.
    Type: Application
    Filed: November 21, 2019
    Publication date: November 26, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Liang CHENG, Ziwei Fang, Chun-I WU, Huang-Lin Chao
  • Publication number: 20200373206
    Abstract: The structure of a semiconductor device with different gate structures configured to provide ultra-low threshold voltages and a method of fabricating the semiconductor device are disclosed. The semiconductor device includes first and second nanostructured channel regions in first and second nanostructured layers, respectively, and first and second gate-all-around (GAA) structures surrounding the first and second nanostructured channel regions, respectively. The first GAA structure includes an Al-based gate stack with a first gate dielectric layer, an Al-based n-type work function metal layer, a first metal capping layer, and a first gate metal fill layer. The second GAA structure includes an Al-free gate stack with a second gate dielectric layer, an Al-free p-type work function metal layer, a metal growth inhibition layer, a second metal capping layer, and a second gate metal fill layer.
    Type: Application
    Filed: January 10, 2020
    Publication date: November 26, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang CHENG, Ziwei FANG
  • Patent number: 10847431
    Abstract: A method for fabricating a semiconductor device using a high-temperature ion implantation process includes providing a substrate including a plurality of fins. In some examples, a mask material is deposited and patterned to expose a group of fins of the plurality of fins and a test structure. By way of example, a first ion implantation may be performed, at a first temperature, through the group of fins and the test structure. Additionally, a second ion implantation may be performed, at a second temperature greater than the first temperature, through the group of fins and the test structure. In various examples, an interstitial cluster is formed within the group of fins and within the test structure. In some embodiments, an anneal process is performed, where the anneal process serves to remove the interstitial cluster from the group of fins and form at least one dislocation loop within the test structure.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: November 24, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsan-Chun Wang, Chun Hsiung Tsai, Ziwei Fang
  • Publication number: 20200350430
    Abstract: A method includes forming a first channel region and a first gate structure formed over the first channel region. A first source/drain region is formed adjacent the first channel region and the first source/drain region includes a crystalline structure doped with a first dopant. A first silicide is formed over the first source/drain region. The first source/drain region includes a first concentration of the first dopant between 2.0×1021 atoms per centimeter cubed and 4.0×1021 atoms per centimeter cubed at a depth of 8 to 10 nanometers.
    Type: Application
    Filed: July 20, 2020
    Publication date: November 5, 2020
    Inventors: Chun Hsiung Tsai, Sheng-Wen Yu, Ziwei Fang
  • Patent number: 10818768
    Abstract: A method for forming a semiconductor structure is provided. The method includes patterning a semiconductor substrate to form a semiconductor fin, forming a source/drain structure on the semiconductor fin, forming a gate electrode layer across the semiconductor fin, forming a first halogen-containing metal cap layer on the gate electrode layer, forming a contact structure on the source/drain structure and connected to the source/drain structure, and forming a second halogen-containing metal cap layer on the contact structure. The first halogen-containing metal cap layer and the second halogen-containing metal cap layer include different halogens.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: October 27, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang Cheng, Ziwei Fang
  • Publication number: 20200335346
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The method includes forming a dummy gate stack over a semiconductor substrate and forming a spacer element over a sidewall of the dummy gate stack. The method also includes removing the dummy gate stack to form a recess exposing a semiconductor strip and forming an inhibition layer over an interior surface of the spacer element. The method further includes forming a gate dielectric layer in the recess to selectively cover the semiconductor strip. The inhibition layer substantially prevents the gate dielectric layer from being formed on the inhibition layer. In addition, the method includes forming a metal gate electrode over the gate dielectric layer.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 22, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Christine Y OUYANG, Ziwei FANG
  • Publication number: 20200335599
    Abstract: A semiconductor structure that includes a semiconductor fin disposed over a substrate, S/D features disposed over the semiconductor fin, and a metal gate stack interposed between the S/D features. The metal gate stack includes a gate dielectric layer disposed over the semiconductor fin, a capping layer disposed over the gate dielectric layer, and a gate electrode disposed over the capping layer, where the gate dielectric layer includes hafnium oxide with hafnium atoms and oxygen atoms arranged in a Pca21 space group.
    Type: Application
    Filed: July 2, 2020
    Publication date: October 22, 2020
    Inventors: Cheng-Ming Lin, Kai Tak Lam, Sai-Hooi Yeong, Chi On Chui, Ziwei Fang
  • Patent number: 10811253
    Abstract: A method of fabricating semiconductor devices is provided. The method includes forming an interfacial layer on a substrate, and depositing a gate dielectric layer on the interfacial layer. The method also includes treating the gate dielectric layer with a first post deposition annealing (PDA) process. The method further includes depositing a first capping layer on the gate dielectric layer, and treating the gate dielectric layer by performing a post metal annealing (PMA) process on the first capping layer. In addition, the method includes removing the first capping layer, and treating the gate dielectric layer with a second PDA process. The method also includes forming a gate electrode layer on the gate dielectric layer.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: October 20, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang Cheng, Ziwei Fang
  • Publication number: 20200328213
    Abstract: A semiconductor device is provided. The semiconductor device includes first nanostructures vertically stacked over a first region of a substrate, a gate dielectric layer wrapping around the first nanostructures, a first oxygen blocking layer wrapping around the gate dielectric layer in the first region, a first-type work function layer wrapping around the first oxygen blocking layer in the first region, a second oxygen blocking layer wrapping around the first-type work function layer in the first region, and a second-type work function layer wrapping around the second oxygen blocking layer in the first region.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang CHENG, Ziwei FANG
  • Publication number: 20200303259
    Abstract: A method of forming a semiconductor device including a fin field effect transistor (FinFET), the method includes forming a first sacrificial layer over a source/drain structure of a FinFET structure and an isolation insulating layer. The first sacrificial layer is patterned, thereby forming an opening. A first liner layer is formed on the isolation insulating layer in a bottom of the opening and on at least side faces of the patterned first sacrificial layer. After the first liner layer is formed, forming a dielectric layer in the opening. After the dielectric layer is formed, removing the patterned first sacrificial layer, thereby forming a contact opening over the source/drain structure. A conductive layer is formed in the contact opening. The FinFET is an n-type FET, and the source/drain structure includes an epitaxial layer made of Si1-y-a-bGeaSnbM2y, wherein 0<a, 0<b, 0.01?(a+b)?0.1, 0.01?y?0.1, and M2 is P or As.
    Type: Application
    Filed: June 9, 2020
    Publication date: September 24, 2020
    Inventors: Yasutoshi OKUNO, Cheng-Yi PENG, Ziwei FANG, I-Ming CHANG, Akira MINEJI, Yu-Ming LIN, Meng-Hsuan HSIAO
  • Publication number: 20200303549
    Abstract: A method for forming a FinFET device structure is provided. The method includes forming a fin structure extended above a substrate and forming a gate structure formed over a portion of the fin structure. The method also includes forming a source/drain (S/D) structure over the fin structure, and the S/D structure is adjacent to the gate structure. The method further includes doping an outer portion of the S/D structure to form a doped region, and the doped region includes gallium (Ga). The method includes forming a metal silicide layer over the doped region; and forming an S/D contact structure over the metal silicide layer.
    Type: Application
    Filed: June 11, 2020
    Publication date: September 24, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Hsiung TSAI, Shahaji B. MORE, Cheng-Yi PENG, Yu-Ming LIN, Kuo-Feng YU, Ziwei FANG
  • Publication number: 20200303260
    Abstract: A method of forming a semiconductor device including a fin field effect transistor (FinFET) includes forming a first sacrificial layer over a source/drain structure of a FinFET structure and an isolation insulating layer. The first sacrificial layer is patterned, thereby forming an opening. A first liner layer is formed on the isolation insulating layer in a bottom of the opening and on at least side faces of the patterned first sacrificial layer. After the first liner layer is formed, forming a dielectric layer in the opening. After the dielectric layer is formed, removing the patterned first sacrificial layer, thereby forming a contact opening over the source/drain structure. A conductive layer is formed in the contact opening. The FinFET is an n-type FET, and the source/drain structure includes an epitaxial layer including Si1?x?yM1xM2y, where M1 includes Sn, M2 is one or more of P and As, and 0.01?x?0.1, and 0.01?y?0.1.
    Type: Application
    Filed: June 9, 2020
    Publication date: September 24, 2020
    Inventors: Yasutoshi OKUNO, Cheng-Yi PENG, Ziwei FANG, I-Ming CHANG, Akira MINEJI, Yu-Ming LIN, Meng-Hsuan HSIAO
  • Publication number: 20200294865
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a work function material around a first semiconductor layer in a first region and a second semiconductor layer in a second region. The method also includes forming a first gate electrode material over the work function material. The method also includes removing the first gate electrode material in the first region. The method also includes forming a second gate electrode material over the work function material in the first region.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 17, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang CHENG, Ziwei FANG
  • Publication number: 20200294806
    Abstract: A semiconductor structure having metal contact features and a method for forming the same are provided. The method includes forming a dielectric layer covering an epitaxial structure over a semiconductor substrate and forming an opening in the dielectric layer to expose the epitaxial structure. The method includes forming a metal-containing layer over the dielectric layer and the epitaxial structure. The method includes heating the epitaxial structure and the metal-containing layer to transform a first portion of the metal-containing layer contacting the epitaxial structure into a metal-semiconductor compound layer. The method includes oxidizing the metal-containing layer to transform a second portion of the metal-containing layer over the metal-semiconductor compound layer into a metal oxide layer. The method includes applying a metal chloride-containing etching gas on the metal oxide layer to remove the metal oxide layer and forming a metal contact feature over the metal-semiconductor compound layer.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 17, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chung-Liang CHENG, Ziwei FANG
  • Patent number: 10770563
    Abstract: A semiconductor device and a method of forming the same are provided. In one embodiment, the semiconductor device includes a semiconductor substrate, a plurality of channel regions including first, second, and third p-type channel regions as well as first, second, and third n-type channel regions, and a plurality of gate structures. The plurality of gate structures includes an interfacial layer (IL) disposed over the plurality of channel regions, a first high-k (HK) dielectric layer disposed over the first p-type channel region and the first n-type channel region, a second high-k dielectric layer disposed over the first n-type channel region, the second n-type channel region, the first p-type channel region, and the second p-type channel region; and a third high-k dielectric layer disposed over the plurality of channel regions. The first, second and third high-k dielectric layers are different from one another.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: September 8, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Liang Cheng, Ziwei Fang
  • Publication number: 20200279949
    Abstract: A FinFET device and a method of forming the same are disclosed. In accordance with some embodiments, a FinFET device includes a substrate having at least one fin, a gate stack across the at least one fin, a strained layer aside the gate stack and a silicide layer over the strained layer. The strained layer has a boron surface concentration greater than about 2E20 atom/cm3 within a depth range of about 0-5 nm from a surface of the strained layer.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hsiung Tsai, Chien-Tai Chan, Ziwei Fang, Kei-Wei Chen, Huai-Tei Yang