Nucleic acids useful for integrating into and gene expression in hyperthermophilic acidophilic Archaea

The present invention provides for a novel recombinant or isolated nucleic acid useful for integrating or being maintained in an Archaea or acidophilic hyperthermophilic eubacteria. The nucleic acid encodes a nucleotide sequence that is capable of stably integrating into the chromosome of a host cell, or being maintained as an extrachromosomal element in a host cell, that is an Archea, and a nucleotide sequence of interest. The present invention also provides for an Archaea host cell comprising the nucleic acid stably integrated into the chromosome or maintained episomally in the host cell, and a method of expressing the nucleotide sequence of interest in the host cell and/or directing glycosylation, multimerization, and/or membrane association or integration.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
RELATED PATENT APPLICATIONS

This application is the U.S. National Stage entry of International Application No. PCT/US2013/071328, filed Nov. 21, 2013, which claims priority to U.S. Provisional Patent Application Ser. No. 61/729,268, filed Nov. 21, 2012, each of which is herein incorporated by reference in their entireties.

STATEMENT OF GOVERNMENTAL SUPPORT

The invention described and claimed herein was made utilizing funds supplied by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The government has certain rights in this invention.

REFERENCE TO SUBMISSION OF A SEQUENCE LISTING

This application includes a Sequence Listing as a text file named “SEQ -77429-943086_ST25” created May 21, 2015 and containing 159,419 bytes. The material contained in this text file is incorporated by reference in its entirety for all purposes.

FIELD OF THE INVENTION

The present invention is in the field of molecular biology and enzymology for extremophiles.

BACKGROUND OF THE INVENTION

Advances in molecular biology for extremophiles have long held promise to provide a broad range of stable enzymes and novel biochemistry for industrial and bioenergy applications. Recombinant expression of hyperthermophilic proteins in Escherichia coli has had many successes but also proven limiting (1). Often recombinant proteins expressed in non-native organisms lack appropriate post translational modifications, binding partners, and/or fail to fold correctly, all of which can result in inactive enzymes. Broadly applicable recombinant DNA technologies for archaea have been slow to develop in part due to the highly diverse biology and environments of this domain of life (2). Many Sulfolobus vectors have been developed but only narrowly applied due to a number of technical challenges (reviewed in (3)). Recent advances with archaeal genetics in Pyrococcus, Sulfolobus and other extremophiles have reinvigorated interest in the promise of extremophilic enzymes for industrial application (4-11).

The hyperthermophilic/acidophilic microbe Sulfolobus solfataricus that thrives at 80° C. and a pH of 2-3 in volcanic springs across the globe and is among the most well studied archaeal hyperthermophiles (12). Many natural viral pathogens of Sulfolobus have been used for a number of years to advance the development of viral shuttle vectors for this extremophile (11, 13-16). However, the large sizes of these vectors (˜20 kb), among other technical difficulties, have made rapid and efficient cloning impractical to date (17).

SUMMARY OF THE INVENTION

The present invention provides for a novel recombinant or isolated nucleic acid useful for integrating into an Archaea or acidophilic hyperthermophilic eubacteria. The nucleic acid is capable of introducing a nucleic acid of interest into the Archaea. The nucleic acid encodes a nucleotide sequence that is capable of stably integrating into the chromosome of a host cell that is an Archea, and a nucleotide sequence of interest.

The present invention provides for the nucleic acid of the present invention comprising a single or multiple cloning site instead of, or in addition to, the nucleotide sequence of interest. In some embodiments, the multiple cloning site comprises two or more tandem restriction sequences or the destination sequences required for in vitro recombinational targeting of desired nucleotide sequences into the destination vectors into which one skilled in the art can introduce a nucleotide sequence of interest into the nucleic acid sequence of the shuttle vector. In some embodiments, the nucleic acid comprises a sequence to directed target integration via one or more enzymatic processes.

The present invention provides for an Archaea host cell, such as a Sulfolobus species, comprising the nucleic acid stably integrated into the chromosome of the host cell. The present invention provides for a host cell comprising the nucleic acid as a stably maintained in the host cell, wherein the host cell can be a non-Archaea or non-Sulfolobus species. One can culture the host cell in order to amplify the nucleic acid and isolate it from the host cell.

The present invention provides for a method of constructing a host cell of the present invention, comprising: (a) introducing a nucleic acid of the present invention into an Archaea host cell, and (b) integrating the nucleic acid into a chromosome of the host cell to produce the host cell of the present invention or maintaining the nucleic acid in the host cell as an extrachromosomal element.

The present invention provides for a method of expressing a peptide or protein or RNA of interest in an Archaea, comprising: (a) optionally constructing a nucleic acid of the present invention, (b) optionally introducing the nucleic acid into an Archaea host cell, (c) optionally integrating the nucleic acid into a chromosome of the host cell to produce a host cell of the present invention, (d) culturing the host cell in a suitable medium such that a peptide or protein or RNA of interest encoded in the nucleic acid is expressed, (e) optionally directing the protein of interest into a pathway for glycosylation and/or other post-translational modification that impacts functionality, and (f) optionally isolating the peptide or protein or RNA from the host cell.

The present invention provides for a method of expressing a peptide or protein or RNA of interest in an Archaea, comprising: (a) optionally introducing a nucleic acid of the present invention into an Archaea host cell, (b) optionally integrating the nucleic acid into a chromosome of the host cell, (c) culturing the host cell in a medium such that a peptide or protein of interest encoded in the nucleic acid is expressed, (d) optionally directing the peptide, protein, or protein domains determined to encode activity of interest for secretion by the microbe into the medium, (e) optionally secreting the peptide or protein of interest, or domain(s) thereof, or part thereof, comprising an amino acid sequence having an activity of interest into the medium, and (f) optionally isolating the peptide or protein of interest, or domain(s) thereof, or part thereof, or RNA from the host cell or medium; wherein the peptide or protein of interest is a thermophilic enzyme, or enzymatically active fragment thereof, capable of catalyzing an enzymatic reaction. In some embodiments, the enzymatic reaction is an enzymatic degradation or catabolic reaction. In some embodiments, the medium comprises a biomass, such as pretreated biomass.

In some embodiments, the protein of interest is an enzyme, such as a cellulase or protease. In some embodiments, the enzyme is stable, or able to retain substantial enzymatic activity, under or in the presence of (1) a high temperature, such as at a temperature equal to or more than about 70° C., 75° C., 80° C., 85° C., or 90° C., (2) an acidic condition, such as at a pH equal to or less than about 4.0, 3.5, 3.0, 2.5, or 2.0, and/or, (3) detergent, such as equal to or more than 0.5% SDS, 1% SDS, 2% SDS, 4% SDS, 5% SDS, or 10% SDS.

The present invention provides an isolated or recombinant protease having an amino acid sequence shown in any one of SEQ ID NOs:25-35.

The present invention includes a rapid and effective means to screen for and produce industrial-scale quantities of acid/temperature stable enzymes. The time required for recombinant protein expression and purification has been reduced from months/years to days/weeks. The present invention is useful for targeting recombinant proteins for secretion into the media. In some embodiments, this advance precludes the need for engineering microbes to not consume the sugar produced during cellulosic degradation as the degradation of cellulose can be physically and/or temporally separated from microbial growth. The means to express multiple enzymes simultaneously on polycistronic vectors are developed which allow for the production of designer cocktails and microbes for specific feedstocks and processes. The present invention can be for the production of acid/heat-stable enzymes and multi-subunit enzymes. The present invention can be for the production of microbes designed to express multiple enzymes simultaneously.

The present invention has one or more of the following applications. The ability to manipulate the biology of microbes that thrive in the hot sulfuric acid permits commercial products and processes for cellulosic biomass saccharification. The merger of acid/heat pre-treatments with microbe growth, enzyme production and/or saccharification of lignocellulosic biomass. The technologies described here can be applied to accomplish: (1) production of enzymes that are active at lower pH and higher temperatures than currently available, (2) the ability to grow microbes that produce enzymes in pretreatment conditions, thereby greatly diminishing or eliminating enzyme production costs, (3) reduce the needed heat input for pretreatments by executing pretreatments in-line with enzyme production at 80° C. in dilute sulfuric acid, (4) to bring to market active enzymes evolved in the highly divergent Archaeal Glade of life that have yet to be exploited for industrial or energy applications, (5) produce Archaeal hyper-stable enzymes with the archaea-appropriate post-translational modifications (including, but not limited to, glycosylation) and targeted localization to membranes, intracellular and extracellular compartments to facilitate solubility, stability and activity, unlike current approaches using fungi and bacteria microbial platforms, and (6) production of engineered strains of hyperthermophilic acidophilic microbes that thrive at 80° C. in dilute sulfuric acid (pH 1-4) and produce, modify, and secrete one or more enzymes into the surrounding media for industrial and energy applications.

The present invention can be used to produce one or more of the following: (a) hyper-stable enzyme mixes for industrial processes requiring extremes in pH, temperature, and stability in detergents (b) designer microbial strains that produce, modify, and secrete mixtures of enzymes for on-site enzyme production and industrial application, (c) degraded cellulosic material that is primarily monomeric sugars for biofuel and microbe-based production of other commodities, (d) production of integral and membrane associated thermal and acid stable enzymes and the related immobilized enzyme forms in membranes and membrane rafts, and (e) hybrid pretreatment and saccharification process for lignocellulosic breakdown into useful industrial commodities, including sugar. An inventive aspect of the peptide or protein is that it is stable in a detergent, or mixture thereof, such as Triton X-100, sodium doceyl sulfate, or the like.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and others will be readily appreciated by the skilled artisan from the following description of illustrative embodiments when read in conjunction with the accompanying drawings.

FIG. 1 shows shuttle vectors suitable for propagation in E. coli and gene transfer to Sulfolobus and the rapid (10-day) cloning process: (A) The parent shuttle vector (pMJ05) and the derivative vectors used for propagation in E. coli and high-throughput cloning, expression, and localization targeting of genes encoding acid/heat stable proteins, RNA's and protein domains in Sulfolobus species. (B) A schematic diagram of the rapid PCR-based strategy for introducing genes into Sulfolobus.

FIG. 2 shows examples of minimal inducible promoters and inducible expression from these promoters in Sulfolobus: (A) A schematic map of inducible promoters and the minimal promoter sequences (61 nucleotides) as defined by work in this invention retaining inducible characteristics and having increased expression levels Immunoblots of equivalent amounts of protein extracts from Sulfolobus cells with integrated expression vectors carrying genetically modified: (B) Sso0287 gene fused to sequence encoding an epitope tag (FLAG), and (C) three recombinant proteins expressed from integrated Sulfolobus vectors likewise epitope-fused and driven by four different promoters then proteins visualized by immunoblot. This figure represents 12 separate constructs; Sso1440, Sso 0771, and Sso0071 genes driven by the indicated promoters. Note the elevated protein levels in strains with the 61-nucleotide promoters (‘a’ and ‘t’) which are first described here. (D) Quantitation of protein expression levels by using purified recombinant proteins and chemiluminiescent immunoblots shows a linear relationship between luminosity and protein quantity. This relationship is used to quantify protein expression levels in Sulfolobus.

FIG. 3 shows construction and expression of multiple genes/proteins from a single Sulfolobus shuttle vector construct: (A) A schematic diagram of a PCR-based strategy to clone and modify multiple genes into a polycistronic construct for simultaneous expression in Sulfolobus. (B) Immunoblots of protein extracts from Sulfolobus cells carrying a vector with two genes (Sso0888 and Sso0889) arranged on a polycistronic construct for co-expression showing both genes produce protein. (C) Immunoblots of protein extracts from Sulfolobus cells carrying four different polycistronic constructs (Sso0197-98, Sso2250-51, Sso2815-16, and Sso0888-89) showing reproducible polycistronic expression in Sulfolobus. (D) Coomassie-stained SDS-PAGE gels (left) and immunoblots (right) of protein extracts from Sulfolobus cells carrying a vector with the genes encoding the thermosome β and γ proteins fused to epitope tags. This construct co-expresses genes that are not tandem but distil in the genome and have been built into a synthetic polycistronic construct for co-expression.

FIG. 4 shows recombinant protein secretion to the extracellular compartment and targeted localization to the membrane in Sulfolobus. (A) Immunoblots and coomassie-blue stained SDS-PAGE gels of extracellular proteins from cultures of Sulfolobus with (+) or without (−) induction either carrying an empty vector (controls) or carrying a vector with Sso0316, a superoxide dismutase fused to an epitope tag. (B) Intracellular and extracellular proteins from Sulfolobus with vectors carrying the noted genes, showing that only Sso0316 accumulates outside the cells. (C) shows targeting of the intracellular protein Sso0287 to the extracellular space by inclusion of a secretion tag on the DNA construct. (D) A schematic map of the epitope tagged pilin and flagellin genes from Sulfolobus constructed into vectors. (E) Affinity purification of epitope tagged genes from Sulfolobus extracts showing expression. (F) Localization of the recombinant genes to the cellular membranes.

FIG. 5 shows the recombinant production, secretion and glycosylation of heat and acid stable cellulase in Sulfolobus. (A) Zymograms of intracellular and extracellular proteins from cells alone (M16) and M16-cells carrying the subjects vector expressing cellulase-1354. Yellow areas are due to cellulase activity in the gel. (B) Zymogram of extracellular protein from 1354 culture either bound to glycosylation-specific resin (Concanavalin A) of precipitated with ammonium sulfate (AmSO4). (C) Immunoblot of equal amounts of 1354 protein either with mock-reacted (Mock) or treated with deglycosylation enzymes (De-Glyc). (D) Comparison of activity from the same cellulase gene expressed in E. coli or Sulfolobus showing the recombinant protein is not active when produced with E. coli but active when produced in Sulfolobus. (E) Activity assays of Sulfolobus-derived enzyme on xylan and cellulose substrates showing temperature optima of approximately 90° C. for both xylan degradation and cellulose degradation.

FIG. 6 shows the results of the use of Sulfolobus enzyme mixtures and reaction conditions to simultaneously pre-treat and degrade hemicellulose to monomeric sugar products. Identification of specific xylan degradation products using enzymes produced in Sulfolobus with HPLC chromatography and mass spectrometry. (A) Active degradation of raw oat-spelt xylan with Sulfolobus enzyme Sso1354 at 80° C. and pH 3.5. Reactions were run on HPLC Aminex-H column (lower chromatogram) to identify breakdown products after incubation for over 12 hours with Sso1354 at 80° C. and pH 3.5 (red trace) as compared to a parallel mock reaction lacking enzyme (blue trace). Reactions were also subjected to chemical modification with mass-tags to facilitate ionization of sugar products in mass spectrometer and analyzed (top mass chromatogram). Multiple xylan degradation products were identified by accurate mass measurements and are illustrated above the corresponding signals showing ‘endo-xylanase activity of Sso1354 at 80° C. and pH 3.5 on raw xylan. (B) Mass spectrometry was carried out on reactions containing enzyme mixes with Sso1354 and Sso3032. The addition of Sso3032 produced a single sugar product, namely xylan from the mixture of xylose polymers produced from Sso1354 alone starting from raw xylan. These data show the ability to degrade raw hemicellulose in a single-step pretreatment and saccharification process using recombinant enzymes from Sulfolobus.

FIG. 7 shows results of the use of rationally designed Sulfolobus enzyme mixes for specific saccharification processes of raw plant materials. Here we show monomeric sugar yields from digestion of switchgrass and oat spelt xylan with rationally selected enzyme combinations to yield desired monomeric sugars, glucose and xylose, respectively.

FIG. 8 shows xylobiose liberation from switchgrass.

FIG. 9 shows the results of 1 ug of bovine serum albumen (BSA) is incubated for 30 min at 80° C. at pH=3.0 either alone (0 ul), with 5 ul or 10 ul of extracellular protease preparation. The reactions are quenched by boiling in 2% SDS and run on SDS-PAGE and stained with coomassie brilliant blue. BSA degradation by protease activity is evident in both cases for reactions in dilute sulfuric acid at 80° C.

FIG. 10 shows that thermal and acid stable cellulase shows high degree of stability in various detergents under hot acidic conditions. Reactions are carried out at 80° C. and pH=3.0 with increasing amounts of detergents as indicated. Low detergent concentrations increased cellulase activity and activity is retained for most detergents up to and potentially beyond 1% v/v.

DETAILED DESCRIPTION OF THE INVENTION

Before the invention is described in detail, it is to be understood that, unless otherwise indicated, this invention is not limited to particular sequences, expression vectors, enzymes, host microorganisms, or processes, as such may vary. It is also to be understood that the terminology used herein is for purposes of describing particular embodiments only, and is not intended to be limiting.

As used in the specification and the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to an “expression vector” includes a single expression vector as well as a plurality of expression vectors, either the same (e.g., the same operon) or different; reference to “cell” includes a single cell as well as a plurality of cells; and the like.

In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings:

The terms “optional” or “optionally” as used herein mean that the subsequently described feature or structure may or may not be present, or that the subsequently described event or circumstance may or may not occur, and that the description includes instances where a particular feature or structure is present and instances where the feature or structure is absent, or instances where the event or circumstance occurs and instances where it does not.

In some embodiments, the Archaea is a hyperthermophilic Archaea. In some embodiments, the Archaea is an acidophilic Archaea. A hyperthermophilic organism is an organism capable of growth or is viable at a temperature equal to or more than about 70° C., 75° C., 80° C., 85° C., or 90° C. An acidophilic organism is an organism capable of growth or is viable at a pH equal to or less than about 4.0, 3.5, 3.0, 2.5, or 2.0. In some embodiments, a hyperthermophilic organism is an organism capable of growth or is viable at a temperature equal to 80° C. In some embodiments, an acidophilic organism is an organism capable of growth or is viable at a pH within the range of from about 2.0 to about 3.0.

In some embodiments, the Archaea is a hyperthermophilic acidophilic Archaea. In some embodiments, the Archaea is of the kingdom Crenarchaeota. In some embodiments, the Archaea is of the phylum Crenarchaeota. In some embodiments, the Archaea is of the class Thermoprotei. In some embodiments, the Archaea is of the order Sulfolobales. In some embodiments, the Archaea is of the family Sulfolobaceae. In some embodiments, the Archaea is of the genus Sulfolobus.

In some embodiments, the nucleic acid encodes a nucleotide sequence that is capable of stably integrating into the chromosome of a host cell that is a Sulfolobus species, and a nucleotide sequence of interest. Suitable nucleotide sequences that are capable of stably integration into the chromosome of a host cell that is a Sulfolobus species include, but are not limited to, CGCCGCGGCCGGGATTTGAACCCGGGTCACGGGCTCGAGAGGCCCGCAT (SEQ ID NO:1), TGCCGCGGCCGGGATTTGAACCCGGGTCAgGGGCTCGAGAGGCCCGCAT (SEQ ID NO:2), GGGGCGCGGACTGAGGCTCCGCTGGCGAAGGCCTGCACGGGTTCA (SEQ ID NO:3), GGGGGCGGACTGAGGCTCCGCTGGCGAAGGCCTGCACGGGTTCA (SEQ ID NO:4), and TCCGCTGGCGAAGGCCTGCACGGGTTCA (SEQ ID NO:5). In some embodiments, the nucleotide sequence that is capable of stably integrating into the chromosome of a host cell that is a Sulfolobus species comprises a nucleotide sequence selected from the group consisting of: GCCGCGGCCGGGATTTGAACCCGGGTCASGGGCTCGAGAGGCCCGCAT (SEQ ID NO:6), YGCCGCGGCCGGGATTTGAACCCGGGTCASGGGCTCGAGAGGCCCGCAT (SEQ ID NO:7), TCCGCTGGCGAAGGCCTGCACGGGTTCA (SEQ ID NO:8) and GGGSGCGGACTGAGGCTCCGCTGGCGAAGGCCTGCACGGGTTCA (SEQ ID NO:9), wherein Y is C or T and S is C or G.

In some embodiments, the integration of the nucleic acid into the chromosome requires a recombinase or integrase, or a functional variant thereof.

In some embodiments, the nucleotide sequence that is capable of stably integrating into the chromosome is the integration sequence of a virus. In some embodiments, the virus is a Fusellovirus capable of infecting Sulfolobus species, such as any Sulfolobus spindle-shaped virus, such as SSV1, SSV2, SSV3, SSVL1, SSVK1, and SSVRH (see Ceballos et al., “Differential virus host-ranges of the Fuselloviridae of hyperthermophilic Archaea: implications for evolution in extreme environments”, Front Microbiol. 3:295, 2012, which is hereby incorporated by reference). Fusellovirus is a genus of dsDNA virus that infects the species of the Glade Archaea. The Fuselloviridae are ubiquitous in high-temperature (≥about 70° C.), acidic (pH≤about 4) hot springs around the world. They possess a lipid membrane and a protective inner capsid in the form of a core. Exemplary nucleotide sequences include, but are not limited to, sequences for SSV1 (Accession: NC_001338.1 GI: 9625519), SSV2 (Accession: NC_005265.1 GI: 38639801), SSV4 (Accession: NC_009986.1 GI: 160688416), SSV5 (Accession: NC_011217.1 GI: 198449227), SSVK1 (Accession: NC_005361.1 GI: 42495057), and SSVRH (Accession: NC_005360.1 GI: 42494927) which are publicly available.

In some embodiments, the host cell is a hyperthermophilic acidophilic Archaea. In some embodiments, the host cell is Sulfolobus solfataricus, Sulfolobus islandicus, Sulfolobus acidocaldarius, Sulfolobus tokodaii, Metallosphaera yellowstonensis, Metallosphaera sedula, or Acidianus brierleyi.

In some embodiments, the nucleotide sequence of interest encodes a peptide or protein or RNA, of which expression in the host cell is desired, or a DNA sequence that binds a protein in the host cell. In some embodiments, the peptide, protein or RNA is heterologous to the host cell. The nucleic acid can further comprise promoters, activator sites, repressor sites, and the like, operably linked to the nucleotide sequence of interest such that the peptide or protein or RNA can be expressed in the host cell. In some embodiments, the promoters, activator sites, repressor sites, and the like can be either native or heterologous to the host cell. Depending on the promoters, activator sites, repressor sites, and the like, the expression of the peptide or protein or RNA is constitutive, modulated, or regulated as desired. Suitable promoters, activator sites, and repressor sites, include, but are limited to, those responsive to the presence of carbohydrates or otherwise regulated in response to small molecules, temperature, or other cellular stimuli. A suitable example is the AraS promoter, which is responsive to the sugar arabinose, and the Tf55 promoter which is responsive to heat shock. In some embodiments, the promoter comprises the nucleotide sequence of a Mini Promoters, such as “a” promoter, ATGTTAAACAAGTTAGGTATACTATTTATAAAATAGTTAGGTCATAAAAGTACCCGAGAAT (SEQ ID NO:13), and “t” promoter, GCTGAGAGAAAAATTTTTATATAAGCGATACTAATGTTCTCACGGAACGGTGTTGTGAGGT (SEQ ID NO:14).

In some embodiments, the protein or peptide, in order to be correctly folded in order to be biologically or biochemically active, i.e., possess a biological activity, such as an enzymatic activity, has to be expressed, synthesized and/or folded at a temperature equal to or more than about 70° C., 75° C., 80° C., 85° C., or 90° C. In some embodiments, the protein or peptide, in order to possess a biological activity, has to be glycosylated during or after expression, synthesis and/or folding. In some embodiments, the protein or peptide is or must be directed to the membrane, intra- or extracellular compartment for function and solubility. Where the protein or peptide has to be glysosylated, the host cell has the native or transformed means to glycosylate the protein or peptide.

In some embodiments, the promoter is operably linked to an open reading frame (ORF). In some embodiments, the ORF comprises a nucleotide sequence at the 5′ end of the ORF an export or membrane localization peptide signal. In some embodiments, the export peptide signal comprises an amino acid sequence encoded by a XPO, SP, Seq1, Seq2, Seq3, Seq4, or Seq5 nucleotide sequence. The amino acid sequence of Seq4 is MKLIEMLKEITQVPGISGYEERVREKIIEW (SEQ ID NO:22). The amino acid sequence of Seq5 is MVDWELMKKIIESPGVSGYEHLGIRDLVVD (SEQ ID NO:23).

The XPO sequence comprises the following nucleotide sequence: ATGACTCTCCAAATTCAGTTTAAAAAGTACGAGCTACCTCCATTACCCTACAAGATAGATGCATTAGAACCGTATATAAGTAAAGATATAATTGATGTACATTATAACGGACATCATAAA (SEQ ID NO:15). The SP sequence comprises the following nucleotide sequence: ATGAATAAGCTGATTCCTATATTTGTCGTGGTAATAATTGTACTAGGCATAATTGTGTCTATAGAATTTGGAAAG (SEQ ID NO:16). The Seq1 sequence comprises the following nucleotide sequence: ATGAATAAATTATATATTGTGCTTCCGGTAATTGTGATAATAGCCATTGGCGTTATGGGGGGAATCATTTACTTGCATCAACAGTCTCTCAGC (SEQ ID NO:17). The Seq2 sequence comprises the following nucleotide sequence: ATGAATAAAACCCTCGGTCTAATCCTAACCTCTGTATTCCTACTATCCACTTTAGGCATAATAACTGGATTTGTAATACCAACACAAGCT (SEQ ID NO:18). The Seq3 sequence comprises the following nucleotide sequence: TTGGTTGTGAAAAAAACATTCGTTTTATCTACCTTGATATTAATTTCAGTTGTAGCGTTAGTGAGTACAGCAGTTTATACATCTGGT (SEQ ID NO:19). The Seq4 sequence comprises the following nucleotide sequence: ATGAAGCTAATTGAAATGCTAAAGGAGATAACCCAAGTCCCAGGGATTTCAGGGTATGAGGAAAGAGTTAGAGAGAAAATTATTGAATGG (SEQ ID NO:20). The Seq5 sequence comprises the following nucleotide sequence: ATGGTAGATTGGGAACTAATGAAAAAAATAATAGAATCTCCAGGAGTTTCTGGGTATGAACACCTGGGAATTAGAGACCTTGTGGTAGAT (SEQ ID NO:21).

In some embodiments, the nucleic acid further comprises one or more control sequences which permit stable maintenance of the nucleic acid as a vector in a non-Sulfolobus host cell. In some embodiments, the control sequence is a sequence comprising an origin of replication (on) functional in Escherichia coli cells. Such control sequences are capable of facilitating DNA replication in heterologous host organisms. Such control sequences can be found in plasmids such as pUC18, pBR322, pACYC184, or the like.

Exemplary vectors that are capable of stably integrating into the Sulfolobus chromosome include, but are not limited to, pSMY-T, pSMY1, and pSMY-A.

The nucleotide sequence of pSMY-T is:

(SEQ ID NO: 10) TCATTTTTTCCTAAAAATTGCTCCTTTACATTTCATCACCTTATCCTCGATAATCTTATTTATAGTTCTTAATGC TGTTAATGGATTCCCTGCATTATAAATACTTCTTCCAATGATTTCATAATCCGCTCCAGCACATACTGCATCGCC ATAACTTCCACCTTGACTACCCATACCCGGAGAGACTATGGTCATTTTTTCGAAGTCTCTCCTATACTGCGTTAT ATGATCTAATTTAGTCCCTCCAACTACTATTCCTTTTGGGCTTATCTCTCTTATAACGTTTTTAATATAGTCTGC GAATAACGTACTCCATCCTTCATGTGACATTACGGCAACTAAGTATAAATTTTTAGAGTTTGCATCAAGATATCT TTTTAATTCATCTAGAGATCCCTTAACGCCTATAAAGGAATGTGCTATGAACGAGTTGGCGAAAGATAATCTTTC AACTATGCTTTTCATTATGTATCCGATATCTGCAAGCTTAAAATCAACAATAATTTCCTCCACGTCTAAACCAAT TAAGAGCTCTCTAGTTTTATCCACTCCTAGATCTAAAACTAAAGGTAAACCAACTTTTATCCCATATAACTCATT TTCCATCTCTTTAAGAACTTGATATGAGAGAGGTTTATCCATTGCTAATATTACTCTACTTTTCAACATTCTTCA CCAAATAATCTAGAATTGACTTCTTTTCATTATCCTTAAGTTTATCACTCTTCAACAATTCATCTAGAATTTCTG AAATTTTAAATAGAGAGTGTAATTTGACTCCTAGTTTTTCCAATCTTTGTGAAGCCCCTTCTTGTCTATCTATGA TTACTAGTGCGTCTGAAACTTTACCTCCACCGTTAAGAATCTCCAATGTTGCTTTCTCTATGGATACTCCTGTAG TTGCAACGTCATCTACTAACAATACTCTTTTTCCTTTTACATCGAGTTCTAATGTACGATTAGTTCCATGACCTT TCTTTTCTATTCTAATATATCCCATAGGCTCTTTAAGGTTACAAGCTATGAATGCCGATAAGGGAACTCCTCCAG TGGCTATTCCTACTATTATATCATGGGGTATATCTTTTGCTTTCTTTATAGCTTGATTAACTATATCGTAAAATT CTGGATAATTTGGTAAAGGTCTTAAGTCTAAGTAATATGGACTAACCTTACCTGATGTTAAAACGAAACTTCCTA TTAATAATAATTTCCTTTCGAGTAAGACTTCTGCGAAATTCATACGTAGAGACTCTGCGAAAAAGAATTTAAATA TACTTCTATCATAACCAGTTATAAGGGCTTTGTGAGATTAAGACACGTAGTTTCGTCGCTTGACTTGACCAGAGA TGACTACTTTAGAATATTCGAACTTGCAGACAAGTTCTATGATGTAAAAAAACTAAATTATCTATCAGGGAAAGT AGTTTCATTAGCATTCTTTGAGCCAAGTACTAGAACTGCTCAAAGCTTTCATACTGCAGCAATAAAATTAGGTGC TGATGTGATAGGATTTGCATCCGAGGAGTCTACTTCGATAGCAAAAGGTGAAAATTTGGCTGATACCATTAGGAT GCTAAACAACTATTCAAACTGTATTGTAATGAGACATAAGTTTGATGGGGCAGCATTATTCCctaggccGTGATT TCGTAATATTGTAAGTTAAATTTAGCGTAGATTTTGTTTATTATATTTTTTAGAATTTCACGAATAAAGCTTAAG TAAGAGGGATAAGCGAATAAGATCTTGTCTTTATATACTATTATCTTTCTCGGATAAAGCTCTCTTTTAATTCTC TTGGTTATCTCATCTTTACTGCATATTTCACATAATCTTCTTCCTCCTACTACGTTTATGGCATTTCTTTTGTTA CATCTTTCGCACATCATATTAGAGGAGAATGGATTTCCTATTTATTTAAAAAATTACTTCTCGGTTTAGCTGAGA GAAAAATTTTTATATAAGCGATACTAATGTTCTCACGGAACGGTGTTGTGAGGTACTAGTCCAGTGTGGTGGAAT TCTGCAGATATCAACAAGTTTGTACAAAAAAGCTGAACGAGAAACGTAAAATGATATAAATATCAATATATTAAA TTAGATTTTGCATAAAAAACAGACTACATAATACTGTAAAACACAACATATCCAGTCACTATGGCGGCCGCATTA GGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGGATTTTGAGTTAGGATCCGTCGAGATTT TCAGGAGCTAAGGAAGCTAAAATGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAATGGCATCGT AAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATATTACGGCC TTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCCTGATGAAT GCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACC GTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACAC ATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTT TTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACTTCTTCGCC CCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGGTTCATCAT GCCGTTTGTGATGGCTTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGG GGCGTAAAGATCTGGATCCGGCTTACTAAAAGCCAGATAACAGTATGCGTATTTGCGCGCTGATTTTTGCGGTAT AAGAATATATACTGATATGTATACCCGAAGTATGTCAAAAAGAGGTATGCTATGAAGCAGCGTATTACAGTGACA GTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAATATCTCCGGTCTGGTAAGCACAACCATGC AGAATGAAGCCCGTCGTCTGCGTGCCGAACGCTGGAAAGCGGAAAATCAGGAAGGGATGGCTGAGGTCGCCCGGT TTATTGAAATGAACGGCTCTTTTGCTGACGAGAACAGGGGCTGGTGAAATGCAGTTTAAGGTTTACACCTATAAA AGAGAGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACACGCCCGGGCGACGGATGGTGATC CCCCTGGCCAGTGCACGTCTGCTGTCAGATAAAGTCTCCCGTGAACTTTACCCGGTGGTGCATATCGGGGATGAA AGCTGGCGCATGATGACCACCGATATGGCCAGTGTGCCGGTCTCCGTTATCGGGGAAGAAGTGGCTGATCTCAGC CACCGCGAAAATGACATCAAAAACGCCATTAACCTGATGTTCTGGGGAATATAAATGTCAGGCTCCCTTATACAC AGCCAGTCTGCAGGTCGACCATAGTGACTGGATATGTTGTGTTTTACAGTATTATGTAGTCTGTTTTTTATGCAA AATCTAATTTAATATATTGATATTTATATCATTTTACGTTTCTCGTTCAGCTTTCTTGTACAAAGTGGTTGATAT CCAGCACAGTGGCgCCGGCCGCCACCGCGGTGGAGCTCGAATTCGTAATCATGTCATAGCTGTTTCCTGTGTGAA ATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAG TGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATT AATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGC TGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAG GGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGG CGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGA CAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTA CCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTT CGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCG GTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTA GCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAG TATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAA CCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATC CTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTAT CAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAA CTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAG TTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATAC CGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTG GTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTA ATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCA GCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTC CTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTA CTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGC GGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCA TCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCA CTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAA ATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAA GCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTC CGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATA GGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGG AGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCG GGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATAC CGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTGGGAAGGGC GATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAA CGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTGCATGCCTGCAGAGTCTCATAT GTTTCCTCACTTATTGAAATGTTAAGCCTTTTGACTATCCTATCTTTCCTCTTCTCTATCATTTAGGTCACCTTG TTTATTGTTATTTGAAATACGTATCCGTCTTCGTCACATCGAAGTATAATTTTGTATCCATTATTAGCATATTCT ACGTCAAAGTTCCCACAACAATAATTCGGGTCTTCGGACTCGTTATAGACTTTGCTCCAACCATCTTTTTGTAGT GCCTCTTCTAAGTAGTCTACTCTGATGAAGCCTTCATCATATTCGTTCAGTACCCTAAAGCTTATACTATCAATG CCTAATACGTCTAATAGCTTCAACAGATCGAATATAGGAACTTGCACCATCATTTCAGCTCACCTTAATGAGCTG ATATAATTCCGCTTCTATCTTTTGAACTTGGAAGTATGCCTTGCCTAGCTTTTGCTTATCCATATTGCCCGTTAT TCTATCAATCTTAATCTCGTGGATTAATGATAATAGCTCTCTGACATCCTCATCAAGCATTTCAAATAATTCTTT CTCTAAGACTTCTTTACTCATTGTTTTTCACCTTAGCAAACTCATCTAACGTTGTTTGTCTCAGTTCTCTTTTCT TTATCAAATAAAATTCCGAATGTCCCTTCTTATTGTTATTACTGTACTTCATGTCAGTTCACTGCTTTGCCTTTA TAAATCCTTGATCCGTTTGCTCAAAATTTGCGGGCTGGGCATCAAATATCTTAGCTATATTGTCTTGTGTTTGCT CTTGTTTTTGTTCTTCTTTCTGCTCTTGCTTAATCCATTTGAACGTTGTCTTTCTGTTTTTGTATTGTACTTCAC ACTCGTCTGGATGTCTTTCGCAAATAGCTTTCAATGCTCTCTGTATGTTATACGCACTCGGGACTGAAATCTCAA ATTGAGCTAGTATATCCTCTAACGTTAATTCACCTTTCTTTTCAAGAATTTTATACATTATTTCCGCCATCTTGT ATGAATTTAGAGTTTGTGCCATATTCCCATCCCACTCTATCTATACTCTATGTATAAATTAGTATTTAAGTCTTA CTCTATCTATACTCTATCTATCTCTCTATATACACAGTGTTTGGGTAACTGGCAAAATTCTGTCTGACTGCTGTC TGACAAGAGTTTACTCTATCTCTCTATATCTATATACACAAACAGAGTTAGTCGACTCTGTGTATCTTATGTATC TTATACAAAAAATATGGGATGTGCAAAATCTGAGCTACTAATACTGCTTGAATATATAGATAGAGAGTGTAAGGA CTACGAGAGTTGTAAAAGAATAATAGTAGAGCTAGAAGAGAGAGTGAAGAAAATAGCTTTCGTAGAAGCAATAAA TGATTTGTTCTAAACTACTTTTTTCTCTCTATCTCTATATCTATATATATACATAACTAAAACTAAAAGAATAAA CAAAAAACTAACAAAATCAACTCACCATTATACAAACTCAGAAAAACTATTTTTTTGTTATACTCTTACCCCATA TATATATAGATATATAGATAGAGAGAGATAGAGTATAGTAGGGCATTTAAGATTTTAGAAGTTCTTCAATGCGTC TTCTGATTGCATCTGCAACAAACTCTTGTCTGCTTATATATCCGCCCTTGCCTGACGCTATTAGTTCATCTATTT GTTTTGCTAATTCGATTGGAATCGAAACGGTCACATATTCTTTTTTGACTGATTTCCTCGGCATACGCTATCTAT ACTATATTAATATGATAATATTAAATGATTCACGATATATAGATAGAGTATAGATAGAGTAAAGTTTAAATACTT ATATAGATAGAGTATAGATAGAGGGTTCAAAAAATGGTTTCACCCCAAACCCGAAAAGAAGAAGAGTTATTAGAA AAACAAAATTCAGTTTTTTATTTGTTAACTTTAGGAAGGAAACCGTATGGTTCATATTTGCATATAAAAATTGAA CTAGACGAAGATGAAAAATTAGAGAAGGAAATCTATGCGGATAACATTAAGCTAGAGAATGAATTAAGACAACTG AAGAGGTTGTATGAAGTATATCAGAGCGTAGAGATTGACGATGCTCAGAAAGCAATACAGAAGGAAGCATTACTG ACGATAGCGAAAATACTAAGTGTTTTTGACTTCTGAGGAGGCTGAGGGGCAATGAAGGCTGAGGAAACAATCGTG GAACAGATTCAGGACATAATTCAAAAACTTCGCTATTATACAGGAAGATCAAATAGACATTTCAAGATGATTAGA AACTATTATGAGGAGTGTATAATAATAGTAGACGCTGAGGAGTTTATACAAGAAAATAACACTCTAAGCATTACT GTATATTCTGAGGATCTTATATATTATACTGTTGATATCCCGCTGAATTTCATTAAACATGTATTCGTATCCGCT TCGATTGATCAGCTCAATGATCAGCTTCAGCTAAAATATAATGAGGGTCTGATTAGAGTTTCTCTTACTTTGAAC GATGACTTATGTGAGAAACTGAGAAGCTCATACTGCGGTGATATTACATTCTTTAATGAGGCTGAGGGGCAATGA AGGCTAGGGTTGAATACATCAAATTACCTAGATGTTACACAAAAACTTATAGAAAAATCGAAGCGAAAAAGAACA ACGACGGTACAATAGAATTAACGTTAGAGGAAACAATGCAAGTAATATCCTTTAAACTACCCCCGGCGTTAAATG CAAAACTAGAACAAATTGCGATCAAAGAAAAGAAAAGCAAGAGTGAAATTATTCGAATAGCGTTAGCGAGGTATG TAGAAAATGTTTAGATGCCCCATCTGCGGGTTCAAAACGCTGAGATTGTTCGCGCTTAAACAACATACTCGAAGG GAGCATGTGTTGGTCAAATGTCCCATATGCGGGTTCACGGGGAAGCATTTATCTCAACATTTCTATAGTAGGTAT GATATTGACCATCTCATATACTGCTACCTATTCTCTTCTTTCAGATTGCCTAAGAATGTTAGGTTAGCAATAAAG AGAAAATTAGAGGTTGAGTGAATAATGTATCAATGTCTACGTTGTGGTGGTATATTTAATAAAAGAAGAGAAGTG GTTGAGCATTTGCTTGTAGGGCATAAGCACAAGGATAGACTAACACTGGACTTTTATTATATCTACTTCAGGGTG AGAGGACAATGAACCTAATTGATATCATCTTATTTTACGGCTTTCAATTCAACGATTATTGGACAACTGTCTTAG GGTTGAGAGTGGGTGCGGAAGAGAAGAATCCCATAGCGGGTCTGTTCATTTCATCACCGTATCGTTTAGCGTTGT TTAAGTTTGGCCTTATCACCATTGGTATGTTTATATTAATTTATGTTGTTAGATTCAAGACATGGACAGAGATCG TATTGACTGTAACAGACGTTGTCGAATGCCTTGTCACGCTGAATAATACCCTTACGATTAGGAGGTACAAAAGGA GGGGCGTTAGAGGATGACGGAGTCAGACGTTGACTCAGGTAGTAAAAAATACCTGAGTAACCATAAGGGGATTTT TATTCATGTCACACTGGAAGAGTTAAAGCGTTACCACCAACTTACGCCGGAACAGAAGAGGTTGATAAGGGCAAT CGTCAAAACGCTTATTCATAACCCGCAACTGTTGGATGAAAGCAGTTATCTTTACAGATTGCTCGCGAGTAAAGC GATTTCACAGTTTGTCTGCCCGCTTTGTCTAATGCCCTTCAGCTCTTCCGTATCACTAAAGCAACACATCCGTTA TACTGAACACACAAAGGTTTGCCCGGTGTGTAAAAAGGAGTTTACCTCAACCGATTCAGCCCTAGACCATGTTTG CAAAAAGCATAATATCTGCGTTAGTTAGGCTCTTTTTAAAGTCTACCTTCTTTTTCGCTTACAATGAGGAAGTCC CTTCTAGCCCTACTAACCCTATCCCTAGCGTTACTATCGTTTTTAATAACACCATCGATGGCATTGAATTCTGGC GGTTCACCGATACCGATATATTATAACTATTATAACTACTATAGCCTTAACGCAGAAGGGTTTGGATTCAGTTTC AATAATAGCAATAATTGGGTTGAAACGAACTTTATCTCAATAACCATAAACTTACCTAGTTCATTACCAAATAAC TATCAAATCAATAATGCCTATTCTATCGTAGTAGGATTATCACCATATCCGGTTAGCAATATAAACATTTTTAAT AGCCCATTAGAAGCATATGTTGAACTATTCTCAAACCCACCGAATACATATCCAAATGAAATAGGATTTGTAGTT AGTTACGGCTCAACTGTATTTTATAGTTATACCACACTGTATAGCAGTTTTGCGGGCACACAACTAACAATAACT ATATCATATACCGGAAATGGGTTTGGTGTGCAATTCTCTGACAGTAACGGGTTCTCTCACTCAGTTTCGGTAAGT TCGGTAAACTTTGTACCATATGGTGCTCTAATACTCGGATCACTAATCCCGAACGGGAACTATTACTACTACCCA GTAGGTAACATGTTACCGAATGCATCGGTGAACTTCTCATATACGATCTCAAGTTTCACAATAGAAGGAAACCCG GCCACATCCGTCGATATTACCACACTTGGATTAGAAGGAAACACTGCAATATATACTTCAAGTAGCAATTGGTTC AAATGGGTATCCGGTAGTGTGGTTATCACAAATGCCGTTGCCTATACCTATACCGATTTGGCTAGAATAGGAGGA AGTGCACAAATAAACTATACTGCATCGCAGCTATATTAAGCAAAATCTTTTTTTACCTCTTTTTAAATCTGTCTT ATATGAAAAAACTGTTTACAGTTGTAGGTTCTATTTTCTCTGGTTTGGGGATTTGGCTTAAGTCAATAGACCAGT CATTTTATTTAACGAAAGTATTGTATAACGGAAAAGTAATTGAAATAGTTCTAACGCCCGAGACAAATGAAGTCG TGAAATCTTCCAACGGTGTTATGAACGCAAGTGTAACTTCTCTACCTTCCACAATTCTATACCAAGCACAATCCG TGCCTTCAATAAATGGAGGAACTCTTAGTGTAATAAATACCACAGTTCAACCGCCATGGTATGCTAACTTATGGC CTGAAGTCTTAACAATAGGTATAGTGATGTTGGGAATTGCAATATTCAGCTGGATTAAACTTAAATTTAGAAGAT AGCCCTTTTTAAAGCCATAAATTTTTTATCGCTTAATGAAGTGGGGACTATTATTCTTAATAATGTTTATATCCA TTTTTTCCCTCAACTCTTTAGCCCTATTAATCGGCGGAGGAGGGCCCAACAATAATGGTGCGGGAGTTTACACTC AGACTATAACAGTTAACGGAGGAACCGTACGAACTACTCTTAACGGTTCAACGCTTTCTACCGCACCATGGCTCA ACCCCTCTTACGTAAGCGTCTACAACACATACTACCTTCAGGTTTTGCCGAACCAAGAGTATATTGACAACAACG TTTCGTTATCCCTAAATACGGCTAACATTGCGTTAAACGTCACTTGGTTATTGGCGTCCTCAAGCAATACGGGAT CCTACGGTGCAATCGCCATAGGCTACGGAGTGAACTTTCCCGCGGGGTTTGTCAATAACTACGGTCCTTCCGCAC CTTACACGCCGGACGGAATCGTAATATATCTCATGAAAGGAGGCATGCCGACCTATCGTTTATTCGTATACTTCA ATGGAGTTGAGCAGTTAAACGTTTCAGTCGGGTCAATCAGTGTGGGACAAAAAATAGGTTTAGGGTTCTTTTATC TACAGAACACACTTTACGTTTACTACTATAACGGTACTTTAAAGACTTGGTCATTAACGCCCGGTACGCTGATTA CTATAAATAGTAATTACGTTATAGACGCACAGAATATAGGGCCGGGCTACGGCTACGGTCAATGGGTAATAGTTA ATTATCAATATGCGATGCCGGTTACTGCACAACTGACGGTTAGTTATTTCGCATTAGGGTACAATGTATATCATT TCTTAATGGCTTATGCGGGTGCTGGAAACCCGGTAAACATAACTGCGAATAACGGGGCTTCTTACAGTATAACGG GTATAGTTGCAGAGAAGAACTTTACGATAACGGGAATTCAGCAAGGCCTAGCCTATGCTTTCAGCTTGTTAGGGA AACCGAATGGCTTATACTTATTATATATGGGGCCAATTGAGGGCAGCCCACCAACGTGGTATGTAAACGTAACCG TAGGGCTTCAGATCGTTACACCCCAGAAAACGATAAACTACAACTTAACAATACCAGTAATCGTTGAGGGCTATG CGTTATACCCTTCTGTTAACGTACCTTCCGGAACTTACCTAAGCGGACAGACTATTAGCTTTACCCTCTCATCGT TCTTGGGATACCCTTCAGGCTTAGGCTATTACACCGCAGTAAATCTAATCGCAAACGTAACAATAAACGGTGTGA GTCATGCTATCCCCTATAGTTTCACCCCGATAGTGCAAACCCCGATAACTTATTACTACACTGTTATAGTGGATG AAGGACAATTTGCATTAATAGATTATCAAGGGAGTTTCACAGTCCTACCCGCACAGAGTCAGCCCGTGATATTCA TTACTTCTTATCCTAGAATTGGGCTATTAGGACAAACGATAACTGTGACTTTCCAGTTCACTTATAATAGTCCCG TAGCGAATGTAACTCAATCAGCGTTTACGCAATCATCTAATATTCTCGCTTTTGCCTATGCGAAAATGGTAACAA CAAACGCTATAGTTCAGTTCAAGGCGTATTGGCTAAGTGCTAATGACGGGTTGGTGATTATAACTCAAACGAATA ACTATCTAATTCCGTTTAATAGCAGTATAACGGGCTTAAACTTCGCAAACAATAGTGTTAATACGTTAACGTTTC AGATTGTAACGGGTAACTATGTACAAATAACTAGCTCAGCGGGAGGCGTGCTTACCCTAAGCAATACTAGTCCGA TTATAGGAATAGGGTTCTATTACGGTTCCGGTGTCCTACACCTGAACTGGTTCTTCGTTAGCGGTATCATTTTGC AGTCTGCAACGGCAAATCAGGCTTACGTTATTTTGACGGGGACTAACCCAAATACGCTTTCACAGTATACGACGG GCTATACTAACGCTTCGGGGTTCGGTACTGTAACGCTGAAGTTGAGTTACACTCCTTACGAACTTGTGGATGTAG ACTGGTACGGCGTTACATACGCTTTGTTAAACATTAGCGTTTCAAACACTACTACAGTAAGCAGTACTACGACCG TGAACACAACAACGCTTAACTATAACTACACTAAGCCTTTCAGCAATAACATAGCACCTAACAGTCAGCTTTATG ACTTCTCAGCGTATCAGCCGTGGGCGGAAATTATCGGGATTGTGGTCGTGGTCGTCATAGCTCTGCTGGGCTGGA AGTTCGGCGGGTCTGCGGGAGCTTCGGGTGGTGCGGTTATGGGGTTAATCGCAGTCAGCTACTTAGGTTTACTGC CTTGGTACCTATTCTACATCTTCGTATTCGGTATCGCTCTATTACTTGCTAAAGTATTTGTAGACCGTTTCATGG GGAGGGAGGAATGACGGACGCAATCAGTTTAGCCTTGCAAACGGGCTTAGGGCCGGTGGTAGGGGTAATTATCAT ACTGGCAATGATGGGGCTAACGTATAAGATAGCGGGAAAGATCCCGGCAATCATAACGGGAATAGCCTCGGCTTT CGTCCTAATGTTTATGGATTTTTTACCGTTATTTTGGGGTATCGCAATAATCTTCGGGTTAATCGCGGGTATGGT GGTGACAAGGGATGGGGACTAAGTTAGTCGTTTACGTCTTATTGTTTGACGTCTTCCTATCGTTAGTGGTAGGTG CCTACTCGGGTATAGCACCGCCAAGTATTCCACCGGTACCTACATATGCTTCAGCCCAACTCACGGCAAGTCTAA TCACATGGACAGTGGGATGGCCTCCTATTACATTATGGCCTCAGATAACGCTTATTCCGCCGTTTTCGATTTTGG GTGCAAACTTCCCCGGCTTAACCATTCCTAGCTTAACGATACCCGGTGTAACGCTCTTCTCAATAAGCTTCAGCT GGTTAGCCCCAATTATTTATATTGCAAATTGGATCATTTGGGTCTTTCAGACTGTTGCTAGTGTGCTATCTTATT TACTTAATATCTTTACGGGTTCGGTAGGTCTATTGAGTAGTGTACCCGTCTTAGGGCCATTTTTGACCGCCTTCG TGTTGATAGTTAACTTCGTGTTAGTGTGGGAATTAATCAAGTTAATTAGGGGGTCGGAATGACGGAGTATAACGC AAACAGTATAAGGGCTAAGATACTGAGGCGTAAAATCCTTCAACTGATTGCGGAAAACTACGTTTTGTCAGCGTC GTTAATCTCTCACACACTCTTACTCTCATACGCCACAGTGCTTAGGCACTTGCGTATCCTTAACGATGAGGGCTA TATCGAATTGTATAAGCAAGGTAGGACGCTATACGCAAAAATCCGCGATAATGCGAAACAAATTCAGATTCTGAA TTCAGAACTGGAGGGGTTTAAAAACGTAAGCGGGAAGCCGATATTGACCAAGGATGAGACTCCTAAGGAGTTTGG CAAGAAAGATAGCCTCACTCAAAGAGGCTAAGGTTGCACTAAAAGTAGCAAGCGACCCCAGAAAGTACTTCAACG AAGAACAGATGACTGAGGCTTACAGGATATTCTGGCAGACATGGGACGGGGACATAATTAGAAGTGCTAGAAGGT TCGTGGAAGTAGCAAAGGCAAACCCCAAGCTCACAAAAGGTGAAGCAACCAACATAGGCGTATTGTTGGGCTTAT TCATCTTCATACTAATAGGTATAGTACTATTGCCCGTAATCGTTAGCCAAGTCAACAACCTCACAAGCGGTACTT CACCCCAAGTAACCGGTACTAACGCCACACTCCTGAACTTAGTGCCGTTATTCTATATCCTAGTCCTCATAATAG TCCCCGCAGTCGTGGCGTATAAGATATACAAAGACTGAGGTGTGAGGGATGGAAATCAGTTTAAAGCCAATCATT TTTTTGGTCGTTTTTATCATCGTAGGGATAGCACTATTCGGCCCTATAAACAGTGTTGTAAATAACGTTACCACA TCGGGAACCTACACTACTATAGTTTCCGGTACTGTTACTACGTCTTCATTTGTGTCAAATCCGCAATACGTAGGT AGCAATAACGCTACTATCGTAGCCTTAGTGCCGTTATTCTATATCCTAGTCCTCATAATAGTCCCCGCAGTCGTG GCGTATAAGTTGTATAAGGAGGAGTGATATGAAGTGGGTGCAAAAGGCGATAAAGAGACCCGGGAGGGTACATCG CTACCTTATGAGGCTCTACGGCAAACGGGCGTTTACAAAAGACGGTGACATAAAGGCAAGTTATCTCGATAAGGC GATAAAGCACGTTAAAAAAGCTAAGATCCCGAAAGAGAAGAAACGTAGTTTACTGTCAGCCCTACTGTTAGCGAA AAGGCTTAAGCGGATGCACCGCAAGTAGGCCCTTTATAAAGTCATATTCTTTTTCTTTCCCTGATGAGTGCGTTA GGGGATGTAATCTACATCTTGGGTTTTCTCTTTCCGGCTTTAGGGCTAATCAGCCGAAACTATCTTGTTAACTTA ATGGCATTCATAATAGGAACAGTCGCCTTTTTGGTCTTCGTCCAAGGCTATACCGATATAGCGTTCAGCAGTTCG ACGTTTTACTTAGGAGTACTGCCTCTACTACTTGGTCTCGTCAACTTAGGCTATTTCTTCAATTGGTTGAGGGAG GAAAGGATATGAGGTGGGGTAGAAGAGATGATAGGGATACCGGCAAAATACTTCGAAATAGGAGTCGTAATAGAT TCAACATTTATCATTATGTCTCTACTGTTAAGAAAGTCAAAGAGACAGAGAGAGAACTCCTTCGACTTACGCAAA CATGGAAGGCTATTAGGCTTATATCTTATAATAGCGTCGGCATCAGCATTAATCGTCTCACATCTCGCCTTATAC ACAAACTACATGAACTACTTAACGGGCTTATCTCTTAATGCGTTTCTGTTTTATCTTGGGTTGAGGTGTTTGCAT GTCTGATGGGAAACTCCTTTCTGCTTTCGAGGAGGAATTAAGAAAAGCCCAAAGCCTAGAGGAATTAAAGCAAAA GTATGAGGAAGCCCAAAAACAAATAGCTGACGGCAAAGTACTAAAGAGGCTATACAAGGTTTATGAGAAAAGGCA AACAGAATTAATGCTTCAGCAATATAGGCAGATAAAGGCTGAACTGGAAAAGAGGAAAAAGGTAAAGAAAAAGGA TAAAGCCGACATAAGGGTTAGAGTAGTAAAGAAGTGGATAAATTCACGCTTATTCAGTGCTGAGCATTACGTCGC ATTACTGCAAGAAAATCAAGACGGCTTATCGATACTATTTCTAAGAAGAGCAAAACTTATAGAAAATCAAGGCTA TCTAATGCTAGAAGTGAAGAAGTTAAGGAAGGCATGGGTTTTAACGGCTGAACCTATACTCCTTGAAAGGTTAAA ATTCCCATTCGGCAAAAAGTTTGTAGCCGTGCATTTCGTTTTACCCAATTATCCTTACACACTTCAGCTTAAACC GGATGAAAAACTGAAAGAGTTAGCAGTTAAGGCGATAAACGGGCCTCAAATAATGAGCGCAATGATACGTACAAA GTTCTTCGAAGCGTTAGCTAGGGTAGGAAGCGGGCCTGATCTGATGATGCTCATAATCGGCGTTGTCATGGGGAT TGGCATAGGCGTAGCGATAGGTTTCGGTATAGCTAACGCAAACTTAACGCATTTGCTATCTCAACACGTTACGAA CACTACAGTGACACATACTACGACCACAACGACTTCACCCTCATTCACGATTCCCTCAAACTCCTCAAAAGGGGT GAGCTAAAATGGTCTCAGTAACAGAAATAATAACATATGGACGAGAAGCAATAGAAAGAATAATATGCAAATATT TTAAAGATTCGAAAATAGAAAAGATATTATTCTTGCCGAGTGAGGAAGACGTAAAGGCAAAATATATCATTGGAC GGGTAGGGTTTATAAGGATTAGTAATACGTGGTCTGGAATTGTCGTAGTTGACGGGGTACAAATACCTTTCGTTG CTGAAGTCCACCTTAATGGCAAGATTGATATTTACCTTTATCCTCAAAAGGACTTCTACTTAGCACATTTGGTGG GTGAGCTGAATGGCTAAAAAGAACGGCTTAACAGAACTAGAGCAATTAAAGAAAGAGAACGAAGAGTTGAGAAAG AAGTTAGAAGAGTTAGAGGCGTTGATCAATAACGATAGCGATGACGACGAAGAGTTGCAGGAAATCGAAAACCCG TACACCGTTACAAACCGTGCAATAGATGAATTAGTAAGCCCAAAGGACACAATGTTCTATTTGTCGGGAAACCAG ATATCGTTAATCTTAAGTGCTTTTGAATTCGCCCGCTTACCGACGTACTTCGGTGAGGAACCGGTAACGGAGTTA GCGGAATACGCCCATAAGTTGAAACATTATCTCGTTTCGAAAGGAGGAAGAGGAAGGAGGGATATACTGAGAGTC CTACGCGTTAGTTCAGGTCAGACAAGAGAGAACGTAAACAAATCAATTCTGAAACAATTATTTGACCATGGTAAG GAACATGAAGATGAAGAAGAGTAATGAATGGTTATGGTTAGGGACTAAAATTATAAACGCCCATAAGACTAACGG CTTTGAAAGTGCGATTATTTTCGGGAAACAAGGTACGGGAAAGACTACTTACGCCCTTAAGGTGGCAAAAGAAGT TTACCAGAGATTAGGACATGAACCGGACAAGGCATGGGAACTGGCCCTTGACTCTTTATTCTTTGAGCTTAAAGA TGCATTGAGGATAATGAAAATATTCAGGCAAAATGATAGGACAATACCAATAATAATTTTCGACGATGCTGGGAT ATGGCTTCAAAAATATTTATGGTATAAGGAAGAGATGATAAAGTTTTACCGTATATATAACATTATTAGGAATAT AGTAAGCGGGGTGATCTTCACTACCCCTTCCCCTAACGATATAGCGTTTTATGTGAGGGAAAAGGGGTGGAAGCT GATAATGATAACGAGAAACGGAAGACAACCTGACGGTACGCCAAAGGCAGTAGCTAAAATAGCGGTGAATAAGAT AACGATTATAAAAGGAAAAATAACAAATAAGATGAAATGGAGGACAGTAGACGATTATACGGTCAAGCTTCCGGA TTGGGTATATAAAGAATATGTGGAAAGAAGAAAGGTTTATGAGGAAAAATTGTTGGAGGAGTTGGATGAGGTTTT AGATAGTGATAACAAAACGGAAAACCCGTCAAACCCATCACTACTAACGAAAATTGACGACGTAACAAGATAGTG ATACGGGTAATGTCAGACCCCTTTTAGCCATTCCGCATACTTTTTATATTGCTCTTTCGCTATGCCGAAGAGCGA TACGTAATGTTGCGTTAAAACGCGTGTCGGTTTACGCCCTTGAATAAAATCGATAATATCTAACGGTACGCTTAG CTCAGCCATCTTAGACGCTACGAATTTGCGGAAGTACTTTATCGCTATAGCGTCCTTATGACGTCGTTCAAAGTC CGCTATTGCCCACTTCGTCACCTCTACTCTCTTCAGAGGCGTTATGTGGAATACATAGAAGACGCCCTTATATCC CCTAGTCCAACTAAGCGGATAATAACAGACGTCGTTACCGCAAATGTCCCTTTCGGGTTCCTTCAGCACTTTCAG TATTTCGCTCAGCCTAACGCCCGACTCGAGAGCGATACGGTAGATGAAGTAGACGTTTTCGCTATAGTCTTTTGC TAATTGTAACGTCCTTTTTATCTCTTCCAACGTTGGAATGTAGATATCAGCGTTCGCCTTCTTCACCTTTACCGC TTTCAATATTTTATCCGCAAATTCATCATGTATGATATTGCGTGACGCTAAGAAACGTGCAAAGAGTCGGTAAGC CTTCTGTGCGTCTCTCGTCTCTTTATACGGCTTTGATATAGCATTGATGTAGTCCTTTGCAGTTTTTTCGCTTAT CCCCCTTTCGTTCATGAGATAGTCGTAGAACGCCTTTATGTTGCCGTCCGTCGCGTATTGGCGCAAATTGGCAAC CAACGCTATTTTACGTCGTTCAGTTCCCTCTTTTCCGCCTCCGGAGCCGGAGGTCCCGGGTTCAAATCCCGGCGG GTCCGCTTGTAGGGGAGTATCCCCTACGACCCCTAATTTCATTTTTAGATATGATTCAACGACGTCAGCTAAAGG ACCCACGTAACGCTCTTTTACCTCACCGTTTTCATACTCTAGCTTGTAAACATAATACCGCCCTTTCCTCTCGCG TAAAATATAATCCCCGTATTTATAACGCGTCTTATCTTTCGTCATTTCGCCTCACAGTATTATGGTTGCCAAAAC GGGCTTATAAGCATTGGCAACCCGTTAATTTTTGCCGTTAAAACACGTTGAATTGAAAGAAGACGGCAAAGAATC CACACAGGTAATACTAAAAAAGTAGTATTACTTACATTAGAAGGACTCATTTGTCCACCTTGTATTCTAGCCATG CTATCTCTGCCTTCAGCTCATCTAGCTTCCCCTTTATGTCTGTCAGGTCAAGGGGAACTCCTCTCATTAACCTGA GTTCGTTTTCGATTTTTTCAAGCTCCTTTTCCAACTCCTCTAGTTTCTCTAATTCCTTTAGTCGTTCTTCCAATT TCTTTTCCAATTTCCCCTTTGCGTCATTTATAATTATGCTTACTACCCAAACAATTCCTAAATCAGAAATAATTA TTAACTCCTCTGAGTTGAATATCATTTTCCGCCCCTCGCTAAATACTCCTTAAAGCTCTGATAGAACCCCTTCAG ACTAACCCGTAAGTCTGTTAGGTTCTTCCAGTATTGTAATGGGATTAAGTAATAGTAGCTTACTGCATCTCTCTC AAATTTGTCCTTCTTAATCTTTCCTTGCTTTTCTAAGTTGAGTATTTGCAGTGCTGAGATACATTTTAACTTGTC CTCAGCATCTGAATAGTGTATAAACCAAACCCTCCCCATAACCTCATTCTGCTTTGCAACTTCTACTTTAGTGCT TAATATTGCGTAAACGCTTTCGCCGTATCTTTCTTTGCTCTGTTCTTCAGTCCATGAACTTCCCGTAATATCTAT CCAAATTAAAGGATAATATTCTGTCTTAGCCTTAACGTATAAAGTCAAATCGTATTTATCTTGCAGACCGCTATA GTATTGCTCATTTATTACATTAGTTAAAGTCCCCACGCCAGTTGGGCGGATATAAACATCAAAGTCTAACAAACC CTTAGCCCGCCACTTTGATAAAGAGATTAAGAGCTTTCCAAAAACTAGGTATTCTCGCCCTAAATAAGTTGAAGG GAGGATATAATCCTCAGCTTGATTACCCCAATACTTTAGCTTAAAATTAGTTTCAGCCATCTCACTCACCATATT GAAACGTGGGCTAGTATGTGAATCAGTACTGATGCTATTGCAAATAACACACTTGCAGTAGCAATTCCTATTACA ATCCATTTACCATAATCCACCTTAGTTTGTTGGTCAATATACTCGTTGATGATCTTTAGTATTTCTGGCTTTAGT TCTGATAATGAAAGGAAGACAGAGGCATAAAGTACTAAGGAGGATGTGAACAGATTATCCGCCTTTTCTGAAAGT TTATAAAGCTCATATCTTGCTCTCTCATAATCTTCATAATTAATAATTTCATCAAACTTTTCTACTTGCTCTTCA TATTCTTTCTTCAGAGAGTAAGGAGTTGTCTTTTCAATTACTCCTAATTTTATTAACTTCTTAACAGCTTCCTTA AATCCTTGTTTATTGCTAGCATACGCTAAAGGGTCTTTTCCTTCTTGAGAAGCTCTATAGATAACTATAGCACCA TAAACAATATTTACAATATCGTATGGTAAGGAATACGCACCGATTTGGGCAATATCTTCAACTCTTCTTTGATCC ATCTAGTTCACCTCTTTTTGATTTGTTTGTAGGTTTCTATCGCAGTTTTCAGCGATATCGCAAATAGCTTCCCCT TTTCCGTTAGGTATAGCCTCTTTTCGCCTCTTTCTTGACGCTCTTTCACGAAGCCCTCTTGTATTAGGAACTTTT TTGCATCATAAAAGGTGGCAGTGGACATGGGAAATTCTGCGTTTACTTTCTTGTATAGGTCATATGTTGCTATTC CTTCATTATCATATAGATAAGCCAATACTATGGCTTCGGGGTAGAAGAATGGTGTACTTTTCATATCCTCCTCAC TCCTCAGCCTCTAATAGCTTAACTGCCTCCTCTATCAACTGTCCCATTGTCTTTCCAGTCTTTGCCTTAAGCCTC TGCAGTAAATGGTAAAAAGATTTTACTTATTCCGTTCTCTTCTGAGAACCGCTTGCTTTTTACGATTAAATTCCA CATATCATCTAAGATAGAGTGTTGTGGTTCTAGCTTCCTCGTGTAGATTTTCCCCTATTAATGTTAGTTTATAAA GACCGGCTATTTTTTCACTAATT

The nucleotide sequence of pSMY1 is:

(SEQ ID NO: 11) TCATTTTTTCCTAAAAATTGCTCCTTTACATTTCATCACCTTATCCTCGATAATCTTATTTATAGTTCTTAATGC TGTTAATGGATTCCCTGCATTATAAATACTTCTTCCAATGATTTCATAATCCGCTCCAGCACATACTGCATCGCC ATAACTTCCACCTTGACTACCCATACCCGGAGAGACTATGGTCATTTTTTCGAAGTCTCTCCTATACTGCGTTAT ATGATCTAATTTAGTCCCTCCAACTACTATTCCTTTTGGGCTTATCTCTCTTATAACGTTTTTAATATAGTCTGC GAATAACGTACTCCATCCTTCATGTGACATTACGGCAACTAAGTATAAATTTTTAGAGTTTGCATCAAGATATCT TTTTAATTCATCTAGAGATCCCTTAACGCCTATAAAGGAATGTGCTATGAACGAGTTGGCGAAAGATAATCTTTC AACTATGCTTTTCATTATGTATCCGATATCTGCAAGCTTAAAATCAACAATAATTTCCTCCACGTCTAAACCAAT TAAGAGCTCTCTAGTTTTATCCACTCCTAGATCTAAAACTAAAGGTAAACCAACTTTTATCCCATATAACTCATT TTCCATCTCTTTAAGAACTTGATATGAGAGAGGTTTATCCATTGCTAATATTACTCTACTTTTCAACATTCTTCA CCAAATAATCTAGAATTGACTTCTTTTCATTATCCTTAAGTTTATCACTCTTCAACAATTCATCTAGAATTTCTG AAATTTTAAATAGAGAGTGTAATTTGACTCCTAGTTTTTCCAATCTTTGTGAAGCCCCTTCTTGTCTATCTATGA TTACTAGTGCGTCTGAAACTTTACCTCCACCGTTAAGAATCTCCAATGTTGCTTTCTCTATGGATACTCCTGTAG TTGCAACGTCATCTACTAACAATACTCTTTTTCCTTTTACATCGAGTTCTAATGTACGATTAGTTCCATGACCTT TCTTTTCTATTCTAATATATCCCATAGGCTCTTTAAGGTTACAAGCTATGAATGCCGATAAGGGAACTCCTCCAG TGGCTATTCCTACTATTATATCATGGGGTATATCTTTTGCTTTCTTTATAGCTTGATTAACTATATCGTAAAATT CTGGATAATTTGGTAAAGGTCTTAAGTCTAAGTAATATGGACTAACCTTACCTGATGTTAAAACGAAACTTCCTA TTAATAATAATTTCCTTTCGAGTAAGACTTCTGCGAAATTCATACGTAGAGACTCTGCGAAAAAGAATTTAAATA TACTTCTATCATAACCAGTTATAAGGGCTTTGTGAGATTAAGACACGTAGTTTCGTCGCTTGACTTGACCAGAGA TGACTACTTTAGAATATTCGAACTTGCAGACAAGTTCTATGATGTAAAAAAACTAAATTATCTATCAGGGAAAGT AGTTTCATTAGCATTCTTTGAGCCAAGTACTAGAACTGCTCAAAGCTTTCATACTGCAGCAATAAAATTAGGTGC TGATGTGATAGGATTTGCATCCGAGGAGTCTACTTCGATAGCAAAAGGTGAAAATTTGGCTGATACCATTAGGAT GCTAAACAACTATTCAAACTGTATTGTAATGAGACATAAGTTTGATGGGGCAGCATTATTCCCTAGTCCAGTGTG GTGGAATTCTGCAGATATCAACAAGTTTGTACAAAAAAGCTGAACGAGAAACGTAAAATGATATAAATATCAATA TATTAAATTAGATTTTGCATAAAAAACAGACTACATAATACTGTAAAACACAACATATCCAGTCACTATGGCGGC CGCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGGATTTTGAGTTAGGATCCgGT CGAGATTTTCAGGAGCTAAGGAAGCTAAAaTGGAGAAAAAAATCACTGGATATACCACCGTTGATATATCCCAAT GGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTCAGCTGGATA TTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTCTTGCCCGCC TGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTT GTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGT TTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGA ATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATATGGACAACT TCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGGCGATTCAGG TTCATCATGCCGTTTGTGATGGCTTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGCGATGAGTGG CAGGGCGGGGCGTAaAGATCTGGATCCGGCTTACTAAAAGCCAGATAACAGTATGCGTATTTGCGCGCTGATTTT TGCGGTATAAGAATATATACTGATATGTATACCCGAAGTATGTCAAAAAGAGGTATGCTATGAAGCAGCGTATTA CAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAATATCTCCGGTCTGGTAAGCAC AACCATGCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCTGGAAAGCGGAAAATCAGGAAGGGATGGCTGAGGT CGCCCGGTTTATTGAAATGAACGGCTCTTTTGCTGACGAGAACAGGGGCTGGTGAAATGCAGTTTAAGGTTTACA CCTATAAAAGAGAGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACACGCCCGGGCGACGGA TGGTGATCCCCCTGGCCAGTGCACGTCTGCTGTCAGATAAAGTCTCCCGTGAACTTTACCCGGTGGTGCATATCG GGGATGAAAGCTGGCGCATGATGACCACCGATATGGCCAGTGTGCCGGTCTCCGTTATCGGGGAAGAAGTGGCTG ATCTCAGCCACCGCGAAAATGACATCAAAAACGCCATTAACCTGATGTTCTGGGGAATATAAATGTCAGGCTCCC TTATACACAGCCAGTCTGCAGGTCGACCATAGTGACTGGATATGTTGTGTTTTACAGTATTATGTAGTCTGTTTT TTATGCAAAATCTAATTTAATATATTGATATTTATATCATTTTACGTTTCTCGTTCAGCTTTCTTGTACAAAGTG GTTGATATCCAGCACAGTGGCgccggCCGCCACCGCGGTGGAGCTCGAATTCGTAATCATGTCATAGCTGTTTCC TGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGC CTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCA GCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCAC TGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCAC AGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGC GTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCG AAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCT GCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTA TCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGC CTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAA CAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAG AAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGG CAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCA AGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCAT GAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATA TGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCTATTTCGTTC ATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGC AATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCG CAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTC GCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGC TTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTC CTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGCACTGCATAA TTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCTGAGAATA GTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAA AGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGAT GTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGG AAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATA TTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAAT AGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTA TAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCA GCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGG TGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTG TGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATTCAGGCTGCGCAACTGTTG GGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAG TTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTGCATGCCTGCAGAG TCTCATATGTTTCCTCACTTATTGAAATGTTAAGCCTTTTGACTATCCTATCTTTCCTCTTCTCTATCATTTAGG TCACCTTGTTTATTGTTATTTGAAATACGTATCCGTCTTCGTCACATCGAAGTATAATTTTGTATCCATTATTAG CATATTCTACGTCAAAGTTCCCACAACAATAATTCGGGTCTTCGGACTCGTTATAGACTTTGCTCCAACCATCTT TTTGTAGTGCCTCTTCTAAGTAGTCTACTCTGATGAAGCCTTCATCATATTCGTTCAGTACCCTAAAGCTTATAC TATCAATGCCTAATACGTCTAATAGCTTCAACAGATCGAATATAGGAACTTGCACCATCATTTCAGCTCACCTTA ATGAGCTGATATAATTCCGCTTCTATCTTTTGAACTTGGAAGTATGCCTTGCCTAGCTTTTGCTTATCCATATTG CCCGTTATTCTATCAATCTTAATCTCGTGGATTAATGATAATAGCTCTCTGACATCCTCATCAAGCATTTCAAAT AATTCTTTCTCTAAGACTTCTTTACTCATTGTTTTTCACCTTAGCAAACTCATCTAACGTTGTTTGTCTCAGTTC TCTTTTCTTTATCAAATAAAATTCCGAATGTCCCTTCTTATTGTTATTACTGTACTTCATGTCAGTTCACTGCTT TGCCTTTATAAATCCTTGATCCGTTTGCTCAAAATTTGCGGGCTGGGCATCAAATATCTTAGCTATATTGTCTTG TGTTTGCTCTTGTTTTTGTTCTTCTTTCTGCTCTTGCTTAATCCATTTGAACGTTGTCTTTCTGTTTTTGTATTG TACTTCACACTCGTCTGGATGTCTTTCGCAAATAGCTTTCAATGCTCTCTGTATGTTATACGCACTCGGGACTGA AATCTCAAATTGAGCTAGTATATCCTCTAACGTTAATTCACCTTTCTTTTCAAGAATTTTATACATTATTTCCGC CATCTTGTATGAATTTAGAGTTTGTGCCATATTCCCATCCCACTCTATCTATACTCTATGTATAAATTAGTATTT AAGTCTTACTCTATCTATACTCTATCTATCTCTCTATATACACAGTGTTTGGGTAACTGGCAAAATTCTGTCTGA CTGCTGTCTGACAAGAGTTTACTCTATCTCTCTATATCTATATACACAAACAGAGTTAGTCGACTCTGTGTATCT TATGTATCTTATACAAAAAATATGGGATGTGCAAAATCTGAGCTACTAATACTGCTTGAATATATAGATAGAGAG TGTAAGGACTACGAGAGTTGTAAAAGAATAATAGTAGAGCTAGAAGAGAGAGTGAAGAAAATAGCTTTCGTAGAA GCAATAAATGATTTGTTCTAAACTACTTTTTTCTCTCTATCTCTATATCTATATATATACATAACTAAAACTAAA AGAATAAACAAAAAACTAACAAAATCAACTCACCATTATACAAACTCAGAAAAACTATTTTTTTGTTATACTCTT ACCCCATATATATATAGATATATAGATAGAGAGAGATAGAGTATAGTAGGGCATTTAAGATTTTAGAAGTTCTTC AATGCGTCTTCTGATTGCATCTGCAACAAACTCTTGTCTGCTTATATATCCGCCCTTGCCTGACGCTATTAGTTC ATCTATTTGTTTTGCTAATTCGATTGGAATCGAAACGGTCACATATTCTTTTTTGACTGATTTCCTCGGCATACG CTATCTATACTATATTAATATGATAATATTAAATGATTCACGATATATAGATAGAGTATAGATAGAGTAAAGTTT AAATACTTATATAGATAGAGTATAGATAGAGGGTTCAAAAAATGGTTTCACCCCAAACCCGAAAAGAAGAAGAGT TATTAGAAAAACAAAATTCAGTTTTTTATTTGTTAACTTTAGGAAGGAAACCGTATGGTTCATATTTGCATATAA AAATTGAACTAGACGAAGATGAAAAATTAGAGAAGGAAATCTATGCGGATAACATTAAGCTAGAGAATGAATTAA GACAACTGAAGAGGTTGTATGAAGTATATCAGAGCGTAGAGATTGACGATGCTCAGAAAGCAATACAGAAGGAAG CATTACTGACGATAGCGAAAATACTAAGTGTTTTTGACTTCTGAGGAGGCTGAGGGGCAATGAAGGCTGAGGAAA CAATCGTGGAACAGATTCAGGACATAATTCAAAAACTTCGCTATTATACAGGAAGATCAAATAGACATTTCAAGA TGATTAGAAACTATTATGAGGAGTGTATAATAATAGTAGACGCTGAGGAGTTTATACAAGAAAATAACACTCTAA GCATTACTGTATATTCTGAGGATCTTATATATTATACTGTTGATATCCCGCTGAATTTCATTAAACATGTATTCG TATCCGCTTCGATTGATCAGCTCAATGATCAGCTTCAGCTAAAATATAATGAGGGTCTGATTAGAGTTTCTCTTA CTTTGAACGATGACTTATGTGAGAAACTGAGAAGCTCATACTGCGGTGATATTACATTCTTTAATGAGGCTGAGG GGCAATGAAGGCTAGGGTTGAATACATCAAATTACCTAGATGTTACACAAAAACTTATAGAAAAATCGAAGCGAA AAAGAACAACGACGGTACAATAGAATTAACGTTAGAGGAAACAATGCAAGTAATATCCTTTAAACTACCCCCGGC GTTAAATGCAAAACTAGAACAAATTGCGATCAAAGAAAAGAAAAGCAAGAGTGAAATTATTCGAATAGCGTTAGC GAGGTATGTAGAAAATGTTTAGATGCCCCATCTGCGGGTTCAAAACGCTGAGATTGTTCGCGCTTAAACAACATA CTCGAAGGGAGCATGTGTTGGTCAAATGTCCCATATGCGGGTTCACGGGGAAGCATTTATCTCAACATTTCTATA GTAGGTATGATATTGACCATCTCATATACTGCTACCTATTCTCTTCTTTCAGATTGCCTAAGAATGTTAGGTTAG CAATAAAGAGAAAATTAGAGGTTGAGTGAATAATGTATCAATGTCTACGTTGTGGTGGTATATTTAATAAAAGAA GAGAAGTGGTTGAGCATTTGCTTGTAGGGCATAAGCACAAGGATAGACTAACACTGGACTTTTATTATATCTACT TCAGGGTGAGAGGACAATGAACCTAATTGATATCATCTTATTTTACGGCTTTCAATTCAACGATTATTGGACAAC TGTCTTAGGGTTGAGAGTGGGTGCGGAAGAGAAGAATCCCATAGCGGGTCTGTTCATTTCATCACCGTATCGTTT AGCGTTGTTTAAGTTTGGCCTTATCACCATTGGTATGTTTATATTAATTTATGTTGTTAGATTCAAGACATGGAC AGAGATCGTATTGACTGTAACAGACGTTGTCGAATGCCTTGTCACGCTGAATAATACCCTTACGATTAGGAGGTA CAAAAGGAGGGGCGTTAGAGGATGACGGAGTCAGACGTTGACTCAGGTAGTAAAAAATACCTGAGTAACCATAAG GGGATTTTTATTCATGTCACACTGGAAGAGTTAAAGCGTTACCACCAACTTACGCCGGAACAGAAGAGGTTGATA AGGGCAATCGTCAAAACGCTTATTCATAACCCGCAACTGTTGGATGAAAGCAGTTATCTTTACAGATTGCTCGCG AGTAAAGCGATTTCACAGTTTGTCTGCCCGCTTTGTCTAATGCCCTTCAGCTCTTCCGTATCACTAAAGCAACAC ATCCGTTATACTGAACACACAAAGGTTTGCCCGGTGTGTAAAAAGGAGTTTACCTCAACCGATTCAGCCCTAGAC CATGTTTGCAAAAAGCATAATATCTGCGTTAGTTAGGCTCTTTTTAAAGTCTACCTTCTTTTTCGCTTACAATGA GGAAGTCCCTTCTAGCCCTACTAACCCTATCCCTAGCGTTACTATCGTTTTTAATAACACCATCGATGGCATTGA ATTCTGGCGGTTCACCGATACCGATATATTATAACTATTATAACTACTATAGCCTTAACGCAGAAGGGTTTGGAT TCAGTTTCAATAATAGCAATAATTGGGTTGAAACGAACTTTATCTCAATAACCATAAACTTACCTAGTTCATTAC CAAATAACTATCAAATCAATAATGCCTATTCTATCGTAGTAGGATTATCACCATATCCGGTTAGCAATATAAACA TTTTTAATAGCCCATTAGAAGCATATGTTGAACTATTCTCAAACCCACCGAATACATATCCAAATGAAATAGGAT TTGTAGTTAGTTACGGCTCAACTGTATTTTATAGTTATACCACACTGTATAGCAGTTTTGCGGGCACACAACTAA CAATAACTATATCATATACCGGAAATGGGTTTGGTGTGCAATTCTCTGACAGTAACGGGTTCTCTCACTCAGTTT CGGTAAGTTCGGTAAACTTTGTACCATATGGTGCTCTAATACTCGGATCACTAATCCCGAACGGGAACTATTACT ACTACCCAGTAGGTAACATGTTACCGAATGCATCGGTGAACTTCTCATATACGATCTCAAGTTTCACAATAGAAG GAAACCCGGCCACATCCGTCGATATTACCACACTTGGATTAGAAGGAAACACTGCAATATATACTTCAAGTAGCA ATTGGTTCAAATGGGTATCCGGTAGTGTGGTTATCACAAATGCCGTTGCCTATACCTATACCGATTTGGCTAGAA TAGGAGGAAGTGCACAAATAAACTATACTGCATCGCAGCTATATTAAGCAAAATCTTTTTTTACCTCTTTTTAAA TCTGTCTTATATGAAAAAACTGTTTACAGTTGTAGGTTCTATTTTCTCTGGTTTGGGGATTTGGCTTAAGTCAAT AGACCAGTCATTTTATTTAACGAAAGTATTGTATAACGGAAAAGTAATTGAAATAGTTCTAACGCCCGAGACAAA TGAAGTCGTGAAATCTTCCAACGGTGTTATGAACGCAAGTGTAACTTCTCTACCTTCCACAATTCTATACCAAGC ACAATCCGTGCCTTCAATAAATGGAGGAACTCTTAGTGTAATAAATACCACAGTTCAACCGCCATGGTATGCTAA CTTATGGCCTGAAGTCTTAACAATAGGTATAGTGATGTTGGGAATTGCAATATTCAGCTGGATTAAACTTAAATT TAGAAGATAGCCCTTTTTAAAGCCATAAATTTTTTATCGCTTAATGAAGTGGGGACTATTATTCTTAATAATGTT TATATCCATTTTTTCCCTCAACTCTTTAGCCCTATTAATCGGCGGAGGAGGGCCCAACAATAATGGTGCGGGAGT TTACACTCAGACTATAACAGTTAACGGAGGAACCGTACGAACTACTCTTAACGGTTCAACGCTTTCTACCGCACC ATGGCTCAACCCCTCTTACGTAAGCGTCTACAACACATACTACCTTCAGGTTTTGCCGAACCAAGAGTATATTGA CAACAACGTTTCGTTATCCCTAAATACGGCTAACATTGCGTTAAACGTCACTTGGTTATTGGCGTCCTCAAGCAA TACGGGATCCTACGGTGCAATCGCCATAGGCTACGGAGTGAACTTTCCCGCGGGGTTTGTCAATAACTACGGTCC TTCCGCACCTTACACGCCGGACGGAATCGTAATATATCTCATGAAAGGAGGCATGCCGACCTATCGTTTATTCGT ATACTTCAATGGAGTTGAGCAGTTAAACGTTTCAGTCGGGTCAATCAGTGTGGGACAAAAAATAGGTTTAGGGTT CTTTTATCTACAGAACACACTTTACGTTTACTACTATAACGGTACTTTAAAGACTTGGTCATTAACGCCCGGTAC GCTGATTACTATAAATAGTAATTACGTTATAGACGCACAGAATATAGGGCCGGGCTACGGCTACGGTCAATGGGT AATAGTTAATTATCAATATGCGATGCCGGTTACTGCACAACTGACGGTTAGTTATTTCGCATTAGGGTACAATGT ATATCATTTCTTAATGGCTTATGCGGGTGCTGGAAACCCGGTAAACATAACTGCGAATAACGGGGCTTCTTACAG TATAACGGGTATAGTTGCAGAGAAGAACTTTACGATAACGGGAATTCAGCAAGGCCTAGCCTATGCTTTCAGCTT GTTAGGGAAACCGAATGGCTTATACTTATTATATATGGGGCCAATTGAGGGCAGCCCACCAACGTGGTATGTAAA CGTAACCGTAGGGCTTCAGATCGTTACACCCCAGAAAACGATAAACTACAACTTAACAATACCAGTAATCGTTGA GGGCTATGCGTTATACCCTTCTGTTAACGTACCTTCCGGAACTTACCTAAGCGGACAGACTATTAGCTTTACCCT CTCATCGTTCTTGGGATACCCTTCAGGCTTAGGCTATTACACCGCAGTAAATCTAATCGCAAACGTAACAATAAA CGGTGTGAGTCATGCTATCCCCTATAGTTTCACCCCGATAGTGCAAACCCCGATAACTTATTACTACACTGTTAT AGTGGATGAAGGACAATTTGCATTAATAGATTATCAAGGGAGTTTCACAGTCCTACCCGCACAGAGTCAGCCCGT GATATTCATTACTTCTTATCCTAGAATTGGGCTATTAGGACAAACGATAACTGTGACTTTCCAGTTCACTTATAA TAGTCCCGTAGCGAATGTAACTCAATCAGCGTTTACGCAATCATCTAATATTCTCGCTTTTGCCTATGCGAAAAT GGTAACAACAAACGCTATAGTTCAGTTCAAGGCGTATTGGCTAAGTGCTAATGACGGGTTGGTGATTATAACTCA AACGAATAACTATCTAATTCCGTTTAATAGCAGTATAACGGGCTTAAACTTCGCAAACAATAGTGTTAATACGTT AACGTTTCAGATTGTAACGGGTAACTATGTACAAATAACTAGCTCAGCGGGAGGCGTGCTTACCCTAAGCAATAC TAGTCCGATTATAGGAATAGGGTTCTATTACGGTTCCGGTGTCCTACACCTGAACTGGTTCTTCGTTAGCGGTAT CATTTTGCAGTCTGCAACGGCAAATCAGGCTTACGTTATTTTGACGGGGACTAACCCAAATACGCTTTCACAGTA TACGACGGGCTATACTAACGCTTCGGGGTTCGGTACTGTAACGCTGAAGTTGAGTTACACTCCTTACGAACTTGT GGATGTAGACTGGTACGGCGTTACATACGCTTTGTTAAACATTAGCGTTTCAAACACTACTACAGTAAGCAGTAC TACGACCGTGAACACAACAACGCTTAACTATAACTACACTAAGCCTTTCAGCAATAACATAGCACCTAACAGTCA GCTTTATGACTTCTCAGCGTATCAGCCGTGGGCGGAAATTATCGGGATTGTGGTCGTGGTCGTCATAGCTCTGCT GGGCTGGAAGTTCGGCGGGTCTGCGGGAGCTTCGGGTGGTGCGGTTATGGGGTTAATCGCAGTCAGCTACTTAGG TTTACTGCCTTGGTACCTATTCTACATCTTCGTATTCGGTATCGCTCTATTACTTGCTAAAGTATTTGTAGACCG TTTCATGGGGAGGGAGGAATGACGGACGCAATCAGTTTAGCCTTGCAAACGGGCTTAGGGCCGGTGGTAGGGGTA ATTATCATACTGGCAATGATGGGGCTAACGTATAAGATAGCGGGAAAGATCCCGGCAATCATAACGGGAATAGCC TCGGCTTTCGTCCTAATGTTTATGGATTTTTTACCGTTATTTTGGGGTATCGCAATAATCTTCGGGTTAATCGCG GGTATGGTGGTGACAAGGGATGGGGACTAAGTTAGTCGTTTACGTCTTATTGTTTGACGTCTTCCTATCGTTAGT GGTAGGTGCCTACTCGGGTATAGCACCGCCAAGTATTCCACCGGTACCTACATATGCTTCAGCCCAACTCACGGC AAGTCTAATCACATGGACAGTGGGATGGCCTCCTATTACATTATGGCCTCAGATAACGCTTATTCCGCCGTTTTC GATTTTGGGTGCAAACTTCCCCGGCTTAACCATTCCTAGCTTAACGATACCCGGTGTAACGCTCTTCTCAATAAG CTTCAGCTGGTTAGCCCCAATTATTTATATTGCAAATTGGATCATTTGGGTCTTTCAGACTGTTGCTAGTGTGCT ATCTTATTTACTTAATATCTTTACGGGTTCGGTAGGTCTATTGAGTAGTGTACCCGTCTTAGGGCCATTTTTGAC CGCCTTCGTGTTGATAGTTAACTTCGTGTTAGTGTGGGAATTAATCAAGTTAATTAGGGGGTCGGAATGACGGAG TATAACGCAAACAGTATAAGGGCTAAGATACTGAGGCGTAAAATCCTTCAACTGATTGCGGAAAACTACGTTTTG TCAGCGTCGTTAATCTCTCACACACTCTTACTCTCATACGCCACAGTGCTTAGGCACTTGCGTATCCTTAACGAT GAGGGCTATATCGAATTGTATAAGCAAGGTAGGACGCTATACGCAAAAATCCGCGATAATGCGAAACAAATTCAG ATTCTGAATTCAGAACTGGAGGGGTTTAAAAACGTAAGCGGGAAGCCGATATTGACCAAGGATGAGACTCCTAAG GAGTTTGGCAAGAAAGATAGCCTCACTCAAAGAGGCTAAGGTTGCACTAAAAGTAGCAAGCGACCCCAGAAAGTA CTTCAACGAAGAACAGATGACTGAGGCTTACAGGATATTCTGGCAGACATGGGACGGGGACATAATTAGAAGTGC TAGAAGGTTCGTGGAAGTAGCAAAGGCAAACCCCAAGCTCACAAAAGGTGAAGCAACCAACATAGGCGTATTGTT GGGCTTATTCATCTTCATACTAATAGGTATAGTACTATTGCCCGTAATCGTTAGCCAAGTCAACAACCTCACAAG CGGTACTTCACCCCAAGTAACCGGTACTAACGCCACACTCCTGAACTTAGTGCCGTTATTCTATATCCTAGTCCT CATAATAGTCCCCGCAGTCGTGGCGTATAAGATATACAAAGACTGAGGTGTGAGGGATGGAAATCAGTTTAAAGC CAATCATTTTTTTGGTCGTTTTTATCATCGTAGGGATAGCACTATTCGGCCCTATAAACAGTGTTGTAAATAACG TTACCACATCGGGAACCTACACTACTATAGTTTCCGGTACTGTTACTACGTCTTCATTTGTGTCAAATCCGCAAT ACGTAGGTAGCAATAACGCTACTATCGTAGCCTTAGTGCCGTTATTCTATATCCTAGTCCTCATAATAGTCCCCG CAGTCGTGGCGTATAAGTTGTATAAGGAGGAGTGATATGAAGTGGGTGCAAAAGGCGATAAAGAGACCCGGGAGG GTACATCGCTACCTTATGAGGCTCTACGGCAAACGGGCGTTTACAAAAGACGGTGACATAAAGGCAAGTTATCTC GATAAGGCGATAAAGCACGTTAAAAAAGCTAAGATCCCGAAAGAGAAGAAACGTAGTTTACTGTCAGCCCTACTG TTAGCGAAAAGGCTTAAGCGGATGCACCGCAAGTAGGCCCTTTATAAAGTCATATTCTTTTTCTTTCCCTGATGA GTGCGTTAGGGGATGTAATCTACATCTTGGGTTTTCTCTTTCCGGCTTTAGGGCTAATCAGCCGAAACTATCTTG TTAACTTAATGGCATTCATAATAGGAACAGTCGCCTTTTTGGTCTTCGTCCAAGGCTATACCGATATAGCGTTCA GCAGTTCGACGTTTTACTTAGGAGTACTGCCTCTACTACTTGGTCTCGTCAACTTAGGCTATTTCTTCAATTGGT TGAGGGAGGAAAGGATATGAGGTGGGGTAGAAGAGATGATAGGGATACCGGCAAAATACTTCGAAATAGGAGTCG TAATAGATTCAACATTTATCATTATGTCTCTACTGTTAAGAAAGTCAAAGAGACAGAGAGAGAACTCCTTCGACT TACGCAAACATGGAAGGCTATTAGGCTTATATCTTATAATAGCGTCGGCATCAGCATTAATCGTCTCACATCTCG CCTTATACACAAACTACATGAACTACTTAACGGGCTTATCTCTTAATGCGTTTCTGTTTTATCTTGGGTTGAGGT GTTTGCATGTCTGATGGGAAACTCCTTTCTGCTTTCGAGGAGGAATTAAGAAAAGCCCAAAGCCTAGAGGAATTA AAGCAAAAGTATGAGGAAGCCCAAAAACAAATAGCTGACGGCAAAGTACTAAAGAGGCTATACAAGGTTTATGAG AAAAGGCAAACAGAATTAATGCTTCAGCAATATAGGCAGATAAAGGCTGAACTGGAAAAGAGGAAAAAGGTAAAG AAAAAGGATAAAGCCGACATAAGGGTTAGAGTAGTAAAGAAGTGGATAAATTCACGCTTATTCAGTGCTGAGCAT TACGTCGCATTACTGCAAGAAAATCAAGACGGCTTATCGATACTATTTCTAAGAAGAGCAAAACTTATAGAAAAT CAAGGCTATCTAATGCTAGAAGTGAAGAAGTTAAGGAAGGCATGGGTTTTAACGGCTGAACCTATACTCCTTGAA AGGTTAAAATTCCCATTCGGCAAAAAGTTTGTAGCCGTGCATTTCGTTTTACCCAATTATCCTTACACACTTCAG CTTAAACCGGATGAAAAACTGAAAGAGTTAGCAGTTAAGGCGATAAACGGGCCTCAAATAATGAGCGCAATGATA CGTACAAAGTTCTTCGAAGCGTTAGCTAGGGTAGGAAGCGGGCCTGATCTGATGATGCTCATAATCGGCGTTGTC ATGGGGATTGGCATAGGCGTAGCGATAGGTTTCGGTATAGCTAACGCAAACTTAACGCATTTGCTATCTCAACAC GTTACGAACACTACAGTGACACATACTACGACCACAACGACTTCACCCTCATTCACGATTCCCTCAAACTCCTCA AAAGGGGTGAGCTAAAATGGTCTCAGTAACAGAAATAATAACATATGGACGAGAAGCAATAGAAAGAATAATATG CAAATATTTTAAAGATTCGAAAATAGAAAAGATATTATTCTTGCCGAGTGAGGAAGACGTAAAGGCAAAATATAT CATTGGACGGGTAGGGTTTATAAGGATTAGTAATACGTGGTCTGGAATTGTCGTAGTTGACGGGGTACAAATACC TTTCGTTGCTGAAGTCCACCTTAATGGCAAGATTGATATTTACCTTTATCCTCAAAAGGACTTCTACTTAGCACA TTTGGTGGGTGAGCTGAATGGCTAAAAAGAACGGCTTAACAGAACTAGAGCAATTAAAGAAAGAGAACGAAGAGT TGAGAAAGAAGTTAGAAGAGTTAGAGGCGTTGATCAATAACGATAGCGATGACGACGAAGAGTTGCAGGAAATCG AAAACCCGTACACCGTTACAAACCGTGCAATAGATGAATTAGTAAGCCCAAAGGACACAATGTTCTATTTGTCGG GAAACCAGATATCGTTAATCTTAAGTGCTTTTGAATTCGCCCGCTTACCGACGTACTTCGGTGAGGAACCGGTAA CGGAGTTAGCGGAATACGCCCATAAGTTGAAACATTATCTCGTTTCGAAAGGAGGAAGAGGAAGGAGGGATATAC TGAGAGTCCTACGCGTTAGTTCAGGTCAGACAAGAGAGAACGTAAACAAATCAATTCTGAAACAATTATTTGACC ATGGTAAGGAACATGAAGATGAAGAAGAGTAATGAATGGTTATGGTTAGGGACTAAAATTATAAACGCCCATAAG ACTAACGGCTTTGAAAGTGCGATTATTTTCGGGAAACAAGGTACGGGAAAGACTACTTACGCCCTTAAGGTGGCA AAAGAAGTTTACCAGAGATTAGGACATGAACCGGACAAGGCATGGGAACTGGCCCTTGACTCTTTATTCTTTGAG CTTAAAGATGCATTGAGGATAATGAAAATATTCAGGCAAAATGATAGGACAATACCAATAATAATTTTCGACGAT GCTGGGATATGGCTTCAAAAATATTTATGGTATAAGGAAGAGATGATAAAGTTTTACCGTATATATAACATTATT AGGAATATAGTAAGCGGGGTGATCTTCACTACCCCTTCCCCTAACGATATAGCGTTTTATGTGAGGGAAAAGGGG TGGAAGCTGATAATGATAACGAGAAACGGAAGACAACCTGACGGTACGCCAAAGGCAGTAGCTAAAATAGCGGTG AATAAGATAACGATTATAAAAGGAAAAATAACAAATAAGATGAAATGGAGGACAGTAGACGATTATACGGTCAAG CTTCCGGATTGGGTATATAAAGAATATGTGGAAAGAAGAAAGGTTTATGAGGAAAAATTGTTGGAGGAGTTGGAT GAGGTTTTAGATAGTGATAACAAAACGGAAAACCCGTCAAACCCATCACTACTAACGAAAATTGACGACGTAACA AGATAGTGATACGGGTAATGTCAGACCCCTTTTAGCCATTCCGCATACTTTTTATATTGCTCTTTCGCTATGCCG AAGAGCGATACGTAATGTTGCGTTAAAACGCGTGTCGGTTTACGCCCTTGAATAAAATCGATAATATCTAACGGT ACGCTTAGCTCAGCCATCTTAGACGCTACGAATTTGCGGAAGTACTTTATCGCTATAGCGTCCTTATGACGTCGT TCAAAGTCCGCTATTGCCCACTTCGTCACCTCTACTCTCTTCAGAGGCGTTATGTGGAATACATAGAAGACGCCC TTATATCCCCTAGTCCAACTAAGCGGATAATAACAGACGTCGTTACCGCAAATGTCCCTTTCGGGTTCCTTCAGC ACTTTCAGTATTTCGCTCAGCCTAACGCCCGACTCGAGAGCGATACGGTAGATGAAGTAGACGTTTTCGCTATAG TCTTTTGCTAATTGTAACGTCCTTTTTATCTCTTCCAACGTTGGAATGTAGATATCAGCGTTCGCCTTCTTCACC TTTACCGCTTTCAATATTTTATCCGCAAATTCATCATGTATGATATTGCGTGACGCTAAGAAACGTGCAAAGAGT CGGTAAGCCTTCTGTGCGTCTCTCGTCTCTTTATACGGCTTTGATATAGCATTGATGTAGTCCTTTGCAGTTTTT TCGCTTATCCCCCTTTCGTTCATGAGATAGTCGTAGAACGCCTTTATGTTGCCGTCCGTCGCGTATTGGCGCAAA TTGGCAACCAACGCTATTTTACGTCGTTCAGTTCCCTCTTTTCCGCCTCCGGAGCCGGAGGTCCCGGGTTCAAAT CCCGGCGGGTCCGCTTGTAGGGGAGTATCCCCTACGACCCCTAATTTCATTTTTAGATATGATTCAACGACGTCA GCTAAAGGACCCACGTAACGCTCTTTTACCTCACCGTTTTCATACTCTAGCTTGTAAACATAATACCGCCCTTTC CTCTCGCGTAAAATATAATCCCCGTATTTATAACGCGTCTTATCTTTCGTCATTTCGCCTCACAGTATTATGGTT GCCAAAACGGGCTTATAAGCATTGGCAACCCGTTAATTTTTGCCGTTAAAACACGTTGAATTGAAAGAAGACGGC AAAGAATCCACACAGGTAATACTAAAAAAGTAGTATTACTTACATTAGAAGGACTCATTTGTCCACCTTGTATTC TAGCCATGCTATCTCTGCCTTCAGCTCATCTAGCTTCCCCTTTATGTCTGTCAGGTCAAGGGGAACTCCTCTCAT TAACCTGAGTTCGTTTTCGATTTTTTCAAGCTCCTTTTCCAACTCCTCTAGTTTCTCTAATTCCTTTAGTCGTTC TTCCAATTTCTTTTCCAATTTCCCCTTTGCGTCATTTATAATTATGCTTACTACCCAAACAATTCCTAAATCAGA AATAATTATTAACTCCTCTGAGTTGAATATCATTTTCCGCCCCTCGCTAAATACTCCTTAAAGCTCTGATAGAAC CCCTTCAGACTAACCCGTAAGTCTGTTAGGTTCTTCCAGTATTGTAATGGGATTAAGTAATAGTAGCTTACTGCA TCTCTCTCAAATTTGTCCTTCTTAATCTTTCCTTGCTTTTCTAAGTTGAGTATTTGCAGTGCTGAGATACATTTT AACTTGTCCTCAGCATCTGAATAGTGTATAAACCAAACCCTCCCCATAACCTCATTCTGCTTTGCAACTTCTACT TTAGTGCTTAATATTGCGTAAACGCTTTCGCCGTATCTTTCTTTGCTCTGTTCTTCAGTCCATGAACTTCCCGTA ATATCTATCCAAATTAAAGGATAATATTCTGTCTTAGCCTTAACGTATAAAGTCAAATCGTATTTATCTTGCAGA CCGCTATAGTATTGCTCATTTATTACATTAGTTAAAGTCCCCACGCCAGTTGGGCGGATATAAACATCAAAGTCT AACAAACCCTTAGCCCGCCACTTTGATAAAGAGATTAAGAGCTTTCCAAAAACTAGGTATTCTCGCCCTAAATAA GTTGAAGGGAGGATATAATCCTCAGCTTGATTACCCCAATACTTTAGCTTAAAATTAGTTTCAGCCATCTCACTC ACCATATTGAAACGTGGGCTAGTATGTGAATCAGTACTGATGCTATTGCAAATAACACACTTGCAGTAGCAATTC CTATTACAATCCATTTACCATAATCCACCTTAGTTTGTTGGTCAATATACTCGTTGATGATCTTTAGTATTTCTG GCTTTAGTTCTGATAATGAAAGGAAGACAGAGGCATAAAGTACTAAGGAGGATGTGAACAGATTATCCGCCTTTT CTGAAAGTTTATAAAGCTCATATCTTGCTCTCTCATAATCTTCATAATTAATAATTTCATCAAACTTTTCTACTT GCTCTTCATATTCTTTCTTCAGAGAGTAAGGAGTTGTCTTTTCAATTACTCCTAATTTTATTAACTTCTTAACAG CTTCCTTAAATCCTTGTTTATTGCTAGCATACGCTAAAGGGTCTTTTCCTTCTTGAGAAGCTCTATAGATAACTA TAGCACCATAAACAATATTTACAATATCGTATGGTAAGGAATACGCACCGATTTGGGCAATATCTTCAACTCTTC TTTGATCCATCTAGTTCACCTCTTTTTGATTTGTTTGTAGGTTTCTATCGCAGTTTTCAGCGATATCGCAAATAG CTTCCCCTTTTCCGTTAGGTATAGCCTCTTTTCGCCTCTTTCTTGACGCTCTTTCACGAAGCCCTCTTGTATTAG GAACTTTTTTGCATCATAAAAGGTGGCAGTGGACATGGGAAATTCTGCGTTTACTTTCTTGTATAGGTCATATGT TGCTATTCCTTCATTATCATATAGATAAGCCAATACTATGGCTTCGGGGTAGAAGAATGGTGTACTTTTCATATC CTCCTCACTCCTCAGCCTCTAATAGCTTAACTGCCTCCTCTATCAACTGTCCCATTGTCTTTCCAGTCTTTGCCT TAAGCCTCTGCAGTAAATGGTAAAAAGATTTTACTTATTCCGTTCTCTTCTGAGAACCGCTTGCTTTTTACGATT AAATTCCACATATCATCTAAGATAGAGTGTTGTGGTTCTAGCTTCCTCGTGTAGATTTTCCCCTATTAATGTTAG TTTATAAAGACCGGCTATTTTTTCACTAATT

The nucleotide sequence of pSMY-A is:

(SEQ ID NO: 12) TCATTTTTTCCTAAAAATTGCTCCTTTACATTTCATCACCTTATCCTCGATAATCTTATTTATAGTTCTTAATGC TGTTAATGGATTCCCTGCATTATAAATACTTCTTCCAATGATTTCATAATCCGCTCCAGCACATACTGCATCGCC ATAACTTCCACCTTGACTACCCATACCCGGAGAGACTATGGTCATTTTTTCGAAGTCTCTCCTATACTGCGTTAT ATGATCTAATTTAGTCCCTCCAACTACTATTCCTTTTGGGCTTATCTCTCTTATAACGTTTTTAATATAGTCTGC GAATAACGTACTCCATCCTTCATGTGACATTACGGCAACTAAGTATAAATTTTTAGAGTTTGCATCAAGATATCT TTTTAATTCATCTAGAGATCCCTTAACGCCTATAAAGGAATGTGCTATGAACGAGTTGGCGAAAGATAATCTTTC AACTATGCTTTTCATTATGTATCCGATATCTGCAAGCTTAAAATCAACAATAATTTCCTCCACGTCTAAACCAAT TAAGAGCTCTCTAGTTTTATCCACTCCTAGATCTAAAACTAAAGGTAAACCAACTTTTATCCCATATAACTCATT TTCCATCTCTTTAAGAACTTGATATGAGAGAGGTTTATCCATTGCTAATATTACTCTACTTTTCAACATTCTTCA CCAAATAATCTAGAATTGACTTCTTTTCATTATCCTTAAGTTTATCACTCTTCAACAATTCATCTAGAATTTCTG AAATTTTAAATAGAGAGTGTAATTTGACTCCTAGTTTTTCCAATCTTTGTGAAGCCCCTTCTTGTCTATCTATGA TTACTAGTGCGTCTGAAACTTTACCTCCACCGTTAAGAATCTCCAATGTTGCTTTCTCTATGGATACTCCTGTAG TTGCAACGTCATCTACTAACAATACTCTTTTTCCTTTTACATCGAGTTCTAATGTACGATTAGTTCCATGACCTT TCTTTTCTATTCTAATATATCCCATAGGCTCTTTAAGGTTACAAGCTATGAATGCCGATAAGGGAACTCCTCCAG TGGCTATTCCTACTATTATATCATGGGGTATATCTTTTGCTTTCTTTATAGCTTGATTAACTATATCGTAAAATT CTGGATAATTTGGTAAAGGTCTTAAGTCTAAGTAATATGGACTAACCTTACCTGATGTTAAAACGAAACTTCCTA TTAATAATAATTTCCTTTCGAGTAAGACTTCTGCGAAATTCATACGTAGAGACTCTGCGAAAAAGAATTTAAATA TACTTCTATCATAACCAGTTATAAGGGCTTTGTGAGATTAAGACACGTAGTTTCGTCGCTTGACTTGACCAGAGA TGACTACTTTAGAATATTCGAACTTGCAGACAAGTTCTATGATGTAAAAAAACTAAATTATCTATCAGGGAAAGT AGTTTCATTAGCATTCTTTGAGCCAAGTACTAGAACTGCTCAAAGCTTTCATACTGCAGCAATAAAATTAGGTGC TGATGTGATAGGATTTGCATCCGAGGAGTCTACTTCGATAGCAAAAGGTGAAAATTTGGCTGATACCATTAGGAT GCTAAACAACTATTCAAACTGTATTGTAATGAGACATAAGTTTGATGGGGCAGCATTATTCCctaggggCCCCAT CTGGAAAAATAATGAGGAGAGTATTTAGAGATGAAGCTTAGAAGATCTTAGATAATCTGAGTTTGATCTTTTATG TGCATTGTGGTCATGTTGAATTTTCACGATCATTTAAGGACTCCCATAAACATAAATTATGTATCAAAACATTAA TTGAAATATAGATAATAGTTATATTATAGTTATTTTTAGAAAAACATCCAATATGTTAACAAAACGTCTTTTACG GAAATATATAAATGTTAAACAAGTTAGGTATACTATTTATAAAATAGTTAGGTCATAAAAGTACCCGAGAACTAG TCCAGTGTGGTGGAATTCTGCAGATATCAACAAGTTTGTACAAAAAAGCTGAACGAGAAACGTAAAATGATATAA ATATCAATATATTAAATTAGATTTTGCATAAAAAACAGACTACATAATACTGTAAAACACAACATATCCAGTCAC TATGGCGGCCGCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATAATGTGTGGATTTTGAGTTA GGATCCgGTCGAGATTTTCAGGAGCTAAGGAAGCTAAAaTGGAGAAAAAAATCACTGGATATACCACCGTTGATA TATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTTC AGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCTTTATTCACATTC TTGCCCGCCTGATGAATGCTCATCCGGAATTCCGTATGGCAATGAAAGACGGTGAGCTGGTGATATGGGATAGTG TTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATT TCCGGCAGTTTCTACACATATATTCGCAAGATGTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGT TTATTGAGAATATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATA TGGACAACTTCTTCGCCCCCGTTTTCACCATGGGCAAATATTATACGCAAGGCGACAAGGTGCTGATGCCGCTGG CGATTCAGGTTCATCATGCCGTTTGTGATGGCTTTCCATGTCGGCAGAATGCTTAATGAATTACAACAGTACTGC GATGAGTGGCAGGGCGGGGCGTAaAGATCTGGATCCGGCTTACTAAAAGCCAGATAACAGTATGCGTATTTGCGC GCTGATTTTTGCGGTATAAGAATATATACTGATATGTATACCCGAAGTATGTCAAAAAGAGGTATGCTATGAAGC AGCGTATTACAGTGACAGTTGACAGCGACAGCTATCAGTTGCTCAAGGCATATATGATGTCAATATCTCCGGTCT GGTAAGCACAACCATGCAGAATGAAGCCCGTCGTCTGCGTGCCGAACGCTGGAAAGCGGAAAATCAGGAAGGGAT GGCTGAGGTCGCCCGGTTTATTGAAATGAACGGCTCTTTTGCTGACGAGAACAGGGGCTGGTGAAATGCAGTTTA AGGTTTACACCTATAAAAGAGAGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACACGCCCG GGCGACGGATGGTGATCCCCCTGGCCAGTGCACGTCTGCTGTCAGATAAAGTCTCCCGTGAACTTTACCCGGTGG TGCATATCGGGGATGAAAGCTGGCGCATGATGACCACCGATATGGCCAGTGTGCCGGTCTCCGTTATCGGGGAAG AAGTGGCTGATCTCAGCCACCGCGAAAATGACATCAAAAACGCCATTAACCTGATGTTCTGGGGAATATAAATGT CAGGCTCCCTTATACACAGCCAGTCTGCAGGTCGACCATAGTGACTGGATATGTTGTGTTTTACAGTATTATGTA GTCTGTTTTTTATGCAAAATCTAATTTAATATATTGATATTTATATCATTTTACGTTTCTCGTTCAGCTTTCTTG TACAAAGTGGTTGATATCCAGCACAGTGGCgCCGGCCGCCACCGCGGTGGAGCTCGAATTCGTAATCATGTCATA GCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGC CTGGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCT GTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTC CTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACG GTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAA AAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCA GAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGT TCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACG CTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGA CCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGC CACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGG CTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTC TTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAA AGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGAT TTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTA AAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTCT ATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCC CAGTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAG GGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGT AAGTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTT TGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGC GGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCAGC ACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATT CTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGCAG AACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATC CAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGC AAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCT TTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAA TAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGAC ATTAACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTG ACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGC GTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCA TATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATTCAGGCTGCG CAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAG GCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAAGCTTGCATG CCTGCAGAGTCTCATATGTTTCCTCACTTATTGAAATGTTAAGCCTTTTGACTATCCTATCTTTCCTCTTCTCTA TCATTTAGGTCACCTTGTTTATTGTTATTTGAAATACGTATCCGTCTTCGTCACATCGAAGTATAATTTTGTATC CATTATTAGCATATTCTACGTCAAAGTTCCCACAACAATAATTCGGGTCTTCGGACTCGTTATAGACTTTGCTCC AACCATCTTTTTGTAGTGCCTCTTCTAAGTAGTCTACTCTGATGAAGCCTTCATCATATTCGTTCAGTACCCTAA AGCTTATACTATCAATGCCTAATACGTCTAATAGCTTCAACAGATCGAATATAGGAACTTGCACCATCATTTCAG CTCACCTTAATGAGCTGATATAATTCCGCTTCTATCTTTTGAACTTGGAAGTATGCCTTGCCTAGCTTTTGCTTA TCCATATTGCCCGTTATTCTATCAATCTTAATCTCGTGGATTAATGATAATAGCTCTCTGACATCCTCATCAAGC ATTTCAAATAATTCTTTCTCTAAGACTTCTTTACTCATTGTTTTTCACCTTAGCAAACTCATCTAACGTTGTTTG TCTCAGTTCTCTTTTCTTTATCAAATAAAATTCCGAATGTCCCTTCTTATTGTTATTACTGTACTTCATGTCAGT TCACTGCTTTGCCTTTATAAATCCTTGATCCGTTTGCTCAAAATTTGCGGGCTGGGCATCAAATATCTTAGCTAT ATTGTCTTGTGTTTGCTCTTGTTTTTGTTCTTCTTTCTGCTCTTGCTTAATCCATTTGAACGTTGTCTTTCTGTT TTTGTATTGTACTTCACACTCGTCTGGATGTCTTTCGCAAATAGCTTTCAATGCTCTCTGTATGTTATACGCACT CGGGACTGAAATCTCAAATTGAGCTAGTATATCCTCTAACGTTAATTCACCTTTCTTTTCAAGAATTTTATACAT TATTTCCGCCATCTTGTATGAATTTAGAGTTTGTGCCATATTCCCATCCCACTCTATCTATACTCTATGTATAAA TTAGTATTTAAGTCTTACTCTATCTATACTCTATCTATCTCTCTATATACACAGTGTTTGGGTAACTGGCAAAAT TCTGTCTGACTGCTGTCTGACAAGAGTTTACTCTATCTCTCTATATCTATATACACAAACAGAGTTAGTCGACTC TGTGTATCTTATGTATCTTATACAAAAAATATGGGATGTGCAAAATCTGAGCTACTAATACTGCTTGAATATATA GATAGAGAGTGTAAGGACTACGAGAGTTGTAAAAGAATAATAGTAGAGCTAGAAGAGAGAGTGAAGAAAATAGCT TTCGTAGAAGCAATAAATGATTTGTTCTAAACTACTTTTTTCTCTCTATCTCTATATCTATATATATACATAACT AAAACTAAAAGAATAAACAAAAAACTAACAAAATCAACTCACCATTATACAAACTCAGAAAAACTATTTTTTTGT TATACTCTTACCCCATATATATATAGATATATAGATAGAGAGAGATAGAGTATAGTAGGGCATTTAAGATTTTAG AAGTTCTTCAATGCGTCTTCTGATTGCATCTGCAACAAACTCTTGTCTGCTTATATATCCGCCCTTGCCTGACGC TATTAGTTCATCTATTTGTTTTGCTAATTCGATTGGAATCGAAACGGTCACATATTCTTTTTTGACTGATTTCCT CGGCATACGCTATCTATACTATATTAATATGATAATATTAAATGATTCACGATATATAGATAGAGTATAGATAGA GTAAAGTTTAAATACTTATATAGATAGAGTATAGATAGAGGGTTCAAAAAATGGTTTCACCCCAAACCCGAAAAG AAGAAGAGTTATTAGAAAAACAAAATTCAGTTTTTTATTTGTTAACTTTAGGAAGGAAACCGTATGGTTCATATT TGCATATAAAAATTGAACTAGACGAAGATGAAAAATTAGAGAAGGAAATCTATGCGGATAACATTAAGCTAGAGA ATGAATTAAGACAACTGAAGAGGTTGTATGAAGTATATCAGAGCGTAGAGATTGACGATGCTCAGAAAGCAATAC AGAAGGAAGCATTACTGACGATAGCGAAAATACTAAGTGTTTTTGACTTCTGAGGAGGCTGAGGGGCAATGAAGG CTGAGGAAACAATCGTGGAACAGATTCAGGACATAATTCAAAAACTTCGCTATTATACAGGAAGATCAAATAGAC ATTTCAAGATGATTAGAAACTATTATGAGGAGTGTATAATAATAGTAGACGCTGAGGAGTTTATACAAGAAAATA ACACTCTAAGCATTACTGTATATTCTGAGGATCTTATATATTATACTGTTGATATCCCGCTGAATTTCATTAAAC ATGTATTCGTATCCGCTTCGATTGATCAGCTCAATGATCAGCTTCAGCTAAAATATAATGAGGGTCTGATTAGAG TTTCTCTTACTTTGAACGATGACTTATGTGAGAAACTGAGAAGCTCATACTGCGGTGATATTACATTCTTTAATG AGGCTGAGGGGCAATGAAGGCTAGGGTTGAATACATCAAATTACCTAGATGTTACACAAAAACTTATAGAAAAAT CGAAGCGAAAAAGAACAACGACGGTACAATAGAATTAACGTTAGAGGAAACAATGCAAGTAATATCCTTTAAACT ACCCCCGGCGTTAAATGCAAAACTAGAACAAATTGCGATCAAAGAAAAGAAAAGCAAGAGTGAAATTATTCGAAT AGCGTTAGCGAGGTATGTAGAAAATGTTTAGATGCCCCATCTGCGGGTTCAAAACGCTGAGATTGTTCGCGCTTA AACAACATACTCGAAGGGAGCATGTGTTGGTCAAATGTCCCATATGCGGGTTCACGGGGAAGCATTTATCTCAAC ATTTCTATAGTAGGTATGATATTGACCATCTCATATACTGCTACCTATTCTCTTCTTTCAGATTGCCTAAGAATG TTAGGTTAGCAATAAAGAGAAAATTAGAGGTTGAGTGAATAATGTATCAATGTCTACGTTGTGGTGGTATATTTA ATAAAAGAAGAGAAGTGGTTGAGCATTTGCTTGTAGGGCATAAGCACAAGGATAGACTAACACTGGACTTTTATT ATATCTACTTCAGGGTGAGAGGACAATGAACCTAATTGATATCATCTTATTTTACGGCTTTCAATTCAACGATTA TTGGACAACTGTCTTAGGGTTGAGAGTGGGTGCGGAAGAGAAGAATCCCATAGCGGGTCTGTTCATTTCATCACC GTATCGTTTAGCGTTGTTTAAGTTTGGCCTTATCACCATTGGTATGTTTATATTAATTTATGTTGTTAGATTCAA GACATGGACAGAGATCGTATTGACTGTAACAGACGTTGTCGAATGCCTTGTCACGCTGAATAATACCCTTACGAT TAGGAGGTACAAAAGGAGGGGCGTTAGAGGATGACGGAGTCAGACGTTGACTCAGGTAGTAAAAAATACCTGAGT AACCATAAGGGGATTTTTATTCATGTCACACTGGAAGAGTTAAAGCGTTACCACCAACTTACGCCGGAACAGAAG AGGTTGATAAGGGCAATCGTCAAAACGCTTATTCATAACCCGCAACTGTTGGATGAAAGCAGTTATCTTTACAGA TTGCTCGCGAGTAAAGCGATTTCACAGTTTGTCTGCCCGCTTTGTCTAATGCCCTTCAGCTCTTCCGTATCACTA AAGCAACACATCCGTTATACTGAACACACAAAGGTTTGCCCGGTGTGTAAAAAGGAGTTTACCTCAACCGATTCA GCCCTAGACCATGTTTGCAAAAAGCATAATATCTGCGTTAGTTAGGCTCTTTTTAAAGTCTACCTTCTTTTTCGC TTACAATGAGGAAGTCCCTTCTAGCCCTACTAACCCTATCCCTAGCGTTACTATCGTTTTTAATAACACCATCGA TGGCATTGAATTCTGGCGGTTCACCGATACCGATATATTATAACTATTATAACTACTATAGCCTTAACGCAGAAG GGTTTGGATTCAGTTTCAATAATAGCAATAATTGGGTTGAAACGAACTTTATCTCAATAACCATAAACTTACCTA GTTCATTACCAAATAACTATCAAATCAATAATGCCTATTCTATCGTAGTAGGATTATCACCATATCCGGTTAGCA ATATAAACATTTTTAATAGCCCATTAGAAGCATATGTTGAACTATTCTCAAACCCACCGAATACATATCCAAATG AAATAGGATTTGTAGTTAGTTACGGCTCAACTGTATTTTATAGTTATACCACACTGTATAGCAGTTTTGCGGGCA CACAACTAACAATAACTATATCATATACCGGAAATGGGTTTGGTGTGCAATTCTCTGACAGTAACGGGTTCTCTC ACTCAGTTTCGGTAAGTTCGGTAAACTTTGTACCATATGGTGCTCTAATACTCGGATCACTAATCCCGAACGGGA ACTATTACTACTACCCAGTAGGTAACATGTTACCGAATGCATCGGTGAACTTCTCATATACGATCTCAAGTTTCA CAATAGAAGGAAACCCGGCCACATCCGTCGATATTACCACACTTGGATTAGAAGGAAACACTGCAATATATACTT CAAGTAGCAATTGGTTCAAATGGGTATCCGGTAGTGTGGTTATCACAAATGCCGTTGCCTATACCTATACCGATT TGGCTAGAATAGGAGGAAGTGCACAAATAAACTATACTGCATCGCAGCTATATTAAGCAAAATCTTTTTTTACCT CTTTTTAAATCTGTCTTATATGAAAAAACTGTTTACAGTTGTAGGTTCTATTTTCTCTGGTTTGGGGATTTGGCT TAAGTCAATAGACCAGTCATTTTATTTAACGAAAGTATTGTATAACGGAAAAGTAATTGAAATAGTTCTAACGCC CGAGACAAATGAAGTCGTGAAATCTTCCAACGGTGTTATGAACGCAAGTGTAACTTCTCTACCTTCCACAATTCT ATACCAAGCACAATCCGTGCCTTCAATAAATGGAGGAACTCTTAGTGTAATAAATACCACAGTTCAACCGCCATG GTATGCTAACTTATGGCCTGAAGTCTTAACAATAGGTATAGTGATGTTGGGAATTGCAATATTCAGCTGGATTAA ACTTAAATTTAGAAGATAGCCCTTTTTAAAGCCATAAATTTTTTATCGCTTAATGAAGTGGGGACTATTATTCTT AATAATGTTTATATCCATTTTTTCCCTCAACTCTTTAGCCCTATTAATCGGCGGAGGAGGGCCCAACAATAATGG TGCGGGAGTTTACACTCAGACTATAACAGTTAACGGAGGAACCGTACGAACTACTCTTAACGGTTCAACGCTTTC TACCGCACCATGGCTCAACCCCTCTTACGTAAGCGTCTACAACACATACTACCTTCAGGTTTTGCCGAACCAAGA GTATATTGACAACAACGTTTCGTTATCCCTAAATACGGCTAACATTGCGTTAAACGTCACTTGGTTATTGGCGTC CTCAAGCAATACGGGATCCTACGGTGCAATCGCCATAGGCTACGGAGTGAACTTTCCCGCGGGGTTTGTCAATAA CTACGGTCCTTCCGCACCTTACACGCCGGACGGAATCGTAATATATCTCATGAAAGGAGGCATGCCGACCTATCG TTTATTCGTATACTTCAATGGAGTTGAGCAGTTAAACGTTTCAGTCGGGTCAATCAGTGTGGGACAAAAAATAGG TTTAGGGTTCTTTTATCTACAGAACACACTTTACGTTTACTACTATAACGGTACTTTAAAGACTTGGTCATTAAC GCCCGGTACGCTGATTACTATAAATAGTAATTACGTTATAGACGCACAGAATATAGGGCCGGGCTACGGCTACGG TCAATGGGTAATAGTTAATTATCAATATGCGATGCCGGTTACTGCACAACTGACGGTTAGTTATTTCGCATTAGG GTACAATGTATATCATTTCTTAATGGCTTATGCGGGTGCTGGAAACCCGGTAAACATAACTGCGAATAACGGGGC TTCTTACAGTATAACGGGTATAGTTGCAGAGAAGAACTTTACGATAACGGGAATTCAGCAAGGCCTAGCCTATGC TTTCAGCTTGTTAGGGAAACCGAATGGCTTATACTTATTATATATGGGGCCAATTGAGGGCAGCCCACCAACGTG GTATGTAAACGTAACCGTAGGGCTTCAGATCGTTACACCCCAGAAAACGATAAACTACAACTTAACAATACCAGT AATCGTTGAGGGCTATGCGTTATACCCTTCTGTTAACGTACCTTCCGGAACTTACCTAAGCGGACAGACTATTAG CTTTACCCTCTCATCGTTCTTGGGATACCCTTCAGGCTTAGGCTATTACACCGCAGTAAATCTAATCGCAAACGT AACAATAAACGGTGTGAGTCATGCTATCCCCTATAGTTTCACCCCGATAGTGCAAACCCCGATAACTTATTACTA CACTGTTATAGTGGATGAAGGACAATTTGCATTAATAGATTATCAAGGGAGTTTCACAGTCCTACCCGCACAGAG TCAGCCCGTGATATTCATTACTTCTTATCCTAGAATTGGGCTATTAGGACAAACGATAACTGTGACTTTCCAGTT CACTTATAATAGTCCCGTAGCGAATGTAACTCAATCAGCGTTTACGCAATCATCTAATATTCTCGCTTTTGCCTA TGCGAAAATGGTAACAACAAACGCTATAGTTCAGTTCAAGGCGTATTGGCTAAGTGCTAATGACGGGTTGGTGAT TATAACTCAAACGAATAACTATCTAATTCCGTTTAATAGCAGTATAACGGGCTTAAACTTCGCAAACAATAGTGT TAATACGTTAACGTTTCAGATTGTAACGGGTAACTATGTACAAATAACTAGCTCAGCGGGAGGCGTGCTTACCCT AAGCAATACTAGTCCGATTATAGGAATAGGGTTCTATTACGGTTCCGGTGTCCTACACCTGAACTGGTTCTTCGT TAGCGGTATCATTTTGCAGTCTGCAACGGCAAATCAGGCTTACGTTATTTTGACGGGGACTAACCCAAATACGCT TTCACAGTATACGACGGGCTATACTAACGCTTCGGGGTTCGGTACTGTAACGCTGAAGTTGAGTTACACTCCTTA CGAACTTGTGGATGTAGACTGGTACGGCGTTACATACGCTTTGTTAAACATTAGCGTTTCAAACACTACTACAGT AAGCAGTACTACGACCGTGAACACAACAACGCTTAACTATAACTACACTAAGCCTTTCAGCAATAACATAGCACC TAACAGTCAGCTTTATGACTTCTCAGCGTATCAGCCGTGGGCGGAAATTATCGGGATTGTGGTCGTGGTCGTCAT AGCTCTGCTGGGCTGGAAGTTCGGCGGGTCTGCGGGAGCTTCGGGTGGTGCGGTTATGGGGTTAATCGCAGTCAG CTACTTAGGTTTACTGCCTTGGTACCTATTCTACATCTTCGTATTCGGTATCGCTCTATTACTTGCTAAAGTATT TGTAGACCGTTTCATGGGGAGGGAGGAATGACGGACGCAATCAGTTTAGCCTTGCAAACGGGCTTAGGGCCGGTG GTAGGGGTAATTATCATACTGGCAATGATGGGGCTAACGTATAAGATAGCGGGAAAGATCCCGGCAATCATAACG GGAATAGCCTCGGCTTTCGTCCTAATGTTTATGGATTTTTTACCGTTATTTTGGGGTATCGCAATAATCTTCGGG TTAATCGCGGGTATGGTGGTGACAAGGGATGGGGACTAAGTTAGTCGTTTACGTCTTATTGTTTGACGTCTTCCT ATCGTTAGTGGTAGGTGCCTACTCGGGTATAGCACCGCCAAGTATTCCACCGGTACCTACATATGCTTCAGCCCA ACTCACGGCAAGTCTAATCACATGGACAGTGGGATGGCCTCCTATTACATTATGGCCTCAGATAACGCTTATTCC GCCGTTTTCGATTTTGGGTGCAAACTTCCCCGGCTTAACCATTCCTAGCTTAACGATACCCGGTGTAACGCTCTT CTCAATAAGCTTCAGCTGGTTAGCCCCAATTATTTATATTGCAAATTGGATCATTTGGGTCTTTCAGACTGTTGC TAGTGTGCTATCTTATTTACTTAATATCTTTACGGGTTCGGTAGGTCTATTGAGTAGTGTACCCGTCTTAGGGCC ATTTTTGACCGCCTTCGTGTTGATAGTTAACTTCGTGTTAGTGTGGGAATTAATCAAGTTAATTAGGGGGTCGGA ATGACGGAGTATAACGCAAACAGTATAAGGGCTAAGATACTGAGGCGTAAAATCCTTCAACTGATTGCGGAAAAC TACGTTTTGTCAGCGTCGTTAATCTCTCACACACTCTTACTCTCATACGCCACAGTGCTTAGGCACTTGCGTATC CTTAACGATGAGGGCTATATCGAATTGTATAAGCAAGGTAGGACGCTATACGCAAAAATCCGCGATAATGCGAAA CAAATTCAGATTCTGAATTCAGAACTGGAGGGGTTTAAAAACGTAAGCGGGAAGCCGATATTGACCAAGGATGAG ACTCCTAAGGAGTTTGGCAAGAAAGATAGCCTCACTCAAAGAGGCTAAGGTTGCACTAAAAGTAGCAAGCGACCC CAGAAAGTACTTCAACGAAGAACAGATGACTGAGGCTTACAGGATATTCTGGCAGACATGGGACGGGGACATAAT TAGAAGTGCTAGAAGGTTCGTGGAAGTAGCAAAGGCAAACCCCAAGCTCACAAAAGGTGAAGCAACCAACATAGG CGTATTGTTGGGCTTATTCATCTTCATACTAATAGGTATAGTACTATTGCCCGTAATCGTTAGCCAAGTCAACAA CCTCACAAGCGGTACTTCACCCCAAGTAACCGGTACTAACGCCACACTCCTGAACTTAGTGCCGTTATTCTATAT CCTAGTCCTCATAATAGTCCCCGCAGTCGTGGCGTATAAGATATACAAAGACTGAGGTGTGAGGGATGGAAATCA GTTTAAAGCCAATCATTTTTTTGGTCGTTTTTATCATCGTAGGGATAGCACTATTCGGCCCTATAAACAGTGTTG TAAATAACGTTACCACATCGGGAACCTACACTACTATAGTTTCCGGTACTGTTACTACGTCTTCATTTGTGTCAA ATCCGCAATACGTAGGTAGCAATAACGCTACTATCGTAGCCTTAGTGCCGTTATTCTATATCCTAGTCCTCATAA TAGTCCCCGCAGTCGTGGCGTATAAGTTGTATAAGGAGGAGTGATATGAAGTGGGTGCAAAAGGCGATAAAGAGA CCCGGGAGGGTACATCGCTACCTTATGAGGCTCTACGGCAAACGGGCGTTTACAAAAGACGGTGACATAAAGGCA AGTTATCTCGATAAGGCGATAAAGCACGTTAAAAAAGCTAAGATCCCGAAAGAGAAGAAACGTAGTTTACTGTCA GCCCTACTGTTAGCGAAAAGGCTTAAGCGGATGCACCGCAAGTAGGCCCTTTATAAAGTCATATTCTTTTTCTTT CCCTGATGAGTGCGTTAGGGGATGTAATCTACATCTTGGGTTTTCTCTTTCCGGCTTTAGGGCTAATCAGCCGAA ACTATCTTGTTAACTTAATGGCATTCATAATAGGAACAGTCGCCTTTTTGGTCTTCGTCCAAGGCTATACCGATA TAGCGTTCAGCAGTTCGACGTTTTACTTAGGAGTACTGCCTCTACTACTTGGTCTCGTCAACTTAGGCTATTTCT TCAATTGGTTGAGGGAGGAAAGGATATGAGGTGGGGTAGAAGAGATGATAGGGATACCGGCAAAATACTTCGAAA TAGGAGTCGTAATAGATTCAACATTTATCATTATGTCTCTACTGTTAAGAAAGTCAAAGAGACAGAGAGAGAACT CCTTCGACTTACGCAAACATGGAAGGCTATTAGGCTTATATCTTATAATAGCGTCGGCATCAGCATTAATCGTCT CACATCTCGCCTTATACACAAACTACATGAACTACTTAACGGGCTTATCTCTTAATGCGTTTCTGTTTTATCTTG GGTTGAGGTGTTTGCATGTCTGATGGGAAACTCCTTTCTGCTTTCGAGGAGGAATTAAGAAAAGCCCAAAGCCTA GAGGAATTAAAGCAAAAGTATGAGGAAGCCCAAAAACAAATAGCTGACGGCAAAGTACTAAAGAGGCTATACAAG GTTTATGAGAAAAGGCAAACAGAATTAATGCTTCAGCAATATAGGCAGATAAAGGCTGAACTGGAAAAGAGGAAA AAGGTAAAGAAAAAGGATAAAGCCGACATAAGGGTTAGAGTAGTAAAGAAGTGGATAAATTCACGCTTATTCAGT GCTGAGCATTACGTCGCATTACTGCAAGAAAATCAAGACGGCTTATCGATACTATTTCTAAGAAGAGCAAAACTT ATAGAAAATCAAGGCTATCTAATGCTAGAAGTGAAGAAGTTAAGGAAGGCATGGGTTTTAACGGCTGAACCTATA CTCCTTGAAAGGTTAAAATTCCCATTCGGCAAAAAGTTTGTAGCCGTGCATTTCGTTTTACCCAATTATCCTTAC ACACTTCAGCTTAAACCGGATGAAAAACTGAAAGAGTTAGCAGTTAAGGCGATAAACGGGCCTCAAATAATGAGC GCAATGATACGTACAAAGTTCTTCGAAGCGTTAGCTAGGGTAGGAAGCGGGCCTGATCTGATGATGCTCATAATC GGCGTTGTCATGGGGATTGGCATAGGCGTAGCGATAGGTTTCGGTATAGCTAACGCAAACTTAACGCATTTGCTA TCTCAACACGTTACGAACACTACAGTGACACATACTACGACCACAACGACTTCACCCTCATTCACGATTCCCTCA AACTCCTCAAAAGGGGTGAGCTAAAATGGTCTCAGTAACAGAAATAATAACATATGGACGAGAAGCAATAGAAAG AATAATATGCAAATATTTTAAAGATTCGAAAATAGAAAAGATATTATTCTTGCCGAGTGAGGAAGACGTAAAGGC AAAATATATCATTGGACGGGTAGGGTTTATAAGGATTAGTAATACGTGGTCTGGAATTGTCGTAGTTGACGGGGT ACAAATACCTTTCGTTGCTGAAGTCCACCTTAATGGCAAGATTGATATTTACCTTTATCCTCAAAAGGACTTCTA CTTAGCACATTTGGTGGGTGAGCTGAATGGCTAAAAAGAACGGCTTAACAGAACTAGAGCAATTAAAGAAAGAGA ACGAAGAGTTGAGAAAGAAGTTAGAAGAGTTAGAGGCGTTGATCAATAACGATAGCGATGACGACGAAGAGTTGC AGGAAATCGAAAACCCGTACACCGTTACAAACCGTGCAATAGATGAATTAGTAAGCCCAAAGGACACAATGTTCT ATTTGTCGGGAAACCAGATATCGTTAATCTTAAGTGCTTTTGAATTCGCCCGCTTACCGACGTACTTCGGTGAGG AACCGGTAACGGAGTTAGCGGAATACGCCCATAAGTTGAAACATTATCTCGTTTCGAAAGGAGGAAGAGGAAGGA GGGATATACTGAGAGTCCTACGCGTTAGTTCAGGTCAGACAAGAGAGAACGTAAACAAATCAATTCTGAAACAAT TATTTGACCATGGTAAGGAACATGAAGATGAAGAAGAGTAATGAATGGTTATGGTTAGGGACTAAAATTATAAAC GCCCATAAGACTAACGGCTTTGAAAGTGCGATTATTTTCGGGAAACAAGGTACGGGAAAGACTACTTACGCCCTT AAGGTGGCAAAAGAAGTTTACCAGAGATTAGGACATGAACCGGACAAGGCATGGGAACTGGCCCTTGACTCTTTA TTCTTTGAGCTTAAAGATGCATTGAGGATAATGAAAATATTCAGGCAAAATGATAGGACAATACCAATAATAATT TTCGACGATGCTGGGATATGGCTTCAAAAATATTTATGGTATAAGGAAGAGATGATAAAGTTTTACCGTATATAT AACATTATTAGGAATATAGTAAGCGGGGTGATCTTCACTACCCCTTCCCCTAACGATATAGCGTTTTATGTGAGG GAAAAGGGGTGGAAGCTGATAATGATAACGAGAAACGGAAGACAACCTGACGGTACGCCAAAGGCAGTAGCTAAA ATAGCGGTGAATAAGATAACGATTATAAAAGGAAAAATAACAAATAAGATGAAATGGAGGACAGTAGACGATTAT ACGGTCAAGCTTCCGGATTGGGTATATAAAGAATATGTGGAAAGAAGAAAGGTTTATGAGGAAAAATTGTTGGAG GAGTTGGATGAGGTTTTAGATAGTGATAACAAAACGGAAAACCCGTCAAACCCATCACTACTAACGAAAATTGAC GACGTAACAAGATAGTGATACGGGTAATGTCAGACCCCTTTTAGCCATTCCGCATACTTTTTATATTGCTCTTTC GCTATGCCGAAGAGCGATACGTAATGTTGCGTTAAAACGCGTGTCGGTTTACGCCCTTGAATAAAATCGATAATA TCTAACGGTACGCTTAGCTCAGCCATCTTAGACGCTACGAATTTGCGGAAGTACTTTATCGCTATAGCGTCCTTA TGACGTCGTTCAAAGTCCGCTATTGCCCACTTCGTCACCTCTACTCTCTTCAGAGGCGTTATGTGGAATACATAG AAGACGCCCTTATATCCCCTAGTCCAACTAAGCGGATAATAACAGACGTCGTTACCGCAAATGTCCCTTTCGGGT TCCTTCAGCACTTTCAGTATTTCGCTCAGCCTAACGCCCGACTCGAGAGCGATACGGTAGATGAAGTAGACGTTT TCGCTATAGTCTTTTGCTAATTGTAACGTCCTTTTTATCTCTTCCAACGTTGGAATGTAGATATCAGCGTTCGCC TTCTTCACCTTTACCGCTTTCAATATTTTATCCGCAAATTCATCATGTATGATATTGCGTGACGCTAAGAAACGT GCAAAGAGTCGGTAAGCCTTCTGTGCGTCTCTCGTCTCTTTATACGGCTTTGATATAGCATTGATGTAGTCCTTT GCAGTTTTTTCGCTTATCCCCCTTTCGTTCATGAGATAGTCGTAGAACGCCTTTATGTTGCCGTCCGTCGCGTAT TGGCGCAAATTGGCAACCAACGCTATTTTACGTCGTTCAGTTCCCTCTTTTCCGCCTCCGGAGCCGGAGGTCCCG GGTTCAAATCCCGGCGGGTCCGCTTGTAGGGGAGTATCCCCTACGACCCCTAATTTCATTTTTAGATATGATTCA ACGACGTCAGCTAAAGGACCCACGTAACGCTCTTTTACCTCACCGTTTTCATACTCTAGCTTGTAAACATAATAC CGCCCTTTCCTCTCGCGTAAAATATAATCCCCGTATTTATAACGCGTCTTATCTTTCGTCATTTCGCCTCACAGT ATTATGGTTGCCAAAACGGGCTTATAAGCATTGGCAACCCGTTAATTTTTGCCGTTAAAACACGTTGAATTGAAA GAAGACGGCAAAGAATCCACACAGGTAATACTAAAAAAGTAGTATTACTTACATTAGAAGGACTCATTTGTCCAC CTTGTATTCTAGCCATGCTATCTCTGCCTTCAGCTCATCTAGCTTCCCCTTTATGTCTGTCAGGTCAAGGGGAAC TCCTCTCATTAACCTGAGTTCGTTTTCGATTTTTTCAAGCTCCTTTTCCAACTCCTCTAGTTTCTCTAATTCCTT TAGTCGTTCTTCCAATTTCTTTTCCAATTTCCCCTTTGCGTCATTTATAATTATGCTTACTACCCAAACAATTCC TAAATCAGAAATAATTATTAACTCCTCTGAGTTGAATATCATTTTCCGCCCCTCGCTAAATACTCCTTAAAGCTC TGATAGAACCCCTTCAGACTAACCCGTAAGTCTGTTAGGTTCTTCCAGTATTGTAATGGGATTAAGTAATAGTAG CTTACTGCATCTCTCTCAAATTTGTCCTTCTTAATCTTTCCTTGCTTTTCTAAGTTGAGTATTTGCAGTGCTGAG ATACATTTTAACTTGTCCTCAGCATCTGAATAGTGTATAAACCAAACCCTCCCCATAACCTCATTCTGCTTTGCA ACTTCTACTTTAGTGCTTAATATTGCGTAAACGCTTTCGCCGTATCTTTCTTTGCTCTGTTCTTCAGTCCATGAA CTTCCCGTAATATCTATCCAAATTAAAGGATAATATTCTGTCTTAGCCTTAACGTATAAAGTCAAATCGTATTTA TCTTGCAGACCGCTATAGTATTGCTCATTTATTACATTAGTTAAAGTCCCCACGCCAGTTGGGCGGATATAAACA TCAAAGTCTAACAAACCCTTAGCCCGCCACTTTGATAAAGAGATTAAGAGCTTTCCAAAAACTAGGTATTCTCGC CCTAAATAAGTTGAAGGGAGGATATAATCCTCAGCTTGATTACCCCAATACTTTAGCTTAAAATTAGTTTCAGCC ATCTCACTCACCATATTGAAACGTGGGCTAGTATGTGAATCAGTACTGATGCTATTGCAAATAACACACTTGCAG TAGCAATTCCTATTACAATCCATTTACCATAATCCACCTTAGTTTGTTGGTCAATATACTCGTTGATGATCTTTA GTATTTCTGGCTTTAGTTCTGATAATGAAAGGAAGACAGAGGCATAAAGTACTAAGGAGGATGTGAACAGATTAT CCGCCTTTTCTGAAAGTTTATAAAGCTCATATCTTGCTCTCTCATAATCTTCATAATTAATAATTTCATCAAACT TTTCTACTTGCTCTTCATATTCTTTCTTCAGAGAGTAAGGAGTTGTCTTTTCAATTACTCCTAATTTTATTAACT TCTTAACAGCTTCCTTAAATCCTTGTTTATTGCTAGCATACGCTAAAGGGTCTTTTCCTTCTTGAGAAGCTCTAT AGATAACTATAGCACCATAAACAATATTTACAATATCGTATGGTAAGGAATACGCACCGATTTGGGCAATATCTT CAACTCTTCTTTGATCCATCTAGTTCACCTCTTTTTGATTTGTTTGTAGGTTTCTATCGCAGTTTTCAGCGATAT CGCAAATAGCTTCCCCTTTTCCGTTAGGTATAGCCTCTTTTCGCCTCTTTCTTGACGCTCTTTCACGAAGCCCTC TTGTATTAGGAACTTTTTTGCATCATAAAAGGTGGCAGTGGACATGGGAAATTCTGCGTTTACTTTCTTGTATAG GTCATATGTTGCTATTCCTTCATTATCATATAGATAAGCCAATACTATGGCTTCGGGGTAGAAGAATGGTGTACT TTTCATATCCTCCTCACTCCTCAGCCTCTAATAGCTTAACTGCCTCCTCTATCAACTGTCCCATTGTCTTTCCAG TCTTTGCCTTAAGCCTCTGCAGTAAATGGTAAAAAGATTTTACTTATTCCGTTCTCTTCTGAGAACCGCTTGCTT TTTACGATTAAATTCCACATATCATCTAAGATAGAGTGTTGTGGTTCTAGCTTCCTCGTGTAGATTTTCCCCTAT TAATGTTAGTTTATAAAGACCGGCTATTTTTTCACTAATT

In some embodiments, the suitable medium comprises plant cell wall, or one or more component thereof, as a carbon source. In some embodiments, the components are cellulose and/or hemicellulose. In some embodiments, the components are xylan, glucuronoxylan, arabinoxylan, and/or xyloglucan. In some embodiments, the components are glucose, xylose, mannose, galactose, rhamnose, and/or arabinose. In some embodiments, the suitable medium comprises plant cell wall, or one or more components thereof, as essentially the sole carbon source. In some embodiments, when the suitable medium comprises a plant cell wall, or one or more component thereof, as a carbon source, the peptide or protein of interest encoded in the nucleic acid stable integrated into the host cell chromosome is a cellulase, or an enzyme for digesting the plant cell wall, or one or more component thereof, or a functional variant thereof, or a enzymatically active fragment thereof. In some embodiments, the peptide or protein of interest encoded in the nucleic acid stable integrated into the host cell chromosome is a thermostable or thermophilic enzyme or protein. In some embodiments, the peptide or protein of interest is enzymatically active at a temperature of equal to or more than about 70° C., 75° C., 80° C., 85° C., or 90° C. In some embodiments, the peptide or protein of interest is enzymatically active at a pH of equal to or less than about 4.0, 3.5, 3.0, 2.5, or 2.0.

Such enzymes include, but are not limited to, enzymes with the following enzymatic activities: glycoside hydrolase, cellulase, xylanase, endoglucanase, cellobiohydrolase (CBH), and β-glucosidase (BG). Suitable examples of such enzymes include, but are not limited to, those described in “Thermophiles biology and technology at high temperatures,” F. Robb, G. Antranikian, D. Grogan, and A. Driessen, CRC Press 2007, which is hereby incorporated by reference. Other suitable examples of such enzymes include, but are not limited to, those described in U.S. Patent Application Ser. Nos. 61/172,653; 61/172,668; 61/246,439; 12/892,724; and 13/265,786; PCT International Patent Application No. PCT/US2010/032320; and, Park J I, Steen E J, Burd H, Evans S S, Redding-Johnson A M, et al. (2012) A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels. PLoS ONE 7(5): e37010. doi:10.1371/journal.pone.0037010; which are hereby incorporated by reference.

Other suitable enzymes include enzymes having a protease activity, such as a protease. Exemplary proteases include, but are limited to, the following:

An exemplary protease is Sso2551 comprising the amino acid sequence as follows:

(SEQ ID NO: 25) MESRIIQVVVISTFLVLSVLFPLLSLAYSTTSINPSYPQSNVISALPSNT NIILYFFIPPKNLNELYLIAQEVANHQIKPLSNAQLVSMFSNQDKVNESI KYLESKGFTIIYRSPFEIMAEAPVSLVSSVFETSFVLAKSTNGEIYYKPA GNVKIPSTLNNLLIGGLTNFTNVSLPLIQLGKLENGNLIPNKQAYSSFVY TFQFSATWYTPKVIEGAYNITPLLNSTADKKVTIAIIDAYGDPEIYQDVN LFDARFGLPPINLTVLPVGPYHPENGLFTGWFEEVALDVEAAHAAAPYSN ILLVVAPSATLEGLFSAIDVVVSEDLAQVVSMSWGLPGILFGASGFYAVF NGIIFPNYPYYDYYFELGSAEGITFLASSGDLGAYNDLPTVYGSANYPAS SPFVTAVGGTSLFANITSGYISTYNSTGNFGAEIAWSVNPLYFGVIQGGV SSGGGYSQLFPAPWYQRYVTHSNYRAIPDVAADANPYTGFTIYALGQEVV IGGTSLSAPLWAGIIADIDGIIGHPLGLVNPILYEIYQNTTLYHQAFHQI SLGYNGYYYANSSYNLVTGLGSPNAGMLGVIIKHSLSKSLAISVSTFETG VFQPWYFYGSTFTIAAYITYPNNTIVSQGSFNAYIYTSEGYLATVPLSFN GSYWVGNYTITPNNPPNLWEIVVNGSSDQFTGVGTVEVDVGESINIVSPI PYPYSFPIPYNSPFGIEAWIYYPNGTPVVNQSVTAYLVSNDGKLLASIPL IMMAPGLYEGSYALLPPLPQGTYLLIVNDSYGSAFSYVYFGEYNFGAILT PINDGFPAASPGQNITIIDEVLTPELTGLFTSNVTAYIYNQHGNLIDQVK LTPAPDEIQFGVYLLFFLYYANFTIPFDASPGFYNVVIQSISNTSTGLVK ADFITSFYVSPANLTLNVKVNNVVYEGELLKIFANITYPNGTPVKYGMFT ATILPTSLNYEQLIIGFEAGIPLQYNSTLGEWVGIYSIPSIFYGSIFQGS SVYSLAGPWNVIVSGVSWNGYNLYSTPSSFNFVNVMPYTFINNIVVSSKS LDSPLLSKINSTTYMLSNVKSNNITINGMNVILSNVIANTVTVKNSNIMI TSSTINQLVLDNSSVSIIGSKIGGDNIAVVANDSNVTIVSSVIQDSKYAF LQPNSVISLSGVNMYNVISLSSIPAPRITYLSTINVITSKESIIVNITGE YLRLLGVSMNNKPVGYSVISSSPSSISLSIPFNASQLSDGQYIFTVSISD GLPYNLTFNLLNNYHLIIVQDHLKALQGSVNLLTVIAIISLIIAIIAVAL LFVFTRRR

An exemplary protease is Sso2045 (Cannio et al., Protein Pept Lett. 2010 January; 17(1):78-85) comprising the amino acid sequence as follows:

(SEQ ID NO: 26) MRLLKILLLAMLILPLFSFFTLSISLYDQIQLPPHYLFYISENATQGSGI DVIFYTSSPITFMIMTPSQFYQFNQTGSSQSIYSITTNSLSKFFPLSGQY YIVFYNNISNNPVTLNYYILTRPLPTGIADYGLKINNGVISPYIEKIKSV IGAVEINKLLAYNSTPPAGVSQYSASIQLNVVLQVNTIGGSQQLWLQNVI QIYTNNDSYIFLDNIWNFTGKISILSNSTVKGNGIVYVTNNGNDYYAYGI NFSTLLIPSLKYLLINTSYTSQGPMISFGYMNQSGSPIWYDNVTILIPNT LSAYILVDGYNFTAGGLAYDAELILGGGGNGEFTFFNESNVELAMIYQYL NGTLAPPKFLFPFGLDTEESADNLYSISYNGVYLVSSGYQVINNLNENVS QLRFNVVNYTKATDQNFPYIFTINVSGGVLPYKLNVTISNSSGNELSGYT YVLFPSVSTYYLFLSPLSPGNYTVKIKLTDFNGNSKSYEFSLTINPPLKV QILNVTNYIDLALPYFNFTSIISGGTKPYNIIITISNDSGILSETYKIIN YTSITYYAVNMKGYSIGKYTIQIEVEDYAGSINISKYNFTINPNPYISTL SYTSETDKGLREVIKAIGKGGSGSLIYYWYVNNSLVSSGIGDELYNFTPS NIGEYNITVMVKDVLGVSSAKSVIIKVNPDPVVELSVPKTTIDSGAEFPV NATVSLGTPPYYISWYINGSYVGNESIKELNLSSIGVYIITVTVRDSAGY IINMSKPVLIVPPPSLSVKEQTQGNFIQYNTSIALSASVNGGTDPYYLIF LNGKLVGNYSSTTQLQFKLQNGENNITLIAKDLWGKTAVKTLIVNSGYNY VGIGIIAGIILIIVIVVILVISKRK

An exemplary protease is Sso2088 comprising the amino acid sequence as follows:

(SEQ ID NO: 27) MESKNVILKRVMLLLVLILSITTFLTIIAQSQAQYYYIQTSSPQYTIIPG SVFVEPLNSSQTLYIAVLLNFINLASLQSYLNEIYLSAPQFHHWLIPSQF REYYYPSRSYVNSLIKYLESYNLQFLGNYGLILVFSGTVGNIEKAFNTYI NVYYYPFKNLYWFGLLGIKNIGPFYYYSNNVIPSLPFNIGKYVLGVVGID SLDPKVVNVVIQTWHLPMVKAQSGLVSKAIISPITIEQYFNFTLAYERGY IGGGSNIAIEGVPESFVNVSDIYSFWQLYGIPRIGHLNVIYFGNVITGGQ SGENELDAEWSGAFAPAANVTIVFSNGYVGGPQLVGNLLNYYYEYYYMVN YLNPNVISISVIVPESFLAAYYPAMLDMIHNIMLQAAAQGISVLAASGDW GYESDHPPPNFHIGTYNTIWYPESDPYVISVGGIFLNASSNGSIVEISGW DYSIGGNSVVYPAQIYEITSLIPFTPVIVRTYPDIAFVSAGGYNIPEFGF GLPLVFQGQLFVWYGTSGAAPMTAAMVALAGIRLGALNFALYHISYQGII ESPLGNFVGKVAWIPITSGNNPLPAHYGWNYVTGPGTYNAYAMVYDLLLY SGLIES

An exemplary protease is Sso2037 comprising the amino acid sequence as follows:

(SEQ ID NO: 28) MQFRKTFLFLNIHFPYVLRNILLILLLLLPTPLLAISLPTGVVAYDGPIF TNQVLGYVNITSLQAYNASGSKFGVPPYGASLQLNVMLQVNTSNEEYYFW LQNVADFITNESKMFFSENIWNSTTPLAGINNVIGKGEIYSTSDLFSHSS YYAYGTYYIKYDFPFSFYLIVNESHNNQGVYVSFGYVILQNGNITPPNPI FYDTVFIPVNNLISASIIIANQTTPNLNLGIITYLGSYLDAELVWGGFGN GASTTFLNMSSYLALLYMKNGKWVPFSQVYNYGSDTAESTNNLRVTIAKN GDAYVTIGKQNPGLLTINFNPSIPGFLYLNISSKIPFLVNNIISRIFSGY VSAPIKLGFFMNYSINSSSFAVLNGNYPSLIEPNVSWFKILNIIPNYTYY YLVRVNSSIPVIGTINGKQITLNDINWFAQGTQIKIVNYTYYNGSDERYV ISSILPSLSFNISSPLNVTINTIKQYRVIINSDLPTYLNDKRVNGSIWIN IGTIVKLSASIPFYEVGRFIGTYNLTLGGTIVVNKPIVEKLQLSINNLLL EITAIIIVIVIIMLILRKRR

An exemplary protease is Sso1886 comprising the amino acid sequence as follows:

(SEQ ID NO: 29) MLKHIVLVLLLLLLTPLVAISFPTGVVAYNGPICTNEVLGYANISSLLAY NTSASQLGVPPYGASLQLNVMLEVNTSGGEYYFWLQNVADFITNESKVFF GDNIWNSTTPFAGINNIVGKGEIYSTSDFFSHSSYYAYGTYYIKYNFPFS FYLIINESYDTQGVYVSFGYVILQNGNISPPNPIFYDIVFIPIQNLSFAS IIIANQTTPSANFGIVTYLGNYLDAELVWGGFGNGESTTFLNMSSYLALL YMKSGEWVPFSQVYNYGSDTAESTNNLQVLIGKNGDAYVTIGRQNPGLLT TKFNPSYPSFLYLNISSKIPFLLNKSLSHAFSGYVTTQIKLGFFKNYSIN SSSFAVLNGNYPSLIEPNVSWFKVLNIIPNYTYYYLVKVNSQIPVIANVN GKQITLNSTDWFAQGTQISILNYTYYNGSNERYIISSILPSSSFNVSLPL NITLSTIKQYRVLVDSNLPVYLNGERVNGSVWINAGSSIQLSANVPFYEK GIFTGTYNVTPGSIITVNGPIVETLILSINTELMGIVAVIVIAVVAIAIL VLRRRR

An exemplary protease is Sso2194 comprising the amino acid sequence as follows:

(SEQ ID NO: 30) MMYKVLLIIILLLPLSMPLSIPTTSQPSALAFPSGVTSYPLNTIIYTDFV MGRINISYLNIGSSYLPGGEYFTTGNASLQLNAMVLGEYWAQNVILFHQI SNNTFYATLIVNLWNLSGPFSNTTSNSLVYQGLGVICYQGPTFKVTLPLS ISLFMEIVNSTLNFGYNINGQKGIYFRYPIIGLFQLGGLSLLGLPNDLEL VWGGPGGGSVVFMNVSSIANLYYFNGNTLTIVPNAYSIGFDTAESAYGVK VYSTFPSVFSPIVIETSGVNVPSVLWPIPPHVLVNQTSNKITVKLSISNK SLSGQAVYLETGFPPSVISSAVTNSSGIAVFPNNNYSFYVVYFPGNFTLS STYYFSSPILNSLSSKFRSYYQDLLNFLNSAQNSFKKGIKSVLSKQETSI TTTTLTSTTSSSSQFGVNLYIVLYILAFVIGMVISAILIRFKL

An exemplary protease is Sso2181 comprising the amino acid sequence as follows:

(SEQ ID NO: 31) MTWSIFLLILALSDIVLPLTITNINNQSITTLSPNYYLIVAIVFPPSNLI LLQQYVQEHVILNQTQVEKLFIPTEEISKILSQLRQSNISATSYMNVILA SGTVSQLEKALNGKFYVYELNGKRFFEFFGSPVIPNAIVIGINITSLILN KPITLYNVTQAVAYNALKPSQLLYAYNISWLHAHNITGKGTAIGILDFYG NPYIQQQLQEFDKQYNIPNPPFFKIVPIGAYNPNNGISTGWAMEISLDVE YAHVIAPDAGIVLYVANPNIPLPAIIAYIVQQDEVNVVSQSFGIPELYVD LGLIPLSYVNSLMYEYWLGEVEGISFAAASGDAGGNGYNYFLAPQGSVIF PASIPYVLAVGGSSVYIGGNKTMETAWSGESVLGASIGGYSTLFPAPWYQ DSNGFRVVPDVVADANPYTGAFILYYYNQTYLVGGISLATPIVSGIIDLM TQSYGKLGFVNPFLYELRNTSALSPIGFGYNTPYYVNSSELNPVTGLGSI NAGYLYQLLPKVIHSSSISVGVNNITYLDGQVVKVVANITGIRPSSVIGI VYNGSSVVQQFSLSFNGTYWVGEFVAEGSGIEEVIVKAGNLEGSTYVTIG YQAQFIFPPIALFPEPEPVPIVVQLIYPNGSLVRNPSNLTALIYKYDQMN NKMSIISSVQLQRTSLINLSILGIQIESSYLTGVYQLPSNIISGVYFIKI PNVFGFDEFVSGIYILDAVYPPVFINPVVLSPGQNVTILAEALAIGSPNV TVTFYNISGNKVYSIPVNAITYQNTLLYITQITLPKLKPGYYYVVTKAIY NASNFTAEGVGLIQIYVSPYSLNVKVRIIPNNSIVYQNQQIYVIANITYP NGTEVKYGSFSAIIVPSYLSSQFDNLQLQYSVPLTYINGSWIGQLEIPSG SSTNSLGYSTYGISGYWDVYVEGISADGIPINFPAILDVNTLSINPISPS SQFVVLPYVYVSVFNGTIAFNEFIDKAIVVGHNATFINSIIRNLIVENGT VILINSKVQNVSLVNSEIIKINSTVGNNVNYITTIGNNHAKSSYPSLDSG SILTIGIVLDIITIIALILIKRRKKFI

An exemplary protease is Sso0916 comprising the amino acid sequence as follows:

(SEQ ID NO: 32) MKMKKSDIIIILFIALIYILMFSNIVQSASVEGVSMYPIFQNGALTFYVK PISINEGNVIIYKSPYFNNYVIHRVIAIDNGYYITQGVDKITNPIPDNRI GLEPASGIPKNLVVGKIVEFGNFTFSIPYLGYISILFSSII

An exemplary protease is Sso1141 comprising the amino acid sequence as follows:

(SEQ ID NO: 33) MYRYIFLMSMLLISIIPLVFASNPNMYQNPITLKEFREIGTLNANEEVIV TIFVPLKNLDLLYYYASGASNPASPLYHKFLSPHEVQQLFLPTEEYNQIL NYVKSSGFQVIFTASNSVIVIKGTVGQVEKYLGTKYAVYSNGSVTYYTNY GYPKINAYVYSSNISAIFFAHPSTLITESTIKSFQQEINQTFPLEGYWPT VLQKVYNVTTEGENTTIGILDFYGDPYIVQQLAYFDKITGLPNPPNFSVV PIGPYNPNLGIVTGWAGEISLDVEVAHAIAPKANITLYIANPNIPLPAII AYITSQNKVDTLSQSFSIPESLFSSLFNGPLFYSCIILSDEYYALGSAEG ITFLASSGDAGGSGYSNGPIGTVGYPSTSPFVTSVGGITVYVQFPNGSYY QTAWSNYGFVPNNVNYGGSTGGVSIIEPKPWYQWGLPTPSTYPNGKLIPE ISANANVYPGIYIVLPSNTTGITGGISEASPLTAGVLATIESYTHHRIGL LNPILTYMAENYYGKVIEPITFGYNIPWVATYGYNLVTGYGTINAGYFEK ILPTLNLSKELNVIVSVYNTSIPTVSPQQFYPGQRILVTANITYPNGSPV QTGEFKALIENYLGNLTTFNLTYNSLTKLWTGSGVLSNKASGILFVYVYG SSDGLRGIGYYETFSGYYITFNYTTTFTPVYVELGNAELGITLSNSYFQA PIGVMNITLNIYSYNITTNAYTFVTILSVPIKNGVGVIDLPPDLSIGDLL IIAEGNAYGFDAFINGVYMQTLFILPQVVVEPGSVSPGQHITIEGSIIPP VNLPSTTFQDALQGTNITAKLVSSNGVVINEANIPLSPNGIYFGYLYIPK NTPSGLYNVLLFATYYSYTLNTTIRGFYYGQIYVSNQATISVKSVNYAFE GQTVFIYANITNGTNEIKFGMFSATVYPSSLSFNYTTISSIIEIPLWYNP KIGEWEGNFTLPSAISAGNLTYLAGQGYFGVPFKVLITGISALGNPITIN SGNAYTINVLPYTLFINQTLDKILPSYASLVNVKILNVSGNLLNDFLINV IIVNSNVKILNGNISNIVIRNSTVLIMQSNANNITLYNSTLYAIGGSING LNVVNSKVVPINIHIQGLYPELPSISINLPSKNVIGTVNVIVNVIGEDVS RINVYLNGNLINSFITNGTHIVTINTQNYPDGGYNLTVTAIQSDGLSSSN SSYLYFENGLTNLNTKVNVISNQLTNVSNSLSSSISSLRTASLEYQSISL AIGIIAIVLAILALVRRRR

An exemplary protease is Sso1175 comprising the amino acid sequence as follows:

(SEQ ID NO: 34) MYMKAKHLISLIVILTPLVTLLTSAVYTSGGITFYSPAYNGESYYTGQSI TIDALLPQQFATDAATINFFFPNSSLAVTIPVQINGSGGIYVPNAYAFPN VPGTWQITIEVAGGVAVGTINVNVIQRTPLVTVHLGYGVVGQALPQTPTI TLTFPNGTTITVPLQGTVNVPSGTSYQVEQAITENNIRWATNYTSGTITP ATTSITPTYYQQYLVTFNYTVQGGTGYSPPTVYYRSLGMNETAKAPASVW VDANSAYIYSPELQSNVQGERWIAVNFIGIIKAPGEINEYYINQYLVIVQ SQIPVYAIVNGANETLNSTNWFTQGTTIKLENITKYVSSVERYVIANFSP SEVITVNQPTTIKVNTVTQYFINVNSPVQLKALINGANESLTAGWYNQGT SIKIENLTYYVGNGERLILGKVLPSLETIVNGSYTISTITITQYFVNVSS PIPVQVLINGSKTILNSSWINAGTSILVLNYTYNISPQERVIIVGISPSQ SFTVNSPETLKLLTVTQYLVTINGVSKFYNSGSKIVLNASVPFYETATFK GTYNVSPGATITVNQPITETLVESPNYLILGAIAAVIIIVVAVVVIILLR R

An exemplary protease is Saci_1714 (Lin et al., J Biol Chem. 1990 Jan. 25; 265(3):1490-5) comprising the amino acid sequence as follows:

(SEQ ID NO: 35) MNFKSICLIILLSALIIPYIPQNIYFFPHRNITGATISSGLYVNPYLYYT SPPAPAGIASFGLYNYSGNVTPYVITTNEMLGYVNITSLLAYNREALRYG VDPYSATLQFNIVLSVNTSNGVYAYWLQDVGQFQTNKNSLTFIDNVWNLT GSLSTLSSSAITGNGQVASAGGGQTFYYDVGPSYTYSFPLSYIYIINMSY TSNAVYVWIGYEIIQIGQTEYGTVNYYDKITIYQPNIISASLMINGNNYT PNGLYYDAELVWGGGGNGAPTSFNSLNCTLGLYYISNGSITPVPSLYTFG ADTAEAAYNVYTTMNNGVPIAYNGIENLTILTNNFSVILI

In some embodiments, the method comprises: (a) culturing the host cell in a suitable medium comprising a hemicellulose, or component thereof, as essentially the sole carbon source, and the peptide or protein of interest encoded in the nucleic acid is an enzyme described in one of the references cited earlier, such that the enzyme is expressed. In some embodiments, the nucleic acid encodes two, three, or more than three such enzymes and these enzymes are expressed.

In some embodiments, the culturing step comprises culturing the host cell in a medium having a temperature of equal to or more than about 70° C., 75° C., 80° C., 85° C., or 90° C. In some embodiments, the culturing step comprises culturing the host cell in a medium having a pH of equal to or less than about 4.0, 3.5, 3.0, 2.5, or 2.0. In some embodiments, the culturing step comprises culturing the host cell in a medium having a temperature of equal to or more than about 70° C., and a pH of equal to or less than about 4.0. In some embodiments, the culturing step comprises culturing the host cell in a medium comprising lignocellulosic or cellulosic biomass, such as switchgrass, bagasse, corn-stover, or forestry waste material. In some embodiments, the culturing step comprises culturing the host cell in a medium comprising lignocellulosic or cellulosic biomass, such as switchgrass, bagasse, corn-stover, or forestry waste material, at a temperature of equal to or more than about 70° C., and a pH of equal to or less than about 4.0. In some embodiments, the lignocellulosic or cellulosic biomass is essentially the sole carbon source in the medium.

In some embodiments, the novel vector is constructed using a Gateway® (Invitrogen) destination cassette inserted into the cloning vector for Sulfolobus solfataricus. Our cloning strategies employ PCR targeting and amplification of genes of interest using primers containing small inducible promoters to rapidly and efficiently clone and express recombinant genes. Recombinant proteins show native localization and modification and can be genetically targeted for secretion, membrane association or integration, and extracellular accumulation. These tools can be applied to generate cellulase enzymes that are active on cellulosic plant material in dilute sulfuric acid at elevated temperatures and acidic pH. The vectors of the present invention are useful in exploring extremophilic genomes and exploiting their useful gene products and their acid, heat, and detergent stability characteristics for industrial and energy applications.

Sulfolobus is used as a model system for genetics and microbiology of archaeal hyperthermophiles and acidophiles. Currently the economical degradation of cellulosic materials to liberate sugars for fermentation into ethanol is a major barrier to producing practical biofuels. Proteins from archaea and extremophilic bacteria have many practical applications as their enzymes are hyper-stable and can tolerate extreme conditions like those used in industrial processes. The present invention enables practical and efficient molecular genetics for this organism to generate acid and/or heat and detergent stable enzymes from archaea and bacteria.

Lignocellulosic Pretreatment Conditions Compatible with Sulfolobus Growth

Currently, one of the most efficient means to degrade cellulose into component sugars is the use of sulfuric acid and high (about 250° C.) temperatures, using chemical hydrolysis to liberate fermentable sugars. Alternatively, enzymatic hydrolysis produces fewer detrimental side-products but requires a feedstock pretreatment. Pretreatment typically involve exposure to dilute sulfuric acid at elevated temperatures (about 120° C.). Sulfolobus thrives in dilute sulfuric acid at relatively high temperatures (80° C.). Sulfolobus Growth media is a media sufficient for lignocellulosic feedstock pre-treatment to facilitate enzymatic saccharification (see FIGS. 6-9 and Tables 2 and 3). The present invention enables an integrated pretreatment/enzyme production/saccharification process, where lignocellulosic pretreatment, enzyme production, and enzymatic degradation under hot acidic conditions occur concurrently.

TABLE 2 List of recombinant heat and acid stable cellulase enzymes produced in Sulfolobus and their activities on relevant cellulosic substrates. Cellulolytic Activity Hemicellulolytic Activity Azo- PNP-B-D PNP-B-D- RBB- PNP-B-D- PNP-B-D- PNP-A-L-Ara- Protein CMC Cellobioside Glucopyranoside Xylan Xylopyranoside Glucuronide binofuranoside Optima ½ E. coli Gene# Endo- Biosidase Biosidase Endo- Biosidase Biosidase Biosidase pH T Life Expression Sso1353 + ++ ++ + ++ 6.0 90° C. 2.2 h Active Sso1354 +++ +++ 3.6 90° C. 5.5 h NOT active Sso3007 ++ + 6.5 80° C. 2.5 h NOT active Sso3019 + +++ + + 6.8 80° C. 0.85 h ND Sso3032 ++ +++ ++++ 6.8 70° C. 10.5 h Active Sso3036 ++++ 6.8 90° C. 7 h ND

Notably two of these six enzymes are inactive when produced in eubacterial strains.

Sulfolobus Growth media and lignocellulosic pretreatment solution comprise the following ingredients listed in Table 3.

TABLE 3 Ingredients of Sulfolobus Growth media and lignocellulosic pretreatment solution. Ingredient Final concentration Ammonium sulfate     0.30% Glycine     0.07% Potassium hydrogen phosphate     0.05% Potassium chloride     0.01% Sodium borate 0.000002440% Manganese chloride 0.000000900% Zinc sulfate 0.000000110% Cupric sulfate 0.000000025% Sodium molybdate 0.000000015% Vandyl sulfate 0.000000015% Cobalt chloride 0.000000005% Nickel sulfate 0.000000005% Magnesium chloride   1 mM Calcium nitrate 0.3 mM

The nucleic acid can further comprise a ribosomal binding site. The inclusion of a ribosomal binding site between multiple independently transcribed genes has been used to cause high-level expression of two genes simultaneously. Two or more genes assembled into an artificial polycistronic message can be expressed as proteins by inclusion of a ribosomal binding site between the two genes. The sequence of such a ribosomal binding site is: gaggtgagtcgga (SEQ ID NO:24).

Particular embodiments of the invention include, but are not limited to, the following:

A recombinant or isolated nucleic acid comprising: (a) a nucleotide sequence that is capable of stably integrating into the chromosome of an Archea or acidophilic hyperthermophilic eubacteria, and (b) a nucleotide sequence of interest. In some embodiments, the nucleic acids described above wherein the nucleotide sequence of interest comprises a single or multiple cloning site or a sequence to direct targeted integration via enzymatic processes. In some embodiments, the nucleic acids described above wherein the Archaea or eubacteria is hyperthermophilic. In some embodiments, the nucleic acids described above wherein the Archaea or eubacteria is capable of growth or is viable at a temperature equal to or more than about 70° C., 75° C., 80° C., 85° C., or 90° C. In some embodiments, the nucleic acids described above wherein the Archaea is capable of growth or is viable at a temperature equal to 80° C. In some embodiments, the nucleic acids described above wherein the Archaea or eubacteria is an acidophilic Archaea. In some embodiments, the nucleic acids described above wherein the Archaea or eubacteria is capable of growth or is viable at a pH equal to or less than about 4.0, 3.5, 3.0, 2.5, or 2.0. In some embodiments, the nucleic acids described above wherein the Archaea is capable of growth or is viable at a pH within the range of from about 2.0 to about 3.0. In some embodiments, the nucleic acids described above wherein the Archaea is of the kingdom Crenarchaeota. In some embodiments, the nucleic acids described above wherein the Archaea of the phylum Crenarchaeota. In some embodiments, the nucleic acids described above wherein the Archaea is of the class Thermoprotei. In some embodiments, the nucleic acids described above wherein the Archaea is of the order Sulfolobales. In some embodiments, the nucleic acids described above wherein the Archaea is of the family Sulfolobaceae. In some embodiments, the nucleic acids described above wherein the Archaea is of the genus Sulfolobus. In some embodiments, the nucleic acids described above wherein the Archaea is Sulfolobus solfataricus, Sulfolobus islandicus, Sulfolobus acidocaldarius, Sulfolobus tokodaii, Metallosphaera yellowstonensis, Metallosphaera sedula, or Acidianus brierleyi. In some embodiments, the nucleic acids described above wherein the nucleotide sequence that is capable of stably integrating into a chromosome of a Sulfolobus species. In some embodiments, the nucleic acids described above wherein the nucleotide sequence that is capable of stably integrating into the chromosome is the integration sequence of a Fusellovirus capable of infecting a Sulfolobus species. In some embodiments, the nucleic acids described above wherein the Fusellovirus is a Sulfolobus spindle-shaped virus. In some embodiments, the nucleic acids described above wherein the Sulfolobus spindle-shaped virus is SSV1, SSV2, SSV3, SSVL1, SSVK1, or SSVRH. In some embodiments, the nucleic acids described above wherein the nucleotide sequence that is capable of stably integration into the chromosome comprises the nucleotide sequence of SEQ ID NO:1-9. In some embodiments, the nucleic acids described above wherein the nucleotide sequence of interest encodes a peptide, protein or RNA, or a DNA sequence that binds a protein. In some embodiments, the nucleic acids described above wherein the nucleic acid further comprising a promoter operably linked to the nucleotide sequence encoding the peptide, protein or RNA. In some embodiments, the nucleic acids described above wherein the peptide or peptide comprises an export peptide signal at the 5′ end of the peptide or protein. In some embodiments, the nucleic acids described above wherein the export peptide signal comprises an amino acid sequence encoded by a XPO, SP, Seq1, Seq2, Seq3, Seq4, or Seq5 nucleotide sequence. In some embodiments, the nucleic acids described above wherein the protein or peptide needs to be expressed, synthesized and/or folded at a temperature equal to or more than about 70° C., 75° C., 80° C., 85° C., or 90° C. in order to be correctly folded in order to be biological active. In some embodiments, the nucleic acids described above wherein the protein or peptide needs to be glycosylated or otherwise modified after translation by the host organism during or after expression, synthesis and/or folding in order to be biologically or biochemically active. In some embodiments, the nucleic acids described above wherein the resulting protein or peptide is stable in a detergent, or mixture thereof, such as Triton X-100, sodium dodecyl sulfate, or the like. In some embodiments, the nucleic acids described above wherein the protein or peptide is a cellulase or protease. In some embodiments, the nucleic acids described above wherein the nucleic acid further comprises one or more control sequences which permit stable maintenance of the nucleic acid as a vector in a non-Sulfolobus host cell. In some embodiments, the nucleic acids described above wherein the control sequence is a sequence comprising an origin of replication (ori) functional in Escherichia coli cells.

An Archaea host cell comprising the nucleic acid of the present invention stably integrated into the chromosome of the host cell. In some embodiments, the host cell described above wherein the nucleic acid of present invention as an extrachromosomal element in the host cell. In some embodiments, the host cell described above wherein the host cell is hyperthermophilic. In some embodiments, the host cell described above wherein the host cell is capable of growth or is viable at a temperature equal to or more than about 70° C., 75° C., 80° C., 85° C., or 90° C. In some embodiments, the host cell described above wherein the host cell is capable of growth or is viable at a temperature equal to 80° C. In some embodiments, the host cell described above wherein the host cell is acidophilic. In some embodiments, the host cell is capable of growth or is viable at a pH equal to or less than about 4.0, 3.5, 3.0, 2.5, or 2.0. In some embodiments, the host cell described above wherein the host cell is capable of growth or is viable at a pH within the range of from about 2.0 to about 6.0. In some embodiments, the host cell described above wherein the Archaea is of the kingdom Crenarchaeota. In some embodiments, the host cell described above wherein the Archaea is of the phylum Crenarchaeota. In some embodiments, the host cell described above wherein the Archaea is of the class Thermoprotei. In some embodiments, the host cell described above wherein the Archaea is of the order Sulfolobales. In some embodiments, the host cell described above wherein the Archaea is of the family Sulfolobaceae. In some embodiments, the host cell described above wherein the Archaea is of the genus Sulfolobus. In some embodiments, the host cell described above wherein the Archaea is Sulfolobus solfataricus, Sulfolobus islandicus, Sulfolobus acidocaldarius, Sulfolobus tokodaii, Metallosphaera yellowstonensis, Metallosphaera sedula, or Acidianus brierleyi. In some embodiments, the host cell described above wherein the nucleotide sequence of interest encodes a peptide, protein or RNA, and the peptide, protein or RNA is heterologous to the host cell.

A method of constructing the host cell of the present invention, comprising: (a) introducing a nucleic acid comprising: (i) a nucleotide sequence that is capable of stably integrating into the chromosome of a host cell that is an Archea or acidophilic hyperthermophilic eubacteria, and (ii) a nucleotide sequence of interest into an Archaea host cell, and (b) integrating the nucleic acid into a chromosome of the host cell or (c) maintaining the nucleic acid as an extrachromosomal element. In some embodiments, the method described above wherein the nucleic acid is a nucleic acid described above. In some embodiments, the method described above wherein the host cell is a host cell described above.

A method of expressing a peptide or protein or RNA of interest in an Archaea, comprising: (a) optionally constructing the nucleic acid of one of the present invention, (b) optionally introducing the nucleic acid into an Archaea host cell, (c) optionally integrating the nucleic acid into a chromosome of the host cell, (d) culturing the host cell in a suitable medium such that a peptide or protein or RNA of interest encoded in the nucleic acid is expressed, and (e) optionally isolating the peptide or protein or RNA from the host cell, (f) designing the nucleic acid such that a peptide or protein or RNA of interest encoded in the nucleic acid is targeted to the membrane, intrcellular or extracellular compartment and modified by glycosylation of other post-translational process as part of this cellular targeting. In some embodiments, the method described above wherein the peptide or protein of interest is a thermophilic enzyme, or enzymatically active fragment thereof, capable of catalyzing an enzymatic reaction. In some embodiments, the method described above wherein the peptide or protein of interest is a cellulase. In some embodiments, the method described above wherein the enzymatic reaction is an enzymatic degradation or catabolic reaction. In some embodiments, the method described above wherein the medium comprises a pretreated biomass. In some embodiments, the method described above wherein the nucleic acid is a nucleic acid described above. In some embodiments, the method described above wherein the host cell is a host cell described above.

REFERENCES CITED

  • 1. Jenney F E, Jr., Adams M W. The impact of extremophiles on structural genomics (and vice versa). Extremophiles: life under extreme conditions. 2008;12(1):39-50.
  • 2. Noll K M, Vargas M. Recent advances in genetic analyses of hyperthermophilic archaea and bacteria. Archives of microbiology. 1997;168(2):73-80.
  • 3. Allers T, Mevarech M. Archaeal genetics—the third way. Nature reviews Genetics. 2005;6(1):58-73.
  • 4. Lipscomb G L, Stirrett K, Schut G J, Yang F, Jenney F E, Jr., Scott R A, Adams M W, Westpheling J. Natural competence in the hyperthermophilic archaeon Pyrococcus furiosus facilitates genetic manipulation: construction of markerless deletions of genes encoding the two cytoplasmic hydrogenases. Applied and environmental microbiology. 2011;77(7):2232-8. PMCID: 3067412.
  • 5. Hopkins R C, Sun J, Jenney F E, Jr., Chandrayan S K, McTernan P M, Adams M W. Homologous expression of a subcomplex of Pyrococcus furiosus hydrogenase that interacts with pyruvate ferredoxin oxidoreductase. PloS one. 2011;6(10):e26569. PMCID: 3200332.
  • 6. Chandrayan S K, McTernan P M, Hopkins R C, Sun J, Jenney F E, Jr., Adams M W. Engineering Hyperthermophilic Archaeon Pyrococcus furiosus to Overproduce Its Cytoplasmic [NiFe]-Hydrogenase. The Journal of biological chemistry. 2012;287(5):3257-64. PMCID: 3270980.
  • 7. Bridger S L, Clarkson S M, Stirrett K, DeBarry M B, Lipscomb G L, Schut G J, Westpheling J, Scott R A, Adams M W. Deletion strains reveal metabolic roles for key elemental sulfur-responsive proteins in Pyrococcus furiosus. Journal of bacteriology. 2011;193(23):6498-504. PMCID: 3232869.
  • 8. Kurosawa N, Grogan D W. Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome: properties and uses. FEMS microbiology letters. 2005;253(1):141-9.
  • 9. Albers S V, Driessen A J. Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome. Archaea. 2008;2(3):145-9. PMCID: 2685593.
  • 10. Berkner S, Lipps G. Genetic tools for Sulfolobus spp.: vectors and first applications. Archives of microbiology. 2008;190(3):217-30.
  • 11. Albers S V, Jonuscheit M, Dinkelaker S, Urich T, Kletzin A, Tampe R, Driessen A J, Schleper C. Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus. Applied and environmental microbiology. 2006;72(1):102-11. PMCID: 1352248.
  • 12. Dworkin M, Falkow S. The prokaryotes: a handbook on the biology of bacteria. 3rd ed. New York; London: Springer; 2006.
  • 13. Jonuscheit M, Martusewitsch E, Stedman K M, Schleper C. A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector. Molecular microbiology. 2003;48(5):1241-52.
  • 14. Elferink M G, Schleper C, Zillig W. Transformation of the extremely thermoacidophilic archaeon Sulfolobus solfataricus via a self-spreading vector. FEMS microbiology letters. 1996;137(1):31-5.
  • 15. Cannio R, Contursi P, Rossi M, Bartolucci S. An autonomously replicating transforming vector for Sulfolobus solfataricus. Journal of bacteriology. 1998;180(12):3237-40. PMCID: 107829.
  • 16. Aucelli T, Contursi P, Girfoglio M, Rossi M, Cannio R. A spreadable, non-integrative and high copy number shuttle vector for Sulfolobus solfataricus based on the genetic element pSSVx from Sulfolobus islandicus. Nucleic acids research. 2006;34(17):e114. PMCID: 1635272.
  • 17. Leigh J A, Albers S V, Atomi H, Alters T. Model organisms for genetics in the domain Archaea: methanogens, halophiles, Thermococcales and Sulfolobales. FEMS microbiology reviews. 2011;35(4):577-608.
  • 18. Martin A, Yeats S, Janekovic D, Reiter W D, Aicher W, Zillig W. SAV 1, a temperate u.v.-inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12. The EMBO journal. 1984;3(9):2165-8. PMCID: 557659.
  • 19. Schleper C, Kubo K, Zillig W. The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(16):7645-9. PMCID: 49767.
  • 20. Martusewitsch E, Sensen C W, Schleper C. High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. Journal of bacteriology. 2000;182(9):2574-81. PMCID: 111323.
  • 21. Lubelska J M, Jonuscheit M, Schleper C, Albers S V, Driessen A J. Regulation of expression of the arabinose and glucose transporter genes in the thermophilic archaeon Sulfolobus solfataricus. Extremophiles: life under extreme conditions. 2006;10(5):383-91.
  • 22. Hopp T P, Prickett K S, Price V L, Libby R T, March C J, Cerretti D P, Urdal D L, Conlon P J. A Short Polypeptide Marker Sequence Useful for Recombinant Protein Identification and Purification. Bio-Technol. 1988;6(10):1204-10.
  • 23. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry. 1976;72:248-54.
  • 24. Brizzard B. Epitope tagging. BioTechniques. 2008;44(5):693-5.
  • 25. Yoon S H, Reiss D J, Bare J C, Tenenbaum D, Pan M, Slagel J, Moritz R L, Lim S, Hackett M, Menon A L, Adams M W, Barnebey A, Yannone S M, Leigh J A, Baliga N S. Parallel evolution of transcriptome architecture during genome reorganization.
  • Genome research. 2011;21(11):1892-904. PMCID: 3205574.
  • 26. Lund P. Insights into chaperonin function from studies on archaeal thermosomes. Biochemical Society transactions. 2011;39(1):94-8.
  • 27. Zhang Y, Buchholz F, Muyrers J P, Stewart A F. A new logic for DNA engineering using recombination in Escherichia coli. Nature genetics. 1998;20(2):123-8.
  • 28. Degryse E. Evaluation of Escherichia coli recBC sbcBC mutants for cloning by recombination in vivo. Journal of biotechnology. 1995;39(2):181-7.
  • 29. Trent J D, Kagawa H K, Yaoi T, Olle E, Zaluzec N J. Chaperonin filaments: the archaeal cytoskeleton? Proceedings of the National Academy of Sciences of the United States of America. 1997;94(10):5383-8. PMCID: 24687.
  • 30. Cannio R, D'Angelo A, Rossi M, Bartolucci S. A superoxide dismutase from the archaeon Sulfolobus solfataricus is an extracellular enzyme and prevents the deactivation by superoxide of cell-bound proteins. European journal of biochemistry/FEBS. 2000;267(1):235-43.
  • 31. Ursby T, Adinolfi B S, Al-Karadaghi S, De Vendittis E, Bocchini V Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: analysis of structure and thermostability. Journal of molecular biology. 1999;286(1):189-205.
  • 32. Szabo Z, Sani M, Groeneveld M, Zolghadr B, Schelert J, Albers S V, Blum P, Boekema E J, Driessen A J. Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus. Journal of bacteriology. 2007;189(11):4305-9.

The above references are hereby incorporated by reference.

It is to be understood that, while the invention has been described in conjunction with the preferred specific embodiments thereof, the foregoing description is intended to illustrate and not limit the scope of the invention. Other aspects, advantages, and modifications within the scope of the invention will be apparent to those skilled in the art to which the invention pertains.

All patents, patent applications, and publications mentioned herein are hereby incorporated by reference in their entireties.

The invention having been described, the following examples are offered to illustrate the subject invention by way of illustration, not by way of limitation.

EXAMPLE 1 Recombinant Acid/Heat Stable Cellulases in Sulfolobus solfataricus

Potential applications for acid/thermal-stable enzymes in industrial processes have long been recognized and initiated much interest in acidophilic and hyperthermophilic microbes such as the archaeal Sulfolobales. Here we report the development of an efficient and rapid means to produce recombinant acid/thermal-stable proteins that are highly resistant to detergent denaturation at high levels with Sulfolobus solfataricus. Building on previous works with Sulfolobus vectors, we have developed a PCR-based cloning approach to modify, express, target localization, and purify recombinant proteins from Sulfolobus solfataricus. Novel vectors are used here to generate over 80 Sulfolobus expression constructs with various affinity tags for detection, quantification, and purification. We define minimal promoters that can be incorporated into PCR primers to facilitate inducible protein expression over a >1500 fold range and yielding over 2.5 mg per liter of cell culture. Polycistronic co-expression of the alpha and gamma subunits of the thermosome yields protein levels approaching 5% of the total cell protein. We show recombinant protein localization to the intracellular, membrane, or extracellular compartments. An intracellular ATPase is efficiently targeted for secretion by inclusion of a small leader peptide. Finally, we use our vectors to generate active acid/heat stable cellulases that are highly glycosylated and secreted from Sulfolobus cells. We show the production of cellulolytic enzymes in Sulfolobus and degradation of lignocellulosic feedstocks with these enzymes. We also show production of xylose from plant xylan and glucose and xylan from raw switchgrass biomass in a single-step pretreatment-saccharification process. In addition we show the ability to mix multiple enzymes to alter the sugar products form plant lignocellulose in dilute sulfuric acid at high temperatures in these single-step pretreatment-saccharification reactions. These compsitions and methods have uses in industrial and bioenergy applications.

Construction of high-throughput expression vectors for Sulfolobus solfataricus. Vectors were built from established shuttle vectors and based on the Sulfolobus viral pathogen SSV1 (Martin, A., et al. SAV 1, a temperate u.v.-inducible DNA virus-like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12. The EMBO journal 3, 2165-2168 (1984); Schleper, C., Kubo, K. & Zillig, W. The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA. Proceedings of the National Academy of Sciences of the United States of America 89, 7645-7649 (1992)). The starting plasmid for this work was plasmid PMJ05, a derivative of the PMJ03 shuttle vector, which is effectively a pUC18 E. coli vector integrated into a SSV1 viral genome (Jonuscheit, M., Martusewitsch, E., Stedman, K. M. & Schleper, C. A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector. Molecular microbiology 48, 1241-1252 (2003); Martusewitsch, E., Sensen, C. W. & Schleper, C. High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements. Journal of bacteriology 182, 2574-2581 (2000)). The PMJ-vectors were designed with the PyrEF genes as selectable markers that complement uracil auxotrophy in the Sulfolobus PH1-16 strain (Albers, S. V., et al. Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus. Applied and environmental microbiology 72, 102-111 (2006)). Limited use of the PMJ05 and related plasmids for recombinant protein expression and tagging of proteins in Sulfolobus has been demonstrated (Albers, S. V., et al. (2006)). To expand recombinant capabilities in Sulfolobus, we first replaced the tf55 promoter and LacS genes with either the AraS or tf55 promoter from Sulfolobus and the Gateway® destination-cassette (Invitrogen) to generate the pSMY-A and pSMY-T vectors respectively (FIG. 1A). An additional vector was constructed by cloning the destination cassette into the same sites producing the promoter-less pSMY1 vector. All three vectors were propagated in E. coli, purified, and sequenced prior to further experimentation in Sulfolobus. For all experiments the pSMY vectors were electroporated into the PH1-16 strain of Sulfolobus and selected in liquid and on plates to validate vector stability and selectable marker function in Sulfolobus as previously described (Schleper, C., et al. (1992); Albers, S. V., et al. (2006)).

The strategy for cloning and tagging genes of interest into the pSMY Sulfolobus expression vectors involves; 1) PCR amplification and modification of target genes using primers encoding promoters and/or epitope fusion tags, 2) direct cloning of the PCR products using TOPO® vectors (Invitrogen), and 3) in vitro recombination of the genes of interest into the Sulfolobus expression vectors (FIG. 1B). Validated reaction products are then transferred into the uracil auxotrophic strain of Sulfolobus (PH1-16) by electroporation and selected in media lacking uracil. The entire cloning process nominally requires ten days from PCR reactions to detectable protein expression in Sulfolobus.

Construction of high-throughput expression vectors for Sulfolobus solfataricus. Vectors were built from established shuttle vectors and based on the Sulfolobus viral pathogen SSV1 (18, 19). The starting plasmid for this work was plasmid PMJ05, a derivative of the PMJ03 shuttle vector, which is effectively a pUC18 E. coli vector integrated into a SSV1 viral genome (13, 20). The PMJ-vectors were designed with the PyrEF genes as selectable markers that complement uracil auxotrophy in the Sulfolobus PH1-16 strain (11). Limited use of the PMJ05 and related plasmids for recombinant protein expression and tagging of proteins in Sulfolobus has been demonstrated (11). To expand recombinant capabilities in Sulfolobus, we first replaced the tf55 promoter and LacS genes with either the AraS or tf55 promoter from Sulfolobus and the Gateway® destination-cassette (Invitrogen) to generate the pSMY-A and pSMY-T vectors respectively (FIG. 1A). An additional vector was constructed by cloning the destination cassette into the same sites producing the promoter-less pSMY1 vector. All three vectors were propagated in E. coli, purified, and sequenced prior to further experimentation in Sulfolobus. For all experiments the pSMY vectors were electroporated into the PH1-16 strain of Sulfolobus and selected in liquid and on plates to validate vector stability and selectable marker function in Sulfolobus as previously described (11, 19).

The strategy for cloning and tagging genes of interest into the pSMY Sulfolobus expression vectors involves; 1) PCR amplification and modification of target genes using primers encoding promoters and/or epitope fusion tags, 2) direct cloning of the PCR products using TOPO® vectors (Invitrogen), and 3) in vitro recombination of the genes of interest into the Sulfolobus expression vectors (FIG. 1B). Validated reaction products are then transferred into the uracil auxotrophic strain of Sulfolobus (PH1-16) by electroporation and selected in media lacking uracil. The entire cloning process nominally requires ten days from PCR reactions to detectable protein expression in Sulfolobus.

Quantitative analysis of expression from inducible Sulfolobus promoters. Four different Sulfolobus promoter sequences were designed and evaluated to establish optimal promoters to regulate protein expression levels. The thermosome α subunit promoter (tf55) and the arabinose sugar transporter operon promoters (AraS) have been used previously for recombinant protein expression in Sulfolobus (11, 21). To simplify the addition of inducible promoters to genes of interest using PCR, we designed ‘minimal’ 61 nucleotide versions of the tf55 and AraS promoters (FIG. 2A). Expression vectors driven by the four varied promoters were constructed with identical FLAG-Sso0287 coding sequences to test promoter functions in Sulfolobus. The Sso0287 gene encodes a 68 kDa cytoplasmic protein with unknown cellular functions and has previously been expressed in Sulfolobus using a related viral vector (11) Immunoblotting was used to evaluate the relative expression and induction levels among these four constructs (FIG. 2B). The basal expression and inducibility of the various promoters was evaluated after 72 hours of growth under standard and inducing conditions (80 or 85° C. for tf55 constructs and +/−10 uM D-arabinose for AraS constructs). Both the full length and the ‘minimal’ AraS promoters were tightly controlled by D-arabinose under our experimental conditions (FIG. 2B). Notably, the minimal AraS promoter (61 base) appeared to have lower levels of baseline expression and higher expression after induction relative to the longer (303 base) AraS promoter. Likewise, the minimal tf55 promoter constructs appeared to have markedly higher expression levels than the larger promoter. In contrast to the AraS promoters, neither tf55 promoter showed inducible expression under our experimental conditions (FIG. 2B).

To further validate these results and establish whether promoters were the primary factor determining recombinant protein levels, we generated twelve additional expression constructs with four promoters driving three different genes. Constructs were generated for each of the four promoters described above, driving expression of; 1) RNA helicase (Sso1440), 2) cell division control protein 6 (cdc6) (Sso 0771), and 3) DNA polymerase subunit D (Sso0071). Sequence-validated constructs were electroporated into the Sulfolobus PH1-16 strain and protein levels evaluated by FLAG-immunoblots under inducing conditions (FIG. 2C). Protein levels for these 12 constructs were largely in concurrence with the FLAG-Sso0287 expression levels with the four promoters (FIG. 2B). More specifically, the relative expression levels under inducing conditions was; a>t>T≈A with relatively small variations between proteins (FIG. 2C). In nearly all cases Sso0771 protein had accumulated to greater levels than the other proteins, but the promoter appeared to be the principal determinant for protein levels in Sulfolobus. Notably, the 61-nucleotide AraS promoter retains inducibility and the smaller versions of both promoters show significantly higher expression than their larger counterparts. Such minimal promoters can likewise be derived from other genes and species for application to the production of hyper-stable proteins, RNAs and enzymes.

Recombinant protein yields greater than one milligram per liter in Sulfolobus. To quantify recombinant protein expression levels in Sulfolobus, three recombinant proteins (Sso0316, Sso0071, and Sso07710) were purified to near homogeneity using immunoaffinity chromatography and protein concentrations determined by Bradford assays (22, 23). Serial dilutions of pure proteins were used to establish the linear range of FLAG-immunoblot luminosity and molar protein amounts (FIG. 2D). Notably, all three FLAG-fusion proteins showed a consistent relationship between luminosity and molar protein amounts. Aliquots of purified FLAG-fusion protein standards were included on all subsequent immunoblots to calibrate luminosity to molar protein amounts. This approach was used to quantify protein expression levels of the Sso0287 protein driven by the promoters shown in FIG. 2B. The induction of Sso0287 protein was maximal under the control of the 61-nucleotide AraS promoter and was over 1500-fold relative to the control. Protein yields over 1.5 milligrams of protein per liter of Sulfolobus culture were observed (Table 1). Surprisingly, the control of protein expression was markedly greater for the minimal AraS promoter than the longer DNA sequences used previously (11).

TABLE 1 Promoter Induction Expression (ug/L) Fold Induction A 4.2 297.4 + 1243.9 a 1.0 1535.9 + 1576.5 T 33.6 1.7 + 57.6 t 635.1 1.0 + 632.8

Co-expression of multiple genes from polycistronic constructs. Many proteins function as members of assemblies and are transcribed and translated from single polycistronic mRNAs. Such proteins often show reduced stability and function when overexpressed as individual polypeptides and can be particularly difficult to produce in heterologous hosts such as E. coli. We therefore generated a polycistronic expression construct to evaluate protein co-expression with our vectors. The polycistronic Sso0888-0889 genes encode tryptophan synthase subunits beta and alpha respectively and were amplified from genomic DNA using PCR designed to add an inducible promoter and a Myc or FLAG epitope tag (24) to Sso0888 and Sso0889 respectively (FIG. 3A). The cloning and tagging strategy was identical that described above but in this case PCR primers encoded amino-terminal fused Myc tag on the first gene (Sso0888) and a carboxyl-terminal fused FLAG epitope on the downstream gene (Sso0889). This strategy permits simultaneous and exclusive detection of each gene product by immunoblotting. Like the individually expressed genes, the polycistronic genes 0888-0889 showed tightly controlled and inducible expression behind the minimal AraS minimal promoter with no evidence of Sulfolobus proteins being reactive with these antibodies (FIG. 3B).

To establish the general utility of this approach, three additional polycistronic operons were constructed; 1) the operon encoding the hypothetical proteins Sso0197 which has conserved kinase domains and Sso0198, 2) the operon encoding the DNA repair protein Sso2250 and the co-transcribed hypothetical gene Sso2251, and 3) the ferredoxin oxidoreductase subunits alpha and beta encoded by Sso2815 and Sso2816 respectively. These constructs all expressed recombinant tagged proteins from both members of the polycistronic messages at approximately equal levels (FIG. 3C). Together, these data show the feasibility of protein co-expression in Sulfolobus using these vectors.

Operons often rearrange but maintain co-regulation of functionally and physically associated proteins (25). Such cases result in subunits of assemblies located at distil locations in the genome. The Sulfolobus thermosome subunits are an example of noncontiguous genes encoding proteins that assemble into a functional molecule (26). To evaluate our ability to co-express non-contiguous genes from a synthetic polycistronic mRNA, an artificial polycistronic construct containing thermosome subunits alpha (Sso0282) and gamma (Sso3000) was constructed. PCR products from individually amplified/tagged genes were assembled into a single polycistronic expression construct using seamless cloning (Invitrogen) (27, 28). To ensure high-level expression of both subunits, a ribosomal binding site was inserted between the two open reading frames on the polycistronic construct. Thermosomes are among the most abundant constitutively expressed proteins in Sulfolobus and can account for nearly 5% of the total cellular protein (29). The abundant thermosome polypeptides migrate at similar rates and appear as a prominent doublet of protein bands in Sulfolobus crude extracts. Recombinant thermosome subunits alpha and gamma expressed from the synthetic polycistronic vector resulted in dramatically increased thermosome levels visualized by coomassie blue-stained SDS-PAGE (FIG. 3D, left) Immunoblots confirmed recombinant thermosome expression of both the alpha and gamma subunits (FIG. 3E, right). Both subunits were expressed at approximately equal levels that were much higher than the endogenous thermosome and therefore markedly greater than 5% of the total cell protein (29).

Native localization of overexpressed recombinant proteins in Sulfolobus. The Sulfolobus gene Sso0316 encodes and extracellular tetrameric iron superoxide dismutase (30, 31). An overexpression construct of Sso0316 was generated to investigate whether overexpressed recombinant proteins properly localized within cell or in this case, into the surrounding medium. As described above, superoxide dismutase was placed under the control of the 61-nucleotide minimal AraS promoter and fused to a carboxy-terminal FLAG epitope tag and transferred into the pSMY1 vector. Two intracellular genes encoding a DNA replication protein (Sso0771) and an RNA polymerase subunit (Sso0071) were likewise cloned and tagged as control proteins. Extracellular partitions of Sulfolobus cultures for these three constructs was evaluated after 72 hours of growth under inducing conditions. Cell-free media was collected from cultures and 90% saturating ammonium sulfate used to precipitate extracellular proteins. Extracellular precipitates of controls showed nearly equal amounts of precipitating protein but none recognized by the FLAG antibody (FIG. 4A). In sharp contrast, the media from cells carrying the Sso0316 expression constructs revealed a tightly controlled expression and extracellular accumulation of the recombinant superoxide dismutase (FIG. 4A). Notably, the SOD-FLAG protein was visible on the coomassie stained gel.

To ensure that protein overexpression in Sulfolobus did not cause protein accumulation in the media due to leakage or cell lysis, extracellular fractions from three cultures overexpressing different proteins were compared. Protein localization was compared between the extracellular superoxide dismutase (SOD, Sso0316) and the intracellular DNA polymerase subunit D (PolD, Sso0071) and cell division control protein 6 (cdc6, Sso0771) (FIG. 4B). Induced cultures were portioned into cellular and extracellular fractions and immunoblots used to visualize recombinant proteins in crude culture fractions. Cdc6, PolD, and SOD were clearly evident in the intracellular partitions (FIG. 4B, left panel). In marked contrast, the extracellular partitions from the same cultures show only detectable levels of SOD under inducing conditions (FIG. 4B, right panel).

Membrane Localization of overexpressed genes in Sulfolobus. Subcellular localization of proteins is often intimately linked to proper function. To further assess the localization of recombinant proteins within Sulfolobus we constructed a series of constructs expressing the subunits of the flagellin and pilin membrane assembly genes (FIG. 5A). Sulfolobus flagellin proteins are known and contain integral membrane protein FlaJ (Sso2315), an integral and extracellular protein FlaB (Sso2323), and the membrane-associated intracellular ATPase components FlaH and FlaI (Sso2318 and Sso2316) (32).

Production of Purification-Free and immobilized Enzyme products. The combination of polycictronic constructs and targeted localization can be combined to produce extracellular solutions with high-levels of desired enzymatic activities with minimal purification or without purification. The application of single and/or multiple simultaneous gene expression can produce post-translationally modified enzyme mixes accumulating in the media and that do not require purification. Either filtration or centrifugation of cells from these cultures yields active enzyme mixes. We have reduced this to practice with single enzyme production where only concentration of the extracellular media is sufficient to produce active enzyme preparations (FIGS. 4-6). In addition, we have demonstrated the capability to target assembly of immobilized enzymes both integral and associated with host membranes for future applications. Such membrane targeting and assembly could be used for industrial applications to immobilize active heat/acid/detergent stable enzymes onto engineered organic and inorganic surfaces and/or immobilized membrane rafts to be applied to industrial processes.

Enzymatic saccharification and pre-treatment in the same dilute sulfuric acid and temperature conditions. Standard pretreatment conditions for lignocellulosic biomass use sulfuric acid concentrations of 0.275-0.8% (v/v) acid and a temperature of 121° C. or greater. Here we establish a pretreatment regimen compatible with Sulfolobus growth conditions with 0.025% (v/v) sulfuric acid and 80° C. and demonstrate that enzymatic saccharification of raw plant biomass is comparable to yields with the harsher treatments (FIG. 9). Solutions of 10% (m/v) pulverized switchgrass were made up in Sulfolobus growth media with either 0.025% or 0.025% sulfuric acid. The pretreatments were either 121° C. for 60 minutes or 80° C. for 10 hours. Saccharification to xylobiose was quantified after a 15-hour reaction with the noted Sulfolobus enzymes at 80° C. Sugar yields are from standard (0.25%, 121° C.) and the low-temp/low-acid pretreatments conditions (0.025%, 80° C.) are comparable with Sulfolobus enzymes (FIG. 9). These data reveal that pretreatment of lignocellulosic feedstocks in Sulfolobus growth conditions (80° C., and 0.025% sulfuric acid) is compatible with; 1) pretreatment, 2) enzymatic saccharification using heat/acid stable enzymes expressed in Sulfolobus, and 3) Sulfolobus cell growth.

Cellulase stability in detergents. Thermal and acid stable cellulase also have a high degree of stability in various detergents (FIG. 10).

The biodiversity available for exploitation has been partly limited by the availability of genetically tractable model organisms to express and purify proteins. The development of genetic tools to complement well-established model organisms like E. coli and yeast systems holds promise to expand our understanding and application of extremophiles and extremophilic proteins for industrial, ecological, and energy applications.

EXAMPLE 2 Recombinant Acid/Heat Stable Proteases in Sulfolobus solfataricus

We have isolated active acid and heat stable extracellular protease from Sulfolobus solfataricus. The enzyme is an active protease in the 0.025-0.25% v/v H2SO4 at 80° C. isolated from the extracellular fraction of active cell cultures (FIG. 9). In some embodiments, the protease is fused to an epitope or other purification tags such as polyhistidine or FLAG among others targeted to the extracellular compartment as described herein. These enzymes can be produced recombinantly in Archaea as described herein.

While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.

Claims

1. An expression vector to express a protein of interest in a host cell, wherein the protein of interest is biologically active at a temperature equal to or more than about 70° C. and/or a pH equal to or less than about 4.0, and wherein the host cell is an Archaea or acidophilic or hyperthermophilic microbe, generated by a method comprising:

amplifying a gene encoding the protein of interest to be expressed in the host cell using a primer that comprises a sequence of a minimal promoter from Sulfolobus that retains inducible characteristics and regulatory sites to obtain an amplification product comprising the minimal promoter operably linked to the gene encoding the protein of interest, and sequences for cloning the product into a recombination vector, wherein the minimal promoter is an AraS or tf55 promoter from Sulfolobus;
introducing the amplification product into the recombination vector, wherein the recombination vector comprises recombination sites for recombination with a destination cassette; and
integrating the amplification product into a destination vector that comprises the destination cassette, an integration sequence of a Fusellovirus that infects Sulfolobus species, a nucleic acid sequence that encodes a selectable marker, and an origin of replication that permits stable maintenance of a vector in a non-Sulfolobus host cell; wherein integrating the amplification product into the destination vector comprises performing an in vitro recombination reaction to recombine the amplification product in the recombination vector with the destination cassette, thereby generating an expression vector that comprises the integration sequence of the Fusellovirus, the nucleic acid sequence encoding the selectable marker, the origin of replication, and the minimal promoter operably linked to the gene that encodes the protein of interest, wherein the minimal promoter operably linked to gene of interest replaces the destination cassette following the in vitro recombination reaction.

2. The expression vector of claim 1, wherein the minimal promoter is an AraS promoter from Sulfolobus.

3. The expression vector of claim 1, wherein the minimal promoter has the nucleic acid sequence of SEQ ID NO:13 or SEQ ID NO:14.

4. The expression vector of claim 1, wherein the nucleic acid sequence that encodes the selectable marker is a PyrEF gene.

5. The expression vector of claim 1, wherein the Fusellovirus is a Sulfolobus spindle-shaped virus.

6. The expression vector of claim 5, wherein the Sulfolobus spindle-shaped virus is SSV1, SSV2, SSV3, SSVL1, SSVK1, or SSVRH.

7. The expression vector of claim 6, wherein the integration sequence comprises the nucleotide sequence of any one of SEQ ID NOS:1-9.

8. The expression vector of claim 1, wherein the gene encoding the protein of interest to be expressed in the host cell is a subunit of a polycistronic construct comprising the gene and an open reading frame encoding a further protein of interest, wherein a ribosomal binding site is present between the gene and the open reading frame encoding the further protein of interest.

9. The expression vector of claim 1, wherein the protein of interest is stable when expressed at a temperature equal to or more than about 75° C., 80° C., 85° C., or 90° C.; or a pH equal to or less than about 4.0, 3.5, 3.0, 2.5, or 2.0.

10. The expression vector of claim 1, wherein the protein of interest is glycosylated in order to be biologically active.

11. The expression vector of claim 1, wherein the protein of interest is an enzyme.

12. The expression vector of claim 11, wherein the enzyme is a cellulase, protease, glycoside hydrolase, xylanase, endoglucanase, cellobiohydrolase, or β-glucosidase (BG).

13. The expression vector of claim 1, wherein the gene encoding the protein of interest further comprises a sequence encoding an export peptide signal at the 5′ end of the protein-encoding sequence.

14. The expression vector of claim 13, wherein the export peptide signal comprises an amino acid sequence encoded by an XPO or SP nucleotide sequence; or encoded by a nucleotide sequence of SEQ ID NO:17, 18, 19, 20, or 21.

15. The expression vector of claim 1, wherein the origin of replication permits stable maintenance of a vector in Escherichia coli cells.

16. An Archaea or acidophilic or hyperthermophilic microbe host cell comprising the expression vector of claim 1 stably integrated into the chromosome of the host cell.

17. The host cell of claim 16, wherein the host cell is a hyperthermophilic microbe host cell.

18. The host cell of claim 16, wherein the host cell grows or is viable at a temperature equal to or more than about 70° C., 75° C., 80° C., 85° C., or 90° C.

19. The host cell of claim 18, wherein the host cell grows or is viable at a temperature equal to 80° C.

20. The host cell of claim 16, wherein the host cell grows or is viable at a pH equal to or less than about 4.0, 3.5, 3.0, 2.5, or 2.0.

21. The host cell of claim 20, wherein the host cell grows or is viable at a pH within the range of from about 2.0 to about 3.0.

22. The host cell of claim 16, wherein the protein of interest is glycosylated in order to be biologically active.

23. The host cell of claim 16, wherein the Archaea is of the kingdom Crenarchaeota, the phylum Crenarchaeota, the class Thermoprotei, the order Sulfolobales, or the family Sulfolobaceae.

24. The host cell of claim 23, wherein the Archaea is of the genus Sulfolobus.

25. The host cell of claim 23, wherein the Archaea is Sulfolobus solfataricus, Sulfolobus islandicus, Sulfolobus acidocaldarius, Sulfolobus tokodaii, Metallosphaera yellowstonensis, Metallosphaera sedula, or Acidianus brierleyi.

26. The host cell of claim 16, wherein the protein of interest is heterologous to the host cell.

27. A method of constructing a host cell comprising: (a) introducing the expression vector of claim 1 into a host cell that is an Archeae or acidophilic or hyperthermophilic microbe, and (b) integrating the nucleic acid into a chromosome of the host cell.

28. A method of producing a protein of interest, comprising incubating the host cell of claim 26 under conditions in which the protein of interest is expressed.

29. The method of claim 28, further comprising isolating the protein of interest from the host cell.

30. The method of claim 28, wherein the protein of interest is a thermophilic enzyme, or enzymatically active fragment thereof, that catalyzes an enzymatic reaction.

31. The method of claim 30, wherein the enzyme is a cellulase, protease, glycoside hydrolase, xylanase, endoglucanase, cellobiohydrolase, or β-glucosidase (BG).

32. The method of claim 30, wherein the enzyme catalyzes an enzymatic degradation or catabolic reaction.

33. The method of claim 28, wherein the protein of interest is glycosylated in order to be biologically active.

Referenced Cited
U.S. Patent Documents
8580543 November 12, 2013 Burk et al.
20070134201 June 14, 2007 Schleper
20100209986 August 19, 2010 Liao et al.
Foreign Patent Documents
20080055552 June 2008 KR
2012/064195 May 2012 WO
Other references
  • GenBank Accession No. AE006641 (Apr. 24, 2001).
  • Bouabe et al., Nucleic Acids Research, 2008, 36(5):1-9.
  • Albers et al., “Conditions for gene disruption by homologous recombination of exogenous DNA into the Sulfolobus solfataricus genome,” Archaea, 2:145-149 (2007).
  • International Search Report and Written Opinion from PCT/US2013/071328, dated Feb. 27, 2014.
  • Albers, et al., “Production of Recombinant and Tagged Proteins in the Hyperthermophilic Archaeon Sulfolobus solfataricus,” Applied and Environmental Microbiology, 72(1):102-111 (Jan. 2006).
  • Barthelme, et al., “Structural Organization of Essential Iron-Sulfur Clusters in the Evolutionarily Highly Conserved ATP-binding Cassette Protein ABCE1,” Journal of Biological Chemistry, 282(19):14598-14607 (2007).
  • Extended European Search Report from European Patent Application No. 13856207.9, dated Jun. 30, 2016.
  • Ghosh, et al., “Archaeal flagellar ATPase motor shows. ATP-dependent hexameric assembly and activity stimulation by specific lipid binding,” Biochem. J., 437:43-52 (2011).
  • Jonuscheit, et al., “A reporter gene system for the hyperthermophilic archaeon Sulfolobus solfataricus based on a selectable and integrative shuttle vector,” Molecular Microbiology, 48(5):1241-1252 (2003).
  • Peng, “Evidence for the horizontal transfer of an integrase gene from a fusellovirus to a pRN-like plasmid within a single strain of Sulfolobus and the implications for plasmid survival,” Microbiology, 154:383-391 (2008).
  • Pisani, et al., “Thermostable Beta-galactosidase from the archaebacterium Sulfolobus solfataricus Purificationa nd properties,” Eur. J. Biochem., 187:321-328 (1990).
  • Stedman, et al., “Genetic Requirements for the Function of the Archaeal Virus SSV1 in Sulfolobus solfataricus: Construction and Testing of Viral Shuttle Vectors,” Genetics, 152: 1397-1405 (Aug. 1999).
  • Peng, “An upstream activation element exerting differential transcriptional activation on an archaeal promoter,” Molecular Microbiology, 74(4) pp. 928-939 (2009).
Patent History
Patent number: 10066223
Type: Grant
Filed: Nov 21, 2013
Date of Patent: Sep 4, 2018
Patent Publication Number: 20150291948
Assignee: The Regents of the University of California (Oakland, CA)
Inventors: Steven M. Yannone (Concord, CA), Adam Barnebey (Berkeley, CA)
Primary Examiner: Nicole Kinsey White
Application Number: 14/646,673
Classifications
Current U.S. Class: Genetically Modified Micro-organism, Cell, Or Virus (e.g., Transformed, Fused, Hybrid, Etc.) (424/93.2)
International Classification: C12N 15/74 (20060101); C12N 9/42 (20060101);