Device including encrypted data for expiration date and verification value creation

In order to make it more difficult to obtain numbers that can be used to conduct fraudulent transactions, a portion of a real account number is encrypted. The encrypted portion of the account number is used to generate a new account number, a new expiration date, and a new verification value. This information can be determined using processor that may reside in a point of sale terminal, a smart card, or a computer operated by a user. The new account number, the new expiration date, and the new verification value can be used in a payment transaction. A server computer in a central payment processing network may determine that the new account information is not the real account information, and may subsequently generate a modified authorization request message using the real account information and may send it to an issuer for approval. The transmission of data is more secure, since real account information is not sent from the merchant to the payment processing network.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 12/778,638 filed on May 12, 2010, which is a non-provisional of and claims the benefit of the filing date of U.S. Patent Application No. 61/179,970, filed on May 20, 2009, both of which are herein incorporated by reference in their entirety for all purposes.

BACKGROUND

There is a need for more secure data transfer when paying for goods and services using payment cards such as debit, credit, and stored value cards.

In a typical payment transaction, a user may use a credit card to purchase an item at a merchant. The user may swipe his credit card through a POS (point of sale) terminal, and the POS terminal may generate an authorization request message including the account number, expiration date, and card verification value (CVV) associated with the credit card. The authorization request message may pass to the issuer of the credit card, and the issuer may approve or deny the request to authorize the transaction.

If information such as the account number, expiration date, and card verification value is obtained by an unauthorized person, the unauthorized person could potentially purchase goods and services using the obtained information. Such information could theoretically be intercepted by the unauthorized person during a transaction (e.g., as the account information passes from the merchant to the payment processing network) or it could be surreptitiously obtained from the card while it is with the authorized user.

There is a need for improved data security systems. Embodiments of the invention address these and other problems, individually and collectively.

BRIEF SUMMARY

Embodiments of the invention can alter account information such as an expiration date and/or verification value (e.g., CVV or CVV2) to protect account information.

In some embodiments, in order to make it more difficult to obtain numbers that can be used to conduct fraudulent transactions, a portion of a real account number associated with a payment card can be encrypted. Different segments of the encrypted portion of the real account number can be used to create a new expiration date, a new verification value (e.g., a CVV2 value), and a new account number. The new expiration date, the new verification value, and the new account number can comprise new account information, which can be used instead of real account information to conduct payment transactions.

In some embodiments, when a payment transaction is conducted using the new account information and the payment card, an authorization request message may be generated and the new account information may be sent to a server computer in a payment processing network. The server computer can determine that the received new account information is not the real account information. It can subsequently determine the real account information (including the real account number, the real expiration date, and the real verification value) from the new account information. If the server computer does not make the authorization decision, a modified authorization request message may be generated and then sent to an issuer that issued the real account information. The issuer can then approve or deny the transaction authorization request.

One embodiment of the invention is directed to a method comprising encrypting, using a processor, a portion of a first account number to form an encrypted portion, the first account number being associated with a first expiration date and a first verification value. The method also includes determining a second expiration date or a second verification value using a segment of the encrypted portion.

Another embodiment of the invention is directed to a computer readable medium comprising code, executable by a processor, for implementing a method comprising: encrypting, using a processor, a portion of a first account number to form an encrypted portion, the first account number being associated with a first expiration date and a first verification value; and determining a second expiration date or a second verification value using a segment of the encrypted portion.

Another embodiment of the invention is directed to a method comprising: receiving an initial authorization request message comprising a second account number, and at least one of a second expiration date and a second verification value. After the second account number and at least one of the second expiration date and the second verification value are received, a server computer can determine a first account number, a first expiration date, and a first verification value from the second account number. A modified authorization request message including the first account number, the first expiration date, and the first verification value can be sent to an issuer. The first verification value is different than the second verification value and the first expiration date is different than the second expiration date.

These and other embodiments of the invention are described in further detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a flowchart illustrating a method according to an embodiment of the invention.

FIG. 2 shows schematic diagram illustrating how a second account number, a second date, and a second verification value can be formed in an embodiment of the invention.

FIG. 3 shows a block diagram of a system.

FIG. 4 shows a block diagram of parts of a payment processing system.

FIG. 5 shows a flowchart illustrating a process for using a second account number, a second expiration date, and a second verification value.

FIG. 6 shows a block diagram of components in a computer apparatus according to various embodiments.

FIGS. 7 and 8 show block diagrams illustrating components in consumer devices according to various embodiments.

DETAILED DESCRIPTION

Embodiments of the invention provide for methods and systems for generating a verification value such as a CVV or CVV2 value, a new second account number, and a new second expiration date from first real account information including a real first account number. Embodiments of the invention can be used for both card present and card-not-present (CNP) transactions.

Embodiments of the invention have a number of advantages. Embodiments of the invention are able to maintain or improve existing user experiences, minimize the impact on merchant processes/systems, leverage existing network data transport mechanisms, utilize an existing issuer validation infrastructure, support multiple forms of implementation, and maintain consistency with a broader authentication strategy. Further, because authentication elements such as expiration dates and the verification values associated with a payment card can change in embodiments of the invention and otherwise appear to be normal to unauthorized persons and can use an encryption process that is not known to the general public, it is difficult, if not impossible, for an unauthorized person to obtain the real account information associated with the user's payment card.

FIG. 1 shows a flowchart illustrating a method according to an embodiment of the invention. The method may be performed by any suitable device (or processor therein), including a device that is located at the transaction site. The device may be operated by a merchant or a user (or consumer).

Referring to FIG. 1, a real first account number can be determined by a processor (step 102). The first account number could be a real first account number associated with a payment card such as a debit or credit card. It may include any suitable number of digits or characters (e.g., 12, 16, 18, etc.). The first account number may be associated with other first account information including an expiration date and a verification value.

The verification value may be a CVV (card verification value) value. There can be two types of CVV values. The first, called CVC1 or CVV1, is encoded on the magnetic stripe of a payment card. The second, called CVC2 or CVV2, is printed on the payment card.

The CVV1 code is used for “in person” transactions, where the consumer using the payment device is physically present at the time of purchase. The consumer hands the merchant his payment card, and the merchant swipes it through a point of sale terminal. Information stored on the magnetic stripe, including the CVV1 code, is read from the magnetic stripe and transmitted to an authenticating entity (e.g., an issuer or a payment processing organization such as Visa) in a purchase transaction for verification (authentication).

However, transactions over the Internet, by mail, fax or over the phone cannot be verified using the CVV1 code. For these so-called “card not present” (CNP) transactions, the merchant will use the CVV2 code to confirm that the consumer is in possession of the authentic card by asking the consumer to state the code over the phone (in a phone transaction) or enter it into a Web page (in an Internet transaction). The CVV2 code is used to authenticate the purchase transaction by comparing the code supplied by the consumer against the code that is stored in a cardholder database at a payment processor facility. If the purchase transaction is authenticated, then an authorization request is sent to the issuer of the card to approve or deny the purchase.

A portion of the first account number can then be encrypted by the processor to form an encrypted portion (step 104). Any suitable number of digits in the first account number may be encrypted using any suitable encryption algorithm. For example, a middle portion of the first account number (e.g., digits 2-11 sixteen digit account number) may be encrypted using an encryption algorithm such as DES or triple DES. Other types of encryption algorithms may be used in other embodiments of the invention.

A first segment of the encrypted portion of the first account number may then be selected by the processor (step 106). Any suitable number of digits may be present in the first segment, and any suitable portion of the encrypted portion may form the first segment.

Then, the first encrypted portion segment is then mapped to a second expiration date using the processor (step 108). The mapping of the second expiration date to the first encrypted portion segment may occur in any suitable manner. For example, if the first encrypted portion includes two digits, then the numbers from 0-99 in those two digits can be mapped to various expiration dates corresponding to a month (e.g., a number from zero to twelve) and a year (e.g., a two digit number representing a year).

Before or after the first encrypted portion segment is determined by the processor, a second encrypted portion segment of the encrypted portion is used by the processor to determine a second verification value (step 110). The second encrypted portion could be mapped to different verification values stored in a local or remote database, or it could simply be a representation of a new verification value. In the latter case, for example, if the second encrypted portion is “191,” then the new second verification value is also “191.”

Before or after the first and second encrypted portion segments are determined and/or processed by the processor, a third encrypted portion segment can be determined by the processor. A second account number can then be formed from the third encrypted portion segment (step 112). In the formation of the new second account number, the third encrypted portion segment can be inserted into the middle of a new second account number. In addition to the middle portion comprising the third encrypted portion segment, the new second account number may comprise a signal segment and a segment that is from the real first account number. For example, the second account number may be “4000001234569876.” “40000” may be a signal segment, “123456” may be the third encrypted portion segment, and “9876” may be a segment that is unchanged from the real first account number.

The segment that is from the real first account number may be the last four digits of the real account number. It is desirable to keep the last four digits of the real first account number and the new second account number the same, so that the user does not sense that anything is different. For example, when the user receives a receipt for a purchase transaction, the receipt will include the last four digits of the real account number and also the new account number. Typically, only the last four digits of an account number are shown on a purchase receipt, so the user does not see the change in account number and may not notice a difference.

As a result of steps 102, 104, 106, 108, 110, and 112, new second account information can be used by a consumer in a payment transaction. The use of the new second account information is described in further detail below.

In a detailed example illustrating steps 102, 104, 106, 108, 110, and 112, a processor in a smartcard or a POS terminal can determine an existing first account number associated with a payment card and can encrypt a portion of it. In some embodiments, the encryption process may not use dynamic data so the encrypted portion and the second account information derived from it may be used in all transactions conducted with the payment card. However, in other embodiments which are described below, the encrypted portion may be formed using dynamic data such as a date or counter, so that the encrypted portion and consequently the second account information changes periodically (e.g., with every transaction).

The processor can use the encrypted portion to create a new second account number, second expiration date, and second verification value such as a second CVV2 value. For example, an exemplary real first account number could be “4234561234567890,” and a new second account number can be generated. The second account number could take the form “40000xxxxxx7890,” where the last 4 digits of the second account number are the same as the last four digits of the real first account number. The number “40000” can be a signal segment that can alert a server computer in a payment processing network that the account number is not the real account number and that a decryption process needs to be performed. To fill in the digits “xxxxxx,” the processor can take the eleven digits “23456123456” from the real first account number and can apply a DES encryption algorithm (or any other suitable encryption algorithm) and decimalize it to obtain a new eleven digit number. The processor could then take six of these numbers and plug them into the digits “xxxxxx” in the new second account number above. Two of the numbers may be mapped to a four digit expiration date, and the remaining three numbers can be used as a new CVV or CVV2 value. If it is a CVV2 value, then the new CVV2 value would be displayed or otherwise provided to the user so that the user could provide this information to the merchant in a transaction. The new CVV2 value could be displayed on the user's phone, computer, or other device.

FIG. 2 shows a block diagram illustrating how data is transformed according to embodiments of the invention using other information. Some of the illustrated blocks in FIG. 2 represent blocks of data that may be stored and manipulated in a computer-readable medium, which may be embodied by one or more memory devices. Some of the blocks in FIG. 2 represent various transformations that may take place on the data. The embodiments described with respect to FIG. 2 also include the use of “other information” in the encryption process. The “other information” may include other information that is personal to the user, keys, or dynamic data such as dates, counters, and the like.

Referring to FIG. 2, first account information may include a first account number 210, and may be a primary account number (PAN) that is 16 digits in length. Account numbers of other sizes could be used in embodiments of the invention. The first account number may correspond to a real account number associated with a consumer's payment card. Other first account information may include a first verification value and a first expiration date associated with the payment card.

Other information 220 can represent other data that may be used in combination with first account information 210 according to various embodiments. According to some embodiments, other information 220 can include data that changes on a regular basis. For example, other information 220 might include the current date, counter, the price of a transaction, information that is specific to a merchant, etc. The “other information” may be time dependent in nature, or location or merchant specific.

The other information may also include suitable encryption keys, including symmetric and asymmetric keys, that may be used with the encryption function 230. Suitable symmetric keys may include UDKs (“unique derived keys”). Such keys may be derived from user information such as the user's account number, birthday, social security number, etc., so that each key is unique to a particular user or payment card. The key and encryption algorithm may be previously loaded into the user's portable consumer device (e.g., a smartcard, phone, etc.).

Encryption function 230 can be a function that can take inputs, such as the first account number 210 and the other information 220, and transform the inputs into another value. For example, a portion of the first account number 220 can be encrypted. The output of the encryption function 230 can be represented by an encrypted portion 240. Any suitable encryption function including a DES or triple DES encryption functions can be used in embodiments of the invention.

Segments of the encrypted portion 240 can be used to form the second account information. For instance, the mapping function 250 can map a first segment of the encrypted portion 240 to a month and year value. The month and year value might be used as an expiration date for a credit or debit account in a transaction. The expiration date may be a dynamic second expiration date 270.

Other second account information may be determined from the encrypted portion 240. For example, a new dynamic second verification value 260 can be formed from a second encrypted portion segment of the encrypted portion 240. In another example, a new dynamic second account number 280 can be formed with a third encrypted portion segment.

As illustrated in FIG. 2, the new dynamic second account number 280 can be been broken up into three distinct segments including a static signal segment 281, an encrypted account number segment 282, and actual account number digits 283.

According to one embodiment, a new dynamic second verification value 260, a second dynamic account number 280, and a second dynamic expiration date 270 are created from a consumer's first account number 210 by first selecting the digits from the consumer's account number 210 that can serve as the basis for the dynamic numbers. In FIG. 2, the first twelve numbers of the first account number 210 are selected. Other embodiments may use a different combination of numbers from the first account number 210.

Once digits from the first account number 210 have been selected, other information 220 is selected that will be used to help create the second dynamic card verification value 260, the second dynamic account number 280, and the second dynamic expiration date 270. According to one embodiment, at least a portion of the other information 220 is selected so that both the entity encoding the data (e.g., a processor in a POS terminal, a smartcard, etc.) and the entity decoding the data (e.g., a processor in a server computer remotely located from the point of sale) will know the value of the other information 220 without explicitly transmitting the other information 220 between the entities. For example, the current date could be used as a part of the other information 220. The entities encoding and decoding the data can have a mutual understanding that the other information 220 will comprise at least the current date, and both parties can use this information appropriately. Alternatively or additionally, the other information 220 may use a mutually agreed upon piece of data that will be transmitted as a part of a transaction. For example, the other data might include the price of the transaction or a merchant ID number. Many other possibilities for the value of the other information 220 also exist.

Once portions of the account number 210 and the other information 220 are selected, the encryption function 230 can be used to encrypt the portions of the account number 210 using other information 220 to produce the encrypted portion 240. The encrypted portion 240 can then be used, potentially along with other data, to generate the dynamic second account number 280, the dynamic second expiration date 270, and the dynamic second verification value 260.

In the embodiment illustrated in FIG. 1, a second dynamic account number 280 is created as a combination of a number of pieces of data. A static signal segment 281 can be inserted into the second dynamic account number 280 and can be used to communicate information about how the data was encoded. For example, a static signal segment 281 comprising “11111” might indicate to an authenticating entity that the received account number is not the real first account number, but is a new second account number. Alternatively or additionally, the static signal 281 might indicate additional information about the information that is transmitted, such as the encryption function 230 that was used, the type of other information used 220, how the dynamic data 240 was used to populate the various dynamic fields, etc.

The second dynamic account number 280 can also use segments of the encrypted portion 240. In the embodiment illustrated in FIG. 2, the first seven digits of the encrypted portion 240 is inserted into the middle of the dynamic account number 282. In some embodiments, this insertion of data helps to insure that the dynamic account number 280 changes on a regular basis for a given account number 210.

The second dynamic account number 280 may also contain portions of the actual first account number 210. For example, in the embodiment illustrated in FIG. 2, the last four digits of the actual account number 210 are placed at the end of the dynamic account number 283.

Portions of the encrypted portion 240 can also be used to create a dynamic second expiration date 270. In the example shown in FIG. 2, the 8th and 9th digits of the encrypted portion 240 are used as the input into a function that maps the 8th and 9th digits to an expiration date. For example, the 8th and 9th digits, taken together, might correspond to a number range spanning “00” to “99.” Each of these 100 different values can then be mapped to a specific month and year combination that might be used as an expiration date.

Portions of the encrypted portion 240 can also be used as a dynamic CVV2 value 260 (or other verification value). As shown in FIG. 2, the last three digits of the encrypted portion 240 are used as the CVV2 value 260.

Once the dynamic account number 280, dynamic expiration date 270, and dynamic CVV2 260 have been created, this dynamically generated data can be used as the payment data used to conduct a transaction. The dynamically generated data can thus take the place of the actual first account number 210, first expiration date, or first CVV2 value associated with the payment card of the consumer. Note that in some embodiments, the real account information such as the real account number may be displayed to the user (e.g., embossed on a card), but the second derived account information may not be visible or displayed to the user, but may be transmitted to the issuer instead of the real first account information.

An entity wishing to decode the actual first account number 210 for an account from the dynamically generated data (e.g., a server computer in a payment processing network or at an issuer), would typically need to know how the dynamic account number 280, dynamic expiration date 270, and dynamic CVV2 field 260 were created in order to extract the actual information out of the dynamic fields. An entity that knows precisely how the dynamic data is generated could undo the transformation to extract the actual first account number 210, but any entity that did not know how this information was assembled would not be able to extract useable account data out of the dynamic data. Furthermore, the dynamic data could regularly change for each use of the account number, based on how the other information 220 changed.

The embodiment illustrated in FIG. 2 can have many different variations as will be apparent to one skilled in the art. For example, the precise manner in which the encrypted portion 240 is used to populate the dynamic fields, or the precise digits from the first account number 210 used to create the encrypted portion 240 can all be varied according to various embodiments.

The processes described above may be implemented by a processor in a portable consumer device (e.g., a payment card), access device, or any other device involved in a transaction. The steps of the methods that are described above may be carried out by a processor executing computer-executable code residing on a computer-readable medium in any one of these devices.

I. Exemplary Systems

A system according to an embodiment of the invention is shown in FIG. 3.

FIG. 3 shows a system 20 that can be used in an embodiment of the invention. The system 20 includes a merchant 22 and an acquirer 24 associated with the merchant 22. In a typical payment transaction, a consumer such as user 30 may purchase goods or services at the merchant 22 using a portable consumer device such as portable consumer device B 32-2 (or portable consumer device A 32-1 or consumer device 32-3). The user 30 may be an individual, or an organization such as a business that is capable of purchasing goods or services. The acquirer 24 can communicate with an issuer 28 via a payment processing network 26.

As used herein, an “issuer” is typically a business entity (e.g., a bank) which maintains financial accounts for the user and often issues a portable consumer device such as a credit or debit card to the user. A “merchant” is typically an entity that engages in transactions and can sell goods or services. An “acquirer” is typically a business entity (e.g., a commercial bank) that has a business relationship with a particular merchant or other entity. Some entities can perform both issuer and acquirer functions. Embodiments of the invention encompass such single entity issuer-acquirers.

In FIG. 3, user 30 can use one or more different types of portable consumer devices including consumer device A 32-1 and portable consumer device B 32-2. In one example, consumer device A 32-1 may be in the form of a phone, while portable consumer device B 32-2 may be in the form of a card. The consumer device A 32-1 may consequently be used to communicate with the issuer 28 via a telecommunications gateway 60, a telecommunications network 70, and a payment processing network 26. The different consumer devices A 32-1 and B 32-2 could be linked to the same issuer account number, or could be linked to respectively different issuer account numbers. User 30 may also use a consumer device 32-3 such as a personal computer to communicate with the payment processing network 26 and/or the merchant 22 via the Internet 72.

The consumer devices according to embodiments of the invention may be in any suitable form. In some embodiments, the consumer devices are portable in nature and may be portable consumer devices. Suitable portable consumer devices can be hand-held and compact so that they can fit into a user's wallet and/or pocket (e.g., pocket-sized). They may include smart cards, ordinary credit or debit cards (with a magnetic strip and without a microprocessor), keychain devices (such as the Speedpass™ commercially available from Exxon-Mobil Corp.), etc. Other examples of portable consumer devices include cellular phones, personal digital assistants (PDAs), pagers, payment cards, security cards, access cards, smart media, transponders, and the like. The portable consumer devices can also be debit devices (e.g., a debit card), credit devices (e.g., a credit card), or stored value devices (e.g., a stored value card).

Each consumer device may comprise a body, and a memory comprising a computer readable medium disposed on or within the body. In addition, the consumer device may also include a processor coupled to the memory, where greater functionality and/or security are desired. The computer readable medium may comprise code, executable by a processor, for implementing a method comprising: encrypting, using a processor, a portion of a first account number to form an encrypted portion, the first account number being associated with a first expiration date and a first verification value; and determining a second expiration date or a second verification value using a segment of the encrypted portion.

The payment processing network 26 may include data processing subsystems, networks, and operations used to support and deliver authorization services, exception file services, and clearing and settlement services. An exemplary payment processing network may include VisaNet™. Payment processing networks such as VisaNet™ are able to process credit card transactions, debit card transactions, and other types of commercial transactions. VisaNet™, in particular, includes a VIP system (Visa Integrated Payments system) which processes authorization requests and a Base II system which performs clearing and settlement services.

Referring to FIG. 4, the payment processing network 26 may include a server computer 26(a), and a database 26(b) operatively coupled to the server computer 26(a). A server computer is typically a powerful computer or cluster of computers. For example, the server computer can be a large mainframe, a minicomputer cluster, or a group of servers functioning as a unit. In one example, the server computer may be a database server coupled to a Web server. The payment processing network 26 may use any suitable wired or wireless network, including the Internet.

The server computer 26(a) in the payment processing network 26 may comprise code, executable by a processor, for implementing a method comprising: receiving an initial authorization request message comprising a second account number, and at least one of a second expiration date and a second verification value; determining, using a server computer, a first account number, a first expiration date, and a first verification value from the second account number; and sending a modified authorization request message to an issuer, wherein the modified authorization request message comprises the first account number, the first expiration date, and the first verification value, wherein the first verification value is different than the second verification value and the first expiration date is different than the second expiration date.

The database 26(b) may store any suitable type of information. Suitable information that may be stored in the database 26(b) may include a lookup table linking first expiration dates with first encrypted portion segments, as well as other information.

The server computer 26(a) may also comprise a number of functional modules and data elements. They may include encryption keys 26(a)-1, a decryption module 26(a)-2, and a payment processing module 26(a)-3. Each of these modules may comprise any suitable combination of hardware and/or software to accomplish the functions described herein.

The payment processing module 26(a)-3 may comprise appropriate logic to process electronic payments. For example, the payment processing module 26(a)-3 may include an authorization sub-module for receiving and passing authorization request messages to appropriate issuers for approval. It may also include a clearing and settlement sub-module for clearing and settling transactions between different issuers and acquirers.

Referring again to FIG. 3, the merchant 22 may also have, or may receive communications from, an access device 34 that can interact with the portable consumer devices 32-1, 32-2. The access devices according to embodiments of the invention can be in any suitable form. Examples of access devices include point of sale (POS) devices, cellular phones, PDAs, personal computers (PCs), tablet PCs, handheld specialized readers, set-top boxes, electronic cash registers (ECRs), automated teller machines (ATMs), virtual cash registers (VCRs), kiosks, security systems, access systems, and the like.

If the access device 34 is a point of sale terminal, any suitable point of sale terminal may be used including card readers. The card readers may include any suitable contact or contactless mode of operation. For example, exemplary card readers can include RF (radio frequency) antennas, magnetic stripe readers, etc. to interact with the portable consumer devices 32.

II. Exemplary Methods

Methods according to embodiments of the invention can be described with reference to FIGS. 3-5. Although specific sequences of steps are described, it is understood that embodiments of the invention are not limited to the order of the specific steps described, and that any suitable combination of steps may be included in embodiments of the invention.

Referring to FIG. 3, the user 30 may conduct a transaction with a merchant 22. The transaction may be conducted in person, or may be conducted via the Internet 72.

In a typical in person purchase transaction, the user 30 purchases a good or service at the merchant 22 using a portable consumer device such as portable consumer device A 32-1, which may be in the form of a credit card, or portable consumer device B 32-2, which may be in the form of a phone. For instance, the user's portable consumer device A 32-a can interact with an access device 34 such as a POS (point of sale) terminal at the merchant 22. For example, the user 30 may take the credit card and may swipe it through an appropriate slot in the POS terminal. Alternatively, the POS terminal may be a contactless reader, and the portable consumer device B 32-2 may be a contactless device such as a contactless card.

In a typical Internet transaction, the user 30 may use his consumer device C 32-3 and may contact the Web site of the merchant 22 via the Internet 72. The user 30 may select goods for purchase and may enter information onto the Web site including payment card information. As described above, the merchant 22 may then request authorization of the transaction from the issuer 28, and a clearing and settlement process may be performed after the authorization process is performed.

Before an authorization request message is forwarded to the acquirer 24, a processor in any of the consumer devices A 32-1, B 32-2, or C 32-3, or in the access device 34, can determine the second account information from the real first account information (as described above). This second account information may include a second account number, a second expiration date, and a second verification value such as a second CVV2 value. This second account information may be derived from a real first account number (step 502).

After the second account information is determined, an authorization request message is then forwarded to the acquirer 24 (step 504).

After receiving the authorization request message (step 506), the authorization request message is then sent to the payment processing network 26. The server computer 26(a) in the payment processing network 26 then determines that the received second account number is not the user's real account information after analyzing the signal segment in the second account number. It then determines the first account number, the expiration date, and the verification value associated with the received second account information. It can use the decryption module 26(a)-2 and an appropriate key or keys 26(a)-1 to do this (step 508). After the server computer 26(a) determines the real first account information, the payment processing network 26 (or the server computer located therein) then generates a modified authorization request message including the first account information and then forwards it to the issuer 28 for approval if it does not make the authorization decision (step 510).

After the issuer 28 receives the authorization request message, the issuer 28 then responds with an authorization response message indicating whether or not the transaction is authorized, and the authorization response message is received at the payment processing network 26 and is forwarded back to the acquirer 24 (steps 512 and 514). The acquirer 24 then sends the response message back to the merchant 22.

After the merchant 22 receives the authorization response message, the access device 34 at the merchant 22 may then provide the authorization response message for the consumer 30. The response message may be displayed by the access device 34, or may be printed out on a receipt.

At the end of the day, a normal clearing and settlement process can be conducted by the transaction processing system 26. A clearing process is a process of exchanging financial details between and acquirer and an issuer to facilitate posting to a consumer's account and reconciliation of the consumer's settlement position. Clearing and settlement can occur simultaneously.

FIGS. 6, 7, and 8 show block diagrams of consumer devices, computer devices and subsystems that may be present in computer apparatuses in systems according to embodiments of the invention.

The various participants and elements may operate one or more computer apparatuses to facilitate the functions described herein. Examples of such subsystems or components are shown in FIG. 6. The subsystems shown in FIG. 6 are interconnected via a system bus 775. Additional subsystems such as a printer 774, keyboard 778, fixed disk 779 (or other memory comprising computer readable media), monitor 776, which is coupled to display adapter 782, and others are shown. Peripherals and input/output (I/O) devices, which couple to I/O controller 771, can be connected to the computer system by any number of means known in the art, such as serial port 777. For example, serial port 777 or external interface 781 can be used to connect the computer apparatus to a wide area network such as the Internet, a mouse input device, or a scanner. The interconnection via system bus allows the central processor 773 to communicate with each subsystem and to control the execution of instructions from system memory 772 or the fixed disk 779, as well as the exchange of information between subsystems. The system memory 772 and/or the fixed disk 779 may embody a computer readable medium.

A consumer device may be in any suitable form. For example, suitable consumer devices can be hand-held and compact so that they can fit into a consumer's wallet and/or pocket (e.g., pocket-sized). They may include smart cards, ordinary credit or debit cards (with a magnetic strip and without a microprocessor), keychain devices (such as the Speedpass™ commercially available from Exxon-Mobil Corp.), etc. Other examples of consumer devices include cellular phones (e.g., the phone 34 described above), personal digital assistants (PDAs), pagers, payment cards, security cards, access cards, smart media, transponders, and the like. The consumer devices can also be debit devices (e.g., a debit card), credit devices (e.g., a credit card), or stored value devices (e.g., a stored value card). Other consumer devices may include personal computers, laptops, or other devices capable of communicating over the internet.

An exemplary consumer device 32′ in the form of a phone may comprise a computer readable medium and a body as shown in FIG. 7. (FIG. 7 shows a number of components, and the consumer devices according to embodiments of the invention may comprise any suitable combination or subset of such components.) The computer readable medium may be present within the body 32(h), or may be detachable from it. The body 32(h) may be in the form a plastic substrate, housing, or other structure. The computer readable medium 32(b) may be a memory that stores data and may be in any suitable form including a magnetic stripe, a memory chip, uniquely derived keys (such as those described above), encryption algorithms, etc. The memory also preferably stores information such as financial information, transit information (e.g., as in a subway or train pass), access information (e.g., as in access badges), etc. Financial information may include information such as bank account information, bank identification number (BIN), credit or debit card number information, account balance information, expiration date, consumer information such as name, date of birth, etc. Any of this information may be transmitted by the consumer device 32.

Information in the memory may also be in the form of data tracks that are traditionally associated with credits cards. Such tracks include Track 1 and Track 2. Track 1 (“International Air Transport Association”) stores more information than Track 2, and contains the cardholder's name as well as account number and other discretionary data. This track is sometimes used by the airlines when securing reservations with a credit card. Track 2 (“American Banking Association”) is currently most commonly used. This is the track that is read by ATMs and credit card checkers. The ABA (American Banking Association) designed the specifications of this track and all world banks must abide by it. It contains the cardholder's account, encrypted PIN, plus other discretionary data.

The consumer device 32 may further include a contactless element 32(g), which is typically implemented in the form of a semiconductor chip (or other data storage element) with an associated wireless transfer (e.g., data transmission) element, such as an antenna. Contactless element 32(g) is associated with (e.g., embedded within) consumer device 32 and data or control instructions transmitted via a cellular network may be applied to contactless element 32(g) by means of a contactless element interface (not shown). The contactless element interface functions to permit the exchange of data and/or control instructions between the mobile device circuitry (and hence the cellular network) and an optional contactless element 32(g).

Contactless element 32(g) is capable of transferring and receiving data using a near field communications (“NFC”) capability (or near field communications medium) typically in accordance with a standardized protocol or data transfer mechanism (e.g., ISO 14443/NFC). Near field communications capability is a short-range communications capability, such as RFID, Bluetooth™, infra-red, or other data transfer capability that can be used to exchange data between the consumer device 32 and an interrogation device. Thus, the consumer device 32 is capable of communicating and transferring data and/or control instructions via both cellular network and near field communications capability.

The consumer device 32 may also include a processor 32(c) (e.g., a microprocessor) for processing the functions of the consumer device 32 and a display 32(d) to allow a consumer to see phone numbers and other information and messages. The consumer device 32 may further include input elements 32(e) to allow a consumer to input information into the device, a speaker 32(f) to allow the consumer to hear voice communication, music, etc., and a microphone 32(i) to allow the consumer to transmit her voice through the consumer device 32. The consumer device 32 may also include an antenna 32(a) for wireless data transfer (e.g., data transmission).

If the consumer device is in the form of a debit, credit, or smartcard, the consumer device may also optionally have features such as magnetic strips. Such devices can operate in either a contact or contactless mode.

An example of a consumer device 32″ in the form of a card is shown in FIG. 2B. FIG. 2B shows a plastic substrate 32(m). A contactless element 32(o) for interfacing with an access device 34 may be present on or embedded within the plastic substrate 32(m). Consumer information 32(p) such as an account number, expiration date, and consumer name may be printed or embossed on the card. Also, a magnetic stripe 32(n) may also be on the plastic substrate 32(m).

As shown in FIG. 8, the consumer device 32″ may include both a magnetic stripe 32(n) and a contactless element 32(o). In other embodiments, both the magnetic stripe 32(n) and the contactless element 32(o) may be in the consumer device 32″. In other embodiments, either the magnetic stripe 32(n) or the contactless element 32(o) may be present in the consumer device 32″.

Embodiments of the invention are not limited to the above-described embodiments. For example, although separate functional blocks are shown for an issuer, payment processing system, and acquirer, some entities perform all of these functions and may be included in embodiments of invention.

It should be understood that the present invention as described above can be implemented in the form of control logic using computer software in a modular or integrated manner. Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will know and appreciate other ways and/or methods to implement the present invention using hardware and a combination of hardware and software

Any of the software components or functions described in this application, may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, conventional or object-oriented techniques. The software code may be stored as a series of instructions, or commands on a computer readable medium, such as a random access memory (RAM), a read only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a CD-ROM. Any such computer readable medium may reside on or within a single computational apparatus, and may be present on or within different computational apparatuses within a system or network.

The above description is illustrative and is not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of the disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the pending claims along with their full scope or equivalents.

One or more features from any embodiment may be combined with one or more features of any other embodiment without departing from the scope of the invention.

A recitation of “a”, “an” or “the” is intended to mean “one or more” unless specifically indicated to the contrary.

All patents, patent applications, publications, appendixes, and descriptions mentioned above are herein incorporated by reference in their entirety for all purposes. None is admitted to be prior art.

Claims

1. A method, comprising:

receiving, using a server computer, an initial authorization request message comprising a second account number, a second expiration date and a second verification value, the second account number, the second expiration date and the second verification value being utilized in place of a first account number, a first expiration date and a first verification value, the initial authorization request message being part of a transaction with respect to an account corresponding to the first account number, the second account number determined based at least in part on a first segment of an encrypted account number portion and a remaining portion of the first account number, the encrypted account number portion being formed at least in part by encrypting a first portion of the first account number, the first portion having less digits than the whole first account number, the remaining portion corresponding to an unencrypted portion of the first account number, the second expiration date determined based at least in part on a second segment of the encrypted account number portion, the second verification value determined based at least in part on a third segment of the encrypted account number portion;
determining the first account number, the first expiration date and the first verification value based at least in part on the second account number, the second expiration date and the second verification value; and
sending a modified authorization request message to an issuer, wherein the modified authorization request message comprises the first account number, the first expiration date, and the first verification value;
wherein (i) each segment of the encrypted account number portion contains less information than the whole encrypted account number portion and (ii) the first segment, the second segment and the third segment of the encrypted account number portion collectively contain all the information in the whole encrypted account number portion.

2. The method of claim 1, wherein determining the second expiration date comprises determining the second expiration date at least in part by mapping the second segment of the encrypted account number portion to a date.

3. The method of claim 1, wherein the second account number comprises a signal segment, the third segment of the encrypted account number portion, and an unencrypted portion of the first account number, the signal segment of the second account number indicating that the second account number includes an encrypted portion.

4. The method of claim 1, wherein the unencrypted portion of the first account number is incorporated into the second account number.

5. The method of claim 1, wherein the second account number comprises a signal segment, which informs the server computer to generate the modified authorization request message.

6. The method of claim 1, wherein the first account number, the first expiration date, and the first verification value are associated with a debit or credit card.

7. The method of claim 1, wherein determining the first account number, the first expiration date and the first verification value based at least in part on the second account number, the second expiration date and the second verification value comprises undoing one or more operations utilized to determine the second account number, the second expiration date and the second verification value based at least in part on the first account number, the first expiration date and the first verification value.

8. A non-transitory computer readable medium comprising code, executable by at least one processor, for implementing a method comprising:

receiving, using a server computer, an initial authorization request message comprising a second account number, a second expiration date and a second verification value, the second account number, the second expiration date and the second verification value being utilized in place of a first account number, a first expiration date and a first verification value, the initial authorization request message being part of a transaction with respect to an account corresponding to the first account number, the second account number determined based at least in part on a first segment of an encrypted account number portion and a remaining portion of the first account number, the encrypted account number portion being formed at least in part by encrypting a first portion of the first account number, the first portion having less digits than the whole first account number, the remaining portion corresponding to an unencrypted portion of the first account number, the second expiration date determined based at least in part on a second segment of the encrypted account number portion, the second verification value determined based at least in part on a third segment of the encrypted account number portion;
determining the first account number, the first expiration date and the first verification value based at least in part on the second account number, the second expiration date and the second verification value; and
sending a modified authorization request message to an issuer, wherein the modified authorization request message comprises the first account number, the first expiration date, and the first verification value;
wherein (i) each segment of the encrypted account number portion contains less information than the whole encrypted account number portion and (ii) the first segment, the second segment and the third segment of the encrypted account number portion collectively contain all the information in the whole encrypted account number portion.

9. The non-transitory computer readable medium of claim 8, wherein determining the second expiration date comprises determining the second expiration date at least in part by mapping the second segment of the encrypted account number portion to a date.

10. The non-transitory computer readable medium of claim 8, wherein the second account number comprises a signal segment, the third segment of the encrypted account number portion, and an unencrypted portion of the first account number, the signal segment of the second account number indicating that the second account number includes an encrypted portion.

11. The non-transitory computer readable medium of claim 8, wherein the unencrypted portion of the first account number is incorporated into the second account number.

12. The non-transitory computer readable medium of claim 8, wherein the second account number comprises a signal segment, which informs the server computer to generate the modified authorization request message.

13. The non-transitory computer readable medium of claim 8, wherein the first account number, the first expiration date, and the first verification value are associated with a debit or credit card.

14. The non-transitory computer readable medium of claim 8, wherein determining the first account number, the first expiration date and the first verification value based at least in part on the second account number, the second expiration date and the second verification value comprises undoing one or more operations utilized to determine the second account number, the second expiration date and the second verification value based at least in part on the first account number, the first expiration date and the first verification value.

15. A computer apparatus comprising:

at least one processor; and
at least one non-transitory computer readable medium communicatively coupled with the at least one processor and collectively having stored thereon code, executable by the at least one processor, that configures the computer apparatus to, at least: receive an initial authorization request message comprising a second account number, a second expiration date and a second verification value, the second account number, the second expiration date and the second verification value being utilized in place of a first account number, a first expiration date and a first verification value, the initial authorization request message being part of a transaction with respect to an account corresponding to the first account number, the second account number determined based at least in part on a first segment of an encrypted account number portion and a remaining portion of the first account number, the encrypted account number portion being formed at least in part by encrypting a first portion of the first account number, the first portion having less digits than the whole first account number, the remaining portion corresponding to an unencrypted portion of the first account number, the second expiration date determined based at least in part on a second segment of the encrypted account number portion, the second verification value determined based at least in part on a third segment of the encrypted account number portion; determine the first account number, the first expiration date and the first verification value based at least in part on the second account number, the second expiration date and the second verification value; and send a modified authorization request message to an issuer, wherein the modified authorization request message comprises the first account number, the first expiration date, and the first verification value;
wherein (i) each segment of the encrypted account number portion contains less information than the whole encrypted account number portion and (ii) the first segment, the second segment and the third segment of the encrypted account number portion collectively contain all the information in the whole encrypted account number portion.

16. The computer apparatus of claim 15, wherein determining the second expiration date comprises determining the second expiration date at least in part by mapping the second segment of the encrypted account number portion to a date.

17. The computer apparatus of claim 15, wherein the second account number comprises a signal segment, the third segment of the encrypted account number portion, and an unencrypted portion of the first account number, the signal segment of the second account number indicating that the second account number includes an encrypted portion.

18. The computer apparatus of claim 15, wherein the unencrypted portion of the first account number is incorporated into the second account number.

19. The computer apparatus of claim 15, wherein the first account number, the first expiration date, and the first verification value are associated with a debit or credit card.

20. The computer apparatus of claim 15, wherein determining the first account number, the first expiration date and the first verification value based at least in part on the second account number, the second expiration date and the second verification value comprises undoing one or more operations utilized to determine the second account number, the second expiration date and the second verification value based at least in part on the first account number, the first expiration date and the first verification value.

Referenced Cited
U.S. Patent Documents
5280527 January 18, 1994 Gullman
5613012 March 18, 1997 Hoffman
5781438 July 14, 1998 Lee
5883810 March 16, 1999 Franklin
5930767 July 27, 1999 Reber
5953710 September 14, 1999 Fleming
5956699 September 21, 1999 Wong et al.
6000832 December 14, 1999 Franklin
6014635 January 11, 2000 Harris
6044360 March 28, 2000 Picciallo
6070154 May 30, 2000 Tavor et al.
6163771 December 19, 2000 Walker
6227447 May 8, 2001 Campisano
6236981 May 22, 2001 Hill
6267292 July 31, 2001 Walker
6327578 December 4, 2001 Linehan
6341724 January 29, 2002 Campisano
6385596 May 7, 2002 Wiser
6422462 July 23, 2002 Cohen
6425523 July 30, 2002 Shem Ur Jonathan
6453301 September 17, 2002 Niwa
6484182 November 19, 2002 Dunphy
6592044 July 15, 2003 Wong
6636833 October 21, 2003 Flitcroft
6748367 June 8, 2004 Lee
6805287 October 19, 2004 Bishop
6879965 April 12, 2005 Fung
6891953 May 10, 2005 DeMello
6901387 May 31, 2005 Wells
6931382 August 16, 2005 Laage
6938019 August 30, 2005 Uzo
6941285 September 6, 2005 Sarcanin
6980670 December 27, 2005 Hoffman
6990470 January 24, 2006 Hogan
6991157 January 31, 2006 Bishop
7051929 May 30, 2006 Li
7069249 June 27, 2006 Stolfo
7103576 September 5, 2006 Mann, III
7113930 September 26, 2006 Eccles
7136835 November 14, 2006 Flitcroft
7177835 February 13, 2007 Walker
7177848 February 13, 2007 Hogan
7194437 March 20, 2007 Britto
7209561 April 24, 2007 Shankar et al.
7212635 May 1, 2007 Nishikawa et al.
7264154 September 4, 2007 Harris
7287692 October 30, 2007 Patel
7292999 November 6, 2007 Hobson
7350230 March 25, 2008 Forrest
7353382 April 1, 2008 Labrou
7379919 May 27, 2008 Hogan
RE40444 July 29, 2008 Linehan
7415443 August 19, 2008 Hobson
7444676 October 28, 2008 Asghari-Kamrani
7469151 December 23, 2008 Khan
7548889 June 16, 2009 Bhambri
7567934 July 28, 2009 Flitcroft
7567936 July 28, 2009 Peckover
7571139 August 4, 2009 Giordano
7571142 August 4, 2009 Flitcroft
7580898 August 25, 2009 Brown
7584153 September 1, 2009 Brown
7587502 September 8, 2009 Crawford
7593896 September 22, 2009 Flitcroft
7606560 October 20, 2009 Labrou
7627531 December 1, 2009 Breck
7627895 December 1, 2009 Gifford
7631804 December 15, 2009 Brown
7650314 January 19, 2010 Saunders
7658324 February 9, 2010 Gindele
7685037 March 23, 2010 Reiners
7702578 April 20, 2010 Fung
7707120 April 27, 2010 Dominguez
7711586 May 4, 2010 Aggarwal
7712655 May 11, 2010 Wong
7734527 June 8, 2010 Uzo
7753265 July 13, 2010 Harris
7770789 August 10, 2010 Oder, Ii
7784685 August 31, 2010 Hopkins, Iii
7793851 September 14, 2010 Mullen
7801826 September 21, 2010 Labrou
7805376 September 28, 2010 Smith
7805378 September 28, 2010 Berardi
7818264 October 19, 2010 Hammad
7828220 November 9, 2010 Mullen
7835960 November 16, 2010 Breck
7841523 November 30, 2010 Oder
7841539 November 30, 2010 Hewton
7844550 November 30, 2010 Walker
7848980 December 7, 2010 Carlson
7849020 December 7, 2010 Johnson
7853529 December 14, 2010 Walker
7853995 December 14, 2010 Chow
7865414 January 4, 2011 Fung
7873579 January 18, 2011 Hobson
7873580 January 18, 2011 Hobson
7890393 February 15, 2011 Talbert
7891563 February 22, 2011 Oder, Ii
7896238 March 1, 2011 Fein
7899753 March 1, 2011 Everhart
7908216 March 15, 2011 Davis et al.
7922082 April 12, 2011 Muscato
7931195 April 26, 2011 Mullen
7937324 May 3, 2011 Patterson
7938318 May 10, 2011 Fein
7954705 June 7, 2011 Mullen
7959076 June 14, 2011 Hopkins, Iii
7996288 August 9, 2011 Stolfo
8025223 September 27, 2011 Saunders
8046256 October 25, 2011 Chien
8060448 November 15, 2011 Jones
8060449 November 15, 2011 Zhu
8074877 December 13, 2011 Mullen
8074879 December 13, 2011 Harris
8082210 December 20, 2011 Hansen
8095113 January 10, 2012 Kean et al.
8104679 January 31, 2012 Brown
RE43157 February 7, 2012 Bishop
8109436 February 7, 2012 Hopkins, Iii
8121942 February 21, 2012 Carlson
8121956 February 21, 2012 Carlson
8126449 February 28, 2012 Beenau
8132723 March 13, 2012 Hogg et al.
8171525 May 1, 2012 Pelly
8175973 May 8, 2012 Davis et al.
8190523 May 29, 2012 Patterson
8196813 June 12, 2012 Vadhri, Sr.
8205791 June 26, 2012 Randazza
8219489 July 10, 2012 Patterson
8224702 July 17, 2012 Mengerink
8225385 July 17, 2012 Chow
8229852 July 24, 2012 Carlson
8265993 September 11, 2012 Chien
8280777 October 2, 2012 Mengerink
8281991 October 9, 2012 Wentker et al.
8328095 December 11, 2012 Oder, Ii
8336088 December 18, 2012 Raj et al.
8346666 January 1, 2013 Lindelsee et al.
8376225 February 19, 2013 Hopkins, Iii
8380177 February 19, 2013 Laracey
8387873 March 5, 2013 Saunders
8401539 March 19, 2013 Beenau
8401898 March 19, 2013 Chien
8402555 March 19, 2013 Grecia
8403211 March 26, 2013 Brooks
8412623 April 2, 2013 Moon
8412837 April 2, 2013 Emigh
8417642 April 9, 2013 Oren
8447699 May 21, 2013 Batada
8453223 May 28, 2013 Svigals
8453925 June 4, 2013 Fisher
8458487 June 4, 2013 Palgon
8484134 July 9, 2013 Hobson
8485437 July 16, 2013 Mullen
8494959 July 23, 2013 Hathaway
8498908 July 30, 2013 Mengerink
8504475 August 6, 2013 Brand et al.
8504478 August 6, 2013 Saunders
8510816 August 13, 2013 Quach
8433116 April 30, 2013 Davis et al.
8528067 September 3, 2013 Hurry et al.
8533860 September 10, 2013 Grecia
8538845 September 17, 2013 Liberty
8555079 October 8, 2013 Shablygin
8566168 October 22, 2013 Bierbaum
8567670 October 29, 2013 Stanfield
8571939 October 29, 2013 Lindsey
8577336 November 5, 2013 Mechaley, Jr.
8577803 November 5, 2013 Chatterjee
8577813 November 5, 2013 Weiss
8578176 November 5, 2013 Mattsson
8583494 November 12, 2013 Fisher
8584251 November 12, 2013 Mcguire
8589237 November 19, 2013 Fisher
8589271 November 19, 2013 Evans
8589291 November 19, 2013 Carlson
8595098 November 26, 2013 Starai
8595812 November 26, 2013 Bomar
8595850 November 26, 2013 Spies
8606638 December 10, 2013 Dragt
8606700 December 10, 2013 Carlson
8606720 December 10, 2013 Baker
8615468 December 24, 2013 Varadarajan
8620754 December 31, 2013 Fisher
8635157 January 21, 2014 Smith
8646059 February 4, 2014 Von Behren
8651374 February 18, 2014 Brabson
8656180 February 18, 2014 Shablygin
8751391 June 10, 2014 Freund
8762263 June 24, 2014 Gauthier et al.
8769275 July 1, 2014 von Mueller et al.
8793186 July 29, 2014 Patterson
8838982 September 16, 2014 Carlson et al.
8856539 October 7, 2014 Weiss
8887308 November 11, 2014 Grecia
9065643 June 23, 2015 Hurry et al.
9070129 June 30, 2015 Sheets et al.
9100826 August 4, 2015 Weiss
9160741 October 13, 2015 Wentker et al.
9229964 January 5, 2016 Stevelinck
9245267 January 26, 2016 Singh
9249241 February 2, 2016 Dai et al.
9256871 February 9, 2016 Anderson et al.
9280765 March 8, 2016 Hammad
9530137 December 27, 2016 Weiss
9680942 June 13, 2017 Dimmick
10140598 November 27, 2018 Faith et al.
20010029485 October 11, 2001 Brody
20010034720 October 25, 2001 Armes
20010054003 December 20, 2001 Chien
20020007320 January 17, 2002 Hogan
20020016749 February 7, 2002 Borecki
20020029193 March 7, 2002 Ranjan
20020035548 March 21, 2002 Hogan
20020073045 June 13, 2002 Rubin
20020116341 August 22, 2002 Hogan
20020133467 September 19, 2002 Hobson
20020147913 October 10, 2002 Lun Yip
20030028481 February 6, 2003 Flitcroft
20030080183 May 1, 2003 Rajasekaran et al.
20030130955 July 10, 2003 Hawthorne
20030191709 October 9, 2003 Elston
20030191945 October 9, 2003 Keech
20030208450 November 6, 2003 Nunez Benito et al.
20040010462 January 15, 2004 Moon
20040050928 March 18, 2004 Bishop
20040059682 March 25, 2004 Hasumi
20040093281 May 13, 2004 Silverstein
20040139008 July 15, 2004 Mascavage
20040143532 July 22, 2004 Lee
20040158532 August 12, 2004 Breck
20040210449 October 21, 2004 Breck
20040210498 October 21, 2004 Freund
20040232225 November 25, 2004 Bishop
20040236632 November 25, 2004 Maritzen
20040260646 December 23, 2004 Berardi
20050037735 February 17, 2005 Coutts
20050080730 April 14, 2005 Sorrentino
20050108178 May 19, 2005 York
20050199709 September 15, 2005 Linlor
20050246293 November 3, 2005 Ong
20050269401 December 8, 2005 Spitzer
20050269402 December 8, 2005 Spitzer
20060124756 June 15, 2006 Brown
20060161435 July 20, 2006 Atef et al.
20060235795 October 19, 2006 Johnson
20060237528 October 26, 2006 Bishop
20060278704 December 14, 2006 Saunders
20070055630 March 8, 2007 Gauthier et al.
20070100754 May 3, 2007 Brown
20070107044 May 10, 2007 Yuen
20070129955 June 7, 2007 Dalmia
20070136193 June 14, 2007 Starr
20070136211 June 14, 2007 Brown
20070170247 July 26, 2007 Friedman
20070179885 August 2, 2007 Bird
20070194104 August 23, 2007 Fukuda
20070208671 September 6, 2007 Brown
20070245414 October 18, 2007 Chan
20070255657 November 1, 2007 Brown
20070276765 November 29, 2007 Hazel et al.
20070288377 December 13, 2007 Shaked
20070291995 December 20, 2007 Rivera
20070294182 December 20, 2007 Hammad
20080005037 January 3, 2008 Hammad et al.
20080015988 January 17, 2008 Brown
20080017712 January 24, 2008 Hart et al.
20080029593 February 7, 2008 Hammad et al.
20080029607 February 7, 2008 Mullen
20080034221 February 7, 2008 Hammad et al.
20080035738 February 14, 2008 Mullen
20080040271 February 14, 2008 Hammad et al.
20080040276 February 14, 2008 Hammad et al.
20080040284 February 14, 2008 Hazel et al.
20080052226 February 28, 2008 Agarwal
20080054068 March 6, 2008 Mullen
20080054079 March 6, 2008 Mullen
20080054081 March 6, 2008 Mullen
20080065553 March 13, 2008 Faith et al.
20080065554 March 13, 2008 Hogan
20080065555 March 13, 2008 Mullen
20080071681 March 20, 2008 Khalid
20080091617 April 17, 2008 Hazel et al.
20080091944 April 17, 2008 von Mueller
20080103982 May 1, 2008 Hammad et al.
20080189214 August 7, 2008 Mueller et al.
20080201264 August 21, 2008 Brown
20080201265 August 21, 2008 Hewton
20080228646 September 18, 2008 Myers
20080243702 October 2, 2008 Hart
20080245855 October 9, 2008 Fein
20080245861 October 9, 2008 Fein
20080283591 November 20, 2008 Oder, II
20080302869 December 11, 2008 Mullen
20080302876 December 11, 2008 Mullen
20080313264 December 18, 2008 Pestoni
20080319901 December 25, 2008 Brown
20090006262 January 1, 2009 Brown et al.
20090010488 January 8, 2009 Matsuoka
20090037333 February 5, 2009 Flitcroft
20090037388 February 5, 2009 Cooper et al.
20090043702 February 12, 2009 Bennett
20090048953 February 19, 2009 Hazel et al.
20090048971 February 19, 2009 Hathaway
20090060199 March 5, 2009 Von Mueller et al.
20090063345 March 5, 2009 Erikson
20090070583 March 12, 2009 Von Mueller et al.
20090076938 March 19, 2009 Patterson
20090106112 April 23, 2009 Dalmia
20090106160 April 23, 2009 Skowronek
20090134217 May 28, 2009 Flitcroft
20090157555 June 18, 2009 Biffle
20090159673 June 25, 2009 Mullen
20090159700 June 25, 2009 Mullen
20090159707 June 25, 2009 Mullen
20090164381 June 25, 2009 Brown
20090173782 July 9, 2009 Muscato
20090200371 August 13, 2009 Kean et al.
20090248583 October 1, 2009 Chhabra
20090276347 November 5, 2009 Kargman
20090281948 November 12, 2009 Carlson
20090294527 December 3, 2009 Brabson
20090307139 December 10, 2009 Mardikar
20090308921 December 17, 2009 Mullen
20090327131 December 31, 2009 Beenau
20100008535 January 14, 2010 Abulafia
20100027786 February 4, 2010 Faith et al.
20100088237 April 8, 2010 Wankmueller
20100094755 April 15, 2010 Kloster
20100106644 April 29, 2010 Annan
20100120408 May 13, 2010 Beenau
20100127083 May 27, 2010 Brown et al.
20100133334 June 3, 2010 Vadhri
20100138347 June 3, 2010 Chen
20100145860 June 10, 2010 Pelegero
20100161433 June 24, 2010 White
20100179909 July 15, 2010 Dana
20100185545 July 22, 2010 Royyuru
20100211505 August 19, 2010 Saunders
20100223186 September 2, 2010 Hogan
20100228668 September 9, 2010 Hogan
20100235284 September 16, 2010 Moore
20100258620 October 14, 2010 Torreyson
20100291904 November 18, 2010 Musfeldt
20100299267 November 25, 2010 Faith et al.
20100306076 December 2, 2010 Taveau
20100325041 December 23, 2010 Berardi
20110010292 January 13, 2011 Giordano
20110016047 January 20, 2011 Wu
20110016320 January 20, 2011 Bergsten
20110040640 February 17, 2011 Erikson
20110047076 February 24, 2011 Carlson et al.
20110083018 April 7, 2011 Kesanupalli
20110087596 April 14, 2011 Dorsey
20110093397 April 21, 2011 Carlson
20110125597 May 26, 2011 Oder, Ii
20110153437 June 23, 2011 Archer
20110153498 June 23, 2011 Makhotin et al.
20110154466 June 23, 2011 Harper
20110161233 June 30, 2011 Tieken
20110178926 July 21, 2011 Lindelsee et al.
20110191244 August 4, 2011 Dai
20110238511 September 29, 2011 Park
20110238573 September 29, 2011 Varadarajan
20110246317 October 6, 2011 Coppinger
20110258111 October 20, 2011 Raj et al.
20110272471 November 10, 2011 Mullen
20110272478 November 10, 2011 Mullen
20110276380 November 10, 2011 Mullen
20110276381 November 10, 2011 Mullen
20110276424 November 10, 2011 Mullen
20110276425 November 10, 2011 Mullen
20110295745 December 1, 2011 White
20110302081 December 8, 2011 Saunders
20120023567 January 26, 2012 Hammad
20120028609 February 2, 2012 Hruska
20120030047 February 2, 2012 Fuentes et al.
20120035998 February 9, 2012 Chien
20120041881 February 16, 2012 Basu
20120047237 February 23, 2012 Arvidsson
20120066078 March 15, 2012 Kingston
20120072350 March 22, 2012 Goldthwaite
20120078735 March 29, 2012 Bauer
20120078798 March 29, 2012 Downing
20120078799 March 29, 2012 Jackson
20120095852 April 19, 2012 Bauer
20120095865 April 19, 2012 Doherty
20120116902 May 10, 2012 Cardina
20120123882 May 17, 2012 Carlson
20120123940 May 17, 2012 Killian
20120129514 May 24, 2012 Beenau
20120143754 June 7, 2012 Patel
20120143767 June 7, 2012 Abadir
20120143772 June 7, 2012 Abadir
20120158580 June 21, 2012 Eram
20120158593 June 21, 2012 Garfinkle
20120173431 July 5, 2012 Ritchie
20120185386 July 19, 2012 Salama
20120197807 August 2, 2012 Schlesser
20120203664 August 9, 2012 Torossian
20120203666 August 9, 2012 Torossian
20120215688 August 23, 2012 Musser
20120215696 August 23, 2012 Salonen
20120221421 August 30, 2012 Hammad
20120226582 September 6, 2012 Hammad
20120231844 September 13, 2012 Coppinger
20120233004 September 13, 2012 Bercaw
20120246070 September 27, 2012 Vadhri
20120246071 September 27, 2012 Jain
20120246079 September 27, 2012 Wilson et al.
20120265631 October 18, 2012 Cronic
20120271770 October 25, 2012 Harris
20120297446 November 22, 2012 Webb
20120300932 November 29, 2012 Cambridge
20120303503 November 29, 2012 Cambridge
20120303961 November 29, 2012 Kean
20120304273 November 29, 2012 Bailey
20120310725 December 6, 2012 Chien
20120310831 December 6, 2012 Harris
20120316992 December 13, 2012 Oborne
20120317035 December 13, 2012 Royyuru
20120317036 December 13, 2012 Bower
20130017784 January 17, 2013 Fisher
20130018757 January 17, 2013 Anderson et al.
20130019098 January 17, 2013 Gupta
20130031006 January 31, 2013 Mccullagh et al.
20130054337 February 28, 2013 Brendell
20130054466 February 28, 2013 Muscato
20130054474 February 28, 2013 Yeager
20130081122 March 28, 2013 Svigals
20130091028 April 11, 2013 Oder, Ii
20130110658 May 2, 2013 Lyman
20130111599 May 2, 2013 Gargiulo
20130117185 May 9, 2013 Collison
20130124290 May 16, 2013 Fisher
20130124291 May 16, 2013 Fisher
20130124364 May 16, 2013 Mittal
20130138525 May 30, 2013 Bercaw
20130144888 June 6, 2013 Faith
20130145148 June 6, 2013 Shablygin
20130145172 June 6, 2013 Shablygin
20130159178 June 20, 2013 Colon
20130159184 June 20, 2013 Thaw
20130166402 June 27, 2013 Parento
20130166456 June 27, 2013 Zhang
20130173736 July 4, 2013 Krzeminski
20130185202 July 18, 2013 Goldthwaite
20130191227 July 25, 2013 Pasa et al.
20130191286 July 25, 2013 Cronic
20130191289 July 25, 2013 Cronic
20130198071 August 1, 2013 Jurss
20130198080 August 1, 2013 Anderson et al.
20130200146 August 8, 2013 Moghadam
20130204787 August 8, 2013 Dubois
20130204793 August 8, 2013 Kerridge
20130212007 August 15, 2013 Mattsson
20130212017 August 15, 2013 Bangia
20130212019 August 15, 2013 Mattsson
20130212024 August 15, 2013 Mattsson
20130212026 August 15, 2013 Powell et al.
20130212666 August 15, 2013 Mattsson
20130218698 August 22, 2013 Moon
20130218769 August 22, 2013 Pourfallah et al.
20130226799 August 29, 2013 Raj
20130226813 August 29, 2013 Voltz
20130246199 September 19, 2013 Carlson
20130246202 September 19, 2013 Tobin
20130246203 September 19, 2013 Laracey
20130246258 September 19, 2013 Dessert
20130246259 September 19, 2013 Dessert
20130246261 September 19, 2013 Purves et al.
20130246267 September 19, 2013 Tobin
20130254028 September 26, 2013 Salci
20130254052 September 26, 2013 Royyuru
20130254102 September 26, 2013 Royyuru
20130254117 September 26, 2013 Von Mueller
20130262296 October 3, 2013 Thomas
20130262302 October 3, 2013 Lettow
20130262315 October 3, 2013 Hruska
20130262316 October 3, 2013 Hruska
20130262317 October 3, 2013 Collinge
20130275300 October 17, 2013 Killian
20130275307 October 17, 2013 Khan
20130275308 October 17, 2013 Paraskeva
20130282502 October 24, 2013 Jooste
20130282575 October 24, 2013 Mullen
20130282588 October 24, 2013 Hruska
20130297501 November 7, 2013 Monk et al.
20130297504 November 7, 2013 Nwokolo
20130297508 November 7, 2013 Belamant
20130304649 November 14, 2013 Cronic
20130308778 November 21, 2013 Fosmark
20130311382 November 21, 2013 Fosmark
20130317982 November 28, 2013 Mengerink
20130332344 December 12, 2013 Weber
20130339253 December 19, 2013 Sincai
20130346305 December 26, 2013 Mendes
20130346314 December 26, 2013 Mogollon
20140007213 January 2, 2014 Sanin
20140013106 January 9, 2014 Redpath
20140013114 January 9, 2014 Redpath
20140013452 January 9, 2014 Aissi et al.
20140019352 January 16, 2014 Shrivastava
20140025581 January 23, 2014 Calman
20140025585 January 23, 2014 Calman
20140025958 January 23, 2014 Calman
20140032417 January 30, 2014 Mattsson
20140032418 January 30, 2014 Weber
20140040137 February 6, 2014 Carlson
20140040139 February 6, 2014 Brudnicki
20140040144 February 6, 2014 Plomske
20140040145 February 6, 2014 Ozvat
20140040148 February 6, 2014 Ozvat
20140040628 February 6, 2014 Fort
20140041018 February 6, 2014 Bomar
20140046853 February 13, 2014 Spies
20140047551 February 13, 2014 Nagasundaram et al.
20140052532 February 20, 2014 Tsai
20140052620 February 20, 2014 Rogers
20140052637 February 20, 2014 Jooste
20140068706 March 6, 2014 Aissi
20140074637 March 13, 2014 Hammad
20140108172 April 17, 2014 Weber et al.
20140114857 April 24, 2014 Griggs et al.
20140143137 May 22, 2014 Carlson
20140164243 June 12, 2014 Aabye et al.
20140188586 July 3, 2014 Carpenter et al.
20140249945 September 4, 2014 Gauthier
20140294701 October 2, 2014 Dai et al.
20140297534 October 2, 2014 Patterson
20140310183 October 16, 2014 Weber
20140324690 October 30, 2014 Allen et al.
20140330721 November 6, 2014 Wang
20140330722 November 6, 2014 Laxminarayanan et al.
20140331265 November 6, 2014 Mozell et al.
20140337236 November 13, 2014 Wong et al.
20140344153 November 20, 2014 Raj et al.
20140372308 December 18, 2014 Sheets
20150019443 January 15, 2015 Sheets et al.
20150032625 January 29, 2015 Dill
20150032626 January 29, 2015 Dill
20150032627 January 29, 2015 Dill
20150046338 February 12, 2015 Laxminarayanan
20150046339 February 12, 2015 Wong et al.
20150052064 February 19, 2015 Karpenko et al.
20150081544 March 19, 2015 Schulz et al.
20150088756 March 26, 2015 Makhotin et al.
20150106239 April 16, 2015 Gaddam et al.
20150112870 April 23, 2015 Nagasundaram et al.
20150112871 April 23, 2015 Kumnick
20150120472 April 30, 2015 Aabye et al.
20150127529 May 7, 2015 Makhotin et al.
20150127547 May 7, 2015 Powell et al.
20150140960 May 21, 2015 Powell et al.
20150142673 May 21, 2015 Nelsen et al.
20150161597 June 11, 2015 Subramanian et al.
20150178724 June 25, 2015 Ngo et al.
20150180836 June 25, 2015 Wong et al.
20150186864 July 2, 2015 Jones et al.
20150193222 July 9, 2015 Pirzadeh et al.
20150195133 July 9, 2015 Sheets et al.
20150199679 July 16, 2015 Palanisamy et al.
20150199689 July 16, 2015 Kumnick et al.
20150220917 August 6, 2015 Aabye et al.
20150269566 September 24, 2015 Gaddam et al.
20150278799 October 1, 2015 Palanisamy
20150287037 October 8, 2015 Salmon
20150312038 October 29, 2015 Palanisamy
20150319158 November 5, 2015 Kumnick
20150332262 November 19, 2015 Lingappa
20150356560 December 10, 2015 Shastry et al.
20150363781 December 17, 2015 Badenhorst
20160028550 January 28, 2016 Gaddam et al.
20160036790 February 4, 2016 Shastry et al.
20160042263 February 11, 2016 Gaddam et al.
20160065370 March 3, 2016 Le Saint et al.
20160092696 March 31, 2016 Guglani et al.
20160092872 March 31, 2016 Prakash et al.
20160092874 March 31, 2016 O'Regan
20160103675 April 14, 2016 Aabye et al.
20160119296 April 28, 2016 Laxminarayanan et al.
20160132878 May 12, 2016 O'Regan
20160140545 May 19, 2016 Flurscheim et al.
20160148197 May 26, 2016 Dimmick
20160148212 May 26, 2016 Dimmick
20160171479 June 16, 2016 Prakash et al.
20160173483 June 16, 2016 Wong et al.
20160197725 July 7, 2016 Hammad
20160210628 July 21, 2016 McGuire
20160217461 July 28, 2016 Gaddam
20160218875 July 28, 2016 Le Saint et al.
20160224976 August 4, 2016 Basu
20160224977 August 4, 2016 Sabba et al.
20160232527 August 11, 2016 Patterson
20160239842 August 18, 2016 Cash et al.
20160269391 September 15, 2016 Gaddam
20160308995 October 20, 2016 Youdale et al.
20170046696 February 16, 2017 Powell et al.
20170103387 April 13, 2017 Weber
20170109745 April 20, 2017 Al-Bedaiwi
20170186001 June 29, 2017 Reed et al.
20170201520 July 13, 2017 Chandoor
20170220818 August 3, 2017 Nagasundaram et al.
20170228723 August 10, 2017 Taylor
20170295155 October 12, 2017 Wong et al.
20170364903 December 21, 2017 Lopez
20180006821 January 4, 2018 Kinagi
20180075081 March 15, 2018 Chipman
20180247303 August 30, 2018 Raj
20180262334 September 13, 2018 Hammad
20180268405 September 20, 2018 Lopez
20180324184 November 8, 2018 Kaja
20180324584 November 8, 2018 Lopez
Foreign Patent Documents
1028401 August 2000 EP
1921579 May 2008 EP
2156397 February 2010 EP
2000/014648 March 2000 WO
2001035304 May 2001 WO
2001035304 May 2001 WO
2004/051585 November 2003 WO
2004042536 May 2004 WO
2005/001751 June 2004 WO
2006113834 October 2006 WO
2008059465 May 2008 WO
2009032523 March 2009 WO
2010078522 July 2010 WO
2010135154 November 2010 WO
2010135154 February 2011 WO
2012068078 May 2012 WO
2012098556 July 2012 WO
2012142370 October 2012 WO
2012167941 December 2012 WO
2013048538 April 2013 WO
2013056104 April 2013 WO
2013119914 August 2013 WO
2013179271 December 2013 WO
Other references
  • Sahut, J. (2008). Internet payment and banks. International Journal of Business, 13(4), 361-376. Retrieved on Jan. 1, 2021. Retrieved from <https://dialog.proquest.corn/professional/docview/198165394?accountid=131444>. (Year: 2008).
  • American Bankers Association “The Bank Credit Card Business”, Second Edition, Washington, D.C, 1996.
  • U.S. Appl. No. 12/778,638 , “Final Office Action”, dated May 20, 2015, 10 pages.
  • U.S. Appl. No. 12/778,638 , “Final Office Action”, dated Aug. 16, 2013, 18 pages.
  • U.S. Appl. No. 12/778,638 , “Non-Final Office Action”, dated Oct. 3, 2014, 10 pages.
  • U.S. Appl. No. 12/778,638 , “Non-Final Office Action”, dated Mar. 16, 2012, 17 pages.
  • U.S. Appl. No. 12/778,638 , “Notice of Allowance”, dated Jul. 25, 2018, 9 pages.
  • PCT/US2010/034763 , “International Search Report and Written Opinion”, dated Dec. 8, 2010, 9 pages.
  • White , “How Computers Work”, Que Publishing, Ninth Edition, Nov. 14, 2007, all pages.
  • Petition for Inter Partes Review of U.S. Pat. No. 8,533,860 Challenging Claims 1-30 Under 35 U.S.C. § 312 and 37 C.F.R. § 42.104, filed Feb. 17, 2016, Before The USPTO Patent Trial and Appeal Board, IPR 2016-00600, 65 pages.
  • Wang, et. al, U.S. Appl. No. 16/302,054 (unpublished), “Methods of Distributing Tokens and Managing Token Relationships,”, filed Nov. 15, 2018.
  • Dean, et al., U.S. Appl. No. 16/311,144 (unpublished), “Encryption Key Exchange Process Using Access Device,”, filed Dec. 18, 2018.
Patent History
Patent number: 11004043
Type: Grant
Filed: Oct 25, 2018
Date of Patent: May 11, 2021
Patent Publication Number: 20190066069
Assignee: Visa International Service Association (San Francisco, CA)
Inventors: Patrick Faith (Pleasanton, CA), Krishna Koganti (Cupertino, CA)
Primary Examiner: Abhishek Vyas
Assistant Examiner: Monica A Mandel
Application Number: 16/171,176
Classifications
Current U.S. Class: Generating Database Or Data Structure (e.g., Via User Interface) (707/102) (707/999.102)
International Classification: G06Q 20/10 (20120101); G06Q 20/38 (20120101); G06Q 40/02 (20120101); H04L 9/32 (20060101);