Production of carbon nanotube modified battery electrode powders via single step dispersion
Methods of making single walled carbon nanotubes (SWNTs) including a single step for preparing a homogeneous dispersion of SWNTs in a battery electrode powder. The method may comprise providing a reactor in fluid communication with a mixer, wherein an aerosol containing SWNTs is transmitted from the reactor directly to the mixer containing a battery electrode powder.
Latest Honda Motor Co., Ltd. Patents:
The present disclosure relates generally to a method of making single walled carbon nanotubes (SWNTs). The method includes a single step for preparing a homogeneous dispersion of SWNTs in a battery electrode powder.
BACKGROUNDSWNTs provide numerous benefits for use in, for example, electrically and thermally conducting functional materials. In many cases, SWNTs are dispersed in a battery electrode powder material to produce carbon-reinforced composite materials, which often possess improved properties relative to the corresponding non-composite materials.
However, current dispersion technologies are not only expensive but also degrade nanotube properties, leading to reduction of aspect ratio and introduction of defects. The technologies end up requiring more nanotube loading (in terms of weight percent) for improved performance. In addition, current technologies often result in high levels of SWNT agglomeration within the composite materials.
There is thus a need in the art for a more efficient method for preparing SWNT-containing dispersions that preferably reduce SWNT agglomeration.
SUMMARYThe present disclosure relates generally to methods of making SWNTs which, for example, may be used as additives in composite materials, such as for use in battery electrodes. In particular, the present disclosure provides a single step method for preparing a homogeneous dispersion of SWNTs in a battery electrode powder. The method may comprise providing a reactor in fluid communication with a mixer, wherein an aerosol containing SWNTs is transmitted from the reactor directly to the mixer containing a battery electrode powder.
Aspects of the present disclosure also relate to SWNTs, SWNT-containing dispersions, and composite materials including the SWNTs obtainable by the methods disclosed herein. Further, aspects of the present disclosure also relate to apparatuses for preparing SWNT-containing dispersions as described herein.
The present disclosure relates generally to methods of making SWNTs which, for example, may be used as additives in composite materials, such as for use in battery electrodes. In particular, the present disclosure provides a single step method for preparing a homogeneous dispersion of SWNTs in a battery electrode powder. The method may comprise providing a reactor in fluid communication with a mixer, wherein an aerosol containing SWNTs is transmitted from the reactor directly to the mixer containing a battery electrode powder.
The method of the present disclosure comprises providing a reactor for preparing an aerosol of SWNTs. According to some aspects, the reactor is configured for use with a chemical vapor deposition (CVD) method for the preparation of SWNTs.
The reactor may be in fluid communication with a source of catalyst and/or catalyst precursor and a carbon source. For example, as shown in
The method may comprise injecting the catalyst and/or catalyst precursor and the carbon source into the reactor. For example, the reactor may be provided with a first inlet for injecting the catalyst and/or catalyst precursor from the source chamber to the reactor. The first inlet may be in communication with, for example, a liquid pump 3 as shown in
As used herein, the term “catalyst” refers to a component that provokes or speeds up a chemical reaction, for example, the synthesis of SWNTs. The catalyst may comprise, for example, a metal. Examples of metals include, but are not limited to, transition metals, lanthanide metals, actinide metals, and combinations thereof. For example, the catalyst may comprise a transition metal such as chromium (Cr), molybdenum (Mo), tungsten (W), iron (Fe), cobalt (Co), nickel (Ni), ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), copper (Cu), silver (Ag), gold (Au), cadmium (Cd), scandium (Sc), yttrium (Y), lanthanum (La), platinum (Pt), and/or combinations thereof.
According to some aspects, a catalyst precursor may be injected into the reactor, either in place of or in combination with a catalyst. As used herein, the term “catalyst precursor” refers to a component that can be converted into an active catalyst. Examples of catalyst precursors include, but are not limited to, transition metal salts, such as a nitrate, acetate, citrate, chloride, fluoride, bromide, iodide, and/or hydrates thereof. For example, the catalyst precursor may be a metallocene, a metal acetylacetonate, a metal phthalocyanine, a metal porphyrin, a metal salt, a metalorganic compound, a metal sulfate, a metal hydroxide, a metal carbonate, or a combination thereof.
According to some aspects, a catalyst may be produced from the catalyst precursor inside the reactor. For example, after the catalyst precursor has been injected into the reactor, a component or all of the catalyst precursor, such as a metal, may be reduced into an active catalyst prior to the production of SWNTs. The reactor may comprise a first region wherein the catalyst may be produced.
According to some aspects, the catalyst and/or catalyst precursor may be provided as a nanoparticle. For example, the catalyst and/or catalyst precursor may have a diameter from about 0.01 to 500 nm, preferably from about 0.01 to 250 nm, even more preferably from about 0.05 to 200 nm, and most preferably from about 0.5 to 100 nm.
According to some aspects, the catalyst and/or catalyst precursor may be injected into the reactor as a liquid, spray, or aerosol. For example, the catalyst and/or catalyst precursor may be mixed with a first carrier gas, such as an inert gas, prior to injection into the reactor. Examples of inert gasses include, but are not limited to, argon gas, hydrogen gas, helium gas, nitrogen gas, and mixtures thereof. For example, as shown in
The method may also comprise injecting the carbon source into the reactor. According to some aspects, the reactor may be provided with a second inlet for injecting the carbon source from the source chamber to the reactor. The second inlet may be the same or different from the first inlet. The second inlet may be in communication with a liquid pump, which may pump the carbon source from the source chamber to the reactor.
Examples of carbon sources include, but are not limited to, a hydrocarbon, an alcohol, an ester, a ketone, an aromatic, an aldehyde, and a combination thereof. For example, the carbon source may be selected from xylene, propane, butane, butene, ethylene, ethanol, carbon monoxide, butadiene, pentane, pentene, methane, ethane, acetylene, carbon dioxide, naphthalene, hexane, cyclohexane, benzene, methanol, propanol, propylene, commercial fuel gases (such as liquefied petroleum gas, natural gas, and the like), and combinations thereof.
According to some aspects, the carbon source may be injected as a liquid, spray, or aerosol. For example, the carbon source may be mixed with a second carrier gas, wherein the second carrier gas is the same or different than the first carrier gas. The carbon source may be injected into the reactor before, after, or simultaneously with the catalyst and/or catalyst precursor.
According to some aspects, an aerosol of SWNTs may be produced in the reactor. For example, the carbon source may decompose at the surface of the catalyst particles in the reactor by thermal and/or catalytic decomposition, thereby resulting in the formation and/or growth of SWNTs.
According to some aspects, the temperature of the reactor may be maintained and/or varied using one or more heat sources, such as a furnace. As shown in
The one or more heat sources may maintain the temperature of the reactor 1 at a temperature suitable for one or more of the reactions described herein. For example, the furnace 4 may maintain the temperature of the reactor at a temperature suitable for reducing the catalyst precursor into active catalyst and/or for the synthesis and/or formation of SWNTs.
According to some aspects, different regions of the reactor 1 may be maintained at different temperatures. For example, the first region of the reactor may be maintained at a temperature suitable for reducing the catalyst precursor into active catalyst and a second region of the reactor may be maintained at a temperature suitable for the synthesis and/or growth of SWNTs. According to some aspects, each region of the reactor 1 may be heated by the same and/or different heat sources.
According to some aspects, the one or more heat sources may maintain the temperature of the reactor at a temperature of between about 200 and 1600° C.
The SWNTs may be present in the reactor as an aerosol. The method may comprise directly transmitting the SWNT-containing aerosol from the reactor to a mixer, the mixer comprising a battery electrode powder. For example, as shown in
According to some aspects, the battery electrode powder may be any material capable of providing a dispersed SWNT material. For example, the battery electrode powder may comprise a primary battery electrode powder material. As used herein, the term “primary battery electrode powder material” refers to the most prominent material present in the battery electrode powder, such as the material having the highest weight percentage of all the materials making up the battery electrode powder. According to some aspects, the primary battery electrode powder material may comprise a liquid such as a metal alloy, a carbon pitch, a solution of dispersed graphene or graphene oxide sheets, a tar, a cement, an asphalt, an ionic liquid selected from a imidazolium-based liquid, an organic solvent (for example, N,N-dimethylformamide or n-methylpyrrolidone), a melted polymer (for example, a melted polyester, epoxy, polyimide, organosilicone, nylon, Teflon, polystyrene, polyethylene, or a combination thereof), or a combination thereof.
According to some aspects, the battery electrode powder may also comprise one or more secondary battery electrode powder materials. As used herein, the term “secondary battery electrode powder material” refers to one or more components of the battery electrode powder present in lesser amounts than the primary battery electrode powder material.
According to some aspects, the secondary battery electrode powder material may comprise a surfactant, such as an anionic surfactant. Examples of anionic surfactants include, but are not limited to, sodium dodecyl sulfate (SDS), salts of carboxylic acids, salts of sulfonic acids, salts of sulfuric acid, dodecyltrimethylammonium bromide, sodium octylbenzene sulfonate, phosphoric and polyphosphoric acid esters, alkylphosphates, monoalkyl phosphate (MAP), sodium butylbenzene sulfonate, sodium benzoate, and salts of perfluorocarboxylic acids.
According to some aspects, the secondary material may comprise a binder. Examples of binders include, but are not limited to, fluorine resins (for example, polytetrafluoroethylene (PTFE) or polyvinylidene fluoride (PVdF)), polyacrylonitrile (PAN), polyimide resins, acrylic resins, polyolefin resins, or a combination thereof.
According to some aspects, the SWNT-containing aerosol may comprise one or more carrier gasses that carry the SWNTs from the reactor to the mixer. For example, the carrier gasses may be the same as the first and/or second carrier gas used to inject the catalyst and/or catalyst precursor and/or the carbon source into the reactor. According to some aspects, an additional carrier gas may be injected into or already present in the reactor. The additional carrier gas may be the same or different from the first and/or second carrier gas. For example, as shown in
The method comprises dispersing the SWNTs in the battery electrode powder. For example, the mixer may be provided with a dispersing component, such as a mechanical stirrer, a magnetic stirrer, a ball miller, a sonicator, or a combination thereof. For example, as shown in
According to some aspects, the amount of any of the components herein may be selected in order to provide a specific ratio of SWNT to battery electrode powder. The specific ratio may be selected in order to provide a low instance of SWNT agglomeration in the battery electrode powder. For example, the ratio of SWNT to battery electrode powder by weight may be from about 0.01 to 100 wt %, preferably from about 0.01 to 80 wt %, more preferably from about 0.01 to 65 wt %, and most preferably from about 0.01 to 50 wt %.
According to some aspects, the method may also optionally comprise mixing the resultant dispersion with an active material and/or making a slurry comprising the dispersion using commonly established methods.
The present disclosure also relates to SWNTs, SWNT-containing dispersions, and composite materials including the SWNTs and/or SWNT-containing dispersions obtainable by the methods disclosed herein. For example, the present disclosure relates to battery electrodes comprising the composite materials described herein.
The present disclosure also relates to an apparatus for preparing SWNT-containing dispersions as described herein. It should be understood that the elements of the apparatus described herein may be arranged in various ways (e.g., above, below, beside one another) so long as they do not depart from the functionalities described herein.
While the aspects described herein have been described in conjunction with the example aspects outlined above, various alternatives, modifications, variations, improvements, and/or substantial equivalents, whether known or that are or may be presently unforeseen, may become apparent to those having at least ordinary skill in the art. Accordingly, the example aspects, as set forth above, are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the disclosure. Therefore, the disclosure is intended to embrace all known or later-developed alternatives, modifications, variations, improvements, and/or substantial equivalents.
Thus, the claims are not intended to be limited to the aspects shown herein, but are to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for.”
Further, the word “example” is used herein to mean “serving as an example, instance, or illustration.” Any aspect described herein as “example” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C,” “at least one of A, B, and C,” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C,” “at least one of A, B, and C,” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. Nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims.
Claims
1. A method for preparing a dispersion of single walled carbon nanotubes in a battery electrode powder, the method comprising:
- preparing an aerosol containing single walled carbon nanotubes in a reactor; and
- transmitting the aerosol directly from the reactor to a mixer containing the battery electrode powder to produce the dispersion,
- wherein the battery electrode powder comprises a primary battery electrode powder material and a secondary material, the secondary material being a surfactant optionally together with a binder,
- wherein a ratio of single walled carbon nanotubes to battery electrode powder is from about 0.01 to 50 wt %; and
- wherein the surfactant comprises sodium dodecyl sulfate, wherein the aerosol is continuously transmitted to the mixer as the single walled carbon nanotubes are prodiced in the reactor.
2. The method according to claim 1, wherein the primary battery electrode powder material comprises an organic solvent.
3. The method according to claim 2, wherein the organic solvent comprises n-methylpyrrolidone.
4. The method according to claim 1, wherein the battery electrode powder is continually mixed as the aerosol is transmitted to the mixer.
5. The method according to claim 4, wherein the battery electrode powder is continually mixed by a mechanical stirrer, a magnetic stirrer, a ball miller, a sonicator, or a combination thereof provided as part of the mixer.
6. The method according to claim 1, wherein the single walled carbon nanotubes are produced by contacting a carbon source and a catalyst in the reactor.
7. The method according to claim 6, wherein the catalyst comprises a metal.
8. The method according to claim 6, wherein a catalyst precursor is converted to the catalyst in the reactor.
9. The method according to claim 6, wherein the catalyst comprises nanoparticles.
10. A method for preparing a dispersion of single walled carbon nanotubes in a battery electrode powder, the method comprising:
- preparing an aerosol containing single walled carbon nanotubes in a reactor; and
- transmitting the aerosol directly from the reactor to a mixer containing the battery electrode powder to produce the dispersion,
- wherein the battery electrode powder comprises a primary battery electrode powder material and a secondary material, the secondary material being an anionic surfactant optionally together with a binder, and
- wherein a ratio of single walled carbon nanotubes to battery electrode powder is from about 0.01 to 50 wt %, and wherein the aerosol is continuously transmitted to the mixer as the single walled carbon nanotubes are produced in the reactor.
3513034 | May 1970 | Fischbach et al. |
3772084 | November 1973 | Scholle |
5985175 | November 16, 1999 | Fan et al. |
7094385 | August 22, 2006 | Beguin et al. |
7288870 | October 30, 2007 | Mitcham et al. |
7348101 | March 25, 2008 | Gozdz et al. |
7622059 | November 24, 2009 | Bordere et al. |
7999028 | August 16, 2011 | Lin et al. |
8083905 | December 27, 2011 | Choi et al. |
8084158 | December 27, 2011 | Chu et al. |
8293204 | October 23, 2012 | Khodadadi et al. |
8435676 | May 7, 2013 | Zhamu et al. |
8465871 | June 18, 2013 | Juzkow et al. |
8628747 | January 14, 2014 | Zachariah |
8703092 | April 22, 2014 | Ziegler |
8787001 | July 22, 2014 | Fleischer et al. |
8825178 | September 2, 2014 | Feng et al. |
8883113 | November 11, 2014 | Richter et al. |
8974960 | March 10, 2015 | Manthiram et al. |
8986872 | March 24, 2015 | Lev et al. |
9034421 | May 19, 2015 | Mikhaylik et al. |
9167736 | October 20, 2015 | Shah et al. |
9396829 | July 19, 2016 | Mann et al. |
9406985 | August 2, 2016 | Amaratunga et al. |
9450266 | September 20, 2016 | Hosaka et al. |
9502734 | November 22, 2016 | Lim et al. |
9615473 | April 4, 2017 | Kim |
9692056 | June 27, 2017 | Liu et al. |
9711763 | July 18, 2017 | Sohn et al. |
9782082 | October 10, 2017 | Gannon et al. |
9786872 | October 10, 2017 | Suh et al. |
9807876 | October 31, 2017 | Catchpole |
9812681 | November 7, 2017 | Heo |
9859586 | January 2, 2018 | Suh et al. |
9887644 | February 6, 2018 | Kim et al. |
9941492 | April 10, 2018 | Suh et al. |
9972868 | May 15, 2018 | Choi et al. |
9979225 | May 22, 2018 | Bernhard |
10033031 | July 24, 2018 | Wang et al. |
10090556 | October 2, 2018 | Rho et al. |
10096803 | October 9, 2018 | Iseri et al. |
10122010 | November 6, 2018 | Tajima et al. |
10147915 | December 4, 2018 | Song et al. |
10199851 | February 5, 2019 | Hiroki et al. |
10217971 | February 26, 2019 | Takahashi et al. |
20030084847 | May 8, 2003 | Wood et al. |
20030099883 | May 29, 2003 | Ochoa et al. |
20040086783 | May 6, 2004 | Fong et al. |
20040234445 | November 25, 2004 | Serp et al. |
20050008778 | January 13, 2005 | Utsugi et al. |
20050063891 | March 24, 2005 | Shaffer et al. |
20050148887 | July 7, 2005 | Reiter et al. |
20050209392 | September 22, 2005 | Luo |
20050221185 | October 6, 2005 | Sakata et al. |
20060039849 | February 23, 2006 | Resasco et al. |
20060078489 | April 13, 2006 | Harutyunyan et al. |
20060116443 | June 1, 2006 | Probst et al. |
20060151318 | July 13, 2006 | Park et al. |
20060245996 | November 2, 2006 | Xie et al. |
20070274899 | November 29, 2007 | Wolf et al. |
20080131351 | June 5, 2008 | Wang et al. |
20080210550 | September 4, 2008 | Walther et al. |
20080233402 | September 25, 2008 | Carlson et al. |
20080258117 | October 23, 2008 | Sakakibara |
20090117026 | May 7, 2009 | Shimazu et al. |
20090142659 | June 4, 2009 | Lai et al. |
20090208708 | August 20, 2009 | Wei et al. |
20090226704 | September 10, 2009 | Kauppinen et al. |
20090274609 | November 5, 2009 | Harutyunyan et al. |
20090286675 | November 19, 2009 | Wei et al. |
20100000441 | January 7, 2010 | Jang |
20100038602 | February 18, 2010 | Plee |
20100140560 | June 10, 2010 | Wang et al. |
20100178543 | July 15, 2010 | Gruner et al. |
20100221606 | September 2, 2010 | Nalamasu et al. |
20100276644 | November 4, 2010 | Wolf et al. |
20100285352 | November 11, 2010 | Juzkow et al. |
20100285358 | November 11, 2010 | Cui et al. |
20110060162 | March 10, 2011 | Tatsuhara et al. |
20110111279 | May 12, 2011 | Smithyman et al. |
20110123429 | May 26, 2011 | Bordere et al. |
20110150746 | June 23, 2011 | Khodadadi et al. |
20110158892 | June 30, 2011 | Yamaki |
20110171398 | July 14, 2011 | Oladeji |
20110177393 | July 21, 2011 | Park et al. |
20110281156 | November 17, 2011 | Boren et al. |
20110311874 | December 22, 2011 | Zhou et al. |
20120105370 | May 3, 2012 | Moore |
20120107683 | May 3, 2012 | Kim et al. |
20120132861 | May 31, 2012 | Tamamitsu et al. |
20120138148 | June 7, 2012 | Harutyunyan |
20120141864 | June 7, 2012 | Juzkow et al. |
20120149824 | June 14, 2012 | Hocke et al. |
20120177934 | July 12, 2012 | Vogel et al. |
20120193602 | August 2, 2012 | Lieber et al. |
20120241666 | September 27, 2012 | Hong et al. |
20120282522 | November 8, 2012 | Axelbaum et al. |
20120316539 | December 13, 2012 | Lashmore et al. |
20120321911 | December 20, 2012 | Watanabe et al. |
20130040229 | February 14, 2013 | Grigorian et al. |
20130065130 | March 14, 2013 | Ban et al. |
20130106026 | May 2, 2013 | Wang et al. |
20130149440 | June 13, 2013 | Pyzik et al. |
20130171485 | July 4, 2013 | Kodera et al. |
20130189865 | July 25, 2013 | Lashmore et al. |
20130224551 | August 29, 2013 | Hiralal et al. |
20130256011 | October 3, 2013 | Chang |
20130323583 | December 5, 2013 | Phares |
20140013588 | January 16, 2014 | Wang et al. |
20140021403 | January 23, 2014 | Kim et al. |
20140057178 | February 27, 2014 | He et al. |
20140065447 | March 6, 2014 | Liu et al. |
20140141248 | May 22, 2014 | Noyes |
20140170490 | June 19, 2014 | Izuhara et al. |
20140255782 | September 11, 2014 | Jabbour et al. |
20140326181 | November 6, 2014 | Kim |
20140370347 | December 18, 2014 | Jung et al. |
20150010788 | January 8, 2015 | Aria et al. |
20150037239 | February 5, 2015 | Sue et al. |
20150044581 | February 12, 2015 | Holme et al. |
20150064521 | March 5, 2015 | Watanabe et al. |
20150087858 | March 26, 2015 | Ci et al. |
20150133569 | May 14, 2015 | Gong et al. |
20150188112 | July 2, 2015 | Adre et al. |
20150200417 | July 16, 2015 | Song et al. |
20150207143 | July 23, 2015 | Wu et al. |
20150207168 | July 23, 2015 | Do et al. |
20150233010 | August 20, 2015 | Pan |
20150236366 | August 20, 2015 | Chang et al. |
20150243451 | August 27, 2015 | Kim et al. |
20150243452 | August 27, 2015 | Gruner et al. |
20150255828 | September 10, 2015 | Momo et al. |
20150279578 | October 1, 2015 | Martini et al. |
20150325820 | November 12, 2015 | Sohn et al. |
20150333302 | November 19, 2015 | Johns et al. |
20150340684 | November 26, 2015 | Voillequin et al. |
20150340741 | November 26, 2015 | Kim et al. |
20150349325 | December 3, 2015 | Chen et al. |
20150364750 | December 17, 2015 | Maheshwari et al. |
20150380738 | December 31, 2015 | Zhou et al. |
20160013457 | January 14, 2016 | Suh et al. |
20160013458 | January 14, 2016 | Suh et al. |
20160020437 | January 21, 2016 | Sohn et al. |
20160023905 | January 28, 2016 | Wei |
20160036059 | February 4, 2016 | Tokune et al. |
20160040780 | February 11, 2016 | Donahue |
20160049569 | February 18, 2016 | Negrin |
20160079629 | March 17, 2016 | Abe et al. |
20160082404 | March 24, 2016 | Pigos |
20160094079 | March 31, 2016 | Hiroki et al. |
20160126554 | May 5, 2016 | Beneventi et al. |
20160149193 | May 26, 2016 | Seong |
20160149253 | May 26, 2016 | Yi et al. |
20160166837 | June 16, 2016 | Strommer et al. |
20160329533 | November 10, 2016 | Tajima |
20160365544 | December 15, 2016 | Lee et al. |
20160372717 | December 22, 2016 | Noda |
20170005504 | January 5, 2017 | Rho et al. |
20170018799 | January 19, 2017 | Jeong |
20170033326 | February 2, 2017 | Goto et al. |
20170040582 | February 9, 2017 | Kim |
20170155098 | June 1, 2017 | Park et al. |
20170155099 | June 1, 2017 | Song et al. |
20170214052 | July 27, 2017 | Xu |
20170263972 | September 14, 2017 | Rho et al. |
20170288255 | October 5, 2017 | Kim et al. |
20170338439 | November 23, 2017 | Yokoyama |
20170338449 | November 23, 2017 | Rho et al. |
20170338489 | November 23, 2017 | Miwa et al. |
20180026236 | January 25, 2018 | Lee et al. |
20180062417 | March 1, 2018 | Choi et al. |
20180115026 | April 26, 2018 | Mairs |
20180241081 | August 23, 2018 | Deng et al. |
20180309117 | October 25, 2018 | Zhu et al. |
20190027638 | January 24, 2019 | Masuda et al. |
20190033602 | January 31, 2019 | Lee et al. |
20190036103 | January 31, 2019 | Pierce et al. |
20190088925 | March 21, 2019 | Harutyunyan et al. |
20190099129 | April 4, 2019 | Kopelman et al. |
20190115633 | April 18, 2019 | Akihisa |
20190122464 | April 25, 2019 | Delong et al. |
20190140270 | May 9, 2019 | Wang et al. |
20190171315 | June 6, 2019 | Park et al. |
102593436 | July 2012 | CN |
102674316 | September 2012 | CN |
102674316 | May 2014 | CN |
204072059 | January 2015 | CN |
104752651 | July 2015 | CN |
103219467 | November 2015 | CN |
103715394 | January 2016 | CN |
205375473 | July 2016 | CN |
103280846 | August 2016 | CN |
106024969 | October 2016 | CN |
205697720 | November 2016 | CN |
104392845 | March 2017 | CN |
104362326 | August 2017 | CN |
107086306 | August 2017 | CN |
107611340 | January 2018 | CN |
108878717 | November 2018 | CN |
109088071 | December 2018 | CN |
208690415 | April 2019 | CN |
106129536 | July 2019 | CN |
102017123752 | March 2019 | DE |
2213369 | August 2010 | EP |
2 476 648 | July 2012 | EP |
2 835 177 | February 2015 | EP |
2835177 | February 2015 | EP |
6-267515 | September 1994 | JP |
11-31502 | February 1999 | JP |
11-87875 | March 1999 | JP |
2005-272277 | October 2005 | JP |
2007-49789 | February 2007 | JP |
2010-277925 | December 2010 | JP |
2015105208 | June 2015 | JP |
2015-521347 | July 2015 | JP |
2015-220004 | December 2015 | JP |
2016-31922 | March 2016 | JP |
2016-54113 | April 2016 | JP |
2016-73196 | May 2016 | JP |
2017-130274 | July 2017 | JP |
2017-147222 | August 2017 | JP |
2017-162637 | September 2017 | JP |
10-1548465 | August 2015 | KR |
10-2016-0047643 | May 2016 | KR |
10-1632109 | June 2016 | KR |
10-2016-0114389 | October 2016 | KR |
10-2016-0129440 | November 2016 | KR |
10-2016-0129500 | November 2016 | KR |
10-1676641 | November 2016 | KR |
10-1703516 | February 2017 | KR |
10-2017-0036478 | April 2017 | KR |
10-2017-0037510 | April 2017 | KR |
10-1729702 | April 2017 | KR |
10-1765459 | August 2017 | KR |
10-1795544 | November 2017 | KR |
10-2019-0040554 | April 2019 | KR |
WO 2005/052053 | June 2005 | WO |
WO 2055/052053 | June 2005 | WO |
WO 2005/096089 | October 2005 | WO |
WO 2012/156297 | November 2012 | WO |
WO 2014/102131 | July 2014 | WO |
WO 2014/153465 | September 2014 | WO |
WO 2015/100762 | July 2015 | WO |
WO 2017/052248 | March 2017 | WO |
WO 2017/120391 | July 2017 | WO |
WO 2017/131451 | August 2017 | WO |
WO 2018-110933 | June 2018 | WO |
WO 2018/194414 | October 2018 | WO |
WO 2018/194415 | October 2018 | WO |
- Weidenkaff “Metal nanoparticles for the production of carbon nanotube composite materials by decomposition of different carbon sources.” Materials Science and Engineering C 19 2002. 119-123 (Year: 2002).
- A.J. Clancy et al., “A One-Step Route to Solubilised, Purified or Functionalised Single-Walled Carbon Nanotunes”, Journal of Materials Chemistry A, pp. 16708-16715, 2015.
- Beate Krause et al., “Disperability and Particle Size Distribution of CNTs in an Ageous Surfactant Dispersion as a Function of Ultrasonic Treatment Time” Carbon 48, pp. 2746-2754, 2010.
- Howard Wang, “Dispersing Carbon Nanotubes Usuing Surfactants” Current Opinion in Colloid & Interface Science 14, pp. 364-371, 2009.
- Linqin Wang et al., “Production of Aqueous Colloidal Dispersions of Carbon Nanotubes”, Journal of Colloid and Interface Science, pp. 89-94, 2003.
- Extended European Search Report issued in corresponding European Patent Application No. 18173644.8 dated Oct. 12, 2018.
- O.M. Marago, et al, “Optical trapping of carbon nanotubes”, Physica E, 40 (2008), pp. 2347-2351.
- Kun Kelvin Fu et al., “Flexible Batteries: From Mechanics to Devices”, 2016 American Chemical Society, ACS Publications, ACS Energy Letters 1, pp. 1065-1079, (2016).
- Sau Yen Chew et al., “Flexible free-standing carbon nanotube films for model lithium-ion batteries”, Carbon 47, pp. 2976-2983, (2009).
- Sheng Xu et al., “Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems” Nature communications 4:1543, DOI: 10.1038/ncomms2553, 8 Pages Total, (2013).
- Shu Luo et al., “Binder-Free LiCoO2/ Carbon Nanotube Cathodes for High-Performance Lithium Ion Batteries”, Advanced Materials 24, pp. 2294-2298, (2012).
- Zhigian Wang et al., “Fabrication of High-Performance Flexible Alkaline Batteries by Implementing Multiwalled Carbon Nanotubes and Copolymer Separator” Advanced Materials 26, pp. 970-976, (2014).
- Zhiqiang Niu et al., “A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high Performance supercapacitor electrodes”, The Royal Society of Chemistry 2012, Energy & Environmental Science 5, pp. 8726-8733, (2012).
- Joo-Seong Kim et al., Supporting Information, A Half Millimeter Thick Coplanar Flexible Battery with Wireless Recharging Capability, Nano Letters 2015 15 (4), 9 Pages Total, (2015).
- Xiong Pu et al., “A Self-Charging Power Unit by integration of a Textile Triboelectric Nanogenerator and 8 Flexible Lithium-Ion Battery for Wearable Electronics”, Advanced Materials 27, pp. 2472-2478, (2015).
- Jenax Inc., Flexible Lithium Polymer Battery J. Flex, Copyright 2014, (6 Pages Total).
- Nanalyze., A Flexible Battery from Blue Spark Technologies, Apr. 8, 2014, (4 Pages Total).
- Panasonic Corp., Panasonic Develops Bendable Twistable Flexible Lithium-ion Battery, Sep. 29, 2016, (8 Pages Total).
- ProLogium Technology Co. Ltd., FLCB Flexible Type LCB, Copyright 2015, (6 Pages Total).
- Sebastian Anthony., LG produces the first flexible cable-type lithium-ion battery, ExtrerneTech, Aug. 30, 2012, (9 Pages Total).
- The Swatch Group Ltd., A revolutionary battery by Belenos: The Watchmaker Swatch Group Has Signed an Agreement With the Chinese Geely Group for Use of Its Innovative New Battery., as accessed on May 29, 2019, (3 Pages Total), https://www.swatchgroup.com/en/ swatch-group/innovation.powerhouse/industry.40/revolutionary-battery-belenos.
- Vishwam Sankaran., Samsung is reportedly developing a curved battery for its foldable phone, Jul. 4, 2018, (4 Pages Total).
- Xian-Ming Liu et al., “Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review”, Composite Science and Technology, vol. 72, pp. 121-144, (2012).
- Communication dated Aug. 26, 2019, from the European Patent Office in counterpart European Application No. 18186402.6.
- Communication dated Jul. 31, 2019, from the European Patent Office in counterpart European Application No. 18194454.7.
- International Search Report and Written Opinion, issued by International Searching Authority in corresponding International Application No. PCT/US19/49923, dated Jan. 23, 2020.
- Communucation issued by the International Searching Authority in corresponding International Application No. PCT/US19/49923, dated Nov. 13, 2019, (PCT/ISA/206).
- Communication dated Feb. 4, 2020, from the European Patent Office in counterpart European Application No. 18 173 644.8.
- A. Weidenkaff et al. “Metal Nanoparticles for the Production of Carbon Nanotube Composite Materials by Decomposition of Different Carbon Sources” Materials Science and Engineering C, vol. 19, p. 119, 2002.
- Chee Howe See et al., “CaCO3 Supported Co—Fe Catalysts for Carbon Nanotube Synthesis in Fluidized Bed Reactors” Particle Technology and Fluidization, vol. 54, No. 3, pp. 657-664, Mar. 2008.
- Danafar, F. et. al., “Fluidized bed catalytic chemical vapor deposition synthesis of carbon nanotubes—A review,” The Chemical Engineering Journal, vol. 155, pp. 37-48, 2009.
- Dunens, O., et. al., “Synthesis of Multiwalled Carbon Nanotubes on Fly Ash Derived Catalysts,”Environ. Sci. Technol., vol. 43, pp. 7889-7894, 2009.
- Extended European Search Report issued in corresponding European Application No. 18184002.6 dated Nov. 30, 2018.
- Extended European Search Report issued in corresponding European Patent Application No. 18186402.6 dated Oct. 11, 2018.
- Extended European Search Report issued in corresponding European Patent Application No. 18194469.5 dated Dec. 4, 2018.
- Extended European Search Report of related European Patent Application No. 18184002.6, dated Nov. 30, 2018.
- Extended Search Report of related EP Application No. 18 19 4454.7 dated Jul. 23, 2019.
- Hasegawa Kei et. al., “Lithium Ion Batteries Made of Electrodes with 99 wt% active materials and 1wt% carbon nanotubes without binder or metal foils”, Journal of Power Sources, vol. 321, pp. 155-162, 2016.
- Hu, Liangbing et al., Thin, Flexible Secondary Li-Ion Paper Batteries, ACS Nano, vol. 4, No. 10, pp. 5843-5848, 2010.
- Kim et al., “A Half Millimeter Thick Coplanar Flexible Battery with Wireless Recharging Capability”, Nano Letters, American Chemical Society, 2015, (9 Pages Total).
- Office Action issued by the European Patent Office in corresponding European Patent Application No. 18184002.6, dated May 13, 2020.
- Sarah Maghsoodi et al., “A Novel Continuous Process for Synthesis of Carbon Nanotubes Using Iron Floating Catalyst and MgO Particles for CVD of methane in a fluidized bed reactor” Applied Surface Science, vol. 256, pp. 2769-2774, 2010.
- The Extended European Search Report issued in corresponding European Patent Application No. 18186402.6 dated Oct. 11, 2018.
- Wang Ke et al., “Super-Aligned Carbon Nanotube Films as Current Collectors for Lightweight and Flexible Lithium Ion Batteries” Advanced Functional Materials, vol. 23, pp. 846-853, 2013.
- Zhao, M.Q. et. al., “Towards high purity graphene/single-walled carbon nanotube hybrids with improved electrochemical capacitive performance,” Carbon, vol. 54, pp. 403-411, 2013.
- International Search Report and Written Opinion, issued by International Searching Authority in related International Application No. PCT/US2020/020993, dated Jul. 2, 2020.
- Communication dated Jan. 6, 2021, from the Japanese Patent Office in related application No. 2020-002545.
- Communication dated Dec. 22, 2020, from the Japanese Patent Office in related application No. 2020-002026.
- Communication dated Aug. 26, 2019, from the European Patent Office in related European Application No. 18186402.6.
- Extended European Search Report in releated EP Application No. 18 19 4454 dated Jul. 23, 2019.
- International Search Report and Written Opinion, issued by International Searching Authority in related International Application No. PCT/US2020/039821, dated Sep. 30, 2020.
- David Schiller, “Development of a Strechable Battery Pack for Wearable Applications”, submitted by David Schiller, BSc., Johannes Kepler University Linz, Nov. 2019, 28 Pages Total https://epub.jku.at/obvulihs/content/titleinfo/4605900/full.pdf.
- International Search Report and Written Opinion, issued by International Searching Authority in related International Application No. PCT/US2020/043017, dated Dec. 14, 2020.
Type: Grant
Filed: May 24, 2017
Date of Patent: Aug 3, 2021
Patent Publication Number: 20180342729
Assignees: Honda Motor Co., Ltd. (Tokyo), NanoSynthesis Plus, Ltd. (Columbus, OH)
Inventors: Avetik Harutyunyan (Columbus, OH), Neal Pierce (Beavercreek, OH), Elena Mora Pigos (Galena, OH)
Primary Examiner: Tri V Nguyen
Application Number: 15/604,131
International Classification: H01M 4/04 (20060101); C01B 32/159 (20170101); H01M 4/139 (20100101); C01B 32/174 (20170101); H01M 4/13 (20100101); H01M 4/62 (20060101);