Fiber, Fabric, Or Textile Patents (Class 423/447.1)
  • Patent number: 12024434
    Abstract: Carbon-based composite materials are provided, such as those comprising at least 80 weight % of graphitic carbon comprising functional groups capable of forming hydrogen bonds, the graphitic carbon in the form of a mat of randomly entangled elongated structures; not more than 20 weight % of a polymer or a nanofiber thereof, dispersed within the graphitic carbon, the polymer or the nanofiber thereof comprising corresponding functional groups capable of forming hydrogen bonds with the functional groups of the graphitic carbon; and a plurality of hydrogen bonds at an interface formed between the graphitic carbon and the polymer or the nanofiber thereof, the plurality of hydrogen bonds formed between the functional groups of the graphitic carbon and the corresponding functional groups of the polymer or the nanofiber thereof.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: July 2, 2024
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ramathasan Thevamaran, Jizhe Cai
  • Patent number: 11746445
    Abstract: An object of the present invention is to provide a carbon fiber which exhibits excellent strength development rate when used in a composite material. The present invention that solves the problems is a carbon fiber which simultaneously satisfies the following formulae (1) and (2): Lc/d?3??(1) TS×d×Lc>6.0×105??(2) wherein: Lc is an X-ray crystallite size (?), d is a filament diameter (?m), and TS is a strand tensile strength (MPa).
    Type: Grant
    Filed: September 13, 2022
    Date of Patent: September 5, 2023
    Assignees: TEIJIN LIMITED, Teijin Carbon Europe GmbH
    Inventors: Shuhei Yoshida, Hidekazu Yoshikawa, Yosuke Nakamura, Hironori Kawamoto, Takaya Suzuki, Toru Kaneko
  • Patent number: 11691126
    Abstract: A process of controlling the morphology of graphite in a process for the production of graphite, the process comprising: contacting at elevated temperature, a metal-containing catalyst with a hydrocarbon gas to catalytically convert at least a portion of the hydrocarbon gas to hydrogen and carbon; wherein the temperature is between 600° C. and 1000° C. and a pressure between 0 bar(g) and 100 bar(g), and wherein both the temperature and the pressure are set within predetermined value ranges to selectively synthesise graphitic material with a desired morphology.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: July 4, 2023
    Assignee: HAZER GROUP LTD.
    Inventors: Andrew Cornejo, Hui Tong Chua, Haibo Lu
  • Patent number: 11623865
    Abstract: Described herein are apparatus, systems, and methods for the continuous production of BNNT fibers, BNNT strands and BNNT initial yarns having few defects and good alignment. BNNTs may be formed by thermally exciting a boron feedstock in a chamber in the presence of pressurized nitrogen. BNNTs are encouraged to self-assemble into aligned BNNT fibers in a growth zone, and form BNNT strands and BNNT initial yarns, through various combinations of nitrogen gas flow direction and velocities, heat source distribution, temperature gradients, and chamber geometries.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: April 11, 2023
    Assignee: BNNT, LLC
    Inventors: Michael W. Smith, Jonathan C. Stevens, Kevin C. Jordan, R. Roy Whitney
  • Patent number: 11492261
    Abstract: The present invention relates to a method using chemical reaction transparency of graphene, and more specifically to a method capable of forming a desired material by a catalytic reaction on a graphene surface using the graphene which inhibits oxygen diffusion without blocking electron delivery, and an applied method thereof.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: November 8, 2022
    Assignee: KOREA RESEARCH INSTITUTE OF CHEMICAL TECHNOLOGY
    Inventors: Won Jin Choi, Jeong-O Lee, Hyunju Chang, Ki-jeong Kong, Ki-Seok An
  • Patent number: 11434591
    Abstract: The present invention provides, in one embodiment, a nanostructured article. In an embodiment, the nanostructured article includes a first material made from a plurality of intermingled nanotubes placed on top of one another to form a continuous structure with sufficient structural integrity to be handled. The nanostructured article can also include a second material made from a plurality of nanotubes forming a layer situated on a surface of the first material. The second material, in an embodiment, has a nanotube density lower than the nanotube density of the first material. The nanostructured article further a layer of ordered pyrolytic carbon between the first material and the second material to enhance the bond and structural integrity between the first material and the second material, as well as enhancing the electrical and thermal conductivity between the first and second materials. A process for forming the nanostructured article is also provided.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: September 6, 2022
    Assignee: Nanocomp Technologies, Inc.
    Inventors: Mark W. Schauer, Erick C. Towle
  • Patent number: 11413847
    Abstract: A system that receives nanomaterials, forms nanofibrous materials therefrom, and collects these nanofibrous materials for subsequent applications. The system is coupled to a chamber that generates nanomaterials, typically carbon nanotubes produced from chemical vapor deposition, and includes a mechanism for spinning the nanotubes into yarns or tows. Alternatively, the system includes a mechanism for forming non-woven sheets from the nanotubes. The system also includes components for collecting the formed nanofibrous materials. Methods for forming and collecting the nanofibrous materials are also provided.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: August 16, 2022
    Assignee: Nanocomp Technologies, Inc.
    Inventors: David S. Lashmore, Joseph J. Brown, Jared K. Chaffee, Bruce Resnicoff, Peter Antoinette
  • Patent number: 11407637
    Abstract: A method of preparing crystalline graphene includes performing a first thermal treatment including supplying heat to an inorganic substrate in a reactor, introducing a vapor carbon supply source into the reactor during the first thermal treatment to form activated carbon, and binding of the activated carbon on the inorganic substrate to grow the crystalline graphene.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: August 9, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyeon-jin Shin, Jae-young Choi, Yun-sung Woo, Seon-mi Yoon
  • Patent number: 11390526
    Abstract: A method of safely stabilizing carbon nanotubes containing reactive or unstable catalyst metal particles by selective oxidation, or melting and removing the catalyst metal particles under controlled conditions. In one embodiment, the method may include preparing carbon nanotubes containing a residual catalyst metal, pickling the carbon nanotubes, and the subsequence oxidation of the residual catalyst metal by heat-treating without oxidation of the carbon nanotubes. In another embodiment, the method may include preparing carbon nanotubes containing a residual catalyst metal, first acid pickling, melting the residual catalyst metal by heat-treating in a vacuum chamber, and second acid pickling to remove the melted residual catalyst metal.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: July 19, 2022
    Assignee: Korea Institute of Science and Technology
    Inventors: Jae Kap Lee, Kwang Koo Jee
  • Patent number: 11325831
    Abstract: CNT foams and methods are provided. The methods may include forming, in a non-solvent liquid, a suspension of CNTs and particles of a pyrolytic polymer; removing the non-solvent liquid; and removing the particles of the pyrolytic polymer to produce a CNT foam having cells that at least substantially correspond to the dimensions of the particles of the pyrolytic polymer. CNT foams having porous structures also are provided.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: May 10, 2022
    Assignee: The Florida State University Research Foundation, Inc.
    Inventor: Mei Zhang
  • Patent number: 11318534
    Abstract: To provide a method for efficiently producing metal microparticles having a particle diameter of 1 ?m to 10 ?m, and a device for producing the same. A metal microparticle production method is used, which includes a particle generating step of generating primary particles by irradiating a metal lump in a solvent in a first tank with an ultrasonic wave, and a particle splitting step of irradiating the primary particles with an ultrasonic wave in a solvent in a second tank and splitting the primary particles to produce secondary particles.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: May 3, 2022
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Akio Furusawa, Kiyohiro Hine, Shinji Ishitani, Misato Takahashi
  • Patent number: 11235976
    Abstract: The present invention provides a nanocarbon-iron composite system which is a composite structure formed by interaction of acid-treated nanocarbon serving as a carrier, with and ferrous ions and/or ferric ions in an iron salt. In an in-vitro experiment and an animal experiment, the nanocarbon-iron composite system of the present invention shows a very efficient inhibition effect on solid tumors containing liver cancer, breast cancer and cervical cancer and has an excellent targeting property. Accordingly, the present invention further provides a preparation method of the nanocarbon-iron composite system, use of the nanocarbon-iron composite system in preparation of a drug for treating solid tumors, and a suspension for injection based on the nanocarbon-iron composite system.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: February 1, 2022
    Assignee: SICHUAN YINGRUI PHARMACEUTICAL TECHNOLOGY COMPANY
    Inventors: Xiaohai Tang, Yu Qiu, Yuanfang Huang, Pingfang Xia
  • Patent number: 11165112
    Abstract: A positive electrode for metal-air battery, comprising: a plurality of carbon nanotube films comprising a first carbon nanotube layer comprising a plurality of first carbon nanotubes; and a second carbon nanotube layer adjacent to the first carbon nanotube layer and comprising a plurality of second carbon nanotubes, wherein an alignment direction of the plurality of first carbon nanotubes in the first carbon nanotube layer and an alignment direction of the plurality of second carbon nanotubes in the second carbon nanotube layer are different from each other, and wherein an average specific tensile strength of the plurality of carbon nanotube films is greater than or equal to about 0.1 gigapascal per gram per cubic centimeter and less than or equal to about 1 gigapascal per gram per cubic centimeter.
    Type: Grant
    Filed: July 24, 2018
    Date of Patent: November 2, 2021
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION
    Inventors: Hyunjin Kim, Chongrae Park, Dongjoon Lee, Dongmin Im, Yeonsu Jung, Youngshik Cho, Minhoo Byeon
  • Patent number: 11155466
    Abstract: The embodiment relates to a method for preparing a graphite sheet having a high thermal conductivity at a low cost without using an expensive polyimide film.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: October 26, 2021
    Assignee: SKC CO., LTD.
    Inventors: Jung Doo Seo, Jung-Gyu Kim, Jonggab Baek
  • Patent number: 11155465
    Abstract: A cross-linked structure of a carbon material is excellent in mechanical strength, such as tensile strength. The carbon materials such as carbon nanotube, graphite, fullerene, and carbon nanocoil, are cross-linked with each other. The carbon materials are cross-linked through a linking group derived from a nucleophilic compound having two or more nucleophilic groups in the molecule.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: October 26, 2021
    Assignee: Stella Chemifa Corporation
    Inventors: Yoshinori Sato, Kazutaka Hirano, Yuki Kikui
  • Patent number: 11149361
    Abstract: Preparation methods of a high modulus carbon fiber (HMCF) and a precursor (mesophase pitch (MP)) thereof are provided. The preparation method of MP includes: separating components with a molecular weight distribution (MWD) of 400 to 1,000 from a heavy oil raw material through size-exclusion chromatography (SEC); subjecting the components to ion-exchange chromatography (IEC) to obtain modified feedstock oil, where, the components are passed through macroporous cation-exchange and anion-exchange resins in sequence to remove acidic and alkaline components; and subjecting the modified feedstock oil to thermal polycondensation and carbonization to obtain high-quality MP with prominent spinnability. With high mesophase content, low softening point, low viscosity, and prominent meltability and spinnability, the obtained MP is a high-quality raw material for preparing HMCFs. The obtained MP can be subjected to melt spinning, pre-oxidation, carbonization, and graphitization to obtain an MP-based HMCF.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: October 19, 2021
    Assignee: CHINA UNIVERSITY OF PETROLEUM
    Inventors: Dong Liu, Xin Gong, Bin Lou, Jun Li, Zhihao Li, Nan Shi, Fushan Wen, Hui Du, Zhaojun Chen, Changlong Yin, Xiujie Yang, Luning Chai, Zhichen Zhang, Enqiang Yu, Yu'e Fu, Huizhi Yuan, Jianguo Zhang, Zhiqing Ma, Chong Jiao, Yonggang Cao
  • Patent number: 11130925
    Abstract: A carbon nanotori-based lubricant composition for tribological applications, specifically for use in machining operations, which includes distilled water and a specific content of carbon nanotori having specific properties, which make them suitable for proper dispersal in distilled water without precipitation and remaining stable for a long time in dispersion without the need to add surfactants.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: September 28, 2021
    Assignee: UNIVERSIDAD DE MONTERREY
    Inventors: Laura Peña-Parás, Demófilo Maldonado-Cortés, Oxana Vasilievna-Kharissova, Patsy-Yessenia Arquieta-Guillén
  • Patent number: 11103837
    Abstract: An article having a nanoporous membrane and a nanoporous graphene sheet layered on the nanoporous membrane with the nanoporous membrane and the nanoporous graphene sheet in direct contact. A method of: depositing a layer of a diblock copolymer onto a graphene sheet, etching a minor phase of the diblock copolymer and a portion of the graphene in contact with the minor phase to form a nanoporous article having a nanoporous graphene sheet and a nanoporous layer of a polymer, and removing the nanoporous layer of a polymer.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: August 31, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Manoj K. Kolel-Veetil, Paul E. Sheehan
  • Patent number: 11097983
    Abstract: Methods for preparing ceramic matrix composites using melt infiltration and chemical vapor infiltration are provided as well as the resulting ceramic matrix composites. The methods and products include the incorporation of sacrificial fibers to provide improved infiltration of the fluid infiltrant. The sacrificial fibers are removed, such as decomposed during pyrolysis, resulting in the formation of regular and elongate channels throughout the ceramic matrix composite. Infiltration of the fluid infiltrant can then take place using the elongate channels resulting in improved density and an improved ceramic matrix composite product.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: August 24, 2021
    Assignee: General Electric Company
    Inventors: David Bruce Hall, James Joseph Murray, Jason Robert Parolini, Michael Alan Vallance, Juan Borja, Daniel George Norton, Jared Hogg Weaver, Daniel Gene Dunn
  • Patent number: 11094538
    Abstract: Provided is a method of forming graphene. The method of forming graphene includes treating a surface of a substrate placed in a reaction chamber with plasma while applying a bias to the substrate, and growing graphene on the surface of the substrate by plasma enhanced chemical vapor deposition (PECVD).
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: August 17, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Keunwook Shin, Changhyun Kim, Kaoru Yamamoto, Changseok Lee, Hyunjae Song, Eunkyu Lee, Kyung-Eun Byun, Hyeonjin Shin, Sungjoo An
  • Patent number: 11085422
    Abstract: Yarn energy harvesters containing conducing nanomaterials (such as carbon nanotube (CNT) yarn harvesters) that electrochemically convert tensile or torsional mechanical energy into electrical energy. Stretched coiled yarns can generate 250 W/kg of peak electrical power when cycled up to 24 Hz, and can generate up to 41.2 J/kg of electrical energy per mechanical cycle. Unlike for other harvesters, torsional rotation produces both tensile and torsional energy harvesting and no bias voltage is required, even when electrochemically operating in salt water. Since homochiral and heterochiral coiled harvester yarns provide oppositely directed potential changes when stretched, both contribute to output power in a dual-electrode yarn.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: August 10, 2021
    Assignees: Board of Regents, The University of Texas System, Industry-University Cooperation Foundation Hanyang University
    Inventors: Ray H. Baughman, Shaoli Fang, Carter S. Haines, Na Li, Jiangtao Di, Seon Jeong Kim, Shi Hyeong Kim, Keon Jung Kim, Tae Jin Mun, Changsoon Choi
  • Patent number: 11081684
    Abstract: Methods of making single walled carbon nanotubes (SWNTs) including a single step for preparing a homogeneous dispersion of SWNTs in a battery electrode powder. The method may comprise providing a reactor in fluid communication with a mixer, wherein an aerosol containing SWNTs is transmitted from the reactor directly to the mixer containing a battery electrode powder.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: August 3, 2021
    Assignees: Honda Motor Co., Ltd., NanoSynthesis Plus, Ltd.
    Inventors: Avetik Harutyunyan, Neal Pierce, Elena Mora Pigos
  • Patent number: 11040882
    Abstract: A carbon material precursor comprises an acrylamide-based polymer having a weight-average molecular weight of 10,000 to 2,000,000 and a polydispersity of the molecular weight (weight-average molecular weight/number-average molecular weight) of 5.0 or less.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: June 22, 2021
    Assignee: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Takuya Morishita, Kazuhiro Nomura, Hiromitsu Tanaka, Megumi Sasaki, Makoto Kato
  • Patent number: 11019734
    Abstract: A method, system, apparatus, and/or device to creating a set of miniaturized electrode pillars. The method, system, apparatus, and/or device may include patterning a set of miniaturized electrode pillars on a substrate and coating the set of miniaturized electrode pillars with an interstitial filler disposed between the set of miniaturized electrode pillars. The interstitial filler may insulate the set of miniaturized electrode pillars from each other and bolster the set of miniaturized electrode pillars.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: May 25, 2021
    Assignee: Tula Health, Inc.
    Inventors: Robert Davis, Nick Morrill, David Miller
  • Patent number: 11000811
    Abstract: A method of manufacturing a reverse osmosis composite membrane, including: (i) bringing a mixed liquid containing carbon nanotubes, water, and an amine component into contact with a porous support, the mixed liquid being produced through a step of pressurizing and compressing an aqueous solution containing the carbon nanotubes while flowing the aqueous solution, followed by releasing or reducing a pressure to return a volume of the aqueous solution to an original volume to mix the carbon nanotubes; and then (ii) subjecting the amine component in the mixed liquid adhering to the porous support to a crosslinking reaction.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: May 11, 2021
    Assignee: SHINSHU UNIVERSITY
    Inventors: Morinobu Endo, Toru Noguchi, Shigeki Inukai
  • Patent number: 10995428
    Abstract: A method of manufacturing a graphene fiber is provided. The method includes preparing a source solution including graphene oxide, supplying the source solution into a base solution containing a foreign element to form a graphene oxide fiber, separating the graphene fiber from the base solution and cleaning and drying to obtain the graphene oxide fiber containing the foreign element, and performing thermal treatment to the dried graphene oxide fiber containing the foreign element to form a graphene fiber doped with the foreign element. Elongation percentage of the graphene fiber is adjusted by concentration and spinning rate of the source solution.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: May 4, 2021
    Assignee: IUCF-HYU (INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY)
    Inventors: Tae Hee Han, Hun Park
  • Patent number: 10988862
    Abstract: A carbon fiber manufacturing method includes joining first and second target fiber bundles with a joining fiber bundle, and carbonizing the joined bundles by feeding them through one or more carbonization furnaces. The joining includes forming an overlap between a first end of the joining fiber bundle and a second end of the first target fiber bundle and jetting a fluid to the overlap to form a first entangled portion, and forming an overlap between a second end of the joining fiber bundle and a first end of the second target fiber bundle and jetting a fluid to the overlap to form a second entangled portion.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: April 27, 2021
    Assignee: TOHO TENAX CO., LTD.
    Inventors: Fumio Akiyama, Tadayuki Aoyama, Ichiro Kitano
  • Patent number: 10981356
    Abstract: An adhesive sheet includes: a carbon nanotube sheet including a plurality of carbon nanotubes aligned preferentially in one direction within a plane of the sheet; and an adhesive agent layer including an adhesive agent, the adhesive agent layer being curable.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: April 20, 2021
    Assignee: LINTEC CORPORATION
    Inventors: Raquel Ovalle, Masaharu Ito, Kanzan Inoue
  • Patent number: 10974960
    Abstract: A method for obtaining semiconducting carbon nanotubes is provided. An insulating substrate comprising hollow portions and non-hollow portions is provided. A plurality of electrodes is formed on a surface of the non-hollow portions. A plurality of carbon nanotubes is formed on a surface of the insulating substrate, and the carbon nanotubes stretches across the hollow portions. The insulating substrate, the plurality of electrodes, and the carbon nanotubes are placed into a cavity, and the cavity is evacuated. A voltage is applied between any two electrodes, and photos of carbon nanotubes suspended between the two electrodes are taken. In the photo, darker ones are the semiconducting carbon nanotubes, and brighter ones are metallic carbon nanotubes. Finally, the metallic carbon nanotubes are removed.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: April 13, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Ke Zhang, Yuan-Qi Wei, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10927006
    Abstract: A method of making a thin film substrate involves exposing carbon nanostructures to a crosslinker to crosslink the carbon nanostructures. The crosslinked carbon nanostructures are recovered and disposed on a support substrate. A thin film substrate includes crosslinked carbon nanostructures on a support substrate. The crosslinked carbon nanostructures have a crosslinker between the carbon nanostructures. A method of performing surface enhanced Raman spectroscopy (SERS) on a SERS-active analyte involves providing a SERS-active analyte on such a thin film substrate, exposing the thin film substrate to Raman scattering, and detecting the SERS-active analyte.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: February 23, 2021
    Assignee: Baker Hughes Holdings LLC
    Inventors: Darryl N. Ventura, Rostyslav Dolog, Sankaran Murugesan, Radhika Suresh, Valery N. Khabashesku, Qusai Darugar
  • Patent number: 10927045
    Abstract: Provided herein are methods of making composite materials. The methods may include infiltrating a carbon nanoscale fiber network with a ceramic precursor, curing the ceramic precursor, and/or pyrolyzing the ceramic precursor. The infiltrating, curing, and pyrolyzing steps may be repeated one or more times. Composite materials also are provided that include a ceramic material and carbon nanoscale fibers.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: February 23, 2021
    Assignee: Florida State University Research Foundation, Inc.
    Inventor: Chengying Xu
  • Patent number: 10889498
    Abstract: A drawing apparatus, which draws carbon nanotubes from a grown form produced by growing carbon nanotubes, includes a holder for holding a part of the grown form by a holding member and a drive unit for causing a relative movement of the grown form and the holder. The holder includes a winding unit for winding a part of the grown form around the holding member.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: January 12, 2021
    Assignee: LINTEC CORPORATION
    Inventor: Kazuhisa Yamaguchi
  • Patent number: 10777822
    Abstract: A fuel cell electrode comprises a three-dimensional porous composite structure comprising a porous structure comprising a plurality of metal ligaments and a plurality of pores; and at least one carbon nanotube structure embedded in the porous structure and comprising a plurality of carbon nanotubes joined end to end by van der Waals attractive force, wherein the plurality of carbon nanotubes are arranged along a same direction.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: September 15, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Hong-Ying Fu, Wen-Zhen Li
  • Patent number: 10758898
    Abstract: The present invention relates to a supported catalyst that can be used to produce a carbon nanotube aggregate with high bulk density, a method for preparing the supported catalyst, a carbon nanotube aggregate produced using the supported catalyst, and a method for producing the carbon nanotube aggregate. According to the present invention, the bulk density of the carbon nanotube aggregate is easily controllable. Therefore, the carbon nanotube aggregate is suitable for use in various fields.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: September 1, 2020
    Assignee: LG CHEM, LTD.
    Inventors: SungJin Kim, Jihee Woo, Dongchul Lee, Seungyong Son, KwangWoo Yoon, Seungyong Lee, Eugene Oh, Jinmyung Cha, Hyun Woo Park, Hyungsik Jang
  • Patent number: 10745272
    Abstract: A microscale device may include a patterned forest of vertically grown and aligned carbon nanotubes defining a carbon nanotube forest with the nanotubes having a height defining a thickness of the forest. The patterned forest may define a patterned frame that defines one or more components of the microscale device. The microscale device may also include a conformal coating of substantially uniform thickness extending throughout the carbon nanotube forest. The carbon nanotube forest may have a thickness of at least three microns. The conformal coating may substantially coat the nanotubes, define coated nanotubes and connect adjacent nanotubes together such that the carbon nanotube forest is sufficiently robust for liquid processing, without substantially filling interstices between individual coated nanotubes. The microscale device may also include a metallic interstitial material infiltrating the carbon nanotube forest and at least partially filling interstices between individual coated nanotubes.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: August 18, 2020
    Assignee: Brigham Young University
    Inventors: Robert C. Davis, Richard R. Vanfleet
  • Patent number: 10745320
    Abstract: In various aspects, the processes disclosed herein may include the steps of inducing an electric field about a non-conductive substrate, and depositing functionalized nanoparticles upon the non-conductive substrate by contacting a nanoparticle dispersion with the non-conductive substrate, the nanoparticle dispersion comprising functionalized nanoparticles having an electrical charge, the electric field drawing the functionalized nanoparticles to the non-conductive substrate. In various aspects, the related composition of matter disclosed herein comprise functionalized nanoparticles bonded to a surface of a non-conductive fiber, the surface of the non-conductive fiber comprising a sizing adhered to the surface of the non-conductive fiber. This Abstract is presented to meet requirements of 37 C.F.R. § 1.72(b) only. This Abstract is not intended to identify key elements of the processes, and related apparatus and compositions of matter disclosed herein or to delineate the scope thereof.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: August 18, 2020
    Assignee: University of Delaware
    Inventor: Erik Thostenson
  • Patent number: 10723620
    Abstract: A method of preparing crystalline graphene includes performing a first thermal treatment including supplying heat to an inorganic substrate in a reactor, introducing a vapor carbon supply source into the reactor during the first thermal treatment to form activated carbon, and binding of the activated carbon on the inorganic substrate to grow the crystalline graphene.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: July 28, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyeon-jin Shin, Jae-young Choi, Yun-sung Woo, Seon-mi Yoon
  • Patent number: 10689797
    Abstract: Provided are a method for manufacturing a composite fabric capable of further improving the strength of a carbon fiber-reinforced molded article, a composite fabric, and a carbon fiber-reinforced molded article. The method includes a step of holding a surface of a filter part (22A), through which a dispersion solvent and carbon nanotubes dispersed in the dispersion solvent are allowed to pass, in contact with at least one surface of a woven fabric (12A) including a carbon fiber bundle as weaving yarn, a step of immersing the woven fabric (12A) on which the filter part (22A) is held in a dispersion that comprises the dispersion solvent and the dispersed carbon nanotubes and applying ultrasonic vibrations to the dispersion, and a step of extracting the woven fabric (12A) on which the filter part (22A) is held from the dispersion and removing the filter part (22A) from the woven fabric (12A).
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: June 23, 2020
    Assignee: NITTA CORPORATION
    Inventors: Maki Onizuka, Takuji Komukai
  • Patent number: 10665890
    Abstract: The present invention provides a conductive material for a secondary battery, and a secondary battery containing the same, the conductive material comprising carbon nanotubes, having a secondary structure in which carbon nanotube units having a diameter of 20-150 nm are entangled, having a ratio of true density to bulk density (TD/BD) of 30-120, having a metal content of 50 ppm or less, and having both excellent dispersibility and high purity, thereby being capable of improving, by increasing the conductivity within an electrode, battery performance, particularly, battery performance at room temperature and low temperature when applied to a battery.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: May 26, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Kyung Yeon Kang, Jong Heon Seol, Ji Hee Woo, Ye Lin Kim, Dong Hyun Cho, Sang Hoon Choy
  • Patent number: 10640378
    Abstract: Described herein are processes and apparatus for the large-scale synthesis of boron nitride nanotubes (BNNTs) by induction-coupled plasma (ICP). A boron-containing feedstock may be heated by ICP in the presence of nitrogen gas at an elevated pressure, to form vaporized boron. The vaporized boron may be cooled to form boron droplets, such as nanodroplets. Cooling may take place using a condenser, for example. BNNTs may then form downstream and can be harvested.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: May 5, 2020
    Assignee: BNNT, LLC
    Inventors: Michael W. Smith, Jonathan C. Stevens, Kevin C. Jordan
  • Patent number: 10618812
    Abstract: The disclosure relates to a method for making a carbon nanotube structure, comprising the following steps of providing a carbon nanotube array formed on a surface of a substrate; drawing a first carbon nanotube film from the carbon nanotube array, wherein the first carbon nanotube film comprises a first end connected to the carbon nanotube array and a second end opposite to the first end; providing an elastic rod and fixing the second end of the first carbon nanotube film to a first portion of the elastic rod, wherein the elastic rod is curved toward the carbon nanotube array; and rotating the elastic rod around a rotational axis which coincides with a center axis of the elastic rod, wherein the elastic rod is curved toward the carbon nanotube array during the rotation of the elastic rod.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: April 14, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Jiang-Tao Wang, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10537882
    Abstract: A heteroatom-containing nano-carbon material, based on the total weight of said heteroatom-containing nano-carbon material and calculated as the elements, has an oxygen content of 1-6 wt %, a nitrogen content of 0-2 wt %, a carbon content of 92-99 wt %. In its XPS, the ratio of the oxygen content as determined with the peak(s) in the range of 531.0-532.5 eV to the oxygen content as determined with the peak(s) in the range of 532.6-533.5 eV is 0.2-0.8; the ratio of the carbon content as determined with the peak(s) in the range of 288.6-288.8 eV to the carbon content as determined with the peak(s) in the range of 286.0-286.2 eV is 0.2-1; the ratio of the nitrogen content as determined with the peak(s) in the range of 398.5-400.1 eV to the total nitrogen content is 0.7-1. The heteroatom-containing nano-carbon material shows a good catalytic capability in dehydrogenation of hydrocarbons.
    Type: Grant
    Filed: January 27, 2016
    Date of Patent: January 21, 2020
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, RESEARCH INSTITUTE OF PETROLEUM PROCESSING, SINOPEC
    Inventors: Chunfeng Shi, Junfeng Rong, Peng Yu, Jingxin Xie, Mingsheng Zong, Weiguo Lin
  • Patent number: 10533247
    Abstract: A method for growing carbon nanotubes is provided. A reactor including a reactor chamber and a substrate located in the reactor chamber is provide. The substrate is a hollow structure including a sidewall and a bottom. The hollow structure also defines an opening. The sidewall includes a carbon nanotube layer and catalyst particles dispersed in the carbon nanotube layer. A mixture of carbon source gas and carrier gas is introduced into the reactor chamber so that the mixture of carbon source gas and carrier gas flows into the hollow structure from the opening and out of the hollow structure through the sidewall. The hollow structure is heated.
    Type: Grant
    Filed: November 13, 2016
    Date of Patent: January 14, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yang Wu, Peng Liu, Yang Wei, Jia-Ping Wang, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10526628
    Abstract: Select embodiments of the present invention employ biological means to direct assemble CNT-based nanostructures, allowing for scaling to macrostructures for manufacture. In select embodiments of the present invention, a method is provided for assembling DNA-functionalized SWNTs by phosphodiester bonding catalyzed by ssDNA-ligase to form macroscopic CNT aggregates.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: January 7, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE ARMY
    Inventors: Clint M. Arnett, Charles P. Marsh, Jae Hee Han, Michael S. Strano, Charles R. Welch, Thomas A. Carlson
  • Patent number: 10518507
    Abstract: A vehicle and a building includes a window and a window film attached on the window. The window film includes a polymer film, a carbon nanotube film embedded in the polymer film, and a protective layer located on the polymer film. The carbon nanotube film includes a plurality of carbon nanotubes substantially aligned along the same direction. The carbon nanotube film is located between the protective layer and the polymer film.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: December 31, 2019
    Assignee: Beijing FUNATE Innovation Technology Co., LTD.
    Inventors: Li Qian, Liang Liu, Chen Feng
  • Patent number: 10501605
    Abstract: A carbon fiber-reinforced resin composition of the present invention includes: sizing agent-coated carbon fibers in which carbon fibers are coated with a sizing agent; and a matrix resin. The sizing agent includes at least an aliphatic epoxy compound (A) and an aromatic epoxy compound (B1) as an aromatic compound (B). The sizing agent-coated carbon fibers have a ratio (a)/(b) of 0.50 to 0.90 where (a) is the height (cps) of a component having a binding energy (284.6 eV) attributed to CHx, C—C, and C?C and (b) is the height (cps) of a component having binding energy (286.1 eV) attributed to C—O in a C1s core spectrum of the surface of the sizing agent measured by X-ray photoelectron spectroscopy at a photoelectron takeoff angle of 15°.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: December 10, 2019
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Tomoko Ichikawa, Atsuki Tsuchiya, Makoto Endo
  • Patent number: 10443156
    Abstract: A yarn producing apparatus that produces high-density carbon nanotube yarn at high speed. The yarn producing apparatus includes: a substrate support supporting a carbon nanotube (CNT) forming substrate; a winding device configured to continuously draw CNT fibers from the CNT forming substrate supported on the substrate support and to allow the CNT fibers to run; and a yarn producing unit provided between the substrate support and the winding device to directly take in the CNT fibers drawn by the winding device and twist the taken-in CNT fibers. The yarn producing unit false-twists the CNT fibers with a swirl flow of compressed air.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: October 15, 2019
    Assignee: Murata Machinery, Ltd.
    Inventor: Fumiaki Yano
  • Patent number: 10439229
    Abstract: A method of making carbon nanotubes doped with iron, nitrogen and sulfur for an oxygen reduction reaction catalyst includes the steps of mixing an iron containing oxidizing agent with a sulfur-containing dye to form a fibrous fluctuate of reactive templates and using these for in-situ polymerization of an azo compound to form polymer-dye nanotubes, adding an alkali to precipitate magnetite, and subjecting the nanotubes to pyrolysis, acid leaching, and heat treatment.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: October 8, 2019
    Assignee: CITY UNIVERSITY OF HONG KONG
    Inventors: Jian Lu, Yang Yang Li, Shanshan Zeng
  • Patent number: 10414974
    Abstract: The present invention relates to quantum emitters and photochemical methods of creating such emitters, including semiconductor hosts comprising chemically incorporated fluorescent defects.
    Type: Grant
    Filed: May 27, 2018
    Date of Patent: September 17, 2019
    Assignee: University of Maryland, College Park
    Inventors: YuHuang Wang, Xiaojian Wu, Hyejin Kwon, Mijin Kim
  • Patent number: 10415040
    Abstract: Provided herein are nucleic acid amphiphiles and nanostructures such as nanotubes twisted nanotapes and helical nanotapes that comprise the amphiphiles as well as methods to deliver therapeutic agents with the nanostructures.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: September 17, 2019
    Assignee: Regents of the University of Minnesota
    Inventors: Efrosini Kokkoli, Timothy R. Pearce, Huihui Kuang