TAP,TCK inverter,shadow access port scan/instruction registers,state machine
The disclosure describes a novel method and apparatus for providing a shadow access port within a device. The shadow access port is accessed to perform operations in the device by reusing the TDI, TMS, TCK and TDO signals that are used to operate a test access port within the device. The presence and operation of the shadow access port is transparent to the presence and operation of the test access port. According to the disclosure, the shadow access port operates on the falling edge of the TCK signal while the test access port conventionally operates on the rising edge of the TCK signal.
Latest TEXAS INSTRUMENTS INCORPORATED Patents:
This application is a divisional of prior application Ser. No. 16/243,269, filed Jan. 9, 2019, now U.S. Pat. No. 10,634,721, issued Apr. 28, 2020;
Which was a divisional of prior application Ser. No. 16/037,649, filed Jul. 17, 2018, now U.S. Pat. No. 10,215,805, granted Feb. 26, 2019;
Which was a divisional of prior application Ser. No. 15/609,950, filed May 31, 2017, now U.S. Pat. No. 10,054,639, granted Aug. 21, 2018;
Which was a divisional of prior application Ser. No. 14/853,315, filed Sep. 14, 2015, now U.S. Pat. No. 9,696,378, granted Jul. 4, 2017;
Which was a divisional of prior application Ser. No. 14/543,411, filed Nov. 17, 2014, now U.S. Pat. No. 9,164,146, granted Oct. 20, 2015;
Which was a divisional of prior application Ser. No. 13/469,812, filed May 11, 2012, now U.S. Pat. No. 8,918,687, granted Dec. 23, 2014;
Which was a divisional of prior application Ser. No. 13/183,113, filed Jul. 14, 2011, now U.S. Pat. No. 8,201,036, granted Jun. 12, 2012;
Which was a divisional of prior application Ser. No. 12/408,284, filed Mar. 20, 2009, now U.S. Pat. No. 8,006,151, granted Aug. 23, 2011;
Which claims priority from Provisional Application No. 61/040,337, filed Mar. 28, 2008, and relates in general to devices using JTAG Test Access Ports and in particular to devices using JTAG Test Access Ports in combination with Shadow Access Ports.
BACKGROUND OF THE DISCLOSUREMost electrical devices today, which may be boards, ICs or embedded cores within ICs, use the IEEE 1149.1 standard (JTAG) TAP and interface to perform a variety of necessary operations, including but not limited to hardware test operations, hardware diagnostic operations, hardware/software debug operations, software trace operations and hardware programming operations. A number of additional IEEE standards have been created that also utilized the JTAG TAP interface to perform standardized operations beyond what the original JTAG TAP standard was designed to perform. Some of these additional IEEE standards include 1149.4, 1149.6, 1149.7, 1532, 1581, 1687, and 1500. The JTAG TAP interface of a device includes a test data input (TDI) terminal, a test clock (TCK) terminal, a test mode select (TMS) terminal, a test data output (TDO) terminal, and optionally a test reset (TRST) terminal. These device TAP interface terminals are dedicated and thus are available for enabling the above mentioned device operations at any point in the devices lifetime, i.e. device manufacturing through device system application.
The TMS, TCK and optional TRST terminals, are connected to the JTAG controller. The TDI terminal may be connected to the JTAG controller or to the TDO terminal of a leading device TAP in a series arrangement. The TDO terminal may be connected to the JTAG controller or to the TDI terminal of a trailing device TAP in a series arrangement. The TSM 102 responds to TMS and TCK according to the TAP state diagram of
Today the instantiation of the IEEE 1149.1 Boundary Scan TAP in a device is performed automatically by design synthesis tools. These tools implement the 1149.1 TAP compliant with the rules of the IEEE 1149.1 standard. If users of a design synthesis tool wish to extend the automatic implementation of the IEEE 1149.1 TAP to support other, standardized or non-standardized, operations in a device, such as but not limited to debug, trace, and programming operations, they must manually modify or redesign the synthesized IEEE compliant 1149.1 TAP. Depending upon the level of extension, this can either be a simple or complex task, but nevertheless a manual one.
As will be described in detail below, the disclosure advantageously provides a method and apparatus that allows a user to extend the operations of a synthesized IEEE 1149.1 TAP without having to manually modify or redesign the synthesized IEEE 1149.1 TAP. The additional operations are realized by augmenting an IEEE 1149.1 TAP with a Shadow Access Port. As will be described below, the Shadow Access Port is designed to operate using the existing TDI, TCK, TMS and TDO interface signals of a device's IEEE 1149.1 TAP without effecting the operation of the IEEE 1149.1 TAP.
BRIEF SUMMARY OF THE DISCLOSUREThe disclosure provides a novel method and apparatus for augmenting a device 1149.1 TAP with a Shadow Access Port that can be used to perform operations beyond the operations performed by the 1149.1 TAP. The Shadow Access Port advantageously reuses the device TAP's existing TDI, TCK, TMS and TDO signals, so no additional device interface signals are required. As will be described below, the Shadow Access Port operates on the falling edge of TCK and in a manner that does not interfere with the rising edge operation of the device 1149.1 TAP.
It should be understood from
In response to a low on TMS, state machine 902 transitions from Reset state 1002 to Idle state 1004 and removes the reset condition from the instruction register and data registers. State machine 902 remains in Idle state 1004 while TMS is low. In response to a high on TMS, state machine 902 transitions to select data register (Select-DR) state 1006. Depending on the logic level of TMS, the state machine transitions from the Select-DR state to either the select instruction register (Select-IR) state 1014 (TMS=1) or the capture data register (Capture-DR) state 1008 (TMS=0). The following describes the results of these two transitions.
(1) Result of Select-DR to Capture-DR Transition
If state machine 902 transitions from Select-DR state 1006 to Capture-DR state 1008, the state machine outputs control to a selected data register 906 causing the data register to capture (load) data from its parallel inputs. From the Capture-DR state 1008, the state machine 902 transitions to the shift data register (Shift-DR) state 1010 to shift data through the selected data register from TDI 116 to TDO 122. While in the Shift-DR state, the state machine 902 sets the SEN signal to enable the output circuit 708 to output the data from the data register on TDO 122. The data shift operation continues while TMS is low. When the shift operation is complete TMS goes high causing state machine 902 to transition to the update data register (Update-DR) state 1012. In Update-DR state 1012, the state machine outputs control to the selected data register causing the data register to update (output) the data that was shifted in from TDI 116 on its parallel outputs. The state machine transitions from the Update-DR state 1012 to the Idle state 1004.
(2) Result of Select-DR to Select-IR Transition
If state machine 902 transitions from Select-DR state 1006 to the (Select-IR) state 1014, there are two transitions that can occur; (1) transition to the Reset state 1002 if TMS is high or (2) transition to the capture instruction register (Capture-IR) state 1016 if TMS is low. If TMS is high, the state machine transitions from the Select-IR state 1014 to Reset state 1002 and resets the instruction and data registers as mentioned above. If TMS is low, the state machine transitions from Select-IR state 1014 to capture instruction register (Capture-IR) state 1016. In the Capture state, the state machine outputs control to cause the instruction register to capture (load) data from its parallel inputs. From the Capture-IR state 1016, the state machine 902 transitions to the shift instruction register (Shift-IR) state 1018 to shift data through the instruction register from TDI 116 to TDO 122. While in the Shift-IR state, the state machine 902 sets the SEN signal to enable the output circuit 708 to output the data from the instruction register on TDO 122. The instruction shift operation continues while TMS is low. When the shift operation is complete TMS goes high causing state machine 902 to transition to the update instruction register (Update-IR) state 1020. In Update-IR state 1020, the state machine outputs control to the instruction register causing the instruction register to output the instruction that was shifted in from TDI 116 on its parallel outputs. The state machine transitions from the Update-IR state 1020 to the Idle state 1004.
As seen in the example state diagram if
It should be noted that while the state diagram of
At the beginning of the instruction register access operation 1110, SSM 902 transitions into the Capture-IR state 1016 of
At the beginning of the data register access operation 1112, SSM 902 transitions into the Capture-DR state 1008 of
While the operations of the instruction and data registers of
On the 2×TCK rising edge 1206, the TDOENA output from FF 1209 is set high to enable the TDO buffer 1214 and the SEL output of TFF 1210 toggles to a high to clock the TDO and SDO data outputs from the TAP and SAP into FFs 1206 and 1208 respectively. The high on SEL also selects the TDO output of FF 1206 to be output on TDO 122 via multiplexer 1212. On the 2×TCK rising edge 1208, the SEL output from TFF 1210 toggles to a low to select the SDO output of FF 1208 to be output on TDO 122. This process of toggling the SEL signal on the rising edges of 2×TCK to latch TDO and SDO data into FFs 1206 and 1208 and to control multiplexer 1212 to alternately output TDO and SDO data from FFs 1206 and 1208 on TMS 122 continues while the TAP and/or SAP are performing a shift operation in states Shift-IR or Shift-DR of
In state 1504 when the TAP is Active and the SAP is Inactive, the TDO output from output circuit 708 outputs data from the TAP to be sampled on the rising edge of each TCK period and data from the SAP to be sampled on the falling edge of each TCK period as described in
In state 1506 when the TAP is Inactive and the SAP is Active, the TDO output from output circuit 708 outputs data from the TAP to be sampled on the rising edge of each TCK period and data from the SAP to be sampled on the falling edge of each TCK period as described in
In state 1508 when both the TAP and SAP are Active, the TDO output from output circuit 708 outputs data from the TAP to be sampled on the rising edge of each TCK period and data from the SAP to be sampled on the falling edge of each TCK period as described in
Output circuit 1604 comprises FFs 1606 and 1608, multiplexer 1610, OR gate 1612, and TDO output buffer 1614 connected as shown. FF 1606 inputs the TDO output from TAP 704 multiplexer 108, an inverted TCK signal, and outputs a registered TDO signal to an input of multiplexer 1610. FF 1608 inputs the SDO output from SAP 706 multiplexer 910, the TCK signal, and outputs a registered SDO signal to an input of multiplexer 1610. Multiplexer 1610 has data inputs for the registered TDO and SDO signals, a control signal coupled to the SEN output of SAP 706, and a data output. Buffer 1614 has a data input coupled to the multiplexer data output, a control input coupled to the output of OR gate 1612, and a data output coupled to TDO 122. The inputs of OR gate 1612 are coupled to the TEN output of TAP 704 and the SEN output of SAP 706.
The use of the simpler output circuit 1604 of
It should be understood that some or all of the functional circuitry 1803, debug circuitry 1903, trace circuitry 2003 programming circuitry 2103, and user defined circuitry 2203 of
The data registers 106 of the TAP 704 are similar to the data registers described for the SAP 706 in
In
It should be understood that the device SAPs 706 of
While the concept of using a shadow access port in a device has been described as it would be used in conjunction with a test access port within the device, it is not limited to use with only a test access port. Indeed, the shadow access port concept can be used in conjunction with any type of access port in a device to provide additional capabilities within the device. The following describes an example of using a shadow access port with a functional access port within a device.
The FAP 2804 of
The SAP 2902 of
The output circuit 2904 may be output circuit 708, output circuit 1604, or another type of output circuit that can selectively output data from FAP 2804 and/or SAP 2902 to FDO 2816.
While the
As previously described in using a SAP with a TAP, the use of a SAP with the FAP of
Although the disclosure has been described in detail, it should be understood that various changes, substitutions and alterations may be made without departing from the spirit and scope of the disclosure as defined by the appended claims.
Aspects
A method of inputting data to and outputting data from a test access port and a shadow access port within a device comprising the steps of inputting data to and outputting data from the test access port in response to the rising edge of a TCK signal and inputting data to and outputting data from the shadow access port in response to the falling edge of the TCK.
A shadow access port circuit for use in conjunction with a test access port circuit within a device comprising a state machine having an input coupled to a TMS signal that is also coupled to the test access port, an input coupled to a TCK signal that is also coupled to the test access port, and control outputs, an instruction register having control inputs coupled to the control outputs of the state machine, an input coupled to the TCK signal, an input coupled to a TDI signal that is also coupled to the test access port, and a data output, a data register having control inputs coupled to the control outputs of the state machine, an input coupled to the TCK signal, an input coupled to the TDI signal, and a data output; and a multiplexer having an input coupled to the data output of the instruction register, an input coupled to the data output of the data register, a control input coupled to the control outputs of the state machine, and a data output.
A shadow access port circuit for use in conjunction with a test access port circuit within a device comprising a state machine having an input coupled to a TMS signal that is also coupled to the test access port, an input coupled to a TCK signal that is also coupled to the test access port, and control outputs, an instruction register having control inputs, including a clock input, coupled to the control outputs of the state machine, an input coupled to a TDI signal that is also coupled to the test access port, and a data output, a data register having control inputs, including a clock input, coupled to the control outputs of the state machine, an input coupled to the TDI signal, and a data output; and a multiplexer having an input coupled to the data output of the instruction register, an input coupled to the data output of the data register, a control input coupled to the control outputs of the state machine, and a data output.
A state machine for operating a shadow access port circuit that is used in conjunction with a test access port within a device comprising a reset state, an idle state, a data register select state, a data register capture state, a data register shift state, a data register update state, an instruction register select state, an instruction register capture state, an instruction register shift state; and an instruction register update state.
An instruction register of a shadow access port that is used in conjunction with a test access port within a device comprising a shift register having an input coupled to a TDI signal that is also coupled to the test access port, parallel outputs, and an output coupled to a TDO signal that is also coupled to the test access port and an update register having parallel inputs coupled to the parallel outputs from the shift register.
A data register of a shadow access port that is used in conjunction with a test access port within a device comprising a shift register having an input coupled to a TDI signal that is also coupled to the test access port, parallel outputs, and an output coupled to a TDO signal that is also coupled to the test access port, and an update register having parallel inputs coupled to the parallel outputs from the shift register.
A data register of a shadow access port that is used in conjunction with a test access port within a device comprising a shift register having an input coupled to a TDI signal that is also coupled to the test access port, parallel outputs, and an output coupled to a TDO signal that is also coupled to the test access port.
A bypass register of a shadow access port that is used in conjunction with a test access port within a device comprising a single bit shift register having an input coupled to a TDI signal that is also coupled to the test access port and an output coupled to a TDO signal that is also coupled to the test access port.
A scan register of a shadow access port that is used in conjunction with a test access port within a device comprising a shift register having an input coupled to a TDI signal that is also coupled to the test access port, parallel inputs coupled to parallel outputs from a combination logic circuit to be tested, parallel outputs coupled to parallel inputs of the combinational logic circuit to be tested, and an output coupled to a TDO signal that is also coupled to the test access port.
A circuit for outputting data from a test access port and a shadow access port within a device comprising an enable input coupled to an enable output of the test access port, an enable input coupled to an enable output of the shadow access port, a data input coupled to a data output of the test access port, a data input coupled to a data output of the shadow access port, a clock input coupled to a TCK signal that is also coupled to a clock input of test access port and to a clock input of the shadow access port a clock doubler circuit having a clock input coupled to the TCK signal and a clock output operating at two times the frequency of the TCK input signal, and a data output for outputting data from the test access port during a first period of the clock output from the clock doubler circuit and for outputting data from the shadow access port during a second period of the clock output from the clock doubler circuit.
A device comprising a TDI input lead, a TMS input lead, a TCK input lead, a TDO output lead, a test access port having inputs coupled to the TDI, TMS and TCK device input leads, a data output, and an enable output, a shadow access port having inputs coupled to the TDI, TMS and TCK device input leads, a data output, and an enable output, and an output circuit having an input coupled to the data output of the test access port, an input coupled to the enable output of the test access port, an input coupled to the data output of the shadow access port, an input coupled to the enable output of the shadow access port, and an output coupled to the TDO device output lead.
Modes of operating a test access port and a shadow access port within a device for inputting data from a TDI input lead of the device and outputting data to a TDO output lead of the device comprising the steps of operating in a first mode whereby the test access port inputs data from the TDI input lead and outputs data to the TDO output lead, and operating in a second mode whereby the shadow access port inputs data from the TDI input lead and outputs data to the TDO output lead.
The modes of operating the test access port and a shadow access port further including operating in a third mode whereby both the test access port and shadow access port input data from the TDI input lead and output data to the TDO output lead.
A circuit for selectively outputting data from either a test access port or a shadow access port within a device comprising an enable input coupled to an enable output of the test access port, an enable input coupled to an enable output of the shadow access port, a data input coupled to a data output of the test access port, a data input coupled to a data output of the shadow access port, a clock input coupled to a TCK signal that is also coupled to a clock input of the test access port and to a clock input of the shadow access port, and a data output for outputting data from the test access port when the test access port's enable output is active and the shadow access port's enable output is inactive, and for outputting data from the shadow access port when the shadow access port's enable output is active and the test access port's enable output is inactive.
A shadow access port within a device and associated with a test access port also within the device, the shadow access port comprising an input coupled to a TDI device input lead, an input coupled to a TMS device input lead, an input coupled to a TCK device input lead, parallel inputs coupled to parallel outputs of functional circuitry within the device, parallel outputs coupled to parallel inputs of functional circuitry within the device; and an output coupled to a TDO device output lead.
A shadow access port within a device and associated with a test access port also within the device, the shadow access port comprising; an input coupled to a TDI device input lead, an input coupled to a TMS device input lead, an input coupled to a TCK device input lead, parallel inputs coupled to parallel outputs of debug circuitry within the device, parallel outputs coupled to parallel inputs of debug circuitry within the device, and an output coupled to a TDO device output lead.
A shadow access port within a device and associated with a test access port also within the device, the shadow access port comprising an input coupled to a TDI device input lead, an input coupled to a TMS device input lead, an input coupled to a TCK device input lead, parallel inputs coupled to parallel outputs of trace circuitry within the device, parallel outputs coupled to parallel inputs of trace circuitry within the device, and an output coupled to a TDO device output lead.
A shadow access port within a device and associated with a test access port also within the device, the shadow access port comprising an input coupled to a TDI device input lead, an input coupled to a TMS device input lead, an input coupled to a TCK device input lead, parallel inputs coupled to parallel outputs of programming circuitry within the device, parallel outputs coupled to parallel inputs of programming circuitry within the device; and an output coupled to a TDO device output lead.
A shadow access port within a device and associated with a test access port also within the device, the shadow access port comprising; an input coupled to a TDI device input lead, an input coupled to a TMS device input lead, an input coupled to a TCK device input lead, parallel inputs coupled to parallel outputs of user defined circuitry within the device, parallel outputs coupled to parallel inputs of user defined circuitry within the device, and an output coupled to a TDO device output lead.
A shadow access port within a device and associated with a test access port also within the device, the shadow access port being designed to operate as a secondary test access port comprising an input coupled to a TDI device input lead, an input coupled to a TMS device input lead, an input coupled to a TCK device input lead, parallel inputs coupled to parallel outputs of one of a test, debug, trace and programming circuit within the device, parallel outputs coupled to parallel inputs of one of a test, debug, trace, and programming circuit within the device and an output coupled to a TDO device output lead.
A device comprising a TDI input lead, a TMS input lead, a TCK input lead, a TDO output lead, a first test access port having an input coupled to the TDI input lead, an input coupled to the TMS input lead, an input coupled to the TCK input lead, and a data output, an inverter having an input coupled to the TCK input lead and an output, a second test access port having an input coupled to the TDI input lead, an input coupled to the TMS input lead, an input coupled to the output of the inverter, and a data output, and an output circuit having an input coupled to the data output of the first test access port, and input coupled to the data output of the second test access port, and an output coupled to the TDO output lead.
An electronic system comprising a TAP controller having a TDI output, a TCK output, a TMS output, and a TDO input, a device comprising a TDI input lead, a TCK input lead, a TMS input lead, and a TDO output lead, a test access port within the device and coupled to the TDI input lead, the TCK input lead, the TMS input lead, and the TDO output lead, a shadow access port within the device and coupled to the TDI input lead, the TCK input lead, the TMS input lead, and the TDO output lead, a first connection formed between the TDI output of the TAP controller and the TDI input lead of the device, a second connection formed between the TCK output of the TAP controller and the TCK input lead of the device, a third connection formed between the TMS output of the TAP controller and the TMS input lead of the device, and a fourth connection formed between the TDO output lead of the device and the TDO input of the TAP controller.
An electronic system arrangement comprising a TAP controller having a TDI output, a TCK output, a first TMS output, a second TMS output, and a TDO input, a first device having a TDI input lead, a TCK input lead, a TMS input lead, and a TDO output lead, a test access port within the first device and coupled to the TDI input lead, the TCK input lead, the TMS input lead, and the TDO output lead of the first device, a shadow access port within the first device and coupled to the TDI input lead, the TCK input lead, the TMS input lead, and the TDO output lead of the first device, a second device comprising a TDI input lead, a TCK input lead, a TMS input lead, and a TDO output lead, a test access port within the second device and coupled to the TDI input lead, the TCK input lead, the TMS input lead, and the TDO output lead of the second device, a shadow access port within the second device and coupled to the TDI input lead, the TCK input lead, the TMS input lead, and the TDO output lead of the second device, a first connection formed between the TDI output of the TAP controller and the TDI input leads of the first and second devices, a second connection formed between the TCK output of the TAP controller and the TCK input leads of the first and second devices, a third connection formed between the first TMS output of the TAP controller and the TMS input lead of the first device, a fourth connection formed between the second TMS output of the TAP controller and the TMS input lead of the second device, and a fifth connection formed between the TDO output leads of the first and second devices and the TDO input of the TAP controller.
An electronic system arrangement comprising a TAP controller having a TDI output, a TCK output, a TMS output, and a TDO input, a first device having a TDI input lead, a TCK input lead, a TMS input lead, and a TDO output lead, a test access port within the first device and coupled to the TDI input lead, the TCK input lead, the TMS input lead, and the TDO output lead of the first device, a shadow access port within the first device and coupled to the TDI input lead, the TCK input lead, the TMS input lead, and the TDO output lead of the first device, a second device comprising a TDI input lead, a TCK input lead, a TMS input lead, and a TDO output lead, a test access port within the second device and coupled to the TDI input lead, the TCK input lead, the TMS input lead, and the TDO output lead of the second device, a shadow access port within the second device and coupled to the TDI input lead, the TCK input lead, the TMS input lead, and the TDO output lead of the second device, a first connection formed between the TDI output of the TAP controller and the TDI input lead of the first device, a second connection formed between the TCK output of the TAP controller and the TCK input leads of the first and second devices, a third connection formed between the TMS output of the TAP controller and the TMS input leads of the first and second devices, a fourth connection formed between the TDO output lead of the first device and the TDI input lead of the second device, and a fifth connection for directly or indirectly coupling the TDO output lead of the second device to the TDO input of the TAP controller.
A device comprising a functional data input lead, a functional control input lead, a functional clock input lead, a functional data output lead, a functional access port having inputs coupled to the functional data input lead, functional control input lead, functional clock input lead, a data output, and an enable output, a shadow access port having inputs coupled to the functional data input lead, functional control input lead, functional clock input lead, a data output, and an enable output, and an output circuit having an input coupled to the data output of the functional access port, an input coupled to the enable output of the functional access port, an input coupled to the data output of the shadow access port, an input coupled to the enable output of the shadow access port, and an output coupled to the functional data output lead.
Modes of operating a functional access port and a shadow access port within a device for inputting data from a functional data input lead of the device and outputting data to a functional data output lead of the device comprising the steps of operating in a first mode whereby the functional access port inputs data from the functional data input lead and outputs data to the functional data output lead, and operating in a second mode whereby the shadow access port inputs data from the functional data input lead and outputs data to the functional data output lead.
The modes of operating the functional access port and a shadow access port further including operating in a third mode whereby both the functional access port and shadow access port input data from the functional data input lead and output data to the functional data output lead.
Claims
1. An integrated circuit comprising:
- (a) a TCK lead, a TMS lead, a TDI lead, and a TDO lead;
- (b) a test access port circuit having: (i) a test TCK input coupled to the TCK lead, a TMS input coupled to the TMS lead, a TDI input coupled to the TDI lead, a TDO output coupled to the TDO lead; (ii) a data register and a test instruction register that are coupled to the TDI input and that are selectively coupled to the TDO output; and (iii) a test state machine that is coupled to the test TCK input, the TMS input, the data register and the test instruction register, the test state machine changing states upon a rising edge of a clock signal on the test TCK lead;
- (c) an inverter having an input coupled to the TCK lead and an inverted TCK output;
- (d) a shadow access port circuit having: (i) a shadow TCK input coupled to the inverted TCK output of the inverter, a TMS input coupled to the TMS lead, a TDI input coupled to the TDI lead, a TDO output coupled to the TDO lead; (ii) a scan register and a shadow instruction register that are coupled to the TDI input and that are selectively coupled to the TDO output, the scan register having a scan data bus input, a scan data bus output, and a scan control bus input; and (iii) a shadow state machine that is coupled to the shadow TCK input, the TMS input, the scan register and the shadow instruction register, the shadow state machine changing states upon a falling edge of a clock signal on the shadow TCK lead; and
- (e) functional circuitry having a shadow bus input coupled to the scan data bus output and a shadow bus output coupled to the scan data bus input.
2. The integrated circuit of claim 1 in which the state machine of the test access port circuit steps through the states of SELECT-DR, CAPTURE-DR, SHIFT-DR, EXIT1-DR, PAUSE-DR, EXIT2-DR, and UPDATE-DR.
3. The integrated circuit of claim 1 in which the state machine of the shadow access port circuit steps through the states of SELECT-DR, CAPTURE-DR, SHIFT-DR, and UPDATE-DR without shifting through states of EXIT1-DR, PAUSE-DR, or EXIT2-DR.
4. The integrated circuit of claim 1 in which the state machines of both access port circuits have a RESET state and an RUN TEST/IDLE state.
5. The integrated circuit of claim 1 in which the data register has a serial data input coupled to the TDI input, control inputs, and a serial output coupled to the TDO output.
6. The integrated circuit of claim 1 in which the test instruction register has a serial input coupled to the TDI input, control inputs, control outputs, and a serial output coupled to the TDO output.
7. The integrated circuit of claim 1 in which:
- (i) the data register has a serial data input coupled to the TDI input, a control input, and a serial output coupled to the TDO output; and
- (ii) the test instruction register has a serial input coupled to the TDI input, control inputs, a control output coupled to the data register control input, and a serial output coupled to the TDO output.
8. The integrated circuit of claim 1 in which the scan register has a serial data input coupled to the TDI input, control inputs, and a serial output coupled to the TDO output.
9. The integrated circuit of claim 1 in which the shadow instruction register has a serial input coupled to the TDI input, control inputs, control outputs, and a serial output coupled to the TDO output.
10. The integrated circuit of claim 1 in which:
- (i) the scan register has a serial data input coupled to the TDI input, a control input, and a serial output coupled to the TDO output; and
- (ii) the shadow instruction register has a serial input coupled to the TDI input, control inputs, a control output coupled to the scan register control input, and a serial output coupled to the TDO output.
11. The integrated circuit of claim 1 in which:
- (i) the data register has a serial data input coupled to the TDI input, control inputs, and a serial output coupled to the TDO output;
- (ii) the test instruction register has a serial input coupled to the TDI input, control inputs, a control output coupled to a data register control input, and a serial output coupled to the TDO output; and
- (iii) the test state machine has control outputs coupled to the data register control inputs and to the test instruction register control inputs.
12. The integrated circuit of claim 1 in which:
- (i) the scan register has a serial data input coupled to the TDI input, control inputs, and a serial output coupled to the TDO output;
- (ii) the shadow instruction register has a serial input coupled to the TDI input, control inputs, a control output coupled to a scan register control input, and a serial output coupled to the TDO output; and
- (iii) the shadow state machine has control outputs coupled to the scan register control inputs and to the shadow instruction register control inputs.
13. The integrated circuit of claim 12 in which the shadow state machine control outputs include a shadow SHIFT-IR output, a shadow CAPTURE-IR output, and a shadow UPDATE-IR output.
14. The integrated circuit of claim 12 in which the shadow state machine control outputs include a shadow SHIFT-IR output, a shadow CAPTURE-IR output, and a shadow UPDATE-IR output that are coupled to the test instruction register control inputs.
15. The integrated circuit of claim 12 in which the shadow state machine control outputs include a shadow SHIFT-DR output, a shadow CAPTURE-DR output, and a shadow UPDATE-DR output.
16. The integrated circuit of claim 12 in which the shadow state machine control outputs include a shadow SHIFT-DR output, a shadow CAPTURE-DR output, and a shadow UPDATE-DR output that are coupled to the scan register control inputs.
5483518 | January 9, 1996 | Whetsel |
5898859 | April 27, 1999 | Kardach |
5900753 | May 4, 1999 | Cote |
6052808 | April 18, 2000 | Wu |
6073254 | June 6, 2000 | Whetsel |
6378090 | April 23, 2002 | Bhattacharya |
6381717 | April 30, 2002 | Bhattacharya |
6425100 | July 23, 2002 | Bhattacharya |
6446249 | September 3, 2002 | Wang |
6516442 | February 4, 2003 | Wang |
6570407 | May 27, 2003 | Sugisawa |
6591369 | July 8, 2003 | Edwards |
6694464 | February 17, 2004 | Quayle |
6751764 | June 15, 2004 | Golshan |
6829730 | December 7, 2004 | Nadeau-Dostie |
6968408 | November 22, 2005 | Joshi |
7096393 | August 22, 2006 | Caty |
7213225 | May 1, 2007 | Roesner |
7725791 | May 25, 2010 | Whetsel |
7747901 | June 29, 2010 | Swoboda |
7795899 | September 14, 2010 | Grohoski |
8201036 | June 12, 2012 | Whetsel |
8918687 | December 23, 2014 | Whetsel |
10054639 | August 21, 2018 | Whetsel |
20040187054 | September 23, 2004 | Dervisoglu |
20050144497 | June 30, 2005 | Song |
20050257087 | November 17, 2005 | Goff |
20070245180 | October 18, 2007 | Li |
20080022173 | January 24, 2008 | Chua-Eoan |
20080052578 | February 28, 2008 | Rajski |
- Joshi, R.N.; Williams, K.L.; Whetsel, L.;, “Evolution of IEEE 1149.1 addressable shadow protocol devices,” Test Conference, 2003. Proceedings. ITC 2003. International, vol. 2, No., pp. 160-166 vol. 2, Sep. 30-Oct. 2, 2003 doi: 10.11 09/TEST.2003.1271206 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1271206&isnumber=28462.
- Yuejian Wu; Liviu Galin;, “Shadow write and read for at-speed BIST of TOM SRAMs,” Test Conference, 2001. Proceedings. International, vol., No., pp. 985-994, 2001, doi: 10.11 09/TEST.2001.966723 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=966723&isnumber=20866.
Type: Grant
Filed: Mar 19, 2020
Date of Patent: Oct 5, 2021
Patent Publication Number: 20200217889
Assignee: TEXAS INSTRUMENTS INCORPORATED (Dallas, TX)
Inventor: Lee D. Whetsel (Parker, TX)
Primary Examiner: Cynthia Britt
Application Number: 16/824,371
International Classification: G01R 31/3177 (20060101); G01R 31/3185 (20060101);