End effector for circular stapling instrument
An end effector for use with a circular stapling instrument incorporates an anvil assembly having features which enhance the coring or cutting of organ tissue internal of the annular array of staples thereby creating a tubular passage free of tissue obstructions.
Latest Covidien LP Patents:
- END EFFECTOR ASSEMBLIES FOR SURGICAL INSTRUMENTS SUCH AS FOR USE IN ROBOTIC SURGICAL SYSTEMS
- SMALL DIAMETER SURGICAL STAPLING DEVICE
- Systems and methods for magnetic interference correction
- Methods for open dissection using sealing instrument
- Surgical item detection system for in vivo foreign object detection by magnetic flux leakage
This application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 62/838,537 filed Apr. 25, 2019, the entire disclosure of which is incorporated by reference herein.
BACKGROUND 1. Technical DescriptionThe present disclosure generally relates to a surgical circular stapling instrument and, more particularly, relates to an end effector for use with a circular stapling instrument and incorporating an anvil assembly having enhanced features which facilitate coring of the joined tissue upon firing of the instrument.
2. Background of Related ArtSurgical stapling instruments for performing surgical procedures such as anastomoses, hemorrhoidectomies, and mucosectomies are well known. In a circular anastomosis procedure, two ends of organ sections are joined with a circular stapling instrument. Typically, these circular stapling instruments include a handle, an elongated shaft with a staple holding component, and an anvil assembly mountable to the staple holding component. The anvil assembly includes an anvil center rod and an attached anvil head which may be pivotal relative to the anvil center rod to facilitate insertion and removal relative to the organ sections. In use, the opposed tissue end margins of the organ sections are clamped between the anvil head and the staple holding component. The instrument is fired which drives an annular array of staples from the staple holding component through the tissue end margins of the organ sections for deformation against the anvil head. An annular knife within the staple holding component is advanced to core or remove organ tissue interior of the staples to clear the internal tubular passage. An example of an instrument for performing circular anastomosis of tissue is disclosed in commonly assigned U.S. Patent Publication No. 2015/0014393, the entire contents of which is incorporated by reference herein.
SUMMARYThe present disclosure is directed to further improvements in anvil assemblies of end effectors for use with circular stapling instruments by incorporating features which, in concert with the annular knife of the stapling instrument, enhances the coring or cutting of organ tissue internal of the annular array of staples thereby creating a tubular passage completely free of tissue obstructions. In one exemplary embodiment, an end effector for use with a circular stapling instrument includes a staple cartridge assembly and an anvil assembly which is mountable relative to the staple cartridge assembly. The staple cartridge assembly includes an annular knife configured for advancing movement from an unactuated position to an actuated position. The anvil assembly includes an anvil center rod and an anvil head coupled to the anvil center rod. The anvil head includes an anvil housing defining a central longitudinal axis and a support disposed within the anvil housing. The support is configured for longitudinal movement relative to the anvil housing from an initial longitudinal position to an advanced longitudinal position upon movement of the annular knife toward the actuated position. The support is configured to rotate through a predetermined angular sector of rotation about the central longitudinal axis upon movement to the advanced longitudinal position to facilitate severing of tissue disposed between the annular knife and the support.
In embodiments, the support includes a backup member having at least one cam member which is engageable with the anvil housing to cause rotation of the support through the predetermined angular sector of rotation. In some embodiments, the anvil housing includes a distal housing wall having at least one cam recess whereby the at least one cam member of the backup member cooperates with the at least one cam recess to cause rotation of the support through the predetermined angular sector of rotation. In certain embodiments, the backup member includes a plurality of cam members depending from a distal face thereof and the housing wall of the anvil housing defines a plurality of cam recesses where individual cam members cooperate with respective individual cam recesses to rotate the support through the predetermined angular sector of rotation. In embodiments, the cam members of the backup member and the cam recesses of the housing wall of the anvil housing are radially spaced with respect to the central longitudinal axis.
In some embodiments, the support also includes a cut ring positioned to be engaged by the annular knife upon movement of the annular knife toward the actuated position. In certain embodiments, the cut ring is coupled to the backup member such that rotation of the backup member causes corresponding rotation of the cut ring. In embodiments, the cut ring is configured to be at least partially penetrated by the annular knife upon movement of the annular knife toward the actuated position.
In certain embodiments, a retainer member is positioned in the anvil housing between the backup member and the housing wall. The retainer member is configured to deform when subjected to a force exerted by the annular knife on the support upon movement of the annular knife to the actuated position thereby permitting longitudinal advancement of the support to the advanced longitudinal position.
In embodiments, the support is fixed from rotational movement about the central longitudinal axis when in the initial longitudinal position. In some embodiments, the anvil head includes an anvil post depending from the housing wall, wherein the retainer, the backup member and the cut ring are coaxially mounted about the anvil post. In certain embodiments, the anvil post includes at least one keyed slot and the backup member includes a corresponding at least one finger. The at least one finger is received within the at least one keyed slot when in the initial longitudinal position of the support thereby preventing rotational movement of the support, and is released from the at least one keyed slot when in the advanced longitudinal position of the support thereby permitting rotational movement of the support. In embodiments, the anvil post includes a pair of diametrically opposed keyed slots and the backup member includes a pair of corresponding diametrically opposed fingers.
In certain embodiments, the anvil head is pivotally mounted to the anvil center rod, and is pivotal from a first operative condition in which the anvil head is in opposition to the staple cartridge assembly to a second tilted condition.
Other features of the present disclosure will be appreciated from the following description.
Various embodiments of the presently disclosed end effector including an anvil assembly for use with a surgical circular stapling instrument are described herein below with reference to the drawings, wherein:
Embodiments of the present disclosure are now described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel. Throughout this description, the term “proximal” refers to that portion of the device or component thereof that is closest to the clinician and the term “distal” refers to that portion of the device or component thereof that is farthest from the clinician.
The exemplary surgical stapling instrument includes a handle assembly, an elongate body or adapter extending from the handle assembly, and an end effector couplable to the adapter. The end effector includes a staple cartridge assembly having an annular array of staples and an annular knife, and an anvil assembly. The anvil assembly includes an anvil center rod releasably couplable to the staple cartridge assembly and an anvil head which is pivotally coupled to the anvil center rod. The anvil head includes an anvil housing which accommodates a support and a deformable or frangible retainer disposed distal of the support. The support includes a backup member and a cut ring which is coupled to the backup member. These components maintain the anvil head in an operative condition in opposition to the staple cartridge assembly prior to firing of the instrument. In use, the tissue end margins of the tubular organ sections to be joined are positioned about the anvil head and the staple cartridge assembly, respectively. The anvil head and the staple cartridge assembly are approximated, and the instrument is actuated causing ejection of the staples and advancing movement of the annular knife through the tissue end margins supported by the cut ring and the backup member of the anvil head. Advancement of the annular knife causes the cut ring and the backup member to advance relative to the anvil housing and also to rotate through a predefined angular sector of rotation. The rotational movement of the cut ring and the backup member exerts a twisting action on the tissue captured by the annular knife, which in conjunction with the piercing action of the annular knife, provides a cutting effect on the tissue end margins that effectively severs and removes any excess tissue within the passage.
Referring to
In embodiments, the adapter 14 is releasably coupled to the handle 12 and includes a plurality of drive mechanisms (not shown) that translate power from the handle 12 to the end effector 16 in response to actuation of the actuation buttons 20 to effect operation, i.e., approximation and firing, of the end effector 16. Commonly assigned U.S. Pat. Nos. 9,247,940; 9,055,943; and 8,806,973; and U.S. Publication No. 2015/0014392 disclose exemplary embodiments of powered handles and adapters suitable for use with the stapling instrument 10, and which are incorporated in their respective entireties by reference herein. Alternately, the elongate body or adapter 14 can be non-removably secured to the handle 12. It is also envisioned that the handle 12 could be manually powered. Examples of manually powered handle assemblies are described in commonly assigned U.S. Pat. Nos. 8,789,737; 8,424,535; and 8,360,295, which are incorporated in their respective entireties by reference herein.
The end effector 16 includes a staple cartridge assembly 22 and an anvil assembly 24 couplable relative to the staple cartridge assembly 22. In general, the staple cartridge assembly 22 incorporates one or more annular rows of staples (not shown), staple pushers (not shown) for advancing the staples through the tissue end margins of the tubular organ sections and an annular knife (not shown in
Referring now to
With reference to
The anvil housing 34 further includes a plurality of cam recesses 58 within the distal housing wall 44 and radially spaced relative to central longitudinal axis “k”. The cam recesses 58 may extend partially through the distal housing wall 44 or, alternatively, completely through the distal housing wall 44 to define openings therethrough. The cam recesses 58 are defined by internal cam surfaces 60 which are obliquely arranged with respect to the central longitudinal axis “k”. Three cam recesses 58 are depicted although more or less than three cam recesses 58 are contemplated. The cam recesses 58 may be equidistantly spaced relative to the central longitudinal axis “k” and relative to each other. Each cam recess 58 defines a centrally disposed recess axis “m”.
With reference to
The cut ring 66 of the support 62 includes a disc-shaped annular body 70 defining a central aperture 72 for reception of the anvil post 36. The cut ring 66 further includes at least one keyed recess 74 adjacent the central aperture 72. The keyed recess 74 couples with corresponding structure of the backup member 68 such that rotational movement of the backup member 68 causes corresponding rotational movement of the cut ring 66. The cut ring 66 is at least partially penetrated by the annular knife during firing of the instrument 10 such that the tissue end margins overlying the cut ring 66 are severed by the annular knife to create a passage through the anastomosed tubular organ sections. In embodiments, the cut ring 66 is formed through a molding process, e.g., an injection molding process, and may be fabricated from a material having a durometer which permits the annular knife to pierce completely through the annular body 70 and bottom out against backup member 68. Suitable materials include polypropylene or polyester. Other materials are also contemplated.
With reference to
With reference to
With reference again to
The use of the end effector 16 will now be discussed. The tissue end margins of the tubular organ sections to be joined are placed about the anvil head 28 and the staple cartridge assembly 22, respectively and secured via a purse string stitch or any other conventional methodology. The anvil head 28 and the staple cartridge assembly 22 are approximated. The stapling instrument 10 is then fired to eject the staples from the staple cartridge assembly 22 for passage through the tissue end margins of the tubular organ sections and deformation against the staple receiving pockets 56 of the anvil housing 3. With reference to
As best depicted in
With the support 62 in the advanced longitudinal position, the fingers 80 of the backup member 68 are released from the distal shelves 32 of the spaced arms 30 of the anvil center rod 26. Thus, the anvil head 28 may pivot from the first operative condition in which the anvil head 28 is in opposition to the staple cartridge assembly 22 (
Persons skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments. It is envisioned that the elements and features illustrated or described in connection with one exemplary embodiment may be combined with the elements and features of another without departing from the scope of the present disclosure. For example, the cut ring 66 and the backup member 68 of the support 62 may be a single unit. Alternatively, the support 62 may be only inclusive of the backup member 68. As well, one skilled in the art will appreciate further features and advantages of the disclosure based on the above-described embodiments. Accordingly, the disclosure is not to be limited by what has been particularly shown and described, except as indicated by the appended claims.
Claims
1. An end effector for use with a circular stapling instrument, comprising:
- a staple cartridge assembly including an annular knife, the annular knife configured for advancing movement from an unactuated position to an actuated position; and
- an anvil assembly mountable relative to the staple cartridge assembly, the anvil assembly including: an anvil center rod; and an anvil head coupled to the anvil center rod, the anvil head including: an anvil housing defining a central longitudinal axis; and a support disposed within the anvil housing, the support configured for longitudinal movement relative to the anvil housing from an initial longitudinal position to an advanced longitudinal position upon movement of the annular knife toward the actuated position, the support configured to rotate through a predetermined angular sector of rotation about the central longitudinal axis upon movement to the advanced longitudinal position to facilitate severing of tissue disposed between the annular knife and the support.
2. The end effector according to claim 1, wherein the support includes a backup member, the backup member having at least one cam member engageable with the anvil housing to cause rotation of the support through the predetermined angular sector of rotation.
3. The end effector according to claim 2, wherein the anvil housing includes a distal housing wall, the housing wall having at least one cam recess, the at least one cam member of the backup member cooperating with the at least one cam recess to cause rotation of the support through the predetermined angular sector of rotation.
4. The end effector according to claim 3, wherein the backup member includes a plurality of cam members depending from a distal face thereof.
5. The end effector according to claim 4, wherein the housing wall of the anvil housing defines a plurality of cam recesses, individual cam members of the plurality of cam members cooperating with respective individual cam recesses of the plurality of cam recesses to rotate the support through the predetermined angular sector of rotation.
6. The end effector according to claim 5, wherein the plurality of cam members of the backup member and the plurality of cam recesses of the housing wall of the anvil housing are radially spaced with respect to the central longitudinal axis.
7. The end effector according to claim 3, wherein the support includes a cut ring, the cut ring positioned to be engaged by the annular knife upon movement of the annular knife toward the actuated position.
8. The end effector according to claim 7, wherein the cut ring is coupled to the backup member such that rotation of the backup member causes corresponding rotation of the cut ring.
9. The end effector according to claim 8, wherein the cut ring is configured to be at least partially penetrated by the annular knife upon movement of the annular knife toward the actuated position.
10. The end effector according to claim 9, wherein the anvil head is pivotally mounted to the anvil center rod, and is pivotal from a first operative condition in which the anvil head is in opposition to the staple cartridge assembly to a second tilted condition.
11. The end effector according to claim 8, including a retainer member positioned in the anvil housing between the backup member and the housing wall, the retainer member configured to deform when subjected to a force exerted by the annular knife on the support upon movement of the annular knife to the actuated position thereby permitting longitudinal advancement of the support to the advanced longitudinal position.
12. The end effector according to claim 11, wherein the support is fixed from rotational movement about the central longitudinal axis when in the initial longitudinal position.
13. The end effector according to claim 12, wherein the anvil head includes an anvil post depending from the housing wall, wherein the retainer, the backup member and the cut ring are coaxially mounted about the anvil post.
14. The end effector according to claim 13, wherein the anvil post includes at least one keyed slot and the backup member includes a corresponding at least one finger, the at least one finger being received within the at least one keyed slot when in the initial longitudinal position of the support thereby preventing rotational movement of the support, and being released from the at least one keyed slot when in the advanced longitudinal position of the support thereby permitting rotational movement of the support.
15. The end effector according to claim 14, wherein the anvil post includes a pair of diametrically opposed keyed slots and the backup member includes a pair of corresponding diametrically opposed fingers.
16. An anvil assembly comprising:
- an anvil center rod defining a central longitudinal axis; and
- an anvil head coupled to the anvil center rod, the anvil head including: an anvil housing defining a central longitudinal axis; and a support disposed within the anvil housing, the support configured for longitudinal movement relative to the anvil housing from an initial longitudinal position to an advanced longitudinal position, the support configured to rotate through a predetermined angular sector of rotation about the central longitudinal axis upon movement of the support to the advanced longitudinal position to facilitate severing of tissue disposed on the support.
17. The anvil assembly according to claim 16, wherein the support includes a backup member, the backup member having at least one cam member engageable with the anvil housing to cause rotation of the support through the predetermined angular sector of rotation.
18. The anvil assembly according to claim 17, wherein the anvil housing includes a distal housing wall, the distal housing wall having at least one cam recess, the at least one cam member of the backup member cooperating with the at least one cam recess to cause rotation of the support through the predetermined angular sector of rotation.
19. The end effector according to claim 18, wherein the backup member includes a distal face and the at least one cam member includes a plurality of cam members that depend from the distal face, the housing wall of the anvil housing defining a plurality of cam recesses, wherein individual cam members of the plurality of cam members cooperate with respective individual cam recesses of the plurality of cam recesses to rotate the support through the predetermined angular sector of rotation.
20. The end effector according to claim 19, wherein the plurality of cam members of the backup member and the plurality of cam recesses of the housing wall of the anvil housing are radially spaced with respect to the central longitudinal axis.
3193165 | July 1965 | Akhalaya et al. |
3388847 | June 1968 | Kasulin et al. |
3552626 | January 1971 | Astafiev et al. |
3638652 | February 1972 | Kelley |
3771526 | November 1973 | Rudie |
4198982 | April 22, 1980 | Fortner et al. |
4207898 | June 17, 1980 | Becht |
4289133 | September 15, 1981 | Rothfuss |
4304236 | December 8, 1981 | Conta et al. |
4319576 | March 16, 1982 | Rothfuss |
4350160 | September 21, 1982 | Kolesov et al. |
4351466 | September 28, 1982 | Noiles |
4379457 | April 12, 1983 | Gravener et al. |
4473077 | September 25, 1984 | Noiles et al. |
4476863 | October 16, 1984 | Kanshin et al. |
4485817 | December 4, 1984 | Swiggett |
4488523 | December 18, 1984 | Shichman |
4505272 | March 19, 1985 | Utyamyshev et al. |
4505414 | March 19, 1985 | Filipi |
4520817 | June 4, 1985 | Green |
4550870 | November 5, 1985 | Krumme et al. |
4573468 | March 4, 1986 | Conta et al. |
4576167 | March 18, 1986 | Noiles |
4592354 | June 3, 1986 | Rothfuss |
4603693 | August 5, 1986 | Conta et al. |
4606343 | August 19, 1986 | Conta et al. |
4632290 | December 30, 1986 | Green et al. |
4646745 | March 3, 1987 | Noiles |
4665917 | May 19, 1987 | Clanton et al. |
4667673 | May 26, 1987 | Li |
4671445 | June 9, 1987 | Barker et al. |
4700703 | October 20, 1987 | Resnick et al. |
4703887 | November 3, 1987 | Clanton et al. |
4708141 | November 24, 1987 | Inoue et al. |
4717063 | January 5, 1988 | Ebihara |
4752024 | June 21, 1988 | Green et al. |
4754909 | July 5, 1988 | Barker et al. |
4776506 | October 11, 1988 | Green |
4817847 | April 4, 1989 | Redtenbacher et al. |
4873977 | October 17, 1989 | Avant et al. |
4893662 | January 16, 1990 | Gervasi |
4903697 | February 27, 1990 | Resnick et al. |
4907591 | March 13, 1990 | Vasconcellos |
4917114 | April 17, 1990 | Green et al. |
4957499 | September 18, 1990 | Lipatov et al. |
4962877 | October 16, 1990 | Hervas |
5005749 | April 9, 1991 | Aranyi |
5042707 | August 27, 1991 | Taheri |
5047039 | September 10, 1991 | Avant et al. |
5104025 | April 14, 1992 | Main et al. |
5119983 | June 9, 1992 | Green et al. |
5122156 | June 16, 1992 | Granger et al. |
5139513 | August 18, 1992 | Segato |
5158222 | October 27, 1992 | Green et al. |
5188638 | February 23, 1993 | Tzakis |
5193731 | March 16, 1993 | Aranyi |
5197648 | March 30, 1993 | Gingold |
5197649 | March 30, 1993 | Bessler et al. |
5205459 | April 27, 1993 | Brinkerhoff et al. |
5221036 | June 22, 1993 | Takase |
5222963 | June 29, 1993 | Brinkerhoff et al. |
5253793 | October 19, 1993 | Green et al. |
5261920 | November 16, 1993 | Main et al. |
5271543 | December 21, 1993 | Grant et al. |
5271544 | December 21, 1993 | Fox et al. |
5275322 | January 4, 1994 | Brinkerhoff et al. |
5282810 | February 1, 1994 | Allen et al. |
5285944 | February 15, 1994 | Green et al. |
5285945 | February 15, 1994 | Brinkerhoff et al. |
5292053 | March 8, 1994 | Bilotti et al. |
5309927 | May 10, 1994 | Welch |
5312024 | May 17, 1994 | Grant et al. |
5314435 | May 24, 1994 | Green et al. |
5314436 | May 24, 1994 | Wilk |
5330486 | July 19, 1994 | Wilk |
5333773 | August 2, 1994 | Main et al. |
5344059 | September 6, 1994 | Green et al. |
5346115 | September 13, 1994 | Perouse et al. |
5348259 | September 20, 1994 | Blanco et al. |
5350104 | September 27, 1994 | Main et al. |
5355897 | October 18, 1994 | Pietrafitta et al. |
5360154 | November 1, 1994 | Green |
5368215 | November 29, 1994 | Green et al. |
5392979 | February 28, 1995 | Green et al. |
5395030 | March 7, 1995 | Kuramoto et al. |
5403333 | April 4, 1995 | Kaster et al. |
5404870 | April 11, 1995 | Brinkerhoff et al. |
5411508 | May 2, 1995 | Bessler et al. |
5425738 | June 20, 1995 | Gustafson et al. |
5433721 | July 18, 1995 | Hooven et al. |
5437684 | August 1, 1995 | Calabrese et al. |
5439156 | August 8, 1995 | Grant et al. |
5443198 | August 22, 1995 | Viola et al. |
5447514 | September 5, 1995 | Gerry et al. |
5454825 | October 3, 1995 | Van Leeuwen et al. |
5464415 | November 7, 1995 | Chen |
5470006 | November 28, 1995 | Rodak |
5474223 | December 12, 1995 | Viola et al. |
5497934 | March 12, 1996 | Brady et al. |
5503635 | April 2, 1996 | Sauer et al. |
5522534 | June 4, 1996 | Viola et al. |
5533661 | July 9, 1996 | Main et al. |
5588579 | December 31, 1996 | Schnut |
5609285 | March 11, 1997 | Grant et al. |
5626591 | May 6, 1997 | Kockerling et al. |
5632433 | May 27, 1997 | Grant et al. |
5639008 | June 17, 1997 | Gallagher et al. |
5641111 | June 24, 1997 | Ahrens et al. |
5658300 | August 19, 1997 | Bito et al. |
5669918 | September 23, 1997 | Balazs et al. |
5685474 | November 11, 1997 | Seeber |
5709335 | January 20, 1998 | Heck |
5715987 | February 10, 1998 | Kelley et al. |
5718360 | February 17, 1998 | Green et al. |
5720755 | February 24, 1998 | Dakov |
5732872 | March 31, 1998 | Bolduc et al. |
5749896 | May 12, 1998 | Cook |
5758814 | June 2, 1998 | Gallagher et al. |
5799857 | September 1, 1998 | Robertson et al. |
5814055 | September 29, 1998 | Knodel et al. |
5833698 | November 10, 1998 | Hinchliffe et al. |
5836503 | November 17, 1998 | Ehrenfels et al. |
5839639 | November 24, 1998 | Sauer et al. |
5855312 | January 5, 1999 | Toledano |
5860581 | January 19, 1999 | Robertson |
5868760 | February 9, 1999 | McGuckin, Jr. |
5881943 | March 16, 1999 | Heck et al. |
5915616 | June 29, 1999 | Viola et al. |
5947363 | September 7, 1999 | Bolduc et al. |
5951576 | September 14, 1999 | Wakabayashi |
5957363 | September 28, 1999 | Heck |
5993468 | November 30, 1999 | Rygaard |
6024748 | February 15, 2000 | Manzo et al. |
6050472 | April 18, 2000 | Shibata |
6053390 | April 25, 2000 | Green et al. |
6068636 | May 30, 2000 | Chen |
6083241 | July 4, 2000 | Longo et al. |
6102271 | August 15, 2000 | Longo et al. |
6117148 | September 12, 2000 | Ravo et al. |
6119913 | September 19, 2000 | Adams et al. |
6126058 | October 3, 2000 | Adams et al. |
6142933 | November 7, 2000 | Longo et al. |
6149667 | November 21, 2000 | Hovland et al. |
6176413 | January 23, 2001 | Heck et al. |
6179195 | January 30, 2001 | Adams et al. |
6193129 | February 27, 2001 | Bittner et al. |
6203553 | March 20, 2001 | Robertson et al. |
6209773 | April 3, 2001 | Bolduc et al. |
6241140 | June 5, 2001 | Adams et al. |
6253984 | July 3, 2001 | Heck et al. |
6258107 | July 10, 2001 | Balazs et al. |
6264086 | July 24, 2001 | McGuckin, Jr. |
6269997 | August 7, 2001 | Balazs et al. |
6273897 | August 14, 2001 | Dalessandro et al. |
6279809 | August 28, 2001 | Nicolo |
6302311 | October 16, 2001 | Adams et al. |
6338737 | January 15, 2002 | Toledano |
6343731 | February 5, 2002 | Adams et al. |
6387105 | May 14, 2002 | Gifford, III et al. |
6398795 | June 4, 2002 | McAlister et al. |
6402008 | June 11, 2002 | Lucas |
6439446 | August 27, 2002 | Perry et al. |
6443973 | September 3, 2002 | Whitman |
6450390 | September 17, 2002 | Heck et al. |
6478210 | November 12, 2002 | Adams et al. |
6488197 | December 3, 2002 | Whitman |
6491201 | December 10, 2002 | Whitman |
6494877 | December 17, 2002 | Odell et al. |
6503259 | January 7, 2003 | Huxel et al. |
6517566 | February 11, 2003 | Hovland et al. |
6520398 | February 18, 2003 | Nicolo |
6533157 | March 18, 2003 | Whitman |
6551334 | April 22, 2003 | Blatter et al. |
6578751 | June 17, 2003 | Hartwick |
6585144 | July 1, 2003 | Adams et al. |
6588643 | July 8, 2003 | Bolduc et al. |
6592596 | July 15, 2003 | Geitz |
6601749 | August 5, 2003 | Sullivan et al. |
6605078 | August 12, 2003 | Adams |
6605098 | August 12, 2003 | Nobis et al. |
6626921 | September 30, 2003 | Blatter et al. |
6629630 | October 7, 2003 | Adams |
6631837 | October 14, 2003 | Heck |
6632227 | October 14, 2003 | Adams |
6632237 | October 14, 2003 | Ben-David et al. |
6652542 | November 25, 2003 | Blatter et al. |
6659327 | December 9, 2003 | Heck et al. |
6676671 | January 13, 2004 | Robertson et al. |
6681979 | January 27, 2004 | Whitman |
6685079 | February 3, 2004 | Sharma et al. |
6695198 | February 24, 2004 | Adams et al. |
6695199 | February 24, 2004 | Whitman |
6698643 | March 2, 2004 | Whitman |
6716222 | April 6, 2004 | McAlister et al. |
6716233 | April 6, 2004 | Whitman |
6726697 | April 27, 2004 | Nicholas et al. |
6742692 | June 1, 2004 | Hartwick |
6743244 | June 1, 2004 | Blatter et al. |
6763993 | July 20, 2004 | Bolduc et al. |
6769590 | August 3, 2004 | Vresh et al. |
6769594 | August 3, 2004 | Orban, III |
6820791 | November 23, 2004 | Adams |
6821282 | November 23, 2004 | Perry et al. |
6827246 | December 7, 2004 | Sullivan et al. |
6840423 | January 11, 2005 | Adams et al. |
6843403 | January 18, 2005 | Whitman |
6846308 | January 25, 2005 | Whitman et al. |
6852122 | February 8, 2005 | Rush |
6866178 | March 15, 2005 | Adams et al. |
6872214 | March 29, 2005 | Sonnenschein et al. |
6874669 | April 5, 2005 | Adams et al. |
6884250 | April 26, 2005 | Monassevitch et al. |
6905504 | June 14, 2005 | Vargas |
6938814 | September 6, 2005 | Sharma et al. |
6942675 | September 13, 2005 | Vargas |
6945444 | September 20, 2005 | Gresham et al. |
6953138 | October 11, 2005 | Dworak et al. |
6957758 | October 25, 2005 | Aranyi |
6959851 | November 1, 2005 | Heinrich |
6978922 | December 27, 2005 | Bilotti et al. |
6981941 | January 3, 2006 | Whitman et al. |
6981979 | January 3, 2006 | Nicolo |
7032798 | April 25, 2006 | Whitman et al. |
7059331 | June 13, 2006 | Adams et al. |
7059510 | June 13, 2006 | Orban, III |
7077856 | July 18, 2006 | Whitman |
7080769 | July 25, 2006 | Vresh et al. |
7086267 | August 8, 2006 | Dworak et al. |
7114642 | October 3, 2006 | Whitman |
7118528 | October 10, 2006 | Piskun |
7122044 | October 17, 2006 | Bolduc et al. |
7128748 | October 31, 2006 | Mooradian et al. |
7141055 | November 28, 2006 | Abrams et al. |
7168604 | January 30, 2007 | Milliman et al. |
7179267 | February 20, 2007 | Nolan et al. |
7182239 | February 27, 2007 | Myers |
7195142 | March 27, 2007 | Orban, III |
7207168 | April 24, 2007 | Doepker et al. |
7220237 | May 22, 2007 | Gannoe et al. |
7234624 | June 26, 2007 | Gresham et al. |
7235089 | June 26, 2007 | McGuckin, Jr. |
RE39841 | September 18, 2007 | Bilotti et al. |
7285125 | October 23, 2007 | Viola |
7303106 | December 4, 2007 | Milliman et al. |
7303107 | December 4, 2007 | Milliman et al. |
7309341 | December 18, 2007 | Ortiz et al. |
7322994 | January 29, 2008 | Nicholas et al. |
7325713 | February 5, 2008 | Aranyi |
7334718 | February 26, 2008 | McAlister et al. |
7335212 | February 26, 2008 | Edoga et al. |
7364060 | April 29, 2008 | Milliman |
7398908 | July 15, 2008 | Holsten et al. |
7399305 | July 15, 2008 | Csiky et al. |
7401721 | July 22, 2008 | Holsten et al. |
7401722 | July 22, 2008 | Hur |
7407075 | August 5, 2008 | Holsten et al. |
7410086 | August 12, 2008 | Ortiz et al. |
7422137 | September 9, 2008 | Manzo |
7422138 | September 9, 2008 | Bilotti et al. |
7431191 | October 7, 2008 | Milliman |
7438718 | October 21, 2008 | Milliman et al. |
7455676 | November 25, 2008 | Holsten et al. |
7455682 | November 25, 2008 | Viola |
7481347 | January 27, 2009 | Roy |
7494038 | February 24, 2009 | Milliman |
7506791 | March 24, 2009 | Omaits et al. |
7516877 | April 14, 2009 | Aranyi |
7527185 | May 5, 2009 | Harari et al. |
7537602 | May 26, 2009 | Whitman |
7540839 | June 2, 2009 | Butler et al. |
7546939 | June 16, 2009 | Adams et al. |
7546940 | June 16, 2009 | Milliman et al. |
7547312 | June 16, 2009 | Bauman et al. |
7556186 | July 7, 2009 | Milliman |
7559451 | July 14, 2009 | Sharma et al. |
7585306 | September 8, 2009 | Abbott et al. |
7588174 | September 15, 2009 | Holsten et al. |
7600663 | October 13, 2009 | Green |
7611038 | November 3, 2009 | Racenet et al. |
7635385 | December 22, 2009 | Milliman et al. |
7669747 | March 2, 2010 | Weisenburgh, II et al. |
7686201 | March 30, 2010 | Csiky |
7694864 | April 13, 2010 | Okada et al. |
7699204 | April 20, 2010 | Viola |
7708181 | May 4, 2010 | Cole et al. |
7717313 | May 18, 2010 | Criscuolo et al. |
7721932 | May 25, 2010 | Cole et al. |
7726539 | June 1, 2010 | Holsten et al. |
7743958 | June 29, 2010 | Orban, III |
7744627 | June 29, 2010 | Orban, III et al. |
7770776 | August 10, 2010 | Chen et al. |
7771440 | August 10, 2010 | Ortiz et al. |
7776060 | August 17, 2010 | Mooradian et al. |
7793813 | September 14, 2010 | Bettuchi |
7802712 | September 28, 2010 | Milliman et al. |
7823592 | November 2, 2010 | Bettuchi et al. |
7837079 | November 23, 2010 | Holsten et al. |
7837080 | November 23, 2010 | Schwemberger |
7837081 | November 23, 2010 | Holsten et al. |
7845536 | December 7, 2010 | Viola et al. |
7845538 | December 7, 2010 | Whitman |
7857187 | December 28, 2010 | Milliman |
7886951 | February 15, 2011 | Hessler |
7896215 | March 1, 2011 | Adams et al. |
7900806 | March 8, 2011 | Chen et al. |
7909039 | March 22, 2011 | Hur |
7909219 | March 22, 2011 | Cole et al. |
7909222 | March 22, 2011 | Cole et al. |
7909223 | March 22, 2011 | Cole et al. |
7913892 | March 29, 2011 | Cole et al. |
7918377 | April 5, 2011 | Measamer et al. |
7922062 | April 12, 2011 | Cole et al. |
7922743 | April 12, 2011 | Heinrich et al. |
7931183 | April 26, 2011 | Orban, III |
7938307 | May 10, 2011 | Bettuchi |
7942302 | May 17, 2011 | Roby et al. |
7951166 | May 31, 2011 | Orban, III et al. |
7959050 | June 14, 2011 | Smith et al. |
7967181 | June 28, 2011 | Viola et al. |
7975895 | July 12, 2011 | Milliman |
8002795 | August 23, 2011 | Beetel |
8006701 | August 30, 2011 | Bilotti et al. |
8006889 | August 30, 2011 | Adams et al. |
8011551 | September 6, 2011 | Marczyk et al. |
8011554 | September 6, 2011 | Milliman |
8016177 | September 13, 2011 | Bettuchi et al. |
8016858 | September 13, 2011 | Whitman |
8020741 | September 20, 2011 | Cole et al. |
8025199 | September 27, 2011 | Whitman et al. |
8028885 | October 4, 2011 | Smith et al. |
8038046 | October 18, 2011 | Smith et al. |
8043207 | October 25, 2011 | Adams |
8066167 | November 29, 2011 | Measamer et al. |
8066169 | November 29, 2011 | Viola |
8070035 | December 6, 2011 | Holsten et al. |
8070037 | December 6, 2011 | Csiky |
8096458 | January 17, 2012 | Hessler |
8109426 | February 7, 2012 | Milliman et al. |
8109427 | February 7, 2012 | Orban, III |
8113405 | February 14, 2012 | Milliman |
8113406 | February 14, 2012 | Holsten et al. |
8113407 | February 14, 2012 | Holsten et al. |
8123103 | February 28, 2012 | Milliman |
8128645 | March 6, 2012 | Sonnenschein et al. |
8132703 | March 13, 2012 | Milliman et al. |
8136712 | March 20, 2012 | Zingman |
8146790 | April 3, 2012 | Milliman |
8146791 | April 3, 2012 | Bettuchi et al. |
8181838 | May 22, 2012 | Milliman et al. |
8192460 | June 5, 2012 | Orban, III et al. |
8201720 | June 19, 2012 | Hessler |
8203782 | June 19, 2012 | Brueck et al. |
8211130 | July 3, 2012 | Viola |
8225799 | July 24, 2012 | Bettuchi |
8225981 | July 24, 2012 | Criscuolo et al. |
8231041 | July 31, 2012 | Marczyk et al. |
8231042 | July 31, 2012 | Hessler et al. |
8257391 | September 4, 2012 | Orban, III et al. |
8267301 | September 18, 2012 | Milliman et al. |
8272552 | September 25, 2012 | Holsten et al. |
8276802 | October 2, 2012 | Kostrzewski |
8281975 | October 9, 2012 | Criscuolo et al. |
8286845 | October 16, 2012 | Perry et al. |
8308045 | November 13, 2012 | Bettuchi et al. |
8312885 | November 20, 2012 | Bettuchi et al. |
8313014 | November 20, 2012 | Bettuchi |
8317073 | November 27, 2012 | Milliman et al. |
8317074 | November 27, 2012 | Ortiz et al. |
8322590 | December 4, 2012 | Patel et al. |
8328060 | December 11, 2012 | Jankowski et al. |
8328062 | December 11, 2012 | Viola |
8328063 | December 11, 2012 | Milliman et al. |
8343185 | January 1, 2013 | Milliman et al. |
8353438 | January 15, 2013 | Baxter, III et al. |
8353439 | January 15, 2013 | Baxter, III et al. |
8353930 | January 15, 2013 | Heinrich et al. |
8360295 | January 29, 2013 | Milliman et al. |
8365974 | February 5, 2013 | Milliman |
8403942 | March 26, 2013 | Milliman et al. |
8408441 | April 2, 2013 | Wenchell et al. |
8413870 | April 9, 2013 | Pastorelli et al. |
8413872 | April 9, 2013 | Patel |
8418905 | April 16, 2013 | Milliman |
8418909 | April 16, 2013 | Kostrzewski |
8424535 | April 23, 2013 | Hessler et al. |
8424741 | April 23, 2013 | McGuckin, Jr. et al. |
8430291 | April 30, 2013 | Heinrich et al. |
8430292 | April 30, 2013 | Patel et al. |
8453910 | June 4, 2013 | Bettuchi et al. |
8453911 | June 4, 2013 | Milliman et al. |
8485414 | July 16, 2013 | Criscuolo et al. |
8490853 | July 23, 2013 | Criscuolo et al. |
8511533 | August 20, 2013 | Viola et al. |
8551138 | October 8, 2013 | Orban, III et al. |
8567655 | October 29, 2013 | Nalagatla et al. |
8579178 | November 12, 2013 | Holsten et al. |
8590763 | November 26, 2013 | Milliman |
8590764 | November 26, 2013 | Hartwick et al. |
8608047 | December 17, 2013 | Holsten et al. |
8616428 | December 31, 2013 | Milliman et al. |
8616429 | December 31, 2013 | Viola |
8622275 | January 7, 2014 | Baxter, III et al. |
8631993 | January 21, 2014 | Kostrzewski |
8636187 | January 28, 2014 | Hueil et al. |
8640940 | February 4, 2014 | Ohdaira |
8662370 | March 4, 2014 | Takei |
8663258 | March 4, 2014 | Bettuchi et al. |
8672931 | March 18, 2014 | Goldboss et al. |
8678264 | March 25, 2014 | Racenet et al. |
8684248 | April 1, 2014 | Milliman |
8684250 | April 1, 2014 | Bettuchi et al. |
8684251 | April 1, 2014 | Rebuffat et al. |
8684252 | April 1, 2014 | Patel et al. |
8733611 | May 27, 2014 | Milliman |
9782173 | October 10, 2017 | Mozdzierz |
20030111507 | June 19, 2003 | Nunez |
20040073090 | April 15, 2004 | Butler et al. |
20050051597 | March 10, 2005 | Toledano |
20050107813 | May 19, 2005 | Gilete Garcia |
20060000869 | January 5, 2006 | Fontayne |
20060011698 | January 19, 2006 | Okada et al. |
20060201989 | September 14, 2006 | Ojeda |
20070027473 | February 1, 2007 | Vresh et al. |
20070029363 | February 8, 2007 | Popov |
20070060952 | March 15, 2007 | Roby et al. |
20090236392 | September 24, 2009 | Cole et al. |
20090236398 | September 24, 2009 | Cole et al. |
20090236401 | September 24, 2009 | Cole et al. |
20100019016 | January 28, 2010 | Edoga et al. |
20100051668 | March 4, 2010 | Milliman et al. |
20100084453 | April 8, 2010 | Hu |
20100147923 | June 17, 2010 | D'Agostino et al. |
20100163598 | July 1, 2010 | Belzer |
20100224668 | September 9, 2010 | Fontayne et al. |
20100230465 | September 16, 2010 | Smith et al. |
20100258611 | October 14, 2010 | Smith et al. |
20100264195 | October 21, 2010 | Bettuchi |
20100327041 | December 30, 2010 | Milliman et al. |
20110011916 | January 20, 2011 | Levine |
20110114697 | May 19, 2011 | Baxter, III et al. |
20110114700 | May 19, 2011 | Baxter, III et al. |
20110144640 | June 16, 2011 | Heinrich et al. |
20110147432 | June 23, 2011 | Heinrich et al. |
20110192882 | August 11, 2011 | Hess et al. |
20120145755 | June 14, 2012 | Kahn |
20120193395 | August 2, 2012 | Pastorelli et al. |
20120193398 | August 2, 2012 | Williams et al. |
20120232339 | September 13, 2012 | Csiky |
20120273548 | November 1, 2012 | Ma et al. |
20120325888 | December 27, 2012 | Qiao et al. |
20130015232 | January 17, 2013 | Smith et al. |
20130020372 | January 24, 2013 | Jankowski et al. |
20130020373 | January 24, 2013 | Smith et al. |
20130032628 | February 7, 2013 | Li et al. |
20130056516 | March 7, 2013 | Viola |
20130060258 | March 7, 2013 | Giacomantonio |
20130092720 | April 18, 2013 | Williams |
20130105544 | May 2, 2013 | Mozdzierz et al. |
20130105546 | May 2, 2013 | Milliman et al. |
20130105551 | May 2, 2013 | Zingman |
20130126580 | May 23, 2013 | Smith et al. |
20130153630 | June 20, 2013 | Miller et al. |
20130153631 | June 20, 2013 | Vasudevan et al. |
20130153633 | June 20, 2013 | Casasanta, Jr. et al. |
20130153634 | June 20, 2013 | Carter et al. |
20130153638 | June 20, 2013 | Carter et al. |
20130153639 | June 20, 2013 | Hodgkinson et al. |
20130175315 | July 11, 2013 | Milliman |
20130175318 | July 11, 2013 | Felder et al. |
20130175319 | July 11, 2013 | Felder et al. |
20130175320 | July 11, 2013 | Mandakolathur Vasudevan et al. |
20130181035 | July 18, 2013 | Milliman |
20130181036 | July 18, 2013 | Olson et al. |
20130186930 | July 25, 2013 | Wenchell et al. |
20130193185 | August 1, 2013 | Patel |
20130193187 | August 1, 2013 | Milliman |
20130193190 | August 1, 2013 | Carter et al. |
20130193191 | August 1, 2013 | Stevenson et al. |
20130193192 | August 1, 2013 | Casasanta, Jr. et al. |
20130200131 | August 8, 2013 | Racenet et al. |
20130206816 | August 15, 2013 | Penna |
20130214027 | August 22, 2013 | Hessler et al. |
20130214028 | August 22, 2013 | Patel et al. |
20130228609 | September 5, 2013 | Kostrzewski |
20130240597 | September 19, 2013 | Milliman et al. |
20130240600 | September 19, 2013 | Bettuchi |
20130248581 | September 26, 2013 | Smith et al. |
20130277411 | October 24, 2013 | Hodgkinson et al. |
20130277412 | October 24, 2013 | Gresham et al. |
20130284792 | October 31, 2013 | Ma |
20130292449 | November 7, 2013 | Bettuchi et al. |
20130299553 | November 14, 2013 | Mozdzierz |
20130299554 | November 14, 2013 | Mozdzierz |
20130306701 | November 21, 2013 | Olson |
20130306707 | November 21, 2013 | Viola et al. |
20140008413 | January 9, 2014 | Williams |
20140012317 | January 9, 2014 | Orban et al. |
20140252062 | September 11, 2014 | Mozdzierz |
20160143641 | May 26, 2016 | Sapienza et al. |
20160157856 | June 9, 2016 | Williams et al. |
20160174988 | June 23, 2016 | D'Agostino et al. |
20160302792 | October 20, 2016 | Motai |
20180206846 | July 26, 2018 | Guerrera |
908529 | August 1972 | CA |
2805365 | August 2013 | CA |
1057729 | May 1959 | DE |
3301713 | July 1984 | DE |
0152382 | August 1985 | EP |
0173451 | March 1986 | EP |
0190022 | August 1986 | EP |
0282157 | September 1988 | EP |
0503689 | September 1992 | EP |
1354560 | October 2003 | EP |
2138118 | December 2009 | EP |
2168510 | March 2010 | EP |
2238926 | October 2010 | EP |
2524656 | November 2012 | EP |
1136020 | May 1957 | FR |
1461464 | February 1966 | FR |
1588250 | April 1970 | FR |
2443239 | July 1980 | FR |
1185292 | March 1970 | GB |
2016991 | September 1979 | GB |
2070499 | September 1981 | GB |
2004147969 | May 2004 | JP |
2013138860 | July 2013 | JP |
7711347 | April 1979 | NL |
1509052 | September 1989 | SU |
8706448 | November 1987 | WO |
8900406 | January 1989 | WO |
9006085 | June 1990 | WO |
98/35614 | August 1998 | WO |
0154594 | August 2001 | WO |
2008107918 | September 2008 | WO |
Type: Grant
Filed: Mar 20, 2020
Date of Patent: Feb 15, 2022
Patent Publication Number: 20200337708
Assignee: Covidien LP (Mansfield, MA)
Inventor: Anthony Sgroi, Jr. (Wallingford, CT)
Primary Examiner: Eyamindae C Jallow
Application Number: 16/825,503
International Classification: A61B 17/068 (20060101); A61B 17/115 (20060101); A61B 17/072 (20060101); A61B 17/00 (20060101);