Waveguide antenna element based beam forming phased array antenna system for millimeter wave communication
An antenna system includes a first substrate, a plurality of chips and a waveguide antenna element based beam forming phased array that includes a plurality of radiating waveguide antenna cells for millimeter wave communication. Each radiating waveguide antenna cell includes a plurality of pins where a first pin is connected with a body of a corresponding radiating waveguide antenna cell and the body corresponds to ground for the pins. The first pin includes a first and a second current path, the first current path being longer than the second current path. A first end of the radiating waveguide antenna cells is mounted on the first substrate, where the plurality of chips are electrically connected with the plurality of pins and the ground of each of the plurality of radiating waveguide antenna cells.
Latest MOVANDI CORPORATION Patents:
- Wireless transceiver having receive antennas and transmit antennas with orthogonal polarizations in a phased array antenna panel
- Repeater device and operation of repeater device for non-line-of-sight communication
- Phased array antenna panel having reduced passive loss of received signals
- Wireless transceiver having receive antennas and transmit antennas with orthogonal polarizations in a phased array antenna panel
- Phased array antenna panel having reduced passive loss of received signals
This patent application makes reference to, claims priority to, claims the benefit of, and is a Continuation Application of U.S. patent application Ser. No. 16/354,390, filed Mar. 15, 2019, which is a continuation-in-part of U.S. Pat. No. 10,637,159, filed on Feb. 26, 2018.
This application makes reference to:
- U.S. Pat. No. 10,321,332, which was filed on May 30, 2017; and
- U.S. Pat. No. 10,348,371, which was filed on Dec. 7, 2017.
Each of the above referenced application is hereby incorporated herein by reference in its entirety.
FIELD OF TECHNOLOGYCertain embodiments of the disclosure relate to an antenna system for millimeter wave-based wireless communication. More specifically, certain embodiments of the disclosure relate to a waveguide antenna element based beam forming phased array antenna system for millimeter wave communication.
BACKGROUNDWireless telecommunication in modern times has witnessed advent of various signal transmission techniques, systems, and methods, such as use of beam forming and beam steering techniques, for enhancing capacity of radio channels. For the advanced high-performance fifth generation communication networks, such as millimeter wave communication, there is a demand for innovative hardware systems, and technologies to support millimeter wave communication in effective and efficient manner. Current antenna systems or antenna arrays, such as phased array antenna or TEM antenna, that are capable of supporting millimeter wave communication comprise multiple radiating antenna elements spaced in a grid pattern on a flat or curved surface of communication elements, such as transmitters and receivers. Such antenna arrays may produce a beam of radio waves that may be electronically steered to desired directions, without physical movement of the antennas. A beam may be formed by adjusting time delay and/or shifting the phase of a signal emitted from each radiating antenna element, so as to steer the beam in the desired direction. Although some of the existing antenna arrays exhibit low loss, however, mass production of such antenna arrays that comprise multiple antenna elements may be difficult and pose certain practical and technical challenges. For example, the multiple antenna elements (usually more than hundred) in an antenna array, needs to be soldered on a substrate during fabrication, which may be difficult and a time-consuming process. This adversely impacts the total cycle time to produce an antenna array. Further, assembly and packaging of such large sized antenna arrays may be difficult and cost intensive task. Thus, an advanced antenna system may be desirable that may be cost-effective, easy to fabricate, assemble, and capable of millimeter wave communication in effective and efficient manner.
Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with some aspects of the present disclosure as set forth in the remainder of the present application with reference to the drawings.
BRIEF SUMMARY OF THE DISCLOSUREA waveguide antenna element based beam forming phased array antenna system for millimeter wave communication, substantially as shown in and/or described in connection with at least one of the figures, as set forth more completely in the claims.
These and other advantages, aspects and novel features of the present disclosure, as well as details of an illustrated embodiment thereof, will be more fully understood from the following description and drawings.
Certain embodiments of the disclosure may be found in a waveguide antenna element based beam forming phased array antenna system for millimeter wave communication. In the following description, reference is made to the accompanying drawings, which form a part hereof, and in which is shown, by way of illustration, various embodiments of the present disclosure.
In some embodiments, the waveguide antenna element based beam forming phased array 100A may be made of electrically conductive material, such as metal. For example, the waveguide antenna element based beam forming phased array 100A may be made of copper, aluminum, or metallic alloy that are considered good electrical conductors. In some embodiments, the waveguide antenna element based beam forming phased array 100A may be made of plastic and coated with electrically conductive material, such as metal, for mass production. The exposed or outer surface of the waveguide antenna element based beam forming phased array 100A may be coated with electrically conductive material, such as metal, whereas the inner body may be plastic or other inexpensive polymeric substance. The waveguide antenna element based beam forming phased array 100A may be surface coated with copper, aluminum, silver, and the like. Thus, the waveguide antenna element based beam forming phased array 100A may be cost-effective and capable of mass production as a result of the unitary body structure of the waveguide antenna element based beam forming phased array 100A. In some embodiments, the waveguide antenna element based beam forming phased array 100A may be made of optical fiber for enhanced conduction in the millimeter wave frequency.
As the first pair of horizontal polarization pins 304a and 304b protrude slightly from the first end 210 from the level of the body (i.e., the ground 208) of the radiating waveguide antenna cell 102A, a firm contact with the first substrate 402 may be established. The first substrate 402 comprises an upper side 402A and a lower side 402B. The first end 210 of the plurality of radiating waveguide antenna cells 102, such as the radiating waveguide antenna cell 102A, of the waveguide antenna element based beam forming phased array 100A may be mounted on the upper side 402A of the first substrate 402. Thus, the waveguide antenna element based beam forming phased array 100A may also be referred to as a surface mount open waveguide antenna. In some embodiments, the chip 404 may be positioned beneath the lower side 402B of the first substrate 402. In operation, the current may flow from the ground 208 towards the negative terminal 406a of the chip 404 through at least a first pin (e.g., the pin 304b of the first pair of horizontal polarization pins 304a and 304b), and the electrically conductive connection 408a. Similarly, the current may flow from the positive terminal 406b of the chip 404 towards the ground 208 through at least a second pin (e.g., the pin 304a of the first pair of horizontal polarization pins 304a and 304b) of the plurality of pins 206 in the radiating waveguide antenna cell 102A. This forms a closed circuit, where the flow of current in the opposite direction in closed circuit within the radiating waveguide antenna cell 102A in at least one polarization creates a magnetic dipole and differential in at least two electromagnetic waves resulting in propagation of the RF wave 410 via the open end 202 of the radiating waveguide antenna cell 102A. The chip 404 may be configured to form a RF beam and further control the propagation and a direction of the RF beam in millimeter wave frequency through the open end 202 of each radiating waveguide antenna cell by adjusting signal parameters of RF signal (i.e. the radiated RF wave 410) emitted from each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells 102.
In accordance with an embodiment, each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells 102 may further be configured to operate within multiple frequency ranges in the field of millimeter wave-based wireless communication. For example, each radiating waveguide antenna cell may be configured to operate as a dual-band antenna. Each radiating waveguide antenna cell may be configured to operate in high band resonant frequency with a range of 37-40.5 GHz and low band resonant frequency with a range of 26.5-29.5 GHz. By designing a radiating waveguide antenna cell to operate as a dual-band antenna, multiple companies may benefit from the disclosed design of the radiating waveguide antenna cell. For example, Verizon may operate with the low band resonant frequency with the range of 26.5-29.5 GHz and AT&T may operate with the high band resonant frequency with the range of 37-40.5 GHz. Consequently, a single radiating waveguide antenna cell may be used by both the service providers (Verizon and AT&T). In accordance with an embodiment, the communication elements, such as transmitters and receivers may also cover the dual bands (for example, the high band resonant frequency and the low band resonant frequency). The advantage of dual band is both band share the antenna which saves designing cost and the overall power requirements. The gain and the radiation efficiency may be same in both bands. Accordingly, the gain and the radiation efficiency of the radiating waveguide antenna cell that operates with the dual band may remain the same for the high band resonant frequency and the low band resonant frequency.
In accordance with an embodiment, the radiating waveguide antenna cell 1002A may be configured to operate in dual band. In accordance with an embodiment, each of the first pair of horizontal polarization pins 3004a and 3004b comprises a first current path and a second current path. The first current path is longer than the second current path. Since the frequency of an antenna is inversely proportional to wavelength of the antenna, the first current path may correspond to the low band resonant frequency of the radiating waveguide antenna cell 1002A and the second current path may correspond to the high band resonant frequency of the radiating waveguide antenna cell 1002A. In accordance with an embodiment the chip 4004 may operate as a dual-band chip. The chip 4004 may be configured to generate a high band RF signal and a low band RF signal at the transmitter and at the receiver. The high band RF signal may have the high band resonant frequency and the low band RF signal may have the low band resonant frequency.
In operation, the radiating waveguide antenna cell 1002A may operate with the high band resonant frequency and the low band resonant frequency. Accordingly, a low band RF current, via the first current path, and a high band RF current, via the second current path, may flow from the ground 2008 towards the negative terminal 4006a of the chip 4004 through at least a first pin (e.g., the pin 3004b of the first pair of horizontal polarization pins 30004a and 3004b), and the electrically conductive connection 4008a. Similarly, the low band RF current and the high band RF current may flow from the positive terminal 4006b of the chip 4004 towards the ground 2008 through at least a second pin (e.g., the pin 3004a of the first pair of horizontal polarization pins 3004a and 3004b) of the plurality of pins 2006 in the radiating waveguide antenna cell 1002A. This forms a closed circuit, where the flow of currents in the opposite direction in closed circuit within the radiating waveguide antenna cell 1002A in at least one polarization creates a magnetic dipole and differential in at least two electromagnetic waves resulting in propagation of the RF wave 4100 via the open end 2002 of the radiating waveguide antenna cell 1002A. Since the high band RF current flows through a shorter path, the high band RF current may result in the propagation of the high band RF signal and the low band RF current flows through a shorter path and the low band RF current may result in the propagation of the low band RF signal. In accordance with an embodiment, the directions of the flow of the low band RF current in the first current path and the high band RF current in the second current path are same. The chip 4004 may be configured to form two RF beams (for example, a high band RF beam and a low band RF beam) and further control the propagation and direction of the high band RF beam and the low band RF beam in millimeter wave frequency through the open end 2002 of each radiating waveguide antenna cell by adjusting signal parameters of RF signal (i.e. the radiated RF wave 4100) emitted from each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells 102.
In operation, the radiating waveguide antenna cell 1012A may operate with the high band resonant frequency and the low band resonant frequency. The magnitude of the high band resonant frequency is based on the size of the radiating waveguide antenna cell 1012A. Since the frequency of the radiating waveguide antenna cell 1012A is inversely proportional to the wavelength of the radiating waveguide antenna cell 1012A, by varying the size of the radiating waveguide antenna cell 1012A a high band resonant frequency is obtained. Accordingly, the low band RF current and the high band RF current may flow from the ground 2018 towards the negative terminal 4016a of the chip 4014 through at least a first pin (e.g., the pin 3014b of the first pair of horizontal polarization pins 3014a and 3014b), and the electrically conductive connection 4018a. Similarly, the low band RF current and the high band RF current may flow from the positive terminal 4016b of the chip 4014 towards the ground 2018 through at least a second pin (e.g., the pin 3014a of the first pair of horizontal polarization pins 3014a and 3014b) of the plurality of pins 2016 in the radiating waveguide antenna cell 1012A. This forms a closed circuit, where the flow of currents in the opposite direction in a closed circuit within the radiating waveguide antenna cell 1012A in at least one polarization creates a magnetic dipole and differential in at least two electromagnetic waves resulting in propagation of the RF wave 4100 via the open end 2012 of the radiating waveguide antenna cell 1012A. The chip 4014 may be configured to form two RF beams (for example, the high band RF beam and the low band RF beam) and further control the propagation and direction of the high band RF beam and the low band RF beam in millimeter wave frequency through the open end 2012 of each radiating waveguide antenna cell by adjusting signal parameters of RF signal (i.e. the radiated RF wave 4100) emitted from each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells 102.
In accordance with an embodiment, a first end 508 of a set of radiating waveguide antenna cells 510 of the waveguide antenna element based beam forming phased array 100A (as the unitary body) may be mounted on the first substrate 402. For example, in this case, the first end 508 of the set of radiating waveguide antenna cells 510 of the waveguide antenna element based beam forming phased array 100A is mounted on the upper side 402A of the first substrate 402. The plurality of chips 502 may be positioned between the lower side 402B of the first substrate 402 and the upper surface 504A of the system board 504. The set of radiating waveguide antenna cells 510 may correspond to certain number of radiating waveguide antenna cells, for example, four radiating waveguide antenna cells, of the plurality of radiating waveguide antenna cells 102 (
In accordance with an embodiment, the system board 504 includes an upper surface 504A and a lower surface 504B. The upper surface 504A of the system board 504 comprises a plurality of electrically conductive connection points 518 (e.g., solder balls) to connect to the ground (e.g., the ground 514a to 514d) of each of set of radiating waveguide antenna cells 510 of the waveguide antenna element based beam forming phased array 100A using electrically conductive wiring connections 520 that passes through the first substrate 402. The first substrate 402 may be positioned between the waveguide antenna element based beam forming phased array 100A and the system board 504.
In accordance with an embodiment, the heat sink 506 may be attached to the lower surface 504B of the system board 504. The heat sink may have a comb-like structure in which a plurality of protrusions (such as protrusions 506a and 506b) of the heat sink 506 passes through a plurality of perforations in the system board 504 such that the plurality of chips 502 are in contact to the plurality of protrusions (such as protrusions 506a and 506b) of the heat sink 506 to dissipate heat from the plurality of chips 502 through the heat sink 506.
In some embodiments, as shown in
In accordance with an embodiment, a first end 5008 of a set of radiating waveguide antenna cells 5010 of the waveguide antenna element based beam forming phased array 100A (as the unitary body) may be mounted on the first substrate 4002. For example, in this case, the first end 5008 of the set of radiating waveguide antenna cells 5010 of the waveguide antenna element based beam forming phased array 100A is mounted on the upper side 4002A of the first substrate 4002. The plurality of chips 5002 may be positioned between the lower side 4002B of the first substrate 4002 and the upper surface 5004A of the system board 5004. The set of radiating waveguide antenna cells 5010 may correspond to certain number of radiating waveguide antenna cells, for example, four of the radiating waveguide antenna cell 1002A (
In accordance with an embodiment, the system board 5004 may be similar to the system board 504 and the heat sink 5006 may be similar to the heat sink 506 of
In operation, for transmission of a RF signal, the RF signal may be mixed with a signal from the local oscillator 5112 by the mixer 5110. A phase of the mixed RF signal may be changed by one phase shifter of the set of phase shifters (phase shifter 5108a to 5108d). The phase shifted RF signal may then be supplied to a low band power amplifier or a high band power amplifier based on whether the dual band transmitter receiver shared antenna is operating to transmit the low band resonant frequency or the high band resonant frequency. The selection of the low band power amplifier or the high band power amplifier is performed by the SP4T switch. For reception, an incoming RF signal may be received by the dual band transmitter receiver shared antenna. The received RF signal may then flow through one of the high band low noise amplifier or the low band low noise amplifier based on whether the incoming RF signal corresponds to the high band resonant frequency or the low band resonant frequency. The selection of the high band low noise amplifier or the low band low noise amplifier is performed by the SP4T switch. The phase of the incoming RF signal is shifted and mixed with a local oscillator frequency. These operations may allow the receiver to be tuned across a wide band of interest, such that the frequency of the received RF signal is converted to a known, fixed frequency. This allows the received RF signal of interest to be efficiently processed, filtered, and demodulated.
In accordance with an embodiment, a vertical length 612 between the chip (such as the chip 404 or one of the plurality of chips 502) and a first end of each radiating waveguide antenna cell (such as the first end 210 of the radiating waveguide antenna cell 102A) of the plurality of radiating waveguide antenna cells 102, defines an amount of routing loss between each chip and the first end (such as the first end 210) of each radiating waveguide antenna cell. The first end of each radiating waveguide antenna cell (such as the first end 210 of the radiating waveguide antenna cell 102A) includes the lower end 608 of the plurality of pins 610 and the ground at the first end. When the vertical length 612 reduces, the amount of routing loss also reduces, whereas when the vertical length 612 increases, the amount of routing loss also increases. In other words, the amount of routing loss is directly proportional to the vertical length 612. Thus, in
In
In accordance with an embodiment, the plurality of chips 502 are configured to control propagation, a direction and angle (or tilt, such as 18, 22.5 or 45 degree tilt) of the RF beam (e.g. the main lobe 902 of the RF beam) in millimeter wave frequency through the open end 906 of the plurality of radiating waveguide antenna cells 102 for the millimeter wave communication between the antenna system 500A or 500B and a millimeter wave-based communication device. Example of the millimeter wave-based communication device may include, but are not limited to active reflectors, passive reflectors, or other millimeter wave capable telecommunications hardware, such as customer premises equipments (CPEs), smartphones, or other base stations. In this case, a 22.5 degree tilt of the RF beam is shown in
The radiating waveguide antenna cells 1102a to 1102d may be mounted on a substrate module 1108a. The radiating waveguide antenna cells 1102e to 1102h may be mounted on a substrate module 1108b. The substrate modules 1108a and 1108b corresponds to the first substrate 402. The plurality of non-radiating dummy waveguide antenna cells (such as non-radiating dummy waveguide antenna cells 1104a and 1104b) are mounted on a second substrate (such as dummy substrates 1106a and 1106b). In some embodiments, the plurality of non-radiating dummy waveguide antenna cells may be mounted on the same type of substrate (such as the first substrate 402 or substrate modules 1108a and 1108b) as of the plurality of radiating waveguide antenna cells. In some embodiments, the plurality of non-radiating dummy waveguide antenna cells (such as non-radiating dummy waveguide antenna cells 1104a and 1104b) may be mounted on a different type of substrate, such as the dummy substrates 1106a and 1106b, which may be inexpensive as compared to first substrate the plurality of radiating waveguide antenna cells to reduce cost. The second substrate (such as dummy substrates 1106a and 1106b) may be different than the first substrate (such as the substrate modules 1108a and 1108b). This is a significant advantage compared to conventional approaches, where the conventional radiating antenna elements and the dummy antenna elements are on the same expensive substrate. The plurality of chips 502, the main system board 504, and the heat sink 506, are also shown, which are connected in a similar manner as described in
In accordance with an embodiment, the antenna system (such as the antenna system 500A, 500B, 1100, and 1300), may comprise a first substrate (such as the first substrate 402 or the substrate modules 1108a and 1108b), a plurality of chips (such as the chip 404 or the plurality of chips 502); and a waveguide antenna element based beam forming phased array (such as the waveguide antenna element based beam forming phased array 100A, 1000A, or 1200A) having a unitary body that comprises a plurality of radiating waveguide antenna cells (such as the plurality of radiating waveguide antenna cells 102, 1002, 1202, or 510), in a first layout (such as the first layout 1004 for millimeter wave communication. Each radiating waveguide antenna cell comprises a plurality of pins (such as the plurality of pins 206) that are connected with a body (such as the ground 208) of a corresponding radiating waveguide antenna cell that acts as ground for the plurality of pins. A first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array as the unitary body in the first layout is mounted on the first substrate. The plurality of chips may be electrically connected with the plurality of pins and the ground of each of the plurality of radiating waveguide antenna cells to control beamforming through a second end (such as the open end 202 or 906) of the plurality of radiating waveguide antenna cells for the millimeter wave communication.
In accordance with an embodiment, the single-ended RFIC 4000a and the single-ended RFIC 4000b are separate chips. In accordance with an embodiment, the single-ended RFIC 4000a and the single-ended RFIC 4000b are two different terminals of a single chip.
In accordance with an embodiment, the waveguide antenna element based beam forming phased array may be a one-piece structure of four-by-four waveguide array comprising sixteen radiating waveguide antenna cells in the first layout, where the one-piece structure of four-by-four waveguide array corresponds to the unitary body of the waveguide antenna element based beam forming phased array. The waveguide antenna element based beam forming phased array may be one-piece structure of eight-by-eight waveguide array comprising sixty four radiating waveguide antenna cells in the first layout, where the one-piece structure of eight-by-eight waveguide array corresponds to the unitary body of the waveguide antenna element based beam forming phased array.
In accordance with an embodiment, the waveguide antenna element based beam forming phased array may be one-piece structure of N-by-N waveguide array comprising M number of radiating waveguide antenna cells in the first layout, wherein N is a positive integer and M is N to the power of 2. In accordance with an embodiment, the waveguide antenna element based beam forming phased array may further comprise a plurality of non-radiating dummy waveguide antenna cells (such as the plurality of non-radiating dummy waveguide antenna cells 1002 or 204 or the non-radiating dummy waveguide antenna cells 1104a and 1104b) in the first layout. The plurality of non-radiating dummy waveguide antenna cells may be positioned at edge regions surrounding the plurality of radiating waveguide antenna cells in the first layout to enable even radiation for the millimeter wave communication through the second end of each of the plurality of radiating waveguide antenna cells irrespective of positioning of the plurality of radiating waveguide antenna cells in the first layout.
In accordance with an embodiment, the antenna system may further comprise a second substrate (such as dummy substrates 1106a and 1106b). The plurality of non-radiating dummy waveguide antenna cells in the first layout are mounted on the second substrate that is different than the first substrate.
In accordance with an embodiment, the antenna system may further comprise a system board (such as the system board 504) having an upper surface and a lower surface. The upper surface of the system board comprises a plurality of electrically conductive connection points (such as the plurality of electrically conductive connection points 518) to connect to the ground of each of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array using electrically conductive wiring connections that passes through the first substrate, where the first substrate is positioned between the waveguide antenna element based beam forming phased array and the system board.
In accordance with an embodiment, the antenna system may further comprise a heat sink (such as the heat sink 506) that is attached to the lower surface of the system board. The heat sink have a comb-like structure in which a plurality of protrusions of the heat sink passes through a plurality of perforations in the system board such that the plurality of chips are in contact to the plurality of protrusions of the heat sink to dissipate heat from the plurality of chips through the heat sink. The first substrate may comprise an upper side and a lower side, where the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array may be mounted on the upper side of the first substrate, and the plurality of chips are positioned between the lower side of the first substrate and the upper surface of the system board.
In accordance with an embodiment, the first substrate may comprises an upper side and a lower side, where the plurality of chips and the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array are positioned on the upper side of the first substrate. A vertical length between the plurality of chips and the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array may be less than a defined threshold to reduce insertion or routing loss between the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array and the plurality of chips, based on the positioning of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array and the plurality of chips on a same side of the first substrate.
In accordance with an embodiment, the unitary body of the waveguide antenna element based beam forming phased array may have a metallic electrically conductive surface that acts as a heat sink to dissipate heat from the plurality of chips to atmospheric air through the metallic electrically conductive surface of the waveguide antenna element based beam forming phased array, based on a contact of the plurality of chips with the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array on the upper side of the first substrate. The plurality of pins in each radiating waveguide antenna cell may be protrude pins (such as the plurality of protrude pins 702) that protrude from the first end from a level of the body of the corresponding radiating waveguide antenna cell to establish a firm contact with the first substrate.
In accordance with an embodiment, the waveguide antenna element based beam forming phased array is a dual-polarized open waveguide array antenna configured to transmit and receive radio frequency waves for the millimeter wave communication in both horizontal and vertical polarizations or as left hand circular polarization (LHCP) or right hand circular polarization (RHCP). The plurality of pins in each radiating waveguide antenna cell may include a pair of vertical polarization pins that acts as a first positive terminal and a first negative terminal and a pair of horizontal polarization pins that acts as a second positive terminal and a second negative terminal, wherein the pair of vertical polarization pins and the pair of horizontal polarization pins are utilized for dual-polarization. The plurality of chips comprises a set of receiver (Rx) chips, a set of transmitter (Tx) chips, and a signal mixer chip.
In accordance with an embodiment, the plurality of chips may be configured to control propagation and a direction of a radio frequency (RF) beam in millimeter wave frequency through the second end of the plurality of radiating waveguide antenna cells for the millimeter wave communication between the antenna system and a millimeter wave-based communication device, where the second end may be an open end of the plurality of radiating waveguide antenna cells for the millimeter wave communication. The propagation of the radio frequency (RF) beam in millimeter wave frequency may be controlled based on at least a flow of current in each radiating waveguide antenna cell, where the current flows from the ground towards a negative terminal of a first chip of the plurality of chips via at least a first pin of the plurality of pins, and from a positive terminal of the first chip towards the ground via at least a second pin of the plurality of pins in each corresponding radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells.
In accordance with an embodiment, the antenna system may further comprise an interposer (such as the interposer 1302) beneath the edge regions of the waveguide antenna element based beam forming phased array at the first end in the first layout to shield radiation leakage from the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array. In accordance with an embodiment, the antenna system may further comprise a ground (gnd) layer (such as the gnd layer 1602) between the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array and the first substrate to avoid or minimize ground loop noise from the ground of each radiating waveguide antenna cell of the plurality of the radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array.
The waveguide antenna element based beam forming phased arrays 100A, 110A, 1000A, 1200A may be utilized in, for example, active and passive reflector devices disclosed in, for example, U.S. application Ser. No. 15/607,743, and U.S. application Ser. No. 15/834,894.
While various embodiments described in the present disclosure have been described above, it should be understood that they have been presented by way of example, and not limitation. It is to be understood that various changes in form and detail can be made therein without departing from the scope of the present disclosure. In addition to using circuitry or hardware (e.g., within or coupled to a central processing unit (“CPU”), microprocessor, micro controller, digital signal processor, processor core, system on chip (“SOC”) or any other device), implementations may also be embodied in software (e.g. computer readable code, program code, and/or instructions disposed in any form, such as source, object or machine language) disposed for example in a non-transitory computer-readable medium configured to store the software. Such software can enable, for example, the function, fabrication, modeling, simulation, description and/or testing of the apparatus and methods describe herein. For example, this can be accomplished through the use of general program languages (e.g., C, C++), hardware description languages (HDL) including Verilog HDL, VHDL, and so on, or other available programs. Such software can be disposed in any known non-transitory computer-readable medium, such as semiconductor, magnetic disc, or optical disc (e.g., CD-ROM, DVD-ROM, etc.). The software can also be disposed as computer data embodied in a non-transitory computer-readable transmission medium (e.g., solid state memory any other non-transitory medium including digital, optical, analogue-based medium, such as removable storage media). Embodiments of the present disclosure may include methods of providing the apparatus described herein by providing software describing the apparatus and subsequently transmitting the software as a computer data signal over a communication network including the internet and intranets.
It is to be further understood that the system described herein may be included in a semiconductor intellectual property core, such as a microprocessor core (e.g., embodied in HDL) and transformed to hardware in the production of integrated circuits. Additionally, the system described herein may be embodied as a combination of hardware and software. Thus, the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Claims
1. An antenna system, comprising:
- a first substrate;
- a plurality of chips; and
- a waveguide antenna element based beam forming phased array that comprises a plurality of radiating waveguide antenna cells for millimeter wave communication,
- wherein each radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells comprises a plurality of pins,
- wherein a first pin of the plurality of pins is connected with a body of a corresponding radiating waveguide antenna cell,
- wherein the body corresponds to ground for the plurality of pins,
- wherein a current flows from the ground towards a negative terminal of a first chip of the plurality of chips via the first pin of the plurality of pins,
- wherein a first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array is mounted on the first substrate, and
- wherein the plurality of chips are electrically connected with the plurality of pins.
2. The antenna system according to claim 1, wherein each radiating waveguide antenna cell is configured to resonate at a first frequency range from 26.5 GigaHertz (GHz) to 29.5 GHz and a second frequency range from 37 GHz to 40.5 GHz.
3. The antenna system according to claim 2,
- wherein a first current path of the plurality of pins is configured to generate a first RF current and a second current path of the plurality of pins is configured to generate a second RF current, and
- wherein the first RF current resonates at the first frequency range and the second RF current resonates at the second frequency range.
4. The antenna system according to claim 1, wherein the plurality of chips is configured to:
- generate a high band Radio Frequency (RF) signal and a low band RF signal at a transmitter, and
- generate the high band Radio Frequency (RF) signal and the low band RF signal at a receiver.
5. The antenna system according to claim 1, wherein a first direction of a first current path of the plurality of pins is same as a second direction of a second current path of the plurality of pins.
6. The antenna system according to claim 1, wherein distance between two consecutive radiating waveguide antenna cells of the plurality of radiating waveguide antenna cells is based on a second current path of the plurality of pins.
7. The antenna system according to claim 2, wherein distance between two consecutive radiating waveguide antenna cells of the plurality of radiating waveguide antenna cells is one of a half wavelength of the first frequency range or a value between the first frequency range and the second frequency range.
8. The antenna system according to claim 1, wherein the waveguide antenna element based beam forming phased array further comprises a plurality of non-radiating dummy waveguide antenna cells in a first layout,
- wherein the plurality of non-radiating dummy waveguide antenna cells are at edge regions of the plurality of radiating waveguide antenna cells to enable even radiation for the millimeter wave communication through a second end of each of the plurality of radiating waveguide antenna cells.
9. The antenna system according to claim 8, further comprising a second substrate, wherein the plurality of non-radiating dummy waveguide antenna cells are mounted on the second substrate that is different than the first substrate.
10. The antenna system according to claim 8, wherein the first substrate comprises an upper side and a lower side,
- wherein the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array is mounted on the upper side of the first substrate, and the plurality of chips are between the lower side of the first substrate and an upper surface of a system board.
11. The antenna system according to claim 1, wherein the first substrate comprises an upper side and a lower side,
- wherein the plurality of chips and the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array are on the upper side of the first substrate.
12. The antenna system according to claim 11, wherein a vertical length between the plurality of chips and the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array is less than a threshold value to reduce insertion loss between the plurality of radiating waveguide antenna cells and the plurality of chips.
13. The antenna system according to claim 11, wherein the waveguide antenna element based beam forming phased array has a metallic electrically conductive surface that acts as a heat sink to dissipate heat from the plurality of chips to atmospheric air through the metallic electrically conductive surface of the waveguide antenna element based beam forming phased array, and
- wherein the heat is dissipated based on a contact of the plurality of chips with the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array on the upper side of the first substrate.
14. The antenna system according to claim 1, the waveguide antenna element based beam forming phased array is a dual-polarized open waveguide array antenna configured to transmit and receive radio frequency waves for the millimeter wave communication in both horizontal and vertical polarizations or as left hand circular polarization (LHCP) or right hand circular polarization (RHCP).
15. The antenna system according to claim 1, wherein the plurality of pins in each radiating waveguide antenna cell includes a pair of vertical polarization pins and a pair of horizontal polarization pins, wherein the pair of vertical polarization pins comprises a first positive terminal and a first negative terminal and the pair of horizontal polarization pins comprises a second positive terminal and a second negative terminal, and wherein the pair of vertical polarization pins and the pair of horizontal polarization pins are utilized for dual-polarization.
16. The antenna system according to claim 1, wherein the plurality of chips comprises a set of receiver (Rx) chips, a set of transmitter (Tx) chips, and a signal mixer chip.
17. The antenna system according to claim 1, wherein the plurality of chips are configured to control propagation and a direction of a radio frequency (RF) beam in millimeter wave frequency through a second end of the plurality of radiating waveguide antenna cells for the millimeter wave communication between the antenna system and a millimeter wave-based communication device, and wherein the second end is an open end of the plurality of radiating waveguide antenna cells for the millimeter wave communication.
18. The antenna system according to claim 17, wherein the propagation of the radio frequency (RF) beam in millimeter wave frequency is controlled based on at least a flow of a first RF current and a second RF current in each radiating waveguide antenna cell, wherein the first RF current and the second RF current flows from the ground towards a negative terminal of the first chip of the plurality of chips via at least a first pin of the plurality of pins, and from a positive terminal of the first chip towards the ground via at least a second pin of the plurality of pins in each corresponding radiating waveguide antenna cell of the plurality of radiating waveguide antenna cells.
19. The antenna system according to claim 1, further comprising an interposer beneath an edge regions of the waveguide antenna element based beam forming phased array at the first end in a first layout to shield radiation leakage from the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array.
20. The antenna system according to claim 1, further comprising a ground (gnd) layer between the first end of the plurality of radiating waveguide antenna cells of the waveguide antenna element based beam forming phased array and the first substrate.
6731904 | May 4, 2004 | Judd |
7079079 | July 18, 2006 | Jo et al. |
7675465 | March 9, 2010 | Doan et al. |
7715466 | May 11, 2010 | Oh et al. |
9130262 | September 8, 2015 | Park et al. |
9178546 | November 3, 2015 | Klemes |
10103853 | October 16, 2018 | Moshfeghi |
10320090 | June 11, 2019 | Zou et al. |
10560179 | February 11, 2020 | Gharavi et al. |
10854995 | December 1, 2020 | Rofougaran et al. |
11075724 | July 27, 2021 | Moshfeghi |
11088756 | August 10, 2021 | Gharavi et al. |
20040204114 | October 14, 2004 | Brennan et al. |
20050088260 | April 28, 2005 | Ajioka et al. |
20050136943 | June 23, 2005 | Banerjee et al. |
20060170595 | August 3, 2006 | Gustaf |
20090066590 | March 12, 2009 | Yamada |
20090175214 | July 9, 2009 | Sfar et al. |
20100167639 | July 1, 2010 | Ranson et al. |
20100284446 | November 11, 2010 | Mu et al. |
20110190005 | August 4, 2011 | Cheon et al. |
20110294415 | December 1, 2011 | Jeon et al. |
20120003925 | January 5, 2012 | Coldrey et al. |
20130003645 | January 3, 2013 | Shapira et al. |
20130039342 | February 14, 2013 | Kazmi |
20130149300 | June 13, 2013 | Hiatt et al. |
20150296344 | October 15, 2015 | Trojer et al. |
20160049723 | February 18, 2016 | Baks et al. |
20160056946 | February 25, 2016 | Moher |
20160204513 | July 14, 2016 | Yemelong et al. |
20180063139 | March 1, 2018 | Day et al. |
20190020402 | January 17, 2019 | Gharavi et al. |
20190089069 | March 21, 2019 | Niroo |
20190139914 | May 9, 2019 | Kirino |
20190297648 | September 26, 2019 | Nagaraja et al. |
20200036414 | January 30, 2020 | Shattil |
20200185299 | June 11, 2020 | Chang et al. |
20200322016 | October 8, 2020 | Kim et al. |
20210109145 | April 15, 2021 | Haustein et al. |
- Corrected Notice of Allowance for U.S. Appl. No. 16/125,757 dated Jul. 16, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/125,757 dated Jun. 28, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/204,397 dated Jun. 7, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/233,044 dated Jun. 11, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/354,390 dated Jul. 13, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/354,390 dated Jun. 3, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/364,956 dated Jun. 23, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/377,847 dated Aug. 20, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/377,847 dated Jul. 13, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/377,847 dated Jul. 6, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/388,043 dated Aug. 27, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/391,628 dated Jul. 30, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/391,628 dated Jun. 29, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/398,156 dated Aug. 13, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/689,758 dated Jul. 6, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/689,758 dated May 27, 2021.
- Final Office Action for U.S. Appl. No. 17/011,042 dated Jul. 2, 2021.
- Non-Final Office Action for U.S. Appl. No. 17/091,520 dated Jul. 8, 2021.
- Notice of Allowability for U.S. Appl. No. 16/819,388 dated May 27, 2021.
- Notice of Allowance for U.S. Appl. No. 16/233,044 dated Jun. 4, 2021.
- Notice of Allowance for U.S. Appl. No. 16/398,156 dated Jul. 6, 2021.
- Supplemental Notice of Allowance for U.S. Appl. No. 16/451,980 dated Aug. 6, 2021.
- Supplemental Notice of Allowance for U.S. Appl. No. 16/451,980 dated Jun. 30, 2021.
- Supplemental Notice of Allowance for U.S. Appl. No. 16/451,998 dated Jun. 24, 2021.
- Supplemental Notice of Allowance for U.S. Appl. No. 16/666,680 dated Jul. 9, 2021.
- Supplemental Notice of Allowance for U.S. Appl. No. 16/666,680 dated Jun. 10, 2021.
- Supplemental Notice of Allowance for U.S. Appl. No. 16/866,536 dated Jul. 21, 2021.
- Supplemental Notice of Allowance for U.S. Appl. No. 16/866,536 dated Jun. 7, 2021.
- Supplemental Notice of Allowance for U.S. Appl. No. 16/941,690 dated Aug. 9, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/920,191 dated Feb. 15, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 17/091,520 dated Dec. 14, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 17/091,520 dated Feb. 2, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 17/091,520 dated Jan. 28, 2022.
- Final Office Action for U.S. Appl. No. 17/011,042 dated Mar. 14, 2022.
- Non-Final Office Action for U.S. Appl. No. 16/927,225 dated Dec. 22, 2021.
- Non-Final Office Action for U.S. Appl. No. 16/935,422 dated Jan. 21, 2022.
- Non-Final Office Action for U.S. Appl. No. 16/935,515 dated Jan. 21, 2022.
- Non-Final Office Action for U.S. Appl. No. 17/004,373 dated Feb. 15, 2022.
- Non-Final Office Action for U.S. Appl. No. 17/060,182 dated Feb. 25, 2022.
- Non-Final Office Action for U.S. Appl. No. 17/337,529 dated Jan. 26, 2022.
- Notice of Allowance for U.S. Appl. No. 16/920,191 dated Feb. 2, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 16/233,044 dated Sep. 10, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/398,156 dated Nov. 17, 2021.
- Non-Final Office Action for U.S. Appl. No. 16/920,191 dated Oct. 15, 2021.
- Non-Final Office Action for U.S. Appl. No. 17/011,042 dated Oct. 29, 2021.
- Notice of Allowance for U.S. Appl. No. 17/091,520 dated Oct. 27, 2021.
- Corrected Notice of Allowance for U.S. Appl. No. 16/920,191 dated May 10, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 16/920,191 dated May 18, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 16/935,422 dated Jun. 8, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 16/935,515 dated Jun. 8, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 17/091,520 dated Apr. 26, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 17/091,520 dated Mar. 17, 2022.
- Non-Final Office Action for U.S. Appl. No. 17/208,984 dated Apr. 12, 2022.
- Non-Final Office Action for U.S. Appl. No. 17/230,566 dated Apr. 12, 2022.
- Non-Final Office Action for U.S. Appl. No. 17/243,747 dated Jun. 6, 2022.
- Notice of Allowance for U.S. Appl. No. 16/935,515 dated Jun. 1, 2022.
- Notice of Allowance for U.S. Appl. No. 17/004,373 dated May 23, 2022.
- Notice of Allowance for U.S. Appl. No. 16/935,422 dated May 31, 2022.
- Notice of Allowance for U.S. Appl. No. 17/060,182 dated Jun. 8, 2022.
- Notice of Allowance for U.S. Appl. No. 17/171,521 dated Apr. 6, 2022.
- Notice of Allowance for U.S. Appl. No. 17/337,529 dated May 4, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 16/920,191 dated Jun. 22, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 16/935,422 dated Sep. 14, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 16/935,515 dated Sep. 14, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 17/171,521 dated Aug. 29, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 17/171,521 dated Jul. 7, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 17/171,521 dated Jul. 13, 2022.
- Corrected Notice of Allowance for U.S. Appl. No. 17/337,529 dated Aug. 3, 2022.
- Final Office Action for U.S. Appl. No. 16/927,225 dated Jun. 24, 2022.
- Non-Final Office Action for U.S. Appl. No. 17/011,042 dated Jul. 1, 2022.
- Non-Final Office Action for U.S. Appl. No. 17/408,606 dated Aug. 16, 2022.
- Notice of Allowability for U.S. Appl. No. 17/337,529 dated Aug. 10, 2022.
- Notice of Allowability for U.S. Appl. No. 17/004,373 dated Aug. 17, 2022.
- Notice of Allowability for U.S. Appl. No. 17/004,373 dated Aug. 31, 2022.
- Notice of Allowability for U.S. Appl. No. 17/060,182 dated Aug. 19, 2022.
- Notice of Allowability for U.S. Appl. No. 17/060,182 dated Sep. 20, 2022.
- Notice of Allowance for U.S. Appl. No. 17/208,984 dated Aug. 16, 2022.
- Notice of Allowance for U.S. Appl. No. 17/230,566 dated Aug. 25, 2022.
- Notice of Allowance for U.S. Appl. No. 17/365,037 dated Aug. 10, 2022.
- Notice of Allowance for U.S. Appl. No. 17/243,747 dated Sep. 27, 2022.
Type: Grant
Filed: May 25, 2021
Date of Patent: Nov 15, 2022
Patent Publication Number: 20210336347
Assignee: MOVANDI CORPORATION (Irvine, CA)
Inventors: Seunghwan Yoon (Irvine, CA), Ahmadreza Rofougaran (Newport Beach, CA), Sam Gharavi (Irvine, CA), Kartik Sridharan (San Diego, CA), Donghyup Shin (Irvine, CA), Farid Shirinfar (Granada Hills, CA), Stephen Wu (Fountain Valley, CA), Maryam Rofougaran (Rancho Palos Verdes, CA), Alfred Grau Besoli (Irvine, CA), Enver Adas (Newport Beach, CA)
Primary Examiner: Binh B Tran
Application Number: 17/329,276
International Classification: H01Q 1/24 (20060101); H01Q 13/02 (20060101); H01Q 21/00 (20060101); H01Q 13/06 (20060101); H01Q 21/24 (20060101); H01Q 1/22 (20060101); H01Q 21/06 (20060101);