Multi-site noninvasive measurement of a physiological parameter

- Masimo Corporation

A patient monitor can noninvasively measure a physiological parameter using sensor data from different measurement sites on a patient. The patient monitor can combine all sensor data from different measurement sites into a raw or minimally processed data form to generate a single, robust measurement of the physiological parameter. An optical sensor of a patient monitor can include multiple photodetectors each configured to generate a signal when detecting light attenuated by the patient's tissue. A measurement of a physiological parameter can be determined based on at least in part on the multiple signals from the multiple photodetectors.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
FIELD

The present disclosure relates to devices and methods for monitoring a patient's physiological information. More specifically, the present disclosure relates to noninvasive measurement of the physiological information using multiple sources of data.

BACKGROUND

Hospitals, nursing homes, and other patient care facilities typically include patient monitoring devices in the facility. Patient monitoring devices can include sensors, processing equipment, and displays for obtaining and analyzing a medical patient's physiological parameters such as blood oxygen saturation level, respiratory rate, pulse, and a myriad of other parameters, such as those monitored on commercially available patient monitors from Masimo Corporation of Irvine, Calif. Clinicians, including doctors, nurses, and other medical personnel, use the physiological parameters and trends of those parameters obtained from patient monitors to diagnose illnesses and to prescribe treatments. Clinicians also use the physiological parameters to monitor patients during various clinical situations to determine whether to increase the level of medical care given to patients.

Patient monitoring can be achieved through spectroscopic analysis using, for example, a pulse oximeter. A pulse oximeter generally includes one or more light sources transmitting optical radiation into or reflecting off through a portion of the body, for example a digit such as a finger, a hand, a foot, a nose, an earlobe, or a forehead. One or more photo detection devices detect the light after attenuation by tissue and fluids of the portion of the body, and output one or more detector signals responsive to the detected attenuated light. One or more signal processing devices process the detector signals and output a measurement indicative of a blood constituent of interest, such as oxygen saturation (SpO2), pulse rate, a plethysmograph waveform, perfusion index (PI), pleth variability index (PVI), methemoglobin (MetHb), carboxyhemoglobin (CoHb), total hemoglobin (tHb), glucose, and/or otherwise, and the oximeter may display on one or more monitors the foregoing parameters individually, in groups, in trends, as combinations, or as an overall wellness or other index. An example of such an oximeter is described in U.S. application Ser. No. 09/323,176, filed May 27, 1999, titled “Stereo Pulse Oximeter,” now U.S. Pat. No. 6,334,065, the disclosure of which is hereby incorporated by reference in its entirety.

In noninvasive devices and methods, a sensor is often adapted to position the portion of the body proximate the light source and light detector. Some noninvasive sensors can include a finger clip that includes a contoured bed conforming generally to the shape of a finger. An example of such a noninvasive sensor is described in U.S. application Ser. No. 12/829,352, filed Jul. 1, 2010, titled “Multi-Stream Data Collection System for Noninvasive Measurement of Blood Constituents,” now U.S. Pat. No. 9,277,880, the disclosure of which is hereby incorporated by reference in its entirety. Some noninvasive sensors can include one or more sensing components, such as the light source and/or the photodetectors on an adhesive tape, such as described in U.S. application Ser. No. 13/041,803, filed May 7, 2011, titled “Reprocessing of a physiological sensor,” now U.S. Pat. No. 8,584,345, the disclosure of which is hereby incorporated by reference in its entirety.

SUMMARY

Conventional physiological monitors, such as pulse oximeters, typically are restricted to measuring physiological information at a single patient site. Stereo pulse oximeter as described in U.S. Pat. No. 6,334,065, can receive data input from sensors placed at multiple measurement sites of a patient and output simultaneous or substantially simultaneous measurements at each of the measurement sites. However, a processor of the stereo pulse oximeter as described in U.S. Pat. No. 6,334,065 processes data input from sensors placed at each measurement site independent of data from sensors at the other measurement sites. Useful information can be obtained if raw or minimally processed sensor data from different measurement sites can be combined and fed into the processor to calculate a single measurement of a physiological parameter. Minimally processed sensor data can be demodulated, filtered, and/or otherwise processed to prepare the data for use by the signal processor to calculate measurements of physiological parameters. This disclosure describes embodiments of noninvasive methods and devices for processing data input from optical sensors located at multiple measurement sites to generate a single measurement of a physiological parameter. The parameter can be a measurement of blood constituent or analyte, such as oxygen saturation (SpO2), pulse rate, a plethysmograph waveform, perfusion index (PI), pleth variability index (PVI), methemoglobin (MetHb), carboxyhemoglobin (CoHb), total hemoglobin (tHb), glucose, and/or of many other physiologically relevant patient characteristics.

Sensors with multiple photodetectors can be used in an optical sensor to also provide useful information about the patient's physiological condition and/or the placement of the optical sensor. Each of the photodetectors can provide a respective output stream based on the detected optical radiation, or a sum of output streams can be provided from multiple photodetectors. An example of a sensor which employs multiple photodetectors is described in U.S. Pat. No. 9,277,880. Configurations of those multiple photodetectors can include a substantially linear geometry or substantially two-dimensional grid geometry. However, the anatomy at most measurement sites is three-dimensional and irregularly-shaped. The optical sensor with multiple detectors disclosed herein has an improved spatial configuration. The multiple photodetectors described herein can be placed on various locations on a three-dimensional contour of the measurement site on the patient. Use of multiple photodetectors in a spatial configuration can have several advantages. The multiple photodetectors can allow a caregiver or a patient to confirm or validate that the sensor is positioned correctly. This is because the multiple locations of the spatial configuration can provide, for example, topology information that indicates where the sensor has been positioned. This spatial configuration can also provide a diversity of light path lengths among at least some of the detectors and improve robustness of measurements of the physiological parameter(s). The optical sensor described herein can have multiple light emitters and/or multiple photodetectors.

A noninvasive physiological monitor can include at least two sensor interfaces each in communication with at least one sensor adapted to be positioned at one of at least two measurement sites of a patient, each of the interfaces having an output responsive to light transmitted through one of the at least two measurement sites. The system can also include a signal processor in communication with the at least two interface outputs, the signal processor configured to combine the interface outputs to generate a single measurement of physiological parameters. Data from the sensors located at multiple measurement sites can be fed into a single algorithm in the signal processor. The sensors can each include a plurality of light emitters configured to emit optical radiation onto a tissue of one of the at least two measurement sites.

A method of calculating a single measurement of physiological parameters can include transmitting light of at least first and second wavelengths through tissues of at least two measurement sites of a patient; detecting the light attenuated by the tissues of the at least two measurement sites; generating a signal output based on the light detected at each of the at least two measurement sites; and determining the single measurement of the physiological parameters by combining the signal outputs relating to the at least two measurement sites.

A noninvasive sensor capable of producing a signal responsive to light attenuated by tissue at a measurement site on a patient can include an optical source configured to emit optical radiation onto the tissue at the measurement site. The sensor can also include more than one photodetector configured to detect the optical radiation form the optical source after attenuation by the tissue of the patient and to output more than one respective signal stream responsive to the detected optical radiation. When the sensor is coupled to the measurement site, the photodetectors can be distributed throughout a sensor area in contact with the measurement site. The photodetectors can be arranged in a three-dimensional configuration conforming to a contour of the measurement site when the sensor is attached to the measurement site. The sensor can further include a housing for positioning the optical source and the more than one photodetectors with respect to the measurement site, or an adhesive tape portion for positioning the optical source and the more than one photodetectors with respect to the measurement site.

A method of measuring a physiological parameter using multiple photodetectors in one sensor can comprise transmitting light from a light source through tissue of a measurement site of a patient; detecting the light after the light has passed through the tissue of the measurement site; generating a data stream based on the light detected by each of a plurality of photodetectors, the plurality of photodetectors distributed throughout a sensor area in contact with the measurement site; and determining the physiological parameter from the data streams of the plurality of photodetectors.

A noninvasive physiological monitor can include at least two optical sensors, at least two sensor interfaces each in communication with one of the at least two sensors, and a signal processor. Each sensor can have a plurality of light emitters configured to emit optical radiation onto tissue of one of at least two measurement sites of a patient and a plurality of photodetectors configured to detect the optical radiation attenuated by the tissue of the one of at least two measurement sites, the plurality of photodetectors distributed throughout a sensor area in contact with the one of the at least two measurement sites. Each of the interfaces can have an output responsive to the optical radiation attenuated by the tissue of the one of at least two measurement sites. The signal processor can be in communication with the at least two interface outputs and configured to combine the interface outputs to generate a single measurement of physiological parameters.

A noninvasive physiological monitor can comprise at least one input in communication with first and second sensors adapted to be respectively positioned at first and second measurement sites of a patient, the at least one input configured to receive one or more signals responsive to light of at least a plurality of wavelengths attenuated by tissue at the first and second measurement sites of the patient, the one or more signals outputted by one or more optical detectors of the first and second sensors; and one or more signal processors configured to combine the one or more signals from the first and second sensors into combined sensor data and to generate a single measurement of a physiological parameter based on the combined sensor data. The first and second measurement sites can comprise different types of body tissues. The first measurement site can be on or around the patient's head. The first measurement site can be the patient's nose. The second measurement site can be a peripheral site of the patient. The second measurement site can be the patient's finger. The first and/or second sensor can comprise a plurality of light emitters configured to emit optical radiation onto the tissue of the first and/or second measurement sites. The first and/or second sensor can comprise a plurality of light detectors configured to detect light attenuated by the tissue of the first and/or second measurement sites. The physiological parameter can comprise oxygen saturation, pulse rate, a plethysmograph waveform, perfusion index, pleth variability index, methemoglobin, carboxyhemoglobin, total hemoglobin, and/or glucose.

A method of calculating a single measurement of a physiological parameter can comprise using a first sensor including one or more light emitters, emitting light of at least first and second wavelengths into tissues of a first measurement site of a patient; using one or more electronic light detectors of the first sensor, detecting the light attenuated by the tissues of the first measurement site and outputting at least a first signal based on the light detected at the first measurement site; using a second sensor including one or more light emitters, emitting light of at least first and second wavelengths into tissues of a second measurement site of a patient, the second measurement site different from the first measurement site; using one or more electronic light detectors of the first sensor, detecting the light attenuated by the tissues of the second measurement site and outputting at least a second signal based on the light detected at the second measurement site; and using one or more signal processors, combining the at least a first signal and the at least a second signal into combined sensor data, and processing the combined sensor data to determine the single measurement of the physiological parameter. The first and second measurement sites can comprise different types of body tissues. The first measurement site can be on or around the patient's head. The first measurement site can be the patient's nose. The second measurement site can be a peripheral site of the patient. The second measurement site can be the patient's finger. The first and/or second sensor can comprise a plurality of light emitters configured to emit optical radiation onto the tissue of the first and/or second measurement sites. The first and/or second sensor can comprise a plurality of light detectors configured to detect light attenuated by the tissue of the first and/or second measurement sites. The physiological parameter can comprise oxygen saturation, pulse rate, a plethysmograph waveform, perfusion index, pleth variability index, methemoglobin, carboxyhemoglobin, total hemoglobin, and/or glucose.

A noninvasive physiological monitor can comprise a first optical sensor having one or more light emitters configured to emit optical radiation onto tissue of a first measurement site of a patient and one or more of photodetectors configured to detect the optical radiation attenuated by the tissue of the first measurement site and to output a signal responsive to the light attenuation by the tissue of the first measurement site; a second optical sensor having one or more light emitters configured to emit optical radiation onto tissue of a second measurement site of the patient and one or more of photodetectors configured to detect the optical radiation attenuated by the tissue of the second measurement site and to output a signal responsive to the light attenuation by the tissue of the second measurement site; and one or more signal processors in communication with the first and second optical sensors, the signal processor configured to combine the signals responsive to the light attenuation by the tissues of the first and second measurement sites into combined sensor data, and to generate a single measurement of a physiological parameter from the combined sensor data. The one or more photodetectors can be distributed throughout a sensor area in contact with one of the first and second measurement sites. The first and second measurement sites can comprise different types of body tissues. The first measurement site can be on or around the patient's head. The first measurement site can be the patient's nose. The second measurement site can be a peripheral site of the patient. The second measurement site can be the patient's finger. The physiological parameter can comprise oxygen saturation, pulse rate, a plethysmograph waveform, perfusion index, pleth variability index, methemoglobin, carboxyhemoglobin, total hemoglobin, and/or glucose.

For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the inventions have been described herein. It is to be understood that not necessarily all such advantages can be achieved in accordance with any particular embodiment of the inventions disclosed herein. Thus, the inventions disclosed herein can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as can be taught or suggested herein.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments will be described hereinafter with reference to the accompanying drawings. These embodiments are illustrated and described by example only, and are not intended to limit the scope of the disclosure. In the drawings, similar elements have similar reference numerals.

FIG. 1A illustrates an example block diagram of an optical-based multi-site physiology monitor.

FIG. 1B illustrates an example block diagram of an optical-based multi-site physiology monitor.

FIG. 1C illustrates an example block diagram of an optical-based multi-site physiology monitor.

FIG. 2 illustrates an example block diagram of the sensors coupled to the physiological monitor in FIGS. 1A-1C.

FIG. 3 illustrates an example optical sensor of a physiological monitor.

FIG. 4 illustrates an example block diagram of a physiological monitor employing the sensor of FIG. 3.

FIG. 5 illustrates a block diagram of an example optical sensor of a multi-site physiological monitor.

DETAILED DESCRIPTION

Although certain embodiments and examples are described below, those of skill in the art will appreciate that the disclosure extends beyond the specifically disclosed embodiments and/or uses and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the disclosure herein disclosed should not be limited by any particular embodiments described below.

FIGS. 1A-1B illustrate an example optical-based physiological monitor 10. The monitor 10 is configured for processing data from optical sensors 110, 120 located at multiple patient measurement sites 11, 12 to generate a single noninvasive measurement of a physiological parameter.

As shown in FIGS. 1A-1B, the monitor 10 can include a first optical sensor 110 attached to a first measurement site 11 and a second sensor 120 attached to a second measurement site 12 of a patient. The first measurement site 11 can be a cephalic measurement site, which can be on or around the patient's head. Examples of the cephalic measurement site can include the patient's nose, earlobe, or others. The second measurement site 12 can be a peripheral measurement site, which can be located on or near the patient's limbs. Examples of the peripheral measurement site can include the patient's arm, palm, fingers, leg, ankle, foot, toes, or others. Sensor data responsive to the light attenuation at each measurement site can provide information related to the patient's blood constitute and/or analyte that may not be available from a single site measurement, and/or allow cross-checking between the data from both measurement sites to improve accuracy and robustness of the measurements. Combining the sensor data from each measurement site can also provide the signal processor with more data from which to obtain measurements of one or more physiological parameter.

FIG. 1C illustrates an example application of the monitor 10 of FIGS. 1A-1B. As shown, the first measurement site 11 can be the patient's nose and the second measurement site 12 can be the patient's fingertip. The number of sensors and the location of measurement sites are not limiting. For example and not by way of limitation, three, four, or more sensors may respectively be attached to any of the patient's finger, hand, foot, and/or face. The first and/or second measurement sites 11, 12 can also comprise other locations of the patient's body. For example, the first and/or second measurement sites 11, 12 can comprise two cephalic measurement sites, two peripheral measurement sites, or any two measurement sites that comprise different types of body tissues. The physiological monitor 10 can be applied on an adult patient and/or a neonatal patient.

Each sensor 110, 120 can provide a stream of data to a signal processor 130. For example, as shown in FIG. 1A, the first sensor 110 can be connected to an input 112 of a first sensor interface 114 via a first cable connector 111. An output 116 of the first sensor interface 114 can be fed into the signal processor 130 in a raw or minimally processed data form. Similarly, the second sensor 120 can be connected to an input 122 of a second sensor interface 124 via a second cable connector 121. An output 126 of the second sensor interface 124 can also be fed into the signal processor 130 in a raw or minimally processed data form. Minimally processed sensor data can be demodulated, filtered, and/or otherwise processed to prepare the data for use by the signal processor to calculate measurements of physiological parameters. Minimally processing the sensor data can also optionally include generating basic ratios of wavelengths in a multi-wavelength system. As shown in FIG. 1B, the first and second sensors 110, 120 can be coupled to a dual-port cable connector 115, which can output signals 125 of the first and second sensors in raw data form or minimally processed form. An example dual-port cable connector can be a duo connector described in U.S. Pat. No. 8,315,683, filed Sep. 20, 2007, the entirety of which is incorporated herein by reference. The signal processor 130 can comprise one or more hardware and/or software signal processors. Minimal processing can include, for example, a low or high pass filter or other preprocessing steps typically performed in a signal acquisition system.

The unprocessed or minimally processed streams of data from the first and second sensors 110, 120 can be combined by the signal processor 130 into combined sensor data. The combined sensor data can include a plurality of features of the signals from the first and second sensors 110, 120, such as amplitude, phase, DC value, or others. The measurement site and/or body tissue information can be provided to the signal processor 130 as independent features. The signal processor 130 can produce a single measurement 132 of a physiological parameter based on the combined sensor data. The plurality of features of the signals can be mapped onto empirical data, which can provide estimates of physiological parameter measurements. The additional independent features of the measurement site and/or body tissue information can provide more combinations of features and improve the estimation of the physiological parameters. The combinations of features can be linear and/or can include high-ordered combinations. The signal processor 130 can analyze from the combined sensor data various features, such as a ratiometric value, such as ratios of attenuated light of one wavelength to attenuated light of another wavelength, and/or combinations of features, including non-normalized features, data from bulk absorption and/or peripheral absorption signals, or others.

The single measurement 132 can be displayed on a display 140 of the monitor 10. The measured physiological parameter can include one or more of oxygen saturation (SpO2), pulse rate, a plethysmograph waveform, perfusion index (PI), pleth variability index (PVI), methemoglobin (MetHb), carboxyhemoglobin (CoHb), total hemoglobin (tHb), glucose, and/or of many other physiologically relevant patient characteristics. The signal processor 130 can also optionally process the combined data from the first and second sensors 110, 120 using a single algorithm. The single measurement 132 can provide caregivers with the patient's systematic status of the physiological information. The single measurement 132 from the combined sensor data may be more informative of the well-being of the patient than measurements from a single patient site. Combining streams of data from multiple patient sites can also reduce errors and/or noise associated with a particular sensor to provide a more robust reading of the physiological parameter.

The signal processor 130 of the monitor 10 can process streams of data from the sensors into combined sensor data to generate a single measurement, and/or to independently generate measurements for each of the measurement sites.

FIG. 2 illustrates example sensors that can be used with the monitor 10 of FIGS. 1A-1C. As shown in FIG. 2, the first sensor 110 can include a plurality of light emitters 1110. For example, the light emitters can be light-emitting diodes (LED). The light emitters 1110 can each emit light of a certain wavelength. The light emitters 1110 can also emit light of different wavelengths in sequence with only one emitter emitting light at a given time, thereby forming a pulse sequence 1112. The number of emitters is not limiting and can range from two to eight in each of the first and second sensors 110, 120. The second sensor 120 can have a plurality of emitters 1210 functioning in the same or different manner as the emitters 1110 of the first sensor 110. The second sensor 120 can have the same or different number of light emitters as the first sensor 110. For example, each the first and second sensors 110, 120 can have eight light emitters, or the first sensor 110 can have four emitters while the second sensor can have eight emitters. The emitters 1210 of the second sensor 120 can emit light of the same or different wavelengths as the emitters 1110 of the first sensor 110. The plurality of emitters 1210 of the second sensor 120 can generate a pulse sequence 1212. Detailed descriptions and additional examples of the light emitters are provided in U.S. Pat. No. 9,277,880.

With continued reference to FIG. 2, a photodetector 1120 of the first sensor 110 can detect the light from the emitters 1110 after the light is attenuated by tissue of the first measurement site 11. As shown, the first measurement site can be a cephalic site. The photodetector 1120 can comprise photodiodes, phototransistors, or the like. Details of the photodetector are described in U.S. Pat. No. 9,277,880. The photodetector 1120 can generate an electrical signal based on the detected light from the plurality of emitters 1110. A photodetector 1220 of the second sensor 120 can detect the light from the emitters 1210 after the light is attenuated by tissue of the second measurement site 12. As shown, the second measurement site can be a peripheral site. The photodetector 1220 can also generate an electrical signal based on the detected light from the plurality of emitters 1210. The signals of the first and second sensors 110, 120 can be provided to the signal processor for processing and determining measurements of physiological parameters.

The signal of the detected light from the plurality of emitters 1110 and the signal of the detected light from the plurality of emitters 1210 can be fed into the signal processor 130 such that the signal processor 130 can combine the two signals to process data from all the emitters 1110, 1210 into combined sensor data. For example, the signal processor 130 can process raw or minimally processed data from twelve to sixteen light emitters to generate a single measurement of physiological parameters. Having data from twelve to sixteen emitters can advantageously allow the processor to produce a more robust measurement. The signal processor 130 can additionally and/or alternatively process the output 116 of the first sensor interface 114 independently of the output 126 of the second sensor interface 124 to produce two measurements of the physiological parameter respectively. The signal processor 130 can determine a final measurement of the physiological parameter based on one or more of the single measurement, or the two measurements from the signals of the first and second sensors respectively. The final measurement can be an average or weighted average of those measurements, or others. The signal processor can also compare the single measurement from the combined data with the measurements from the individual sensors to obtain additional information about the patient.

Turning to FIG. 3, an optical sensor 300 configured for use in an optical-based physiological monitor is disclosed. Although FIG. 3 illustrates attachment of the sensor 300 to the patient's fingertip 12, the sensor 300 can have a shape configured for attaching to other measurement sites, for example, the patient's hand, foot, or face including not but limited to the earlobe, the nose, and/or the forehead. The sensor 300 can have a housing with a predefined shape, for example and not by way of limitation, a finger clip configured for attaching to the patient's fingertip. The sensor 300 can also comprise a flexible tape having a sensor portion and an adhesive tape portion so as to conform to the patient's measurement site anatomy.

As shown in FIG. 3, the sensor 300 can have a light source 3010. The light source 3010 can comprise two or more light emitters. Each light emitter can be configured to emit light of a different wavelength. The sensor 300 can also have a plurality of photodetectors 3020. The number of photodetectors on the sensor 300 is not limiting and can range from two to twelve or more. The photodetectors 3020 can be arranged in a three-dimensional configuration. The photodetectors 3020 can be arranged with random spacing so that the detectors 3020 can be distributed throughout a contact area 3050 of the sensor. The photodetectors 3020 can have a spatial configuration conforming to a contour or patient anatomy of the measurement site. For a -clip type of sensor, the light source 3010 can be located in an upper portion of the clip and the photodetectors 3020 can be located in a lower portion of the clip. The photodetectors 3020 can be distributed throughout a contoured bed of the lower portion conforming generally to the patient anatomy of the measurement site.

For a tape type of sensor, the light source 3010 and the detectors 3020 can be arranged on a flat or substantially tape such that when the sensor 300 is taped to the measurement site, such as the fingertip 12, the light source 3010 can be spaced away from the plurality of photodetectors 3020 and the photodetectors 3020 can be at various locations of the fingertip 12. As shown in FIG. 3, the light source 3010 can be located near a center of the patient's finger nail and the light detectors 3020 can be distributed throughout the contact area 3050 of the sensor. Some of the photodetectors 3020 can be on an opposite side of the fingertip 12 from the light source 3010. Some of the photodetectors 3020 can be on medial and/or lateral sides of the fingertip 12. Light emitted by the light source 3010 can travel through different tissue depths and/or vasculature before reaching the plurality of photodetectors 3020.

FIG. 4 illustrates an example optical-based physiological monitor 30 utilizing the sensor 300. The physiological monitor 30 can have the same or similar features as the physiological monitor 10 of FIGS. 1A-1C. Accordingly, features of the physiological monitors 10, 30 of FIGS. 1A-1C and 4 can be incorporated into one another. As shown in FIG. 4, signals 312 generated by all or substantially all of the photodetectors 3020 upon detecting the light attenuated by patient's finger tissue can be inputted through a sensor interface 314 to a signal processor 330. Details of processing signals from multiple detectors of a sensor are provided in U.S. Pat. No. 9,277,880. The signal processor 330 can generate measurements 332 of one or more physiological parameters from the multiple signals. The measurements 332 can be displayed on a display 340 of the pulse oximeter 30.

The measurements 332 can provide the caregiver with the physiological information of the entire tissue bed of the patient covered by the contact area 3050. The three-dimensional geometry of the distribution of the detectors 3020 on the fingertip 12 can provide a diversity of light paths among at least some of the photodetectors and improve robustness of the physiological parameter measurements. The signals from the multiple photodetectors 3020 can also inform the caregiver whether the sensor is positioned correctly. This is because the randomly-spaced photodetectors 3020 can provide, for example, topology information, which can indicate where the sensor has been positioned and/or whether the sensor has been positioned correctly.

In FIG. 5, an example physiological monitor 50 with sensors 510, 520 connected to multiple patient sites 11, 12 is shown. The physiological monitor 50 can have the same or similar features as the physiological monitor 10 of FIGS. 1A-1C and/or the physiological monitor 30 of FIG. 4. Accordingly, features of the physiological monitors 10, 30, 50 of FIGS. 1A-1C, 4, and 5 can be incorporated into one another.

As shown in FIG. 5, the monitor 50 can have a first sensor 510 attached to a first measurement site 11 and a second sensor 520 attached to a second measurement site 12. The first measurement site 11 can be a cephalic site described above. The second measurement site 12 can be a peripheral site described above.

The first and second sensors 510, 520 can each have a plurality of light emitters 5110, 5210 and a plurality of photodetectors 5120, 5220. The number and/or spatial configuration of light emitters 5110, 5210 and/or photodetectors 5120, 5220 in each of the first and second sensors 510, 520 can be the same or different. When the first sensor 510 is attached to the first measurement site 11, the plurality of detectors 5120 can be distributed in a spatial configuration conforming to a shape of the patient anatomy at the first measurement site 11. When the second sensor 520 is attached to the second measurement site 12, the photodetectors 5220 can be distributed in a spatial configuration to a shape of the patient anatomy at the second measurement site 12. An example of the spatial configuration of the photodetectors 3020 is shown in FIG. 3.

The photodetectors 5120, 5220 can detect light emitted by at least some or all of the light emitters 5110, 5210 and can each generate a signal responsive to the detected light. Signals 512 from the photodetectors 5120 and signals 522 from the photodetectors 5220 can be provided to a signal processor 530 for processing into measurements of physiological parameters. The signal processor 530 can combine all the signals 512, 522 representing respective streams of data from the photodetectors based on light from at least some of the light emitters at each measurement site into combined sensor data. The signal processor 530 can generate a single measurement of the physiological parameter based on the combined sensor data. The signal processor 530 can also independently process the signals 512, 522 to generate measurements of the physiological parameter for each of the measurement sites.

The physiological monitor 50 can combine the advantages of the physiological monitors 10 and 30 of FIGS. 1-4 described above. The physiological monitor 50 can improve robustness of measurements of physiological parameters, can process a plurality of features in the combined signals, such as non-normalized signal features, which may not be possible or accurate when obtained from a single site measurement, and/or can provide topological information that can indicate, for example, whether the sensor has been correctly positioned.

Although this disclosure has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the disclosure and obvious modifications and equivalents thereof. In addition, while a number of variations of the disclosure have been shown and described in detail, other modifications, which are within the scope of this disclosure, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the disclosure. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed.

Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.

Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.

Moreover, while operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Further, the operations may be rearranged or reordered in other implementations. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products.

For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. Not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.

Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.

Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.

The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.

Claims

1. A noninvasive physiological monitor, the monitor comprising:

a first sensor interface in communication with a first sensor adapted to be positioned at a first measurement site of a patient, the first sensor interface configured to (i) receive first one or more signals responsive to light of at least a plurality of wavelengths attenuated by tissue at the first measurement site, the first one or more signals outputted by one or more optical detectors of the first sensor, and (ii) output first one or more output detector signals responsive to the first one or more signals, said first one or more output detector signals comprising one or more of raw, demodulated, filtered, or converted-to-digital data and including one or more first detector signal features;
a second sensor interface in communication with a second sensor adapted to be positioned at a second measurement site of the patient, the second measurement site different from the first measurement site, the second sensor interface configured to (i) receive second one or more signals responsive to light of at least a plurality of wavelengths attenuated by tissue at the second measurement site, the second one or more signals outputted by one or more optical detectors of the second sensor, and (ii) output second one or more output detector signals responsive to the second one or more signals, said second one or more output detector signals comprising one or more of raw, demodulated, filtered, or converted-to-digital data and including one or more second detector signal features; and
one or more signal processors configured to receive the first and second one or more output detector signals, combine the one or more first and second detector signal features into combined feature data prior to mapping said first or second one or more output detector signals to empirical data, and map said combined feature data to empirical data to generate a single measurement of a physiological parameter.

2. The physiological monitor of claim 1, wherein the first and second measurement sites comprise different types of body tissues.

3. The physiological monitor of claim 1, wherein the first measurement site is on or around the patient's head or the patient's nose.

4. The physiological monitor of claim 1, wherein the second measurement site is a peripheral site of the patient.

5. The physiological monitor of claim 4, wherein the second measurement site is the patient's finger.

6. The physiological monitor of claim 1, wherein the first and/or second sensor comprises a plurality of light emitters configured to emit optical radiation onto the tissue of the first and/or second measurement sites.

7. The physiological monitor of claim 1, wherein the first and/or second sensor comprises a plurality of light detectors configured to detect light attenuated by the tissue of the first and/or second measurement sites.

8. The physiological monitor of claim 1, wherein the physiological parameter comprises oxygen saturation, methemoglobin, carboxyhemoglobin, total hemoglobin, and/or glucose.

9. A method of calculating a single measurement of a physiological parameter, the method comprising:

using a first sensor including one or more light emitters, emitting light of at least first and second wavelengths into tissues of a first measurement site of a patient;
using one or more electronic light detectors of the first sensor, detecting the light attenuated by the tissues of the first measurement site and outputting at least a first detector signal responsive to the light detected at the first measurement site, the at least a first detector signal comprising one or more of raw, demodulated, filtered, or converted-to-digital data and including one or more first detector signal features;
using a second sensor including one or more light emitters, emitting light of at least first and second wavelengths into tissues of a second measurement site of the patient, the second measurement site different from the first measurement site;
using one or more electronic light detectors of the second sensor, detecting the light attenuated by the tissues of the second measurement site and outputting at least a second detector signal based on the light detected at the second measurement site, wherein the at least a second detector signal comprising one or more of raw, demodulated, filtered, or converted-to-digital data and including one or more second detector signal features; and
using one or more signal processors configured to receive the at least a first detector signal and the at least a second detector signal, combining the one or more first and second detector signal features into combined feature data prior to mapping said at least first or second detector signals to empirical data, and mapping the combined feature data to empirical data to determine the single measurement of the physiological parameter.

10. The method of claim 9, wherein the first and second measurement sites comprise different types of body tissues.

11. The method of claim 9, wherein the first measurement site is on or around the patient's head or the patient's nose.

12. The method of claim 9, wherein the second measurement site is a peripheral site of the patient.

13. The method of claim 12, wherein the second measurement site is the patient's finger.

14. The method of claim 9, wherein the physiological parameter comprises oxygen saturation, methemoglobin, carboxyhemoglobin, total hemoglobin, and/or glucose.

15. A noninvasive physiological monitor, the monitor comprising:

a first optical sensor having one or more light emitters configured to emit optical radiation onto tissue of a first measurement site of a patient and one or more of photodetectors configured to detect the optical radiation attenuated by the tissue of the first measurement site and to output a first detector signal responsive to the light attenuation by the tissue of the first measurement site, wherein the first detector signal comprises one or more of raw, demodulated, filtered, or converted-to-digital data and includes one or more first detector signal features;
a second optical sensor having one or more light emitters configured to emit optical radiation onto tissue of a second measurement site of the patient and one or more of photodetectors configured to detect the optical radiation attenuated by the tissue of the second measurement site and to output a second detector signal responsive to the light attenuation by the tissue of the second measurement site, wherein the second detector signal comprises one or more of raw, demodulated, filtered, or converted-to-digital data and includes one or more second detector signal features; and
one or more signal processors in communication with the first and second optical sensors, the signal processor configured to receive the first and second detector signals responsive to the light attenuation by the tissues of the first and second measurement sites, to combine the one or more first and second detector signal features into combined feature data, and to generate a single measurement of a physiological parameter from the combined feature data.

16. The monitor of claim 15, wherein the one or more photodetectors are distributed throughout a sensor area configured to be in contact with one of the first or second measurement site.

17. The monitor of claim 15, wherein the first and second measurement sites comprise different types of body tissues.

18. The monitor of claim 15, wherein first measurement site is on or around the patient's head or the patient's nose.

19. The monitor of claim 15, wherein the second measurement site is a peripheral site of the patient.

20. The monitor of claim 19, wherein the second measurement site is the patient's finger.

21. The physiological monitor of claim 1, wherein the combined feature data comprises one or more of a ratiometric value, non-normalized features, data from bulk absorption, or peripheral absorption signals.

22. The method of claim 9, wherein the combined feature data comprises one or more of a ratiometric value, non-normalized features, data from bulk absorption, or peripheral absorption signals.

23. The monitor of claim 15, wherein the combined feature data comprises one or more of a ratiometric value, non-normalized features, data from bulk absorption, or peripheral absorption signals.

Referenced Cited
U.S. Patent Documents
4960128 October 2, 1990 Gordon et al.
4964408 October 23, 1990 Hink et al.
5041187 August 20, 1991 Hink et al.
5069213 December 3, 1991 Polczynski
5163438 November 17, 1992 Gordon et al.
5319355 June 7, 1994 Russek
5337744 August 16, 1994 Branigan
5341805 August 30, 1994 Stavridi et al.
D353195 December 6, 1994 Savage et al.
D353196 December 6, 1994 Savage et al.
5377676 January 3, 1995 Vari et al.
D359546 June 20, 1995 Savage et al.
5431170 July 11, 1995 Mathews
5436499 July 25, 1995 Namavar et al.
D361840 August 29, 1995 Savage et al.
D362063 September 5, 1995 Savage et al.
5452717 September 26, 1995 Branigan et al.
D363120 October 10, 1995 Savage et al.
5456252 October 10, 1995 Vari et al.
5479934 January 2, 1996 Imran
5482036 January 9, 1996 Diab et al.
5490505 February 13, 1996 Diab et al.
5494043 February 27, 1996 O'Sullivan et al.
5533511 July 9, 1996 Kaspari et al.
5534851 July 9, 1996 Russek
5561275 October 1, 1996 Savage et al.
5562002 October 8, 1996 Lalin
5590649 January 7, 1997 Caro et al.
5602924 February 11, 1997 Durand et al.
5632272 May 27, 1997 Diab et al.
5638816 June 17, 1997 Kiani-Azarbayjany et al.
5638818 June 17, 1997 Diab et al.
5645440 July 8, 1997 Tobler et al.
5671914 September 30, 1997 Kalkhoran et al.
5685299 November 11, 1997 Diab et al.
5726440 March 10, 1998 Kalkhoran et al.
D393830 April 28, 1998 Tobler et al.
5743262 April 28, 1998 Lepper, Jr. et al.
5747806 May 5, 1998 Khalil et al.
5750994 May 12, 1998 Schlager
5758644 June 2, 1998 Diab et al.
5760910 June 2, 1998 Lepper, Jr. et al.
5769785 June 23, 1998 Diab et al.
5782757 July 21, 1998 Diab et al.
5785659 July 28, 1998 Caro et al.
5791347 August 11, 1998 Flaherty et al.
5810734 September 22, 1998 Caro et al.
5823950 October 20, 1998 Diab et al.
5830131 November 3, 1998 Caro et al.
5833618 November 10, 1998 Caro et al.
5860919 January 19, 1999 Kiani-Azarbayjany et al.
5890929 April 6, 1999 Mills et al.
5904654 May 18, 1999 Wohltmann et al.
5919134 July 6, 1999 Diab
5934925 August 10, 1999 Tobler et al.
5940182 August 17, 1999 Lepper, Jr. et al.
5987343 November 16, 1999 Kinast
5995855 November 30, 1999 Kiani et al.
5997343 December 7, 1999 Mills et al.
6002952 December 14, 1999 Diab et al.
6010937 January 4, 2000 Karam et al.
6011986 January 4, 2000 Diab et al.
6027452 February 22, 2000 Flaherty et al.
6036642 March 14, 2000 Diab et al.
6040578 March 21, 2000 Malin et al.
6045509 April 4, 2000 Caro et al.
6066204 May 23, 2000 Haven
6067462 May 23, 2000 Diab et al.
6081735 June 27, 2000 Diab et al.
6088607 July 11, 2000 Diab et al.
6110522 August 29, 2000 Lepper, Jr. et al.
6115673 September 5, 2000 Malin et al.
6124597 September 26, 2000 Shehada
6128521 October 3, 2000 Marro et al.
6129675 October 10, 2000 Jay
6144868 November 7, 2000 Parker
6151516 November 21, 2000 Kiani-Azarbayjany et al.
6152754 November 28, 2000 Gerhardt et al.
6157850 December 5, 2000 Diab et al.
6165005 December 26, 2000 Mills et al.
6184521 February 6, 2001 Coffin, IV et al.
6206830 March 27, 2001 Diab et al.
6229856 May 8, 2001 Diab et al.
6232609 May 15, 2001 Snyder et al.
6236872 May 22, 2001 Diab et al.
6241683 June 5, 2001 Macklem et al.
6253097 June 26, 2001 Aronow et al.
6255708 July 3, 2001 Sudharsanan et al.
6256523 July 3, 2001 Diab et al.
6263222 July 17, 2001 Diab et al.
6278522 August 21, 2001 Lepper, Jr. et al.
6280213 August 28, 2001 Tobler et al.
6280381 August 28, 2001 Malin et al.
6285896 September 4, 2001 Tobler et al.
6301493 October 9, 2001 Marro et al.
6308089 October 23, 2001 von der Ruhr et al.
6317627 November 13, 2001 Ennen et al.
6321100 November 20, 2001 Parker
6325761 December 4, 2001 Jay
6334065 December 25, 2001 Al-Ali et al.
6343224 January 29, 2002 Parker
6349228 February 19, 2002 Kiani et al.
6360114 March 19, 2002 Diab et al.
6368283 April 9, 2002 Xu et al.
6371921 April 16, 2002 Caro et al.
6377829 April 23, 2002 Al-Ali
6388240 May 14, 2002 Schulz et al.
6397091 May 28, 2002 Diab et al.
6411373 June 25, 2002 Garside et al.
6415167 July 2, 2002 Blank et al.
6430437 August 6, 2002 Marro
6430525 August 6, 2002 Weber et al.
6463311 October 8, 2002 Diab
6470199 October 22, 2002 Kopotic et al.
6487429 November 26, 2002 Hockersmith et al.
6501975 December 31, 2002 Diab et al.
6505059 January 7, 2003 Kollias et al.
6515273 February 4, 2003 Al-Ali
6519487 February 11, 2003 Parker
6525386 February 25, 2003 Mills et al.
6526300 February 25, 2003 Kiani et al.
6534012 March 18, 2003 Hazen et al.
6541756 April 1, 2003 Schulz et al.
6542764 April 1, 2003 Al-Ali et al.
6580086 June 17, 2003 Schulz et al.
6584336 June 24, 2003 Ali et al.
6587196 July 1, 2003 Stippick et al.
6587199 July 1, 2003 Luu
6595316 July 22, 2003 Cybulski et al.
6597932 July 22, 2003 Tian et al.
6597933 July 22, 2003 Kiani et al.
6606511 August 12, 2003 Ali et al.
6632181 October 14, 2003 Flaherty et al.
6635559 October 21, 2003 Greenwald et al.
6639668 October 28, 2003 Trepagnier
6640116 October 28, 2003 Diab
6640117 October 28, 2003 Makarewicz et al.
6643530 November 4, 2003 Diab et al.
6650917 November 18, 2003 Diab et al.
6654624 November 25, 2003 Diab et al.
6658276 December 2, 2003 Kiani et al.
6661161 December 9, 2003 Lanzo et al.
6671531 December 30, 2003 Al-Ali et al.
6678543 January 13, 2004 Diab et al.
6684090 January 27, 2004 Ali et al.
6684091 January 27, 2004 Parker
6697656 February 24, 2004 Al-Ali
6697657 February 24, 2004 Shehada et al.
6697658 February 24, 2004 Al-Ali
RE38476 March 30, 2004 Diab et al.
6699194 March 2, 2004 Diab et al.
6714804 March 30, 2004 Al-Ali et al.
RE38492 April 6, 2004 Diab et al.
6721582 April 13, 2004 Trepagnier et al.
6721585 April 13, 2004 Parker
6725075 April 20, 2004 Al-Ali
6728560 April 27, 2004 Kollias et al.
6735459 May 11, 2004 Parker
6738652 May 18, 2004 Mattu et al.
6745060 June 1, 2004 Diab et al.
6760607 July 6, 2004 Al-Ali
6770028 August 3, 2004 Ali et al.
6771994 August 3, 2004 Kiani et al.
6788965 September 7, 2004 Ruchti et al.
6792300 September 14, 2004 Diab et al.
6813511 November 2, 2004 Diab et al.
6816241 November 9, 2004 Grubisic
6816741 November 9, 2004 Diab
6822564 November 23, 2004 Al-Ali
6826419 November 30, 2004 Diab et al.
6830711 December 14, 2004 Mills et al.
6850787 February 1, 2005 Weber et al.
6850788 February 1, 2005 Al-Ali
6852083 February 8, 2005 Caro et al.
6861639 March 1, 2005 Al-Ali
6876931 April 5, 2005 Lorenz et al.
6898452 May 24, 2005 Al-Ali et al.
6920345 July 19, 2005 Al-Ali et al.
6931268 August 16, 2005 Kiani-Azarbayjany et al.
6934570 August 23, 2005 Kiani et al.
6939305 September 6, 2005 Flaherty et al.
6943348 September 13, 2005 Coffin, IV
6950687 September 27, 2005 Al-Ali
6956649 October 18, 2005 Acosta et al.
6961598 November 1, 2005 Diab
6970792 November 29, 2005 Diab
6979812 December 27, 2005 Al-Ali
6985764 January 10, 2006 Mason et al.
6990364 January 24, 2006 Ruchti et al.
6993371 January 31, 2006 Kiani et al.
6996427 February 7, 2006 Ali et al.
6998247 February 14, 2006 Monfre et al.
6999904 February 14, 2006 Weber et al.
7003338 February 21, 2006 Weber et al.
7003339 February 21, 2006 Diab et al.
7015451 March 21, 2006 Dalke et al.
7024233 April 4, 2006 Ali et al.
7027849 April 11, 2006 Al-Ali
7030749 April 18, 2006 Al-Ali
7039449 May 2, 2006 Al-Ali
7041060 May 9, 2006 Flaherty et al.
7044918 May 16, 2006 Diab
7048687 May 23, 2006 Reuss et al.
7067893 June 27, 2006 Mills et al.
D526719 August 15, 2006 Richie, Jr. et al.
7096052 August 22, 2006 Mason et al.
7096054 August 22, 2006 Abdul-Hafiz et al.
D529616 October 3, 2006 Deros et al.
7132641 November 7, 2006 Schulz et al.
7133710 November 7, 2006 Acosta et al.
7142901 November 28, 2006 Kiani et al.
7149561 December 12, 2006 Diab
7186966 March 6, 2007 Al-Ali
7190261 March 13, 2007 Al-Ali
7215984 May 8, 2007 Diab
7215986 May 8, 2007 Diab
7221971 May 22, 2007 Diab
7225006 May 29, 2007 Al-Ali et al.
7225007 May 29, 2007 Al-Ali
RE39672 June 5, 2007 Shehada et al.
7239905 July 3, 2007 Kiani-Azarbayjany et al.
7245953 July 17, 2007 Parker
7254429 August 7, 2007 Schurman et al.
7254431 August 7, 2007 Al-Ali
7254433 August 7, 2007 Diab et al.
7254434 August 7, 2007 Schulz et al.
7272425 September 18, 2007 Al-Ali
7274955 September 25, 2007 Kiani et al.
D554263 October 30, 2007 Al-Ali
7280858 October 9, 2007 Al-Ali et al.
7289835 October 30, 2007 Mansfield et al.
7292883 November 6, 2007 De Felice et al.
7295866 November 13, 2007 Al-Ali
7328053 February 5, 2008 Diab et al.
7332784 February 19, 2008 Mills et al.
7340287 March 4, 2008 Mason et al.
7341559 March 11, 2008 Schulz et al.
7343186 March 11, 2008 Lamego et al.
D566282 April 8, 2008 Al-Ali et al.
7355512 April 8, 2008 Al-Ali
7356365 April 8, 2008 Schurman
7371981 May 13, 2008 Abdul-Hafiz
7373193 May 13, 2008 Al-Ali et al.
7373194 May 13, 2008 Weber et al.
7376453 May 20, 2008 Diab et al.
7377794 May 27, 2008 Al Ali et al.
7377899 May 27, 2008 Weber et al.
7383070 June 3, 2008 Diab et al.
7395158 July 1, 2008 Monfre et al.
7415297 August 19, 2008 Al-Ali et al.
7428432 September 23, 2008 Ali et al.
7438683 October 21, 2008 Al-Ali et al.
7440787 October 21, 2008 Diab
7454240 November 18, 2008 Diab et al.
7467002 December 16, 2008 Weber et al.
7469157 December 23, 2008 Diab et al.
7471969 December 30, 2008 Diab et al.
7471971 December 30, 2008 Diab et al.
7483729 January 27, 2009 Al-Ali et al.
7483730 January 27, 2009 Diab et al.
7489958 February 10, 2009 Diab et al.
7496391 February 24, 2009 Diab et al.
7496393 February 24, 2009 Diab et al.
D587657 March 3, 2009 Al-Ali et al.
7499741 March 3, 2009 Diab et al.
7499835 March 3, 2009 Weber et al.
7500950 March 10, 2009 Al-Ali et al.
7509154 March 24, 2009 Diab et al.
7509494 March 24, 2009 Al-Ali
7510849 March 31, 2009 Schurman et al.
7514725 April 7, 2009 Wojtczuk et al.
7519406 April 14, 2009 Blank et al.
7526328 April 28, 2009 Diab et al.
D592507 May 19, 2009 Wachman et al.
7530942 May 12, 2009 Diab
7530949 May 12, 2009 Al Ali et al.
7530955 May 12, 2009 Diab et al.
7563110 July 21, 2009 Al-Ali et al.
7593230 September 22, 2009 Abul-Haj et al.
7596398 September 29, 2009 Al-Ali et al.
7606608 October 20, 2009 Blank et al.
7618375 November 17, 2009 Flaherty
7620674 November 17, 2009 Ruchti et al.
D606659 December 22, 2009 Kiani et al.
7629039 December 8, 2009 Eckerbom et al.
7640140 December 29, 2009 Ruchti et al.
7647083 January 12, 2010 Al-Ali et al.
D609193 February 2, 2010 Al-Ali et al.
D614305 April 20, 2010 Al-Ali et al.
7697966 April 13, 2010 Monfre et al.
7698105 April 13, 2010 Ruchti et al.
RE41317 May 4, 2010 Parker
RE41333 May 11, 2010 Blank et al.
7729733 June 1, 2010 Al-Ali et al.
7734320 June 8, 2010 Al-Ali
7761127 July 20, 2010 Al-Ali et al.
7761128 July 20, 2010 Al-Ali et al.
7764982 July 27, 2010 Dalke et al.
D621516 August 10, 2010 Kiani et al.
7791155 September 7, 2010 Diab
7801581 September 21, 2010 Diab
7822452 October 26, 2010 Schurman et al.
RE41912 November 2, 2010 Parker
7844313 November 30, 2010 Kiani et al.
7844314 November 30, 2010 Al-Ali
7844315 November 30, 2010 Al-Ali
7865222 January 4, 2011 Weber et al.
7873497 January 18, 2011 Weber et al.
7880606 February 1, 2011 Al-Ali
7880626 February 1, 2011 Al-Ali et al.
7891355 February 22, 2011 Al-Ali et al.
7894868 February 22, 2011 Al-Ali et al.
7899507 March 1, 2011 Al-Ali et al.
7899518 March 1, 2011 Trepagnier et al.
7904132 March 8, 2011 Weber et al.
7909772 March 22, 2011 Popov et al.
7910875 March 22, 2011 Al-Ali
7919713 April 5, 2011 Al-Ali et al.
7937128 May 3, 2011 Al-Ali
7937129 May 3, 2011 Mason et al.
7937130 May 3, 2011 Diab et al.
7941199 May 10, 2011 Kiani
7951086 May 31, 2011 Flaherty et al.
7957780 June 7, 2011 Lamego et al.
7962188 June 14, 2011 Kiani et al.
7962190 June 14, 2011 Diab et al.
7976472 July 12, 2011 Kiani
7988637 August 2, 2011 Diab
7990382 August 2, 2011 Kiani
7991446 August 2, 2011 Al-Ali et al.
8000761 August 16, 2011 Al-Ali
8008088 August 30, 2011 Bellott et al.
RE42753 September 27, 2011 Kiani-Azarbayjany et al.
8019400 September 13, 2011 Diab et al.
8028701 October 4, 2011 Al-Ali et al.
8029765 October 4, 2011 Bellott et al.
8036727 October 11, 2011 Schurman et al.
8036728 October 11, 2011 Diab et al.
8046040 October 25, 2011 Ali et al.
8046041 October 25, 2011 Diab et al.
8046042 October 25, 2011 Diab et al.
8048040 November 1, 2011 Kiani
8050728 November 1, 2011 Al-Ali et al.
RE43169 February 7, 2012 Parker
8118620 February 21, 2012 Al-Ali et al.
8126528 February 28, 2012 Diab et al.
8128572 March 6, 2012 Diab et al.
8130105 March 6, 2012 Al-Ali et al.
8145287 March 27, 2012 Diab et al.
8150487 April 3, 2012 Diab et al.
8175672 May 8, 2012 Parker
8180420 May 15, 2012 Diab et al.
8182443 May 22, 2012 Kiani
8185180 May 22, 2012 Diab et al.
8190223 May 29, 2012 Al-Ali et al.
8190227 May 29, 2012 Diab et al.
8203438 June 19, 2012 Kiani et al.
8203704 June 19, 2012 Merritt et al.
8204566 June 19, 2012 Schurman et al.
8219172 July 10, 2012 Schurman et al.
8224411 July 17, 2012 Al-Ali et al.
8228181 July 24, 2012 Al-Ali
8229532 July 24, 2012 Davis
8229533 July 24, 2012 Diab et al.
8233955 July 31, 2012 Al-Ali et al.
8244325 August 14, 2012 Al-Ali et al.
8255026 August 28, 2012 Al-Ali
8255027 August 28, 2012 Al-Ali et al.
8255028 August 28, 2012 Al-Ali et al.
8260577 September 4, 2012 Weber et al.
8265723 September 11, 2012 McHale et al.
8274360 September 25, 2012 Sampath et al.
8280473 October 2, 2012 Al-Ali
8301217 October 30, 2012 Al-Ali et al.
8306596 November 6, 2012 Schurman et al.
8310336 November 13, 2012 Muhsin et al.
8315683 November 20, 2012 Al-Ali et al.
RE43860 December 11, 2012 Parker
8337403 December 25, 2012 Al-Ali et al.
8346330 January 1, 2013 Lamego
8353842 January 15, 2013 Al-Ali et al.
8355766 January 15, 2013 MacNeish, III et al.
8359080 January 22, 2013 Diab et al.
8364223 January 29, 2013 Al-Ali et al.
8364226 January 29, 2013 Diab et al.
8374665 February 12, 2013 Lamego
8385995 February 26, 2013 Al-ali et al.
8385996 February 26, 2013 Smith et al.
8388353 March 5, 2013 Kiani et al.
8399822 March 19, 2013 Al-Ali
8401602 March 19, 2013 Kiani
8405608 March 26, 2013 Al-Ali et al.
8414499 April 9, 2013 Al-Ali et al.
8418524 April 16, 2013 Al-Ali
8423106 April 16, 2013 Lamego et al.
8428967 April 23, 2013 Olsen et al.
8430817 April 30, 2013 Al-Ali et al.
8437825 May 7, 2013 Dalvi et al.
8455290 June 4, 2013 Siskavich
8457703 June 4, 2013 Al-Ali
8457707 June 4, 2013 Kiani
8463349 June 11, 2013 Diab et al.
8466286 June 18, 2013 Bellot et al.
8471713 June 25, 2013 Poeze et al.
8473020 June 25, 2013 Kiani et al.
8483787 July 9, 2013 Al-Ali et al.
8489364 July 16, 2013 Weber et al.
8498684 July 30, 2013 Weber et al.
8504128 August 6, 2013 Blank et al.
8509867 August 13, 2013 Workman et al.
8515509 August 20, 2013 Bruinsma et al.
8523781 September 3, 2013 Al-Ali
8529301 September 10, 2013 Al-Ali et al.
8532727 September 10, 2013 Ali et al.
8532728 September 10, 2013 Diab et al.
D692145 October 22, 2013 Al-Ali et al.
8547209 October 1, 2013 Kiani et al.
8548548 October 1, 2013 Al-Ali
8548549 October 1, 2013 Schurman et al.
8548550 October 1, 2013 Al-Ali et al.
8560032 October 15, 2013 Al-Ali et al.
8560034 October 15, 2013 Diab et al.
8570167 October 29, 2013 Al-Ali
8570503 October 29, 2013 Vo et al.
8571617 October 29, 2013 Reichgott et al.
8571618 October 29, 2013 Lamego et al.
8571619 October 29, 2013 Al-Ali et al.
8577431 November 5, 2013 Lamego et al.
8581732 November 12, 2013 Al-Ali et al.
8584345 November 19, 2013 Al-Ali et al.
8588880 November 19, 2013 Abdul-Hafiz et al.
8600467 December 3, 2013 Al-Ali et al.
8606342 December 10, 2013 Diab
8626255 January 7, 2014 Al-Ali et al.
8630691 January 14, 2014 Lamego et al.
8634889 January 21, 2014 Al-Ali et al.
8641631 February 4, 2014 Sierra et al.
8652060 February 18, 2014 Al-Ali
8663107 March 4, 2014 Kiani
8666468 March 4, 2014 Al-Ali
8667967 March 11, 2014 Al-Ali et al.
8670811 March 11, 2014 O'Reilly
8670814 March 11, 2014 Diab et al.
8676286 March 18, 2014 Weber et al.
8682407 March 25, 2014 Al-Ali
RE44823 April 1, 2014 Parker
RE44875 April 29, 2014 Kiani et al.
8688183 April 1, 2014 Bruinsma et al.
8690799 April 8, 2014 Telfort et al.
8700112 April 15, 2014 Kiani
8702627 April 22, 2014 Telfort et al.
8706179 April 22, 2014 Parker
8712494 April 29, 2014 MacNeish, III et al.
8715206 May 6, 2014 Telfort et al.
8718735 May 6, 2014 Lamego et al.
8718737 May 6, 2014 Diab et al.
8718738 May 6, 2014 Blank et al.
8720249 May 13, 2014 Al-Ali
8721541 May 13, 2014 Al-Ali et al.
8721542 May 13, 2014 Al-Ali et al.
8723677 May 13, 2014 Kiani
8740792 June 3, 2014 Kiani et al.
8754776 June 17, 2014 Poeze et al.
8755535 June 17, 2014 Telfort et al.
8755856 June 17, 2014 Diab et al.
8755872 June 17, 2014 Marinow
8761850 June 24, 2014 Lamego
8764671 July 1, 2014 Kiani
8768423 July 1, 2014 Shakespeare et al.
8771204 July 8, 2014 Telfort et al.
8777634 July 15, 2014 Kiani et al.
8781543 July 15, 2014 Diab et al.
8781544 July 15, 2014 Al-Ali et al.
8781549 July 15, 2014 Al-Ali et al.
8788003 July 22, 2014 Schurman et al.
8790268 July 29, 2014 Al-Ali
8801613 August 12, 2014 Al-Ali et al.
8821397 September 2, 2014 Al-Ali et al.
8821415 September 2, 2014 Al-Ali et al.
8830449 September 9, 2014 Lamego et al.
8831700 September 9, 2014 Schurman et al.
8840549 September 23, 2014 Al-Ali et al.
8847740 September 30, 2014 Kiani et al.
8849365 September 30, 2014 Smith et al.
8852094 October 7, 2014 Al-Ali et al.
8852994 October 7, 2014 Wojtczuk et al.
8868147 October 21, 2014 Stippick et al.
8868150 October 21, 2014 Al-Ali et al.
8870792 October 28, 2014 Al-Ali et al.
8886271 November 11, 2014 Kiani et al.
8888539 November 18, 2014 Al-Ali et al.
8888708 November 18, 2014 Diab et al.
8892180 November 18, 2014 Weber et al.
8897847 November 25, 2014 Al-Ali
8909310 December 9, 2014 Lamego et al.
8911377 December 16, 2014 Al-Ali
8912909 December 16, 2014 Al-Ali et al.
8920317 December 30, 2014 Al-Ali et al.
8921699 December 30, 2014 Al-Ali et al.
8922382 December 30, 2014 Al-Ali et al.
8929964 January 6, 2015 Al-Ali et al.
8942777 January 27, 2015 Diab et al.
8948834 February 3, 2015 Diab et al.
8948835 February 3, 2015 Diab
8965471 February 24, 2015 Lamego
8983564 March 17, 2015 Al-Ali
8989831 March 24, 2015 Al-Ali et al.
8996085 March 31, 2015 Kiani et al.
8998809 April 7, 2015 Kiani
9028429 May 12, 2015 Telfort et al.
9037207 May 19, 2015 Al-Ali et al.
9060721 June 23, 2015 Reichgott et al.
9066666 June 30, 2015 Kiani
9066680 June 30, 2015 Al-Ali et al.
9072474 July 7, 2015 Al-Ali et al.
9078560 July 14, 2015 Schurman et al.
9084569 July 21, 2015 Weber et al.
9095316 August 4, 2015 Welch et al.
9106038 August 11, 2015 Telfort et al.
9107625 August 18, 2015 Telfort et al.
9107626 August 18, 2015 Al-Ali et al.
9113831 August 25, 2015 Al-Ali
9113832 August 25, 2015 Al-Ali
9119595 September 1, 2015 Lamego
9131881 September 15, 2015 Diab et al.
9131882 September 15, 2015 Al-Ali et al.
9131883 September 15, 2015 Al-Ali
9131917 September 15, 2015 Telfort et al.
9138180 September 22, 2015 Coverston et al.
9138182 September 22, 2015 Al-Ali et al.
9138192 September 22, 2015 Weber et al.
9142117 September 22, 2015 Muhsin et al.
9153112 October 6, 2015 Kiani et al.
9153121 October 6, 2015 Kiani et al.
9161696 October 20, 2015 Al-Ali et al.
9161713 October 20, 2015 Al-Ali et al.
9167995 October 27, 2015 Lamego et al.
9176141 November 3, 2015 Al-Ali et al.
9186102 November 17, 2015 Bruinsma et al.
9192312 November 24, 2015 Al-Ali
9192329 November 24, 2015 Al-Ali
9192351 November 24, 2015 Telfort et al.
9195385 November 24, 2015 Al-Ali et al.
9211072 December 15, 2015 Kiani
9211095 December 15, 2015 Al-Ali
9218454 December 22, 2015 Kiani et al.
9226696 January 5, 2016 Kiani
9241662 January 26, 2016 Al-Ali et al.
9245668 January 26, 2016 Vo et al.
9259185 February 16, 2016 Abdul-Hafiz et al.
9267572 February 23, 2016 Barker et al.
9277880 March 8, 2016 Poeze et al.
9289167 March 22, 2016 Diab et al.
9295421 March 29, 2016 Kiani et al.
9307928 April 12, 2016 Al-Ali et al.
9323894 April 26, 2016 Kiani
D755392 May 3, 2016 Hwang et al.
9326712 May 3, 2016 Kiani
9333316 May 10, 2016 Kiani
9339220 May 17, 2016 Lamego et al.
9341565 May 17, 2016 Lamego et al.
9351673 May 31, 2016 Diab et al.
9351675 May 31, 2016 Al-Ali et al.
9364181 June 14, 2016 Kiani et al.
9368671 June 14, 2016 Wojtczuk et al.
9370325 June 21, 2016 Al-Ali et al.
9370326 June 21, 2016 McHale et al.
9370335 June 21, 2016 Al-ali et al.
9375185 June 28, 2016 Ali et al.
9386953 July 12, 2016 Al-Ali
9386961 July 12, 2016 Al-Ali et al.
9392945 July 19, 2016 Al-Ali et al.
9397448 July 19, 2016 Al-Ali et al.
9408542 August 9, 2016 Kinast et al.
9436645 September 6, 2016 Al-Ali et al.
9445759 September 20, 2016 Lamego et al.
9466919 October 11, 2016 Kiani et al.
9474474 October 25, 2016 Lamego et al.
9480422 November 1, 2016 Al-Ali
9480435 November 1, 2016 Olsen
9492110 November 15, 2016 Al-Ali et al.
9510779 December 6, 2016 Poeze et al.
9517024 December 13, 2016 Kiani et al.
9532722 January 3, 2017 Lamego et al.
9538949 January 10, 2017 Al-Ali et al.
9538980 January 10, 2017 Telfort et al.
9549696 January 24, 2017 Lamego et al.
9554737 January 31, 2017 Schurman et al.
9560996 February 7, 2017 Kiani
9560998 February 7, 2017 Al-Ali et al.
9566019 February 14, 2017 Al-Ali et al.
9579039 February 28, 2017 Jansen et al.
9591975 March 14, 2017 Dalvi et al.
9622692 April 18, 2017 Lamego et al.
9622693 April 18, 2017 Diab
D788312 May 30, 2017 Al-Ali et al.
9636055 May 2, 2017 Al-Ali et al.
9636056 May 2, 2017 Al-Ali
9649054 May 16, 2017 Lamego et al.
9662052 May 30, 2017 Al-Ali et al.
9668679 June 6, 2017 Schurman et al.
9668680 June 6, 2017 Bruinsma et al.
9668703 June 6, 2017 Al-Ali
9675286 June 13, 2017 Diab
9687160 June 27, 2017 Kiani
9693719 July 4, 2017 Al-Ali et al.
9693737 July 4, 2017 Al-Ali
9697928 July 4, 2017 Al-Ali et al.
9717425 August 1, 2017 Kiani et al.
9717458 August 1, 2017 Lamego et al.
9724016 August 8, 2017 Al-Ali et al.
9724024 August 8, 2017 Al-Ali
9724025 August 8, 2017 Kiani et al.
9730640 August 15, 2017 Diab et al.
9743887 August 29, 2017 Al-Ali et al.
9749232 August 29, 2017 Sampath et al.
9750442 September 5, 2017 Olsen
9750443 September 5, 2017 Smith et al.
9750461 September 5, 2017 Telfort
9775545 October 3, 2017 Al-Ali et al.
9775546 October 3, 2017 Diab et al.
9775570 October 3, 2017 Al-Ali
9778079 October 3, 2017 Al-Ali et al.
9782077 October 10, 2017 Lamego et al.
9782110 October 10, 2017 Kiani
9787568 October 10, 2017 Lamego et al.
9788735 October 17, 2017 Al-Ali
9788768 October 17, 2017 Al-Ali et al.
9795300 October 24, 2017 Al-Ali
9795310 October 24, 2017 Al-Ali
9795358 October 24, 2017 Telfort et al.
9795739 October 24, 2017 Al-Ali et al.
9801556 October 31, 2017 Kiani
9801588 October 31, 2017 Weber et al.
9808188 November 7, 2017 Perea et al.
9814418 November 14, 2017 Weber et al.
9820691 November 21, 2017 Kiani
9833152 December 5, 2017 Kiani et al.
9833180 December 5, 2017 Shakespeare et al.
9839379 December 12, 2017 Al-Ali et al.
9839381 December 12, 2017 Weber et al.
9847002 December 19, 2017 Kiani et al.
9847749 December 19, 2017 Kiani et al.
9848800 December 26, 2017 Lee et al.
9848806 December 26, 2017 Al-Ali et al.
9848807 December 26, 2017 Lamego
9861298 January 9, 2018 Eckerbom et al.
9861304 January 9, 2018 Al-Ali et al.
9861305 January 9, 2018 Weber et al.
9867578 January 16, 2018 Al-Ali et al.
9872623 January 23, 2018 Al-Ali
9876320 January 23, 2018 Coverston et al.
9877650 January 30, 2018 Muhsin et al.
9877686 January 30, 2018 Al-Ali et al.
9891079 February 13, 2018 Dalvi
9895107 February 20, 2018 Al-Ali et al.
9924897 March 27, 2018 Abdul-Hafiz
9936917 April 10, 2018 Poeze et al.
9955937 May 1, 2018 Telfort
9965946 May 8, 2018 Al-Ali et al.
D820865 June 19, 2018 Muhsin et al.
9986952 June 5, 2018 Dalvi et al.
D822215 July 3, 2018 Al-Ali et al.
D822216 July 3, 2018 Barker et al.
10010276 July 3, 2018 Al-Ali et al.
10086138 October 2, 2018 Novak, Jr.
10111591 October 30, 2018 Dyell et al.
D833624 November 13, 2018 DeJong et al.
10123729 November 13, 2018 Dyell et al.
D835282 December 4, 2018 Barker et al.
D835283 December 4, 2018 Barker et al.
D835284 December 4, 2018 Barker et al.
D835285 December 4, 2018 Barker et al.
10149616 December 11, 2018 Al-Ali et al.
10154815 December 18, 2018 Al-Ali et al.
10159412 December 25, 2018 Lamego et al.
10188348 January 29, 2019 Al-Ali et al.
RE47218 February 5, 2019 Al-Ali
RE47244 February 19, 2019 Kiani et al.
RE47249 February 19, 2019 Kiani et al.
10205291 February 12, 2019 Scruggs et al.
10226187 March 12, 2019 Al-Ali et al.
10231657 March 19, 2019 Al-Ali et al.
10231670 March 19, 2019 Blank et al.
RE47353 April 16, 2019 Kiani et al.
10279247 May 7, 2019 Kiani
10292664 May 21, 2019 Al-Ali
10299720 May 28, 2019 Brown et al.
10327337 June 18, 2019 Schmidt et al.
10327713 June 25, 2019 Barker et al.
10332630 June 25, 2019 Al-Ali
10383520 August 20, 2019 Wojtczuk et al.
10383527 August 20, 2019 Al-Ali
10388120 August 20, 2019 Muhsin et al.
D864120 October 22, 2019 Forrest et al.
10441181 October 15, 2019 Telfort et al.
10441196 October 15, 2019 Eckerbom et al.
10448844 October 22, 2019 Al-Ali et al.
10448871 October 22, 2019 Al-Ali et al.
10456038 October 29, 2019 Lamego et al.
10463340 November 5, 2019 Telfort et al.
10471159 November 12, 2019 Lapotko et al.
10505311 December 10, 2019 Al-Ali et al.
10524738 January 7, 2020 Olsen
10532174 January 14, 2020 Al-Ali
10537285 January 21, 2020 Shreim et al.
10542903 January 28, 2020 Al-Ali et al.
10555678 February 11, 2020 Dalvi et al.
10568553 February 25, 2020 O'Neil et al.
RE47882 March 3, 2020 Al-Ali
10608817 March 31, 2020 Haider et al.
D880477 April 7, 2020 Forrest et al.
10617302 April 14, 2020 Al-Ali et al.
10617335 April 14, 2020 Al-Ali et al.
10637181 April 28, 2020 Al-Ali et al.
D887548 June 16, 2020 Abdul-Hafiz et al.
D887549 June 16, 2020 Abdul-Hafiz et al.
10667764 June 2, 2020 Ahmed et al.
D890708 July 21, 2020 Forrest et al.
10721785 July 21, 2020 Al-Ali
10736518 August 11, 2020 Al-Ali et al.
10750984 August 25, 2020 Pauley et al.
D897098 September 29, 2020 Al-Ali
10779098 September 15, 2020 Iswanto et al.
10827961 November 10, 2020 Iyengar et al.
10828007 November 10, 2020 Telfort et al.
10832818 November 10, 2020 Muhsin et al.
10849554 December 1, 2020 Shreim et al.
10856750 December 8, 2020 Indorf et al.
D906970 January 5, 2021 Forrest et al.
10918281 February 16, 2021 Al-Ali et al.
10932705 March 2, 2021 Muhsin et al.
10932729 March 2, 2021 Kiani et al.
10939878 March 9, 2021 Kiani et al.
10956950 March 23, 2021 Al-Ali et al.
D916135 April 13, 2021 Indorf et al.
D917550 April 27, 2021 Indorf et al.
D917564 April 27, 2021 Indorf et al.
D917704 April 27, 2021 Al-Ali et al.
10987066 April 27, 2021 Chandran et al.
10991135 April 27, 2021 Al-Ali et al.
D919094 May 11, 2021 Al-Ali et al.
D919100 May 11, 2021 Al-Ali et al.
11006867 May 18, 2021 Al-Ali
D921202 June 1, 2021 Al-Ali et al.
11024064 June 1, 2021 Muhsin et al.
11026604 June 8, 2021 Chen et al.
D925597 July 20, 2021 Chandran et al.
D927699 August 10, 2021 Al-Ali et al.
11076777 August 3, 2021 Lee et al.
11114188 September 7, 2021 Poeze et al.
D933232 October 12, 2021 Al-Ali et al.
11145408 October 12, 2021 Sampath et al.
11147518 October 19, 2021 Al-Ali et al.
11185262 November 30, 2021 Al-Ali et al.
11191484 December 7, 2021 Kiani et al.
D946596 March 22, 2022 Ahmed
D946597 March 22, 2022 Ahmed
D946598 March 22, 2022 Ahmed
D946617 March 22, 2022 Ahmed
11272839 March 15, 2022 Al-Ali et al.
11289199 March 29, 2022 Al-Ali
RE49034 April 19, 2022 Al-Ali
11298021 April 12, 2022 Muhsin et al.
20010034477 October 25, 2001 Mansfield et al.
20010039483 November 8, 2001 Brand et al.
20020010401 January 24, 2002 Bushmakin et al.
20020058864 May 16, 2002 Mansfield et al.
20020133080 September 19, 2002 Apruzzese et al.
20030013975 January 16, 2003 Kiani
20030018243 January 23, 2003 Gerhardt et al.
20030144582 July 31, 2003 Cohen et al.
20030156288 August 21, 2003 Barnum et al.
20030212312 November 13, 2003 Coffin, IV et al.
20040106163 June 3, 2004 Workman, Jr. et al.
20050055276 March 10, 2005 Kiani et al.
20050234317 October 20, 2005 Kiani
20060073719 April 6, 2006 Kiani
20060161054 July 20, 2006 Reuss et al.
20060189871 August 24, 2006 Al-Ali et al.
20070073116 March 29, 2007 Kiani et al.
20070180140 August 2, 2007 Welch et al.
20070244377 October 18, 2007 Cozad et al.
20070282478 December 6, 2007 Al-Ali et al.
20080064965 March 13, 2008 Jay et al.
20080094228 April 24, 2008 Welch et al.
20080221418 September 11, 2008 Al-Ali et al.
20090036759 February 5, 2009 Ault et al.
20090093687 April 9, 2009 Telfort et al.
20090095926 April 16, 2009 MacNeish, III
20090247984 October 1, 2009 Lamego et al.
20090275813 November 5, 2009 Davis
20090275844 November 5, 2009 Al-Ali
20100004518 January 7, 2010 Vo et al.
20100030040 February 4, 2010 Poeze et al.
20100099964 April 22, 2010 O'Reilly et al.
20100234718 September 16, 2010 Sampath et al.
20100270257 October 28, 2010 Wachman et al.
20110028806 February 3, 2011 Merritt et al.
20110028809 February 3, 2011 Goodman
20110040197 February 17, 2011 Welch et al.
20110082711 April 7, 2011 Poeze et al.
20110087081 April 14, 2011 Kiani et al.
20110105854 May 5, 2011 Kiani et al.
20110118561 May 19, 2011 Tari et al.
20110125060 May 26, 2011 Telfort et al.
20110137297 June 9, 2011 Kiani et al.
20110172498 July 14, 2011 Olsen et al.
20110208015 August 25, 2011 Welch et al.
20110230733 September 22, 2011 Al-Ali
20120078069 March 29, 2012 Melker
20120123231 May 17, 2012 O'Reilly
20120165629 June 28, 2012 Merritt et al.
20120209082 August 16, 2012 Al-Ali
20120209084 August 16, 2012 Olsen et al.
20120226117 September 6, 2012 Lamego et al.
20120283524 November 8, 2012 Kiani et al.
20120319816 December 20, 2012 Al-Ali
20130023775 January 24, 2013 Lamego et al.
20130041591 February 14, 2013 Lamego
20130060147 March 7, 2013 Welch et al.
20130096405 April 18, 2013 Garfio
20130096936 April 18, 2013 Sampath et al.
20130204112 August 8, 2013 White
20130243021 September 19, 2013 Siskavich
20130253334 September 26, 2013 Al-Ali et al.
20130296672 November 7, 2013 O'Neil et al.
20130296713 November 7, 2013 Al-Ali et al.
20130324808 December 5, 2013 Al-Ali et al.
20130331660 December 12, 2013 Al-Ali et al.
20130345921 December 26, 2013 Al-Ali et al.
20140012100 January 9, 2014 Al-Ali et al.
20140051953 February 20, 2014 Lamego et al.
20140081175 March 20, 2014 Telfort
20140120564 May 1, 2014 Workman et al.
20140121482 May 1, 2014 Merritt et al.
20140127137 May 8, 2014 Bellott et al.
20140135588 May 15, 2014 Al-Ali et al.
20140163344 June 12, 2014 Al-Ali
20140163402 June 12, 2014 Lamego et al.
20140166076 June 19, 2014 Kiani et al.
20140171763 June 19, 2014 Diab
20140180038 June 26, 2014 Kiani
20140180154 June 26, 2014 Sierra et al.
20140180160 June 26, 2014 Brown et al.
20140187973 July 3, 2014 Brown et al.
20140213864 July 31, 2014 Abdul-Hafiz et al.
20140266790 September 18, 2014 Al-Ali et al.
20140275808 September 18, 2014 Poeze et al.
20140275835 September 18, 2014 Lamego et al.
20140275871 September 18, 2014 Lamego et al.
20140275872 September 18, 2014 Merritt et al.
20140276115 September 18, 2014 Dalvi et al.
20140288400 September 25, 2014 Diab et al.
20140316217 October 23, 2014 Purdon et al.
20140316218 October 23, 2014 Purdon et al.
20140316228 October 23, 2014 Blank et al.
20140323825 October 30, 2014 Al-Ali et al.
20140323897 October 30, 2014 Brown et al.
20140323898 October 30, 2014 Purdon et al.
20140330092 November 6, 2014 Al-Ali et al.
20140330098 November 6, 2014 Merritt et al.
20140357966 December 4, 2014 Al-Ali et al.
20150005600 January 1, 2015 Blank et al.
20150011907 January 8, 2015 Purdon et al.
20150012231 January 8, 2015 Poeze et al.
20150032029 January 29, 2015 Al-Ali et al.
20150038859 February 5, 2015 Dalvi et al.
20150073241 March 12, 2015 Lamego
20150080754 March 19, 2015 Purdon et al.
20150087936 March 26, 2015 Al-Ali et al.
20150094546 April 2, 2015 Al-Ali
20150097701 April 9, 2015 Al-Ali et al.
20150099950 April 9, 2015 Al-Ali et al.
20150099955 April 9, 2015 Al-Ali et al.
20150101844 April 16, 2015 Al-Ali et al.
20150106121 April 16, 2015 Muhsin et al.
20150112151 April 23, 2015 Muhsin et al.
20150116076 April 30, 2015 Al-Ali et al.
20150126830 May 7, 2015 Schurman et al.
20150165312 June 18, 2015 Kiani
20150196249 July 16, 2015 Brown et al.
20150216459 August 6, 2015 Al-Ali et al.
20150238722 August 27, 2015 Al-Ali
20150245773 September 3, 2015 Lamego et al.
20150245794 September 3, 2015 Al-Ali
20150257689 September 17, 2015 Al-Ali et al.
20150272514 October 1, 2015 Kiani et al.
20150351697 December 10, 2015 Weber et al.
20150359429 December 17, 2015 Al-Ali et al.
20150366507 December 24, 2015 Blank
20160029932 February 4, 2016 Al-Ali
20160058347 March 3, 2016 Reichgott et al.
20160066824 March 10, 2016 Al-Ali et al.
20160081552 March 24, 2016 Wojtczuk et al.
20160095543 April 7, 2016 Telfort et al.
20160095548 April 7, 2016 Al-Ali et al.
20160103598 April 14, 2016 Al-Ali et al.
20160143548 May 26, 2016 Al-Ali
20160166182 June 16, 2016 Al-Ali et al.
20160166183 June 16, 2016 Poeze et al.
20160192869 July 7, 2016 Kiani et al.
20160196388 July 7, 2016 Lamego
20160197436 July 7, 2016 Barker et al.
20160213281 July 28, 2016 Eckerbom et al.
20160228043 August 11, 2016 O'Neil et al.
20160233632 August 11, 2016 Scruggs et al.
20160234944 August 11, 2016 Schmidt et al.
20160270735 September 22, 2016 Diab et al.
20160283665 September 29, 2016 Sampath et al.
20160287090 October 6, 2016 Al-Ali et al.
20160287786 October 6, 2016 Kiani
20160296169 October 13, 2016 McHale et al.
20160310052 October 27, 2016 Al-Ali et al.
20160314260 October 27, 2016 Kiani
20160324486 November 10, 2016 Al-Ali et al.
20160324488 November 10, 2016 Olsen
20160327984 November 10, 2016 Al-Ali et al.
20160328528 November 10, 2016 Al-Ali et al.
20160331332 November 17, 2016 Al-Ali
20160367173 December 22, 2016 Dalvi et al.
20170000394 January 5, 2017 Al-Ali et al.
20170007134 January 12, 2017 Al-Ali et al.
20170007198 January 12, 2017 Al-Ali et al.
20170014083 January 19, 2017 Diab et al.
20170014084 January 19, 2017 Al-Ali et al.
20170020399 January 26, 2017 Shemesh
20170024748 January 26, 2017 Haider
20170027456 February 2, 2017 Kinast et al.
20170042488 February 16, 2017 Muhsin
20170055851 March 2, 2017 Al-Ali
20170055882 March 2, 2017 Al-Ali et al.
20170055887 March 2, 2017 Al-Ali
20170055896 March 2, 2017 Al-Ali et al.
20170079594 March 23, 2017 Telfort et al.
20170086723 March 30, 2017 Al-Ali et al.
20170143281 May 25, 2017 Olsen
20170147774 May 25, 2017 Kiani
20170156620 June 8, 2017 Al-Ali et al.
20170173632 June 22, 2017 Al-Ali
20170187146 June 29, 2017 Kiani et al.
20170188919 July 6, 2017 Al-Ali et al.
20170196464 July 13, 2017 Jansen et al.
20170196470 July 13, 2017 Lamego et al.
20170202490 July 20, 2017 Al-Ali et al.
20170224262 August 10, 2017 Al-Ali
20170228516 August 10, 2017 Sampath et al.
20170245790 August 31, 2017 Al-Ali et al.
20170251974 September 7, 2017 Shreim et al.
20170251975 September 7, 2017 Shreim et al.
20170258403 September 14, 2017 Abdul-Hafiz et al.
20170311891 November 2, 2017 Kiani et al.
20170325728 November 16, 2017 Al-Ali et al.
20170332976 November 23, 2017 Al-Ali et al.
20170340293 November 30, 2017 Al-Ali
20170360310 December 21, 2017 Kiani et al.
20170367632 December 28, 2017 Al-Ali et al.
20180008146 January 11, 2018 Al-Ali et al.
20180014752 January 18, 2018 Al-Ali et al.
20180028124 February 1, 2018 Al-Ali et al.
20180103874 April 19, 2018 Lee et al.
20180242926 August 30, 2018 Muhsin et al.
20180247353 August 30, 2018 Al-Ali et al.
20180247712 August 30, 2018 Muhsin et al.
20180256087 September 13, 2018 Al-Ali et al.
20180296161 October 18, 2018 Shreim et al.
20180300919 October 18, 2018 Muhsin et al.
20180310822 November 1, 2018 Indorf et al.
20180310823 November 1, 2018 Al-Ali et al.
20180317826 November 8, 2018 Muhsin et al.
20190015023 January 17, 2019 Monfre
20190117070 April 25, 2019 Muhsin et al.
20190200941 July 4, 2019 Chandran et al.
20190239787 August 8, 2019 Pauley et al.
20190320906 October 24, 2019 Olsen
20190344030 November 14, 2019 Martin
20190374139 December 12, 2019 Kiani et al.
20190374173 December 12, 2019 Kiani et al.
20190374713 December 12, 2019 Kiani et al.
20200060869 February 27, 2020 Telfort et al.
20200111552 April 9, 2020 Ahmed
20200113435 April 16, 2020 Muhsin
20200113488 April 16, 2020 Al-Ali et al.
20200113496 April 16, 2020 Scruggs et al.
20200113497 April 16, 2020 Triman et al.
20200113520 April 16, 2020 Abdul-Hafiz et al.
20200138288 May 7, 2020 Al-Ali et al.
20200138368 May 7, 2020 Kiani et al.
20200163597 May 28, 2020 Dalvi et al.
20200196877 June 25, 2020 Vo et al.
20200253474 August 13, 2020 Muhsin et al.
20200253544 August 13, 2020 Belur Nagaraj et al.
20200275841 September 3, 2020 Telfort et al.
20200288983 September 17, 2020 Telfort et al.
20200321793 October 8, 2020 Al-Ali et al.
20200329983 October 22, 2020 Al-Ali et al.
20200329984 October 22, 2020 Al-Ali et al.
20200329993 October 22, 2020 Al-Ali et al.
20200330037 October 22, 2020 Al-Ali et al.
20210022628 January 28, 2021 Telfort et al.
20210104173 April 8, 2021 Pauley et al.
20210113121 April 22, 2021 Diab et al.
20210117525 April 22, 2021 Kiani et al.
20210118581 April 22, 2021 Kiani et al.
20210121582 April 29, 2021 Krishnamani et al.
20210161465 June 3, 2021 Barker et al.
20210236729 August 5, 2021 Kiani et al.
20210256267 August 19, 2021 Ranasinghe et al.
20210256835 August 19, 2021 Ranasinghe et al.
20210275101 September 9, 2021 Vo et al.
20210290060 September 23, 2021 Ahmed
20210290072 September 23, 2021 Forrest
20210290080 September 23, 2021 Ahmed
20210290120 September 23, 2021 Al-Ali
20210290177 September 23, 2021 Novak, Jr.
20210290184 September 23, 2021 Ahmed
20210296008 September 23, 2021 Novak, Jr.
20210330228 October 28, 2021 Olsen et al.
20210386382 December 16, 2021 Olsen et al.
20210402110 December 30, 2021 Pauley et al.
20220026355 January 27, 2022 Normand et al.
20220039707 February 10, 2022 Sharma et al.
20220053892 February 24, 2022 Al-Ali et al.
20220071562 March 10, 2022 Kiani
20220096603 March 31, 2022 Kiani et al.
Patent History
Patent number: 11504058
Type: Grant
Filed: Nov 28, 2017
Date of Patent: Nov 22, 2022
Assignee: Masimo Corporation (Irvine, CA)
Inventors: Vikrant Sharma (Santa Ana, CA), Philip Perea (Irvine, CA), Prashanth Iyengar (Irvine, CA)
Primary Examiner: Daniel L Cerioni
Assistant Examiner: Raymond P Dulman
Application Number: 15/824,983
Classifications
Current U.S. Class: Measured At Specified Areas Of Body Portions (600/340)
International Classification: A61B 5/00 (20060101); A61B 5/0205 (20060101); A61B 5/145 (20060101); A61B 5/024 (20060101); A61B 5/1455 (20060101);