Reusable pulse oximeter probe and disposable bandage apparatus

- Masimo Corporation

Pulse oximeter apparatus and method comprising a reusable pulse oximeter probe and a disposable bandage. The bandage has receptacles for receiving and aligning the oximeter's light emitting diode and photocell detector.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
REFERENCE TO RELATED APPLICATION REFERENCE TO RELATED APPLICATIONS

This is a continuation application of application U.S. Ser. No. 09/679,828 filed Oct. 5, 2000 (now U.S. Pat. No. 6,519,487), which in turn is a continuation-in-part of U.S. Ser. Nos. 09/417,898 filed Oct. 14, 1999 (now U.S. Pat. No. 6,343,224) and 09/289,647 filed Apr. 12, 1999 (now U.S. Pat. No. 6,144,868) and 09/417,898 filed Oct. 14, 1999 (now U.S. Pat. No. 6,343,224) ; which in turn claims benefit of provisional application No. 60/104,332 filed Oct. 15, 1998.

BACKGROUND OF THE INVENTION

The present invention relates to a method of making and affixing a reusable probe to a patient by means of disposable bandage apparatus so that there is no contact between the costly, reusable portion of the probe and the patient. The contaminated bandage apparatus, which is relatively inexpensive, can then be discarded after single patient use and the probe can be re-used with a new bandage apparatus.

Heretofore the use of pulse oximeter probes has been limited to the use of a costly reusable probe, which is contaminated by use on a patient, or cheaper, single-use probes, which, in the aggregate, amount to a considerable expenditure for a health care institution.

Other individuals have attempted to convert single use probes into multi-use probes through a lamination process. In that process, the original adhesive material is removed from the original manufacturer's sensor. The sensor is then laminated in a plastic sheath and the entire sheath is then inserted into a transparent, adhesive-backed sleeve, which is then adhered to a patient. After use, the probe can then be extracted from the sleeve and inserted into a new sleeve for use on another patient.

There are certain disadvantages to this method. Firstly, it is difficult to insert the flexible laminated sensor into a long sleeve. Secondly, the thickness of a laminated sensor inside of a sleeve makes it difficult to bend around, and to stick properly to, a human appendage. Thirdly, transmission and reception of infrared light can be affected by extraneous light entering from the sides of the sleeve. And fourthly, there is some dispute as to the affect on infrared light transmission when passing through the sleeve and the adhesive material coupled thereto.

THE PRESENT INVENTION

The present invention not only solves the problems outlined above, but offers an alternative that is cheap to manufacture and easy to use.

The present invention is directed to improving the form and affixation method of a reusable pulse oximeter sensor. It comprises a reusable pulse oximeter probe with at least one light emitting diode and one photocell detector wherein said emitter and detector are enclosed in plastic housings, one housing having an aperture or radiation transparent window aligned with said emitter, and the other housing having an aperture or radiation transparent window aligned with said detector. Also included is a disposable bandage apparatus which is at least one bandage strip having adhesive on at least a portion of at least one face thereof and at least two plastic receptacles mounted thereon, each receptacle having at least one aperture or radiation transparent window located therein. The probe housings can matedly engage said bandage receptacles and transmit and receive light through the apertures or radiation transparent windows of said mated housings and receptacles, and through the appendage of a patient. The housings of the reusable pulse oximeter probe may also be made of a material selected from plastic, rubber, metal, wood, or other composite material. The receptacles of the disposable bandage apparatus may also be made of a material selected from plastic, rubber, metal, wood, or other composite material. Additionally, the apertures of said receptacles are large enough to accept the tubular protrusions of the housings for the purpose of concentric location and alignment of the housings to the receptacles and the proper transmission and reception of light therethrough. Sandwiched between the adhesive strip and the receptacles attached thereto, are translucent silicone windows or windows of another radiation transparent material for isolation of the reusable probe assembly from the patient. The bandage apparatus may be discarded after single patient use and the reusable probe may be used again on another patient in conjunction with another bandage apparatus. Additionally, the receptacles of the bandage apparatus may have a concave surface on one side thereof in order to seat conformably on a human digit, or they may have a flat surface on at least one side thereof in order to attach conformably to a human foot, nose, or ear. The housings and receptacles also contain “mushroom hook” type hook and loop material for the purpose of adhering and detaching said housings to and from said receptacles. Additionally, the housings and receptacles have recessed areas for adhesion of the “mushroom hook” hook and loop material.

In another embodiment of the invention, the receptacle of the disposable bandage apparatus may be the mushroom hook material itself which may be attached directly to the adhesive strip for the selective engagement of the housings of the probe assembly.

In another embodiment of the invention, the housings of the pulse oximeter probe may be affixed to the receptacles of the disposable bandage apparatus by means of a “ring and groove” type snap-on connector.

In yet another embodiment of the invention, the housings of the reusable pulse oximeter probe may be affixed to the receptacles of the disposable bandage apparatus by means of a “twist and lock” type connector.

In a further embodiment of the invention, the housings of the pulse oximeter probe may be affixed to the receptacles of the disposable bandage apparatus by means of a “threaded flange” type of connector.

Finally, and in the first preferred embodiment of the invention, The light emitting diode and photocell detector of the probe assembly may be mounted in modular housings with locking levers which can engage an indentation or slot in the receptacles of the disposable bandage apparatus and securely lock the housings into proper position within the receptacles, thus allowing the transmission and reception of infrared light through the mated housings and receptacles and through the appendage of a patient.

In another variation of this preferred embodiment of the invention, the levers and indentations are reversed, and the light emitting diode and photocell detector of the probe assembly may be mounted in modular housings having indentations therein, and the receptacles of the disposable bandage apparatus may have the locking lever located on them. In such an embodiment, the locking levers of the bandage receptacles lockingly engage the slots or indentations in the probe housings, thus locking them into place within the receptacles and allowing the transmission and reception of infrared light through the mated probe housings and bandage receptacles, and through the appendage of a patient.

In these modular housing and receptacle embodiments the radiation transparent windows, may be of hard plastic and may be mounted against the skin of a patient, thus being used to secure the receptacles on the opposite side of the bandage strip. This is accomplished by the incorporation of locking levers on the radiation transparent windows which are pushed through holes or slots in the bandage and engage holes in the receptacles mounted on the opposite side of the bandage, thus sandwiching the bandage in between. A foam strip with holes in it may also be adhered to said radiation transparent windows in order for them to rest comfortably on a patient's appendage.

In another variation of the above, the bandage receptacles may be secured to the bandage through the use of small plastic protrusions or “heat stakes” mounted on the receptacles themselves. These protrusions can be pushed through slots in the bandage and can be melted on the other side of the bandage strip by means of an ultrasonic welding machine, thus locking the receptacles into position on the bandage strip. In this embodiment a radiation transparent window may then be adhered to the underside of the bandage strip and the heat stakes and radiation transparent windows may then be overlaid with a foam pad with holes in it, the purpose of which is to allow for the transmission and reception of infrared light through the holes while aiding in patient comfort.

DESCRIPTION OF THE DRAWINGS

The above and other objects and features of the invention will become more clear when considered with the following specifications and accompanying drawings wherein:

FIG. 1 is an exploded view of the reusable pulse oximeter probe and disposable bandage apparatus incorporating the invention;

FIG. 2 is a view of the reusable pulse oximeter probe and disposable bandage apparatus shown individually as components of the invention;

FIG. 3 illustrates the invention in use on a human finger or digit;

FIG. 4 illustrates an exploded view of another embodiment of the invention in which the “mushroom hook” material itself is used as the receptacle of the disposable bandage apparatus;

FIG. 5 illustrates an assembled view of another embodiment of the invention in which the housings of the pulse oximeter probe are affixed to the receptacles of the disposable bandage apparatus by means of ring and groove type, snap-on connectors;

FIG. 6 illustrates an assembled view of another embodiment of the invention in which the housings of the pulse oximeter probe are affixed to the receptacles of the disposable bandage apparatus by means of “twist and lock” type connectors;

FIG. 7 illustrates an assembled view of another embodiment of the invention in which the housings of the of the pulse oximeter probe are affixed to the receptacles of the disposable bandage apparatus by means of a “threaded flange” type of connector;

FIG. 8 illustrates an exploded view of the first preferred embodiment of the reusable pulse oximeter probe in which the light emitting diode and photocell detector of the probe are encased in housings having a radiation transparent window therein and locking levers for affixing the reusable pulse oximeter probe to the disposable bandage apparatus;

FIG. 9 illustrates an exploded view of the first preferred embodiment of the disposable bandage apparatus in which the receptacle tops incorporate a slot for engaging the locking levers of the modular probe housings, and wherein the radiation transparent windows are mounted on the opposite side of the bandage strip thus sandwiching and securing the bandage in between the two receptacle halves by means of locking tabs or heat stakes that can be ultrasonically welded;

FIG. 10 illustrates the first preferred embodiment of the invention as it would appear ready for use on a human digit;

FIG. 11 illustrates an exploded view of the second preferred embodiment of the invention in which the probe housings have a slot or indentation incorporated therein and the bandage receptacles have a locking lever for securing the housings to the receptacles;

FIG. 12 illustrates an assembled view of the second preferred embodiment of the invention in which the probe housings have a slot or indentation incorporated therein and the bandage receptacles have a locking lever for securing the housings to the receptacles.

DESCRIPTION OF THE REUSABLE PULSE OXIMETER SENSOR

The Reusable Pulse Oximeter Sensor constitutes a “Y” style pulse oximeter probe shown as FIG. 1, Item F. Said probe incorporates two plastic housings shown as FIG. 1, Items G, said housings containing apertures or radiation transparent windows therein, said apertures or windows shown as FIG. 1, Items L. One housing contains the light emitting diode of the probe, FIG. 1, item H, and the other contains the photocell detector, FIG. 1, Item I. The emitter and detectors are aligned with the apertures or windows of said housings in order to transmit and receive light through a human appendage. Seated within a recessed area of each housing, and attached permanently thereto, is a “mushroom hook” adhesive-backed pad, FIG. 1, Item K. The purpose of these pads is to selectively engage the “mushroom hook” pads, FIG. 1, Items J, attached permanently to the plastic discs, FIG. 1, Items D, and to attach the reusable probe assembly to the Disposable Bandage Apparatus. The Reusable Pulse Oximeter Sensor is shown assembled as FIG. 2, Item A.

In another embodiment of the invention the light emitting diode and photocell detector of the reusable pulse oximeter-sensor are enclosed in housings (FIG. 5, Items A) having a groove on the inner diameter of the housings that is designed to matedly engage rings (FIG. 5, Items B) located on the outer diameter of the disposable bandage apparatus, thus securing and locking the sensor housings to the bandage receptacles.

In another embodiment of the invention the light emitting diode and photocell detector of the reusable pulse oximeter sensor are enclosed in housings (FIG. 6, Items A) which are designed to enter the bandage receptacles (FIG. 6, Items B) and to twist 90 degrees thus locking the sensor housings to the bandage receptacles.

In yet another embodiment of the invention, the light emitting diode and photocell detector of the reusable pulse oximeter sensor are enclosed in housings (FIG. 7, Items A) having a threaded flange (FIG. 7, Items B) that threadedly engages the bandage receptacles, (FIG. 7, Items C) thus securing and locking the sensor housings to the bandage receptacles.

In the first preferred embodiment of the Reusable Pulse Oximeter Sensor, the light emitting diode (FIG. 8, Item A) and photocell detector (FIG. 8, Item B) of the probe assembly are housed in modular receptacles (FIG. 8, Items C) having locking levers, (FIG. 8, Items D) for engaging the receptacles (FIG. 9, Items A) of the disposable bandage apparatus, and locking them into place.

In the second preferred embodiment of the Reusable Pulse Oximeter Sensor, the light emitting diode (FIG. 11, Item A) and the photocell detector (FIG. 11, Item B) are encased in modular housings having a radiation transparent bottom (FIG. 11, Items C) and having opaque housing tops (FIG. 11, Items D). These housing tops and bottoms are ultrasonically welded together thus encapsulating the light emitting diode and photocell detector of the probe assembly. The housing tops incorporate indentations or slots (FIG. 11, Items E) designed to matedly engage a protrusion on the locking levers of the bandage receptacles thus snapping into place and securing the probe housings within the bandage receptacles.

DESCRIPTION OF THE DISPOSABLE BANDAGE APPARATUS

The components of the apparatus include an adhesive-backed, strip, shown as FIG. 1, item A, said strip incorporating two oval protrusions centered thereon and shown as FIG. 1, Item B. Said strip also incorporates two apertures, centrally located within said oval protrusions, FIG. 1, Item C, each aperture having a diameter sufficient in size to accommodate the transmission and reception of light from a light emitting diode and photocell detector of a pulse oximeter probe.

On top of said apertures are seated two plastic discs, FIG. 1, Item D, each having a concave base designed to conform to the radius of a human digit, and an aperture of slightly larger diameter than the apertures in the adhesive backed planar strip. Said plastic discs are affixed to the adhesive planar strip by means of a permanent adhesive. Seated in a recessed area on top of each plastic disc is a “mushroom hook”, adhesive backed pad shown as FIG. 1, Item J. The purpose of the “mushroom hook” pads is to selectively engage the “mushroom hook” pads attached to the probe, FIG. 1, Items K, and to attach the probe to the disposable bandage apparatus. Sandwiched between the two plastic discs and the planar adhesive strip are two translucent silicone windows, FIG. 1, Item E. Said windows are designed to permit the passage of infrared light and yet prevent contact between probe and patient, and consequently, contamination of the reusable probe itself.

The above items constitute the Disposable Bandage Apparatus of the invention, said apparatus being shown assembled as FIG. 2, Item B.

In another embodiment of the invention, the Disposable Bandage Apparatus may be configured as in FIG. 4 of the drawings. In that drawing there is an exploded view of the apparatus in which the “mushroom hook” pads of the bandage apparatus, FIG. 4, Items J, are bonded directly to the adhesive planar strip, FIG. 4, Item A, for the selective engagement of the “mushroom hook” pads of the probe, FIG. 4, Items K, said pads being attached permanently to the housings of the probe, FIG. 4, Items G.

In other embodiments of the disposable bandage apparatus, the bandage may have mounted thereon receptacles having means of matedly engaging the housings of the reusable pulse oximeter sensor by way of “ring and groove” snap-on type connectors (FIG. 5, Items B); “Twist and Lock” type connectors (FIG. 6, Items B); or “threaded flange” type connectors (FIG. 7, Items C).

In the first preferred embodiment of the Disposable Bandage Apparatus, the bandage strip (FIG. 9, Item B) is sandwiched between interlocking receptacle halves. The top halves of the receptacles (FIG. 9, Items A) each contain 4 holes (FIG. 9, Items C) that are designed to matingly engage locking tabs (FIG. 9, Items D) on the bottom half of the receptacles (FIG. 9, Items E) that are pushed through slots cut in the bandage strip (FIG. 9, Items F) thus securing and locking the bandage in between.

The bandage strip contains two apertures or radiation transparent windows (FIG. 9, Items G) allowing for the transmission and reception of light from the light emitting diode and photocell detector of the pulse oximeter sensor which are encased in modular housings having locking levers (FIG. 8, Items D) wherein said levers_engage slots in the receptacles (FIG. 9, Items H) thereby locking the housings into place within the receptacles. In addition, the bottom halves of the receptacles (FIG. 9, Items E) can be of a radiation transparent material, or may contain apertures (FIG. 9, Items I) thus allowing the light emitting diode and photocell detector contained in the probe housings, when engaged in the bandage receptacles, to transmit and receive light through the apertures of the bandage strip and through the radiation transparent material, or apertures, of the bottom halves of the receptacles, and through the appendage of a patient. The disposable bandage apparatus may also incorporate a foam strip (FIG. 9, Item J) in order to cushion a patient's appendage from any discomfort caused by the bottom half of the bandage receptacles. The complete Reusable Pulse Oximeter Sensor, engaged in the disposable Bandage Apparatus, and ready for use on a human appendage, is shown in FIG. 10.

In the second preferred embodiment of the disposable bandage apparatus, the bandage receptacles (FIG. 11, Items G) are secured to the bandage (FIG. 11, Item K) by means of four protrusions or “heat Stakes” (FIG. 11, Items H) which are pushed through slots (FIG. 11, Items J) on the bandage (FIG. 11, Item K) and are ultrasonically welded on the other side, thus securing the receptacles to the bandage. A radiation transparent window (FIG. 11, Item M) is then adhered to the underside of the bandage and the radiation transparent windows and melted heat stakes are then overlaid by a foam pad (FIG. 11, Item L) to aid in patient comfort. This foam pad also incorporates two holes which are in alignment with the two holes on the bandage itself, and when the foam pad is overlaid on the underside of the bandage, the radiation transparent windows are sandwiched in between.

The probe housings are designed to matedly engage the bandage receptacles (FIG. 11, Items G) and are held in place: within the receptacles by means of protrusions (FIG. 11, Items F) on the locking levers (FIG. 11, Items I) which snap into place when the probe housings are pushed into the bandage receptacles. When the probe housings are locked into place within the bandage receptacles the light emitting diode and photocell detector are in alignment with the holes in the bandage and the foam overlay, and the probe is then able to transmit and receive light through the mated housings and receptacles, through the holes contained in the bandage and foam overlay, and through the appendage of a patient. The complete assembled Reusable Pulse Oximeter Sensor engaged within the Disposable Bandage Apparatus, as it would appear ready for use on a patient, is shown in FIG. 12.

Other Fastening Means

As can be appreciated there are many ways of fabricating the above components of the invention. The above description describes attachment of the Reusable Pulse Oximeter Sensor to the Disposable Bandage Apparatus by way of a “mushroom hook” type hook and loop material, by the use of “ring and groove” type snap-on connectors, “push and twist” type Luerlock connectors, and threaded flange type connectors' as well as telephone type, modular connectors and receptacles. While these means are fairly comprehensive, they should in no way be considered exhaustive.

Method of Use

For use on each individual patient, the probe is affixed in the following manner:

Firstly, the backing is removed from the adhesive strip of the Disposable Bandage Apparatus. One of the apertures of the apparatus is visually positioned on the center of the nail bed of the patient's appendage and one side of the adhesive strip and the oval protrusions are adhered to the patient's digit. The rest of the strip is then looped over the end of the patient's appendage, and the plastic disc is aligned so as to exactly oppose the plastic disc already attached to the other side of the digit. Once the Disposable Bandage Apparatus has been properly adhered to the patient, the plastic housings of the probe assembly can be easily snapped into place on opposing sides of the digit. The entire assembled probe is shown as it would appear in use on a patient in FIG. 3.

For use with the “ring and groove” type snap-on connectors, “twist and lock”, and “threaded flange” connectors, the backing is firstly removed from the adhesive strip. The strip is then folded in half where indicated on the bandage and the bandage apparatus is adhered to either side of the human digit. Once the bandage apparatus is in place the probe housings are simply snapped, twisted or screwed into place.

For use with each patient, the modular probe and bandage assembly, in both of_its embodiments, which are the preferred embodiments of the invention, would be attached as follows:

Firstly, the backing is removed from the adhesive strip. The strip is then folded where indicated on the bandage and the strip is then adhered to opposing sides of the human digit. Once the bandage apparatus is in place, the housings of the probe are pushed into the receptacles and locked in place by means of the locking levers.

In all embodiments of the invention, when the probe is no longer required on the patient, the housings of the Reusable Probe are simply unsnapped from the Disposable Bandage Apparatus, the bandage apparatus is thrown away, and the probe can then be reused on a new patient in conjunction with a new bandage apparatus.

ADVANTAGES OF THE PRESENT INVENTION

Current reusable pulse oximeter probes are either “Clam Shell” type clamping devices which can restrict circulation or “Y” type probes which are taped directly to the patient. Both types also come in direct contact with the patient's skin and bodily fluids and need sterilization after use. Because of the fact that these devices incorporate many surfaces and at times, porous materials, proper sterilization is very difficult. With the present invention there is no contact between the reusable probe and the skin or bodily fluids of the patient.

Disposable probes are very costly because of the fact that the cable, connectors and photodiodes are all disposed of after use. The present invention accomplishes the same goals as a disposable probe from a cleanliness standpoint, but since only the attachment apparatus is discarded after use, the cost is much less to a healthcare institution.

The present invention, with the concave shape of the plastic discs of the bandage apparatus, when backed by the adhesive strip, is extremely effective in preventing the entrance of extraneous light from the sides of the patient's digit. Current probes on the market, whether disposable or reusable, because of the nature of their shape and affixation means, have problems in dealing with extraneous light reception.

The present invention utilizes an easy snap on, snap off, or modular connector attachment means for attaching the probe to the Disposable Bandage Apparatus. Probe-Shield type devices available in the past not only required the modification of the original manufacturer's probe, but required the difficult procedure of inserting a flexible laminated probe into a sheath for each patient.

Probe-Shield devices, because of the lamination process involved, raised some concern over the transmission and reception of infrared light through the laminating material. The present invention uses a silicone window for the isolation of the probe from the patient. Infrared light transmission and reception is not affected by passage through translucent silicone.

In these days of environmental consciousness the annual waste generated from tens of millions of disposable probes is enormous. The present invention, if used in considerable numbers, would greatly reduce the amount of environmental waste generated by disposable pulse oximeter probes.

While the invention has been described in relation to preferred embodiments of the invention, it will be appreciated that other embodiments, adaptations and modifications of the invention will be apparent to those skilled in the art.

Claims

1. In a reusable A pulse oximeter system, comprising a reusable probe having a light-emitting diode and a photocell detector, the improvement having a light emitter and a light detector, said probe comprising a pair of modular housings and wherein the light emitting diode and the photocell detector, said light emitter and light detector of said probe are being mounted on, or incorporated into, one of said modular housings, respectively, each housing having means for matedly engaging being configured to matedly engage at least one bandage receptacle, and being wherein said housings are configured to be retained, at least in part, thereon or therein, by means of a locking tab or lever, and the pulse oximeter system comprising a bandage apparatus having adhesive on at least a portion of at least one face thereof, wherein the bandage apparatus comprises a pair of receptacles operably attached thereto and configured to matedly engage said modular housings.

2. The pulse oximeter probe system of claim 1 wherein at least one of said housings has mounted thereon, or incorporates therein, said locking tab or lever.

3. The pulse oximeter probe system of claim 1 wherein at least one of said housings incorporates therein, a slot or indentation, said slot or indentation for the purpose of retaining therein said locking tab or lever, said locking lever being located on or in said bandage receptacle or receptacles.

4. A disposable bandage apparatus comprising at least one face, adhesive on at least a portion of said at least one face thereof, and at least two receptacles mounted on said disposable bandage apparatus, each receptacle having means for matedly engaging being configured to matedly engage at least one housing of a pulse oximeter probe, and wherein a locking mechanism retaining retains at least a portion of said probe housing thereon or therein, and said disposable bandage apparatus comprising adhesive on at least a portion of at least one face thereof.

5. An adhesive bandage apparatus, said adhesive bandage apparatus comprising at least two receptacles mounted thereon, said at least two receptacles each having at least one aperture or radiation transparent window therein; at least a first of said receptacles being adapted to matedly engage, and lock into place, the housing of a pulse oximeter probe, said probe housing containing, or having mounted thereon, at least one light emitting diode; and a second of said receptacles being adapted to matedly engage, and lock into place, the housing of a pulse oximeter probe, said probe housing containing, or having mounted thereon, at least one photocell detector; wherein when so mated, said probe housings and bandage receptacles allow for the transmission and reception of light through the apertures or radiation transparent windows of said mated housings and receptacles, and through the appendage of a patient.

6. An oximeter probe attachment system comprising, a first adhesive bandage apparatus having at least one receptacle mounted thereon, said at least one receptacle having at least one radiation transparent window therein; said at least one receptacle being adapted to matedly engage, and lock into place, the housing of a pulse oximeter probe component, said housing containing, or having selectively mounted thereon, at least one light emitting diode, or having mounted thereon, at least one photocell detector; and at least one second adhesive bandage apparatus having at least one receptacle mounted thereon, said at least one bandage receptacle being adapted to matedly engage, and lock into place, the housing of a pulse oximeter probe component, said probe housing containing, or having mounted thereon, at least one light emitting diode, or said probe housing containing, or having mounted thereon, at least one photocell detector; wherein said at least two adhesive bandage apparati can be positioned upon a patient to allow for the transmission and reception of light through the radiation transparent windows of said mated housings and receptacles, and through the appendage of said patient.

7. The pulse oximeter system of claim 1, wherein said light emitter comprises a light emitting diode.

8. The pulse oximeter system of claim 1, wherein said light detector comprises a photocell detector.

9. The disposable bandage apparatus of claim 4, wherein the locking mechanism comprises one or more of a fastener, a hook and loop material, a snap-on connector, a ring, a groove, a notch, a twistable connector, a contoured portion, a threaded connector, a flange, a lever, a tab, an indentation, and a slot.

10. A method of providing a sensor capable of sensing a physiological parameter of a patient, the method comprising:

providing a sensor having first and second modular housings comprising a light emitter and a light detector, respectively;
providing a bandage having adhesive on at least a portion of at least one face thereof, the bandage having first and second receptacles operably attached thereto and configured to matedly engage said first and second modular housings; and
releasably securing said first and second modular housings to said first and second receptacles by one or more engagement mechanisms.

11. The method of claim 10, wherein said providing the sensor comprises providing at least one of said first and second modular housings including a locking element.

12. The method of claim 10, wherein said providing the bandage comprises providing at least one of the first and second receptacles including a locking element.

13. A bandage apparatus configured to receive a sensor for sensing a physiological parameter of a patient, the bandage apparatus comprising first and second receptacles operably attached thereto and configured to matedly engage first and second modular housings of the sensor, said receptacles being releasably securable to the modular housings by one or more engagement mechanisms, and the bandage apparatus comprising adhesive on at least a portion of at least one face thereof.

14. The bandage apparatus of claim 13, wherein at least one of said first and second receptacles comprises at least one of the one or more engagement mechanisms comprising a locking element.

15. The bandage apparatus of claim 13, wherein at least one of the first and second receptacles comprises at least one of the one or more engagement mechanisms comprising a fastener.

16. The bandage apparatus of claim 13, wherein the one or more engagement mechanisms comprise a hook-and-loop type material.

17. The bandage apparatus of claim 13, wherein the one or more engagement mechanisms comprise a snap-on connector.

18. The bandage apparatus of claim 13, wherein the one or more engagement mechanisms comprise a ring.

19. The bandage apparatus of claim 13, wherein the one or more engagement mechanisms comprise a groove.

20. The bandage apparatus of claim 13, wherein the one or more engagement mechanisms comprise a notch.

21. The bandage apparatus of claim 13, wherein the one or more engagement mechanisms comprise a twistable connector.

22. The bandage apparatus of claim 13, wherein the one or more engagement mechanisms comprise a contoured portion of a receptacle.

23. The bandage apparatus of claim 13, wherein the one or more engagement mechanisms comprise a threaded connector.

24. The bandage apparatus of claim 13, wherein the one or more engagement mechanisms comprise a flange.

25. The bandage apparatus of claim 13, wherein the one or more engagement mechanisms comprise a lever.

26. The bandage apparatus of claim 13, wherein the one or more engagement mechanisms comprise a tab.

27. The bandage apparatus of claim 13, wherein the one or more engagement mechanisms comprise an indentation.

28. The bandage apparatus of claim 13, wherein the one or more engagement mechanisms comprise a slot.

29. A probe system for sensing a physiological parameter of a patient comprising a disposable adhesive bandage apparatus having first and second receptacles mounted thereon and being adapted to matedly engage, and lock into place, first and second housings of a probe component, the first housing comprising a light emitter and the second housing comprising a light detector, wherein said disposable adhesive bandage apparatus can be positioned upon a patient to allow for the transmission and reception of a signal through an appendage of the patient.

30. The probe system of claim 29, wherein at least one of the first and second receptacles comprises an engagement mechanism including a hook-and-loop type material.

31. The probe system of claim 29, wherein at least one of the first and second receptacles comprises an engagement mechanism including a snap-on connector.

32. The probe system of claim 29, wherein at least one of the first and second receptacles comprises an engagement mechanism including a ring.

33. The probe system of claim 29, wherein at least one of the first and second receptacles comprises an engagement mechanism including a groove.

34. The probe system of claim 29, wherein at least one of the first and second receptacles comprises an engagement mechanism including a notch.

35. The probe system of claim 29, wherein at least one of the first and second receptacles comprises an engagement mechanism including a twistable connector.

36. The probe system of claim 29, wherein at least one of the first and second receptacles comprises an engagement mechanism including a contoured portion of the receptacle.

37. The probe system of claim 29, wherein at least one of the first and second receptacles comprises an engagement mechanism including a threaded connector.

38. The probe system of claim 29, wherein at least one of the first and second receptacles comprises an engagement mechanism including a flange.

39. The probe system of claim 29, wherein at least one of the first and second receptacles comprises an engagement mechanism including a lever.

40. The probe system of claim 29, wherein at least one of the first and second receptacles comprises an engagement mechanism including a tab.

41. The probe system of claim 29, wherein at least one of the first and second receptacles comprises an engagement mechanism including an indentation.

42. The probe system of claim 29, wherein at least one of the first and second receptacles comprises an engagement mechanism including a slot.

43. A method of sensing a physiological parameter of a patient comprising:

providing an adhesive bandage apparatus comprising at least two receptacles mounted thereon, said at least two receptacles each having at least one aperture or radiation transparent window therein;
matedly engaging, and locking into place, at least a first of said receptacles with a first housing of a pulse oximeter probe, said first housing containing, or having mounted thereon, at least one light emitting diode;
matedly engaging, and locking into place, at least a second of said receptacles with a second housing of a pulse oximeter probe, said second housing containing, or having mounted thereon, at least one photocell detector;
transmitting and receiving light through the apertures or radiation transparent windows of said first and second housings and receptacles, and through the appendage of a patient.

44. The method of claim 43, additionally comprising:

disengaging at least the first of said receptacles from the first housing of the pulse oximeter probe; and
disengaging at least the second of said receptacles from the second housing of the pulse oximeter probe.
Referenced Cited
U.S. Patent Documents
3463142 August 1969 Harte et al.
3647299 March 1972 Lavallee
3740570 June 1973 Kaelin et al.
3799672 March 1974 Vurek
4086915 May 2, 1978 Kofsky et al.
4169976 October 2, 1979 Cirri
4182977 January 8, 1980 Stricklin, Jr.
4308456 December 29, 1981 van Der Gaag et al.
4346590 August 31, 1982 Brown
4407290 October 4, 1983 Wilber
4449821 May 22, 1984 Lee
4480886 November 6, 1984 Bergamin
4580867 April 8, 1986 Wright et al.
4621643 November 11, 1986 New, Jr. et al.
4653498 March 31, 1987 New, Jr. et al.
4685464 August 11, 1987 Goldberger et al.
4700708 October 20, 1987 New, Jr. et al.
4770179 September 13, 1988 New, Jr. et al.
4830014 May 16, 1989 Goodman et al.
4848901 July 18, 1989 Hood, Jr.
4865038 September 12, 1989 Rich et al.
4877322 October 31, 1989 Hill
4913150 April 3, 1990 Cheung et al.
4942877 July 24, 1990 Sakai et al.
4960128 October 2, 1990 Gordon et al.
4964408 October 23, 1990 Hink et al.
5041187 August 20, 1991 Hink et al.
5058588 October 22, 1991 Kaestle
5069213 December 3, 1991 Polczynski
5090410 February 25, 1992 Saper et al.
5094240 March 10, 1992 Muz
5113862 May 19, 1992 Mortazavi
5140228 August 18, 1992 Biegel
5158323 October 27, 1992 Yamamoto et al.
5163438 November 17, 1992 Gordon et al.
5170786 December 15, 1992 Thomas et al.
5209230 May 11, 1993 Swedlow et al.
5246003 September 21, 1993 DeLonzor
5249576 October 5, 1993 Goldberger et al.
5267562 December 7, 1993 Ukawa et al.
5273041 December 28, 1993 Richards et al.
5279295 January 18, 1994 Martens et al.
5287853 February 22, 1994 Vester et al.
5308919 May 3, 1994 Minnich
5337744 August 16, 1994 Branigan
5341805 August 30, 1994 Stavridi et al.
D353195 December 6, 1994 Savage et al.
D353196 December 6, 1994 Savage et al.
5377676 January 3, 1995 Vari et al.
5387122 February 7, 1995 Goldberger et al.
5397247 March 14, 1995 Aoki et al.
D359546 June 20, 1995 Savage et al.
5431170 July 11, 1995 Mathews
D361840 August 29, 1995 Savage et al.
5437275 August 1, 1995 Amundsen et al.
D362063 September 5, 1995 Savage et al.
5452717 September 26, 1995 Branigan et al.
D363120 October 10, 1995 Savage et al.
5456252 October 10, 1995 Vari et al.
5482036 January 9, 1996 Diab et al.
5490505 February 13, 1996 Diab et al.
5494043 February 27, 1996 O'Sullivan et al.
5507286 April 16, 1996 Solenberger
5515169 May 7, 1996 Cargill et al.
5533511 July 9, 1996 Kaspari et al.
5561275 October 1, 1996 Savage et al.
5590649 January 7, 1997 Caro et al.
5602924 February 11, 1997 Durand et al.
5619992 April 15, 1997 Guthrie et al.
5632272 May 27, 1997 Diab et al.
5638816 June 17, 1997 Kiani-Azarbayjany et al.
5638818 June 17, 1997 Diab et al.
5645440 July 8, 1997 Tobler et al.
5660567 August 26, 1997 Nierlich et al.
5664270 September 9, 1997 Bell et al.
5673693 October 7, 1997 Solenberger
5678544 October 21, 1997 DeLonzor et al.
5685299 November 11, 1997 Diab et al.
D393830 April 28, 1998 Tobler et al.
5743262 April 28, 1998 Lepper, Jr. et al.
5758644 June 2, 1998 Diab et al.
5760910 June 2, 1998 Lepper, Jr. et al.
5769785 June 23, 1998 Diab et al.
5782757 July 21, 1998 Diab et al.
5785659 July 28, 1998 Caro et al.
5786592 July 28, 1998 Hök
5791347 August 11, 1998 Flaherty et al.
5810734 September 22, 1998 Caro et al.
5817008 October 6, 1998 Rafert et al.
5817010 October 6, 1998 Hibl
5823950 October 20, 1998 Diab et al.
5830131 November 3, 1998 Caro et al.
5833618 November 10, 1998 Caro et al.
RE36000 December 22, 1998 Swedlow et al.
5860919 January 19, 1999 Kiani-Azarbayjany et al.
5879373 March 9, 1999 Roper et al.
5890929 April 6, 1999 Mills et al.
5904654 May 18, 1999 Wohltmann et al.
5910108 June 8, 1999 Solenberger
5919133 July 6, 1999 Taylor et al.
5919134 July 6, 1999 Diab
5934925 August 10, 1999 Tobler et al.
5940182 August 17, 1999 Lepper, Jr. et al.
5991648 November 23, 1999 Levin
5995855 November 30, 1999 Kiani et al.
5997343 December 7, 1999 Mills et al.
5999834 December 7, 1999 Wang et al.
6002952 December 14, 1999 Diab et al.
6011986 January 4, 2000 Diab et al.
6014576 January 11, 2000 Raley
6027452 February 22, 2000 Flaherty et al.
6036642 March 14, 2000 Diab et al.
6045509 April 4, 2000 Caro et al.
6061584 May 9, 2000 Lovejoy et al.
6067462 May 23, 2000 Diab et al.
6081735 June 27, 2000 Diab et al.
6088607 July 11, 2000 Diab et al.
6110522 August 29, 2000 Lepper, Jr. et al.
6124597 September 26, 2000 Shehada
6144868 November 7, 2000 Parker
6151516 November 21, 2000 Kiani-Azarbayjany et al.
6152754 November 28, 2000 Gerhardt et al.
6157850 December 5, 2000 Diab et al.
6165005 December 26, 2000 Mills et al.
6184521 February 6, 2001 Coffin, IV et al.
6206830 March 27, 2001 Diab et al.
6229856 May 8, 2001 Diab et al.
6232609 May 15, 2001 Snyder et al.
6236872 May 22, 2001 Diab et al.
6256523 July 3, 2001 Diab et al.
6263222 July 17, 2001 Diab et al.
6278522 August 21, 2001 Lepper, Jr. et al.
6280213 August 28, 2001 Tobler et al.
6285896 September 4, 2001 Tobler et al.
6308089 October 23, 2001 von der Ruhr et al.
6321000 November 20, 2001 King
6321100 November 20, 2001 Parker
6334065 December 25, 2001 Al-Ali et al.
6343224 January 29, 2002 Parker
6349228 February 19, 2002 Kiani et al.
6360114 March 19, 2002 Diab et al.
6368283 April 9, 2002 Xu et al.
6371921 April 16, 2002 Caro et al.
6377829 April 23, 2002 Al-Ali
6381489 April 30, 2002 Ashibe
6388240 May 14, 2002 Schulz et al.
6397091 May 28, 2002 Diab et al.
6430525 August 6, 2002 Weber et al.
6463311 October 8, 2002 Diab
6470199 October 22, 2002 Kopotic et al.
6501975 December 31, 2002 Diab et al.
6505059 January 7, 2003 Kollias et al.
6515273 February 4, 2003 Al-Ali
6519487 February 11, 2003 Parker
6525386 February 25, 2003 Mills et al.
6526300 February 25, 2003 Kiani et al.
6541756 April 1, 2003 Schulz et al.
6542764 April 1, 2003 Al-Ali et al.
6580086 June 17, 2003 Schulz et al.
6584336 June 24, 2003 Ali et al.
6595316 July 22, 2003 Cybulski et al.
6597932 July 22, 2003 Tian et al.
6597933 July 22, 2003 Kiani et al.
6606511 August 12, 2003 Ali et al.
6632181 October 14, 2003 Flaherty et al.
6639668 October 28, 2003 Trepagnier
6640116 October 28, 2003 Diab
6643530 November 4, 2003 Diab et al.
6650917 November 18, 2003 Diab et al.
6654624 November 25, 2003 Diab et al.
6658276 December 2, 2003 Diab et al.
6661161 December 9, 2003 Lanzo et al.
6671531 December 30, 2003 Al-Ali et al.
6678543 January 13, 2004 Diab et al.
6684090 January 27, 2004 Ali et al.
6684091 January 27, 2004 Parker
6697656 February 24, 2004 Al-Ali
6697657 February 24, 2004 Shehada et al.
6697658 February 24, 2004 Al-Ali
RE38476 March 30, 2004 Diab et al.
6699194 March 2, 2004 Diab et al.
6714804 March 30, 2004 Al-Ali et al.
RE38492 April 6, 2004 Diab et al.
6721582 April 13, 2004 Trepagnier et al.
6721585 April 13, 2004 Parker
6725075 April 20, 2004 Al-Ali
6728560 April 27, 2004 Kollias et al.
6735459 May 11, 2004 Parker
6745060 June 1, 2004 Diab et al.
6760607 July 6, 2004 Al-All
6770028 August 3, 2004 Ali et al.
6771994 August 3, 2004 Kiani et al.
6792300 September 14, 2004 Diab et al.
6813511 November 2, 2004 Diab et al.
6816741 November 9, 2004 Diab
6822564 November 23, 2004 Al-Ali
6826419 November 30, 2004 Diab et al.
6830711 December 14, 2004 Mills et al.
6850787 February 1, 2005 Weber et al.
6850788 February 1, 2005 Al-Ali
6852083 February 8, 2005 Caro et al.
6861639 March 1, 2005 Al-Ali
6898452 May 24, 2005 Al-Ali et al.
6920345 July 19, 2005 Al-Ali et al.
6931268 August 16, 2005 Kiani-Azarbayjany et al.
6934570 August 23, 2005 Kiani et al.
6939305 September 6, 2005 Flaherty et al.
6943348 September 13, 2005 Coffin IV
6950687 September 27, 2005 Al-Ali
6961598 November 1, 2005 Diab
6970792 November 29, 2005 Diab
6979812 December 27, 2005 Al-Ali
6985764 January 10, 2006 Mason et al.
6993371 January 31, 2006 Kiani et al.
6996427 February 7, 2006 Ali et al.
6999904 February 14, 2006 Weber et al.
7003338 February 21, 2006 Weber et al.
7003339 February 21, 2006 Diab et al.
7015451 March 21, 2006 Dalke et al.
7024233 April 4, 2006 Ali et al.
7027849 April 11, 2006 Al-Ali
7030749 April 18, 2006 Al-Ali
7039449 May 2, 2006 Al-Ali
7041060 May 9, 2006 Flaherty et al.
7044918 May 16, 2006 Diab
7067893 June 27, 2006 Mills et al.
7096052 August 22, 2006 Mason et al.
7096054 August 22, 2006 Abdul-Hafiz et al.
7132641 November 7, 2006 Schulz et al.
7142901 November 28, 2006 Kiani et al.
7149561 December 12, 2006 Diab
7186966 March 6, 2007 Al-Ali
7190261 March 13, 2007 Al-Ali
7215984 May 8, 2007 Diab
7215986 May 8, 2007 Diab
7221971 May 22, 2007 Diab
7225006 May 29, 2007 Al-Ali et al.
7225007 May 29, 2007 Al-Ali et al.
RE39672 June 5, 2007 Shehada et al.
7239905 July 3, 2007 Kiani-Azarbayjany et al.
7245953 July 17, 2007 Parker
7254431 August 7, 2007 Al-Ali
7254433 August 7, 2007 Diab et al.
7254434 August 7, 2007 Schulz et al.
7272425 September 18, 2007 Al-Ali
7274955 September 25, 2007 Kiani et al.
D554263 October 30, 2007 Al-Ali
7280858 October 9, 2007 Al-Ali et al.
7289835 October 30, 2007 Mansfield et al.
7292883 November 6, 2007 De Felice et al.
7295866 November 13, 2007 Al-Ali
7328053 February 5, 2008 Diab et al.
7332784 February 19, 2008 Mills et al.
7340287 March 4, 2008 Mason et al.
7341559 March 11, 2008 Schulz et al.
7343186 March 11, 2008 Lamego et al.
D566282 April 8, 2008 Al-Ali et al.
7355512 April 8, 2008 Al-Ali
7371981 May 13, 2008 Abdul-Hafiz
7373193 May 13, 2008 Al-Ali et al.
7373194 May 13, 2008 Weber et al.
7376453 May 20, 2008 Diab et al.
7377794 May 27, 2008 Al-Ali et al.
7377899 May 27, 2008 Weber et al.
7383070 June 3, 2008 Diab et al.
7415297 August 19, 2008 Al-Ali et al.
7428432 September 23, 2008 Ali et al.
7438683 October 21, 2008 Al-Ali et al.
7440787 October 21, 2008 Diab
7454240 November 18, 2008 Diab et al.
7467002 December 16, 2008 Weber et al.
7469157 December 23, 2008 Diab et al.
7471969 December 30, 2008 Diab et al.
7471971 December 30, 2008 Diab et al.
7483729 January 27, 2009 Al-Ali et al.
7483730 January 27, 2009 Diab et al.
7489958 February 10, 2009 Diab et al.
7496391 February 24, 2009 Diab et al.
7496393 February 24, 2009 Diab et al.
D587657 March 3, 2009 Al-Ali et al.
7499741 March 3, 2009 Diab et al.
7499835 March 3, 2009 Weber et al.
7500950 March 10, 2009 Al-Ali et al.
7509154 March 24, 2009 Diab et al.
7509494 March 24, 2009 Al-Ali
7526328 April 28, 2009 Diab et al.
7530942 May 12, 2009 Diab
7530949 May 12, 2009 Al Ali et al.
7530955 May 12, 2009 Diab et al.
7563110 July 21, 2009 Al-Ali et al.
7596398 September 29, 2009 Al-Ali et al.
20040147824 July 29, 2004 Diab et al.
20050245797 November 3, 2005 Al-Ali et al.
20070123763 May 31, 2007 Al-Ali et al.
20070244378 October 18, 2007 Al-Ali et al.
20080009691 January 10, 2008 Parker
Foreign Patent Documents
745306 May 2000 AU
784021 May 2006 AU
2 346 639 April 2000 CA
2 366 493 November 2002 CA
019 478 November 1980 EP
0 745 348 December 1996 EP
0 745 348 December 1996 EP
1 222 894 July 2002 EP
1 683 478 November 2007 EP
5275746 October 1993 JP
3981271 July 2007 JP
WO 88/10462 December 1998 WO
WO 99/53831 October 1999 WO
WO 00/21433 April 2000 WO
WO 00/42911 July 2000 WO
WO 01/03574 January 2001 WO
Other references
  • Copending U.S. Appl. No. 11/404,123, filed Apr. 13, 2006, and pending claims.
  • Copending U.S. Appl. No. 11/774,446, filed Jul. 6, 2007, and pending claims.
  • Copending U.S. Appl. No. 12/573,851, filed Oct. 5, 2009, and pending claims.
Patent History
Patent number: RE41912
Type: Grant
Filed: May 11, 2006
Date of Patent: Nov 2, 2010
Assignee: Masimo Corporation (Irvine, CA)
Inventor: Brent Parker (Murrieta, CA)
Primary Examiner: Eric F Winakur
Attorney: Knobbe Martens Olson & Bear, LLP
Application Number: 11/432,798