CROSS-REFERENCE TO RELATED PATENT APPLICATIONS This application is a U.S. National Stage Application of PCT/US2018/054412, International Filing Date Oct. 4, 2018 and which claims benefit of priority to U.S. Provisional Patent Application No. 62/573,546, filed Oct. 17, 2017, which is incorporated by reference for all purposes.
STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT This invention was made with Government support under National Institutes of Health Grant No. R01 GM093008-07 and National Science Foundation award number 1557812. The government has certain rights in this invention.
SEQUENCE LISTING The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Mar. 25, 2020, is named 081906-1180048_SL.txt and is 373,832 bytes in size.
BACKGROUND OF THE INVENTION Pathogens and pests cause diseases on humans, animals and plants, posing serious threats to global health and crop production. Animal and plant hosts have also evolved various immune mechanisms to fight against infection. It has been long known that proteins and metabolites, such as effectors from the pathogens and pests (Cui, H. T. et al., Annual Review of Plant Biology, Vol 66 66, 487-511, doi:10.1146/annurev-arplant-050213-040012 (2015); Stuart, J., Curr Opin Insect Sci 9, 56-61, doi: 10.1016/j.cois.2015.02.010 (2015)), or antimicrobial molecules from the hosts (Lehrer, R. I. and Ganz, T., Current opinion in immunology 11, 23-27 (1999); Hegedus, N. and Marx, F., Fungal Biol Rev 26, 132-145, doi:10.1016/j.fbr.2012.07.002 (2013)), move from pathogens/pests to hosts and vice versa to manipulate cellular processes and protein functions in the interacting organism. Recently, it has been established that mobile small RNAs (s R N A s) can induce gene silencing in interacting organisms, a phenomenon called cross-kingdom RNAi or cross-organism RNAi (Weiberg, A. et al., Current opinion in biotechnology 32, 207-215, doi:10.1016/j.copbio.2014.12.025 (2015); Wang, M. et al., Curr Opin Plant Biol 38, 133-141, doi:10.1016/j.pbi.2017.05.003 (2017); Buck, A. H. et al., Nature communications 5, 5488, doi:10.1038/ncomms6488 (2014)). But how do these mobile sRNAs travel across the boundaries between organisms? Within the bodies of animal organisms, sRNAs are transported between cells and systemically by a variety of mechanisms, including extracellular vesicles (EVs), specific transmembrane proteins, high-density lipoprotein complexes, gap junctions, and other transport mechanisms (Mittelbrunn, M. and Sanchez-Madrid, F., Nature reviews. Molecular cell biology 13, 328-335, doi:10.1038/nrm3335 (2012)). In most animal circulation systems and body fluids, a class of extracellular vesicles called exosomes play an important role in sRNA trafficking and host immunity. For example, mammalian cells, such as B-cells, T-cells, or dendritic cells secrete sRNA-containing exosomes and transport sRNAs into recipient cells to modulate immunity (Robbins, P. D. and Morelli, A. E., Nature reviews. Immunology 14, 195-208, doi:10.1038/nri3622 (2014)). Within a plant, sRNAs travel systemically through vasculature or move from cell to cell likely through cytoplasmic channels called plasmodesmata (Molnar, A. et al., Science 328, 872-875, doi:10.1126/science.1187959 (2010)). Much less is known about the sRNA trafficking pathways between interacting organisms. A case in point is the gastrointestinal nematode Heligmosomoides polygyrus that secretes exosomes to transport miRNAs into mammalian cells to suppress host immunity (Buck, A. H. et al., Nature communications 5, 5488, doi:10.1038/ncomms6488 (2014)). In contrast, the mechanism by which sRNAs are transported from hosts to interacting pathogens and pests is unclear.
In the case of plants interacting with their pathogens and pests, it has been observed in many pathosystems that sRNAs derived from transgenes can successfully move from plant cells and silence virulence genes of their invaders to inhibit infection. This so-called host-induced gene silencing has become an effective method for crop protection (Wang, M. et al., Curr Opin Plant Biol 38, 133-141, doi:10.1016/j.pbi.2017.05.003 (2017); Nunes, C. C. and Dean, R. A., Molecular Plant Pathology 13, 519-529, doi:10.1111/j.1364-3703.2011.00766.x (2012)). However, studies of cross-kingdom trafficking of plant endogenous sRNAs are still limited, and have mostly concerned abundant microRNAs (miRNAs) (Zhang, T. et al., Nature plants 2, 16153, doi:10.1038/nplants.2016.153 (2016); Zhu, K. et al., PLoS Genet 13, e1006946, doi:10.1371/journal.pgen.1006946 (2017)). This is likely attributable to the challenges associated with separating and purifying pathogen cells from infected tissues.
BRIEF SUMMARY OF THE INVENTION The present application provides for plants (or a plant cell, seed, flower, leaf, fruit, or other plant part from such plants or processed food or food ingredient from such plants) comprising a heterologous expression cassette, the expression cassette comprising a promoter operably linked to a polynucleotide that inhibits fungal expression of one or more target genes as listed in Table 1 or Table 2, wherein the plant has increased resistance to a fungal pathogen compared to a control plant lacking the expression cassette.
In some embodiments, the plant comprises two, three, four or more heterologous expression cassettes, wherein each expression cassette comprises a polynucleotide inhibits fungal expression of a distinct fungal target gene. In some embodiments, the plant comprises one or more heterologous expression cassettes for expressing two, three, four or more polynucleotides that inhibit fungal expression of distinct fungal target gene (e.g., two or more fungal target genes from a species of fungal pathogen).
In some embodiments, the polynucleotide comprises an antisense nucleic acid or inhibitory RNA (RNAi) that targets one or more target genes of Table 1 or Table 2 (including any sequences set forth herein) or a fragment thereof (e.g., a sequence of at least 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500 or more contiguous nucleotides of a target gene of Table 1 or Table 2). In some embodiments, the polynucleotide comprises a nucleic acid having a sequence that is identical or complementary to at least 15, 20, 25, 30, 35, 40 or more contiguous nucleotides of a target gene of Table 1 or Table 2. In some embodiments, the polynucleotide comprises a double-stranded nucleic acid having a sequence that is identical or substantially similar (at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical) to any of a target gene of Table 1 or Table 2 or a fragment thereof (e.g., at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 450, or at least 500 contiguous nucleotides thereof). In some embodiments, the polynucleotide comprises an inverted repeat of a fragment (e.g., at least 15, 20, 25, 30, 35, 40 or more contiguous nucleotides) of any of a target gene of Table 1 or Table 2, and further comprises a spacer region separating the inverted repeat nucleotide sequences. In some embodiments, the polynucleotide comprises a sequence that is identical or substantially identical (e.g., at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical) to one or more target genes of Table 1 or Table 2, or a fragment thereof, or a complement thereof.
The present application also provides for plants (or a plant cell, seed, flower, leaf, fruit, or other plant part from such plants or processed food or food ingredient from such plants) comprising a heterologous expression cassette, the expression cassette comprising a promoter operably linked to a polynucleotide that inhibits fungal expression of one or more target genes of Table 1 or Table 2, wherein the plant has increased resistance to a fungal pathogen compared to a control plant lacking the expression cassette.
In some embodiments, the pathogen is Botrytis. In some embodiments, the pathogen is Botrytis spp. In some embodiments, the pathogen is B. cinerea. In some embodiments, the pathogen is Verticillium spp. In some embodiments, the pathogen is V. dahilae. In some embodiments, the pathogen is Sclerotinia spp. In some embodiments, the pathogen is S. sclerotiorum. In some embodiments, the pathogen is Phytophthora spp.
In some embodiments, the promoter is an inducible promoter. In some embodiments, the promoter is pathogen inducible. In some embodiments, the promoter is stress-inducible. In some embodiments, the promoter is a constitutive promoter.
In another aspect, the present invention provides for expression cassettes comprising: a promoter operably linked to a polynucleotide that inhibits expression of one or more target genes of Table 1 or Table 2. In some embodiments, the promoter is heterologous to the polynucleotide. Isolated nucleic acids comprising said expression cassettes are also provided.
In still another aspect, the present invention provides for expression vectors comprising an expression cassette as described herein.
In another aspect, methods of making a pathogen-resistant plant are provided. In some embodiments, the method comprises:
-
- introducing the nucleic acid comprising an expression cassette as described herein into a plurality of plants; and
- selecting a plant comprising the expression cassette.
In some embodiments, the method of making a pathogen-resistant plant comprises: contacting a plant or a plant part with a dsRNA or sRNA duplexes that inhibits fungal expression of one or more target genes of Table 1 or Table 2, wherein the plant has increased resistance to a fungal pathogen compared to a control plant or a plant part that has not been contacted with the RNAs. In some embodiments, the RNAs further comprise a second dsRNA or sRNA duplexes that inhibits fungal expression of a second target gene of Table 1 or Table 2. In some embodiments, the method further comprises contacting the plant with a second or more dsRNAs or sRNA duplexes that inhibits expression of orthologous genes of the targets of Table 1 or Table 2 from another pathogen or multiple other pathogens. In some embodiments, the dsRNA or sRNA are contained within liposomes.
In some embodiments, the method of making a pathogen-resistant plant comprises: contacting a plant or a plant part with a construct comprising a promoter operably linked to a polynucleotide that inhibits fungal expression of a target gene of Table 1 or Table 2, wherein the plant has increased resistance to a fungal pathogen compared to a control plant that has not been contacted with the construct. In some embodiments, the construct further comprises a second polypeptide that inhibits fungal expression of a second target gene of Table 1 or Table 2. In some embodiments, the method further comprises contacting the plant with a second construct comprising a second promoter operably linked to a second polynucleotide that inhibits a second target gene which is a second target gene of Table 1 or Table 2 or an ortholog thereof from another pathogen or multiple other pathogens. In some embodiments, the dsRNA or sRNA are contained within liposomes.
In yet another aspect, methods of cultivating a plurality of pathogen-resistant plants are provided.
In another aspect, synthetic liposome comprising dsRNA or sRNA duplexes that target one or more target genes of Table 1 or 2 from one or more pathogens is provided.
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A-1D: Plant endogenous sRNAs are exported into fungal cells via extracellular vesicles (EVs). FIG. 1A, Microscopic images of purified fungal protoplasts isolated from B. cinerea-infected Arabidopsis using the sequential protoplast purification method. Scale bars, 20 μm. FIG. 1B, TAS1c-siR483, TAS2-siR453, IGN-siR1 and miRNA166 were detected by sRNA RT-PCR in B. cinerea protoplast (BcCol) purified from B. cinerea-infected Arabidopsis. For the control of BcCol (Ctrl), cultured B. cinerea mixed with uninfected leaves was subjected to the same procedure. FIG. 1C, TAS1c-siR483, TAS2-siR453, IGN-siR1 and miRNA166 were detected in EVs isolated from mock-treated and B. cinerea-infected Arabidopsis. FIG. 1D, sRNAs were detected in the EVs following micrococcal nuclease treatment in the presence or absence of 1% Triton-X-100. In FIGS. 1B and 1C, TAS1c-siR585 and TAS2-siR710 were used as controls for TAS1c-siR483 and TAS2-siR453, respectively; IGN-siR107 was used as a control for IGN-siR1; miRNA822 was used as a control for miRNA166. In b-d, Actin genes of B. cinerea and Arabidopsis were used as controls. The ‘total’ lane indicates total RNA extracts from whole leaves.
FIGS. 2A-2F: Tetraspanin-associated exosome-like vesicles (ELVs) were involved in plant endogenous sRNA transport. FIG. 2A, Expression levels of TET8 and TET9 were induced by B. cinerea infection. TET7 and PDF1.2 were used as controls. The Arabidopsis ubiquitin 5 (UBQ5) was used as an internal control. The asterisks indicate the significant difference (two-tail t-test, P<0.01). Error bars indicate the SD of three technical repeats. Similar results were obtained from at least three biological replicates. FIG. 2B, B. cinerea induces accumulation of TET8-associated vesicles at the sites of infection. Arabidopsis leaves expressing TET8-GFP under its native promoter, were stained for 30 minutes with FM4-64 to show extracellular membrane structures, and the plasma membrane of plant and fungal cells. Scale bars, 10 μm. FIG. 2C, Numerous TET8-GFP-associated ELVs that isolated from the apoplastic fluid of TET8-GFP transgenic plants were observed by confocal microscope. Scale bars, 10 μm. FIG. 2D, GFP-labeled TET8 protein was accumulated in the EV fraction. The ‘total’ lanes indicate whole leaf protein extracts. RuBisCo blot was used as a control. FIG. 2E, TET8-GFP-labelled ELVs were taken up by B. cinerea cells. 1% Triton-X-100 treatment eliminated TET8-GFP signals outside of the fungal cells, but did not eliminate the signals inside the fungal cells. Scale bars, 10 μm. FIG. 2F, Plant endogenous sRNAs were detected in B. cinerea cells 2 hours post incubation with ELVs followed by 1% Triton-X-100 treatment. Actin of B. cinerea and Arabidopsis were used as controls.
FIGS. 3A-3E: TET8 and TET9 interact with each other and regulate sRNA secretion and host immunity. FIG. 3A, TET8-CFP with TET9-YFP were co-localized in vesicles that accumulated at the site of fungal infection. Scale bars, 10 μm. FIGS. 3B and 3C, TET8 was co-immunoprecipitated (Co-IP) with TET9. Total proteins (input) were immunoprecipitated with Anti-FLAG M2 affinity gel. FLAG- or GFP-tagged proteins were detected by Western blot using anti-FLAG and anti-GFP antibodies, respectively. FIG. 3D, The tet8 mutant and the amiRNA-TET9/tet8 lines (tet8/9) were more susceptible to B. cinerea than the wild type plants. Relative lesion sizes were measured at 2 dpi using imageJ. Error bars indicate the SD of more than 10 leaves. The asterisks indicate significant difference (two-tail t-test, P<0.01). FIG. 3E, Expression of TAS1c-siR483, TAS2-siR453, IGN-siR1 and miRNA166 was decreased in the purified B. cinerea protoplast (BcCol) isolated from B. cinerea-infected tet8 and tet8 amiRNA-TET9 lines (tet8/9) as compared with that from the wild-type plants. For the control of BcCol (Ctrl), cultured B. cinerea mixed with uninfected leaves was subjected to the same procedure. The B. cinerea-derived sRNA Bc-siR3 0.1, Arabidopsis Actin gene, and B. cinerea Actin gene were used as controls.
FIGS. 4A-4C: Transferred plant endogenous sRNAs suppress B. cinerea virulence genes and reduce fungal pathogenicity. FIG. 4A, The dcl2/3/4 triple mutant exhibited enhanced disease susceptibility to B. cinerea as compared with the wild type plants. Relative lesion sizes were measured at 2 dpi using imageJ. FIG. 4B, Relative expression of B. cinerea target genes of TAS1c-siR483 and TAS2-siR453 was de-repressed in B. cinerea collected from the dcl2/3/4 triple mutant compared with those from wild-type plants. The Actin gene of B. cinerea was used as the internal control. FIG. 4C, Mutant strains of B. cinerea with deletions in TAS1c-siR483 and TAS2-siR453 targets displayed significantly reduced virulence on Arabidopsis leaves. Relative lesion sizes were measured at 3 dpi using imageJ. Fungal biomass was measured by quantitative PCR. In FIGS. 4B and 4C, error bars indicate the SD of three technical repeats of quantitative PCR. Similar results were obtained from at least three biological replicates. In pathogen assays a and c, error bars indicate the SD of over 10 leaves. The asterisks indicate significant difference (two-tail t-test, P<0.01).
FIGS. 5A and 5B: Spraying dsRNAs or sRNA duplexes that targeting fungal genes of the vesicle trafficking pathways on plants efficiently inhibits fungal virulence and growth of B. cinerea (FIG. 5A). Quantification is shown in FIG. 5B.
FIGS. 6A and 6B: (FIG. 6A) Fungal pathogens Sclerotinia sclerotiorum is capable of taking up external RNAs from the environment. (FIG. 6B) SIGS of DCL1/2 or fungal vesicle trafficking genes of S. sclerotiorum inhibit fungal virulence on plants.
FIGS. 7A and 7B: Representations of the plant and fungal cell walls. Plant cell walls (FIG. 7A), mainly composed of cellulose, hemicellulose, pectin, and proteins, can be digested by cellulose and macerozyme. Fungal cell walls (FIG. 7B), mainly compose of chitin, glucans, and proteins, can be digested by lysing enzyme from Trichoderma harzianum.
FIGS. 8A-8C: The structures and the topology of plant tetraspanins TET8 and TET9 are similar to that of human CD63. Images were made by online tool Protter (http://molbiol-tools.ca/Protein_secondary_structure.htm). Conserved cysteines, the plant GCCK/RP motif (SEQ ID NO: 79) and animal CCG motif in EC2 (large extracellular domain) were marked. In plant, a conserved cysteine in EC1 (small extracellular domain) also marked. Potential palmitoylation sites in the transmembrane domains are indicated with red zigzag lines.
FIG. 9: Characterization of the tet8 tet9 knock-down lines. TET9 transcript levels were measured in the 4-week-old tet8 mutant expressing a TET9 artificial miRNA construct and control plants (wild-type [WT], and the tet8 mutant). Quantitative RT-PCR measurements were normalized to Arabidopsis Actin mRNA levels. The asterisks indicate significant difference (two-tail t-test, P<0.01). Lines with strong suppression of TET9 expression were selected for the experiments presented in this study.
FIG. 10: Gene Ontology (GO) enrichment analysis of B. cinerea target genes.
FIGS. 11A and 11B: The expression of B. cinerea target genes of TAS1c-siR483, TAS2-siR453 and IGN-siR1 was analyzed by quantitative RT-PCR. FIG. 11A, The expression of B. cinerea target genes of TAS1c-siR483, TAS2-siR453 and IGN-siR1 was reduced in B. cinerea isolated from infected Arabidopsis leaves as compared with that from grown on the medium. FIG. 11B, Relative expression of the B. cinerea target gene of IGN-siR1 was de-repressed in B. cinerea collected from the dcl2/3/4 triple mutant compared to it from wild-type plants. In FIGS. 11A and 11B, the Actin gene of B. cinerea was used as the internal control. Error bars indicate the SD of three technical replicates. Similar results were obtained from at least three biological replicates. The asterisks indicate significant difference (two-tail t-test, P<0.01).
FIGS. 12A and 12B: The deletion mutant strains of B. cinerea vps51Δ, dcnt1Δ and sac1Δ were generated by homologous recombination. FIG. 12A, Expression levels of each gene in corresponding mutant lines were measured by RT-PCR. The Actin gene of B. cinerea was used as the internal control. FIG. 12B, Bc-vps51Δ and Bc-dcnt1Δ0 mutants showed significantly reduced growth rate after 4 days on medium; however, the Bc-sac1Δ mutant did not show any growth defects when compared with wild-type strains.
FIGS. 13A-13C: At-sRNA overexpression plants exhibited decreased disease susceptibility to B. cinerea as compared with wild type. FIG. 13A, Expression of TAS1c-siR483 and TAS2-siR453 in transgenic overexpression Arabidopsis lines was examined by Northern blot analysis. U6 used as a loading control. Lines with high tasiRNA expression were selected for further experiments. FIG. 13B, Pathogen assays of TAS1c-siR483ox and TAS2-siR453 ox plants. Relative lesion sizes were measured at 3 dpi using imageJ. Error bars indicate the SD of over 10 leaves. FIG. 13C, Bc-VPS51 and Bc-DCTN1 were suppressed in infected TAS1c-siR483ox plants compared to the wild type; Bc-SAC1 was suppressed in infected TAS2-siR453ox plants compared to the wild type, as measured by quantitative RT-PCR. The Actin gene of B. cinerea was used as the internal control. Error bars indicate the SD of three technical replicates. Similar results were obtained from at least three biological replicates. In FIGS. 13B and 13C, the asterisks indicate significant difference (two-tail t-test, P<0.01).
FIGS. 14A and 14B: Plants transfer transgene-derived sRNAs into fungal cells by EVs as well. FIG. 14A, Transgene-derived Bc-DCL1-sRNAs and Bc-DCL2-sRNAs were detected by sRNA RT-PCR in purified B. cinerea protoplasts (BcCol) from B. cinerea-infected Bc-DCL1/2-RNAi plants but not in the mock-treated plants mixed with B. cinerea mycelium before protoplast formation. FIG. 14B, Transgene-derived Bc-DCL1-sRNAs and Bc-DCL2-sRNAs were detected in EVs from B. cinerea-infected Arabidopsis Bc-DCL1/2-RNAi plants. At-siR1003 and Actin genes of B. cinerea and Arabidopsis were used as controls. The ‘total’ lane indicates total RNA extracts from whole leaves.
FIG. 15: Images show that many fungi can take up naked RNAs from the environment, which makes for example spray-induced gene silencing possible to control these fungal pathogens.
FIGS. 16A-16C: Images show the potato late blight oomycete pathogen, which caused Irish famine in 1800—P. infestans—can also take up naked RNAs from the environment. Different cell types have different uptake efficiency.
FIGS. 17A-17E: Treatment with extracellular vesicles isolated from Arabidopsis efficiently suppressed grey mould disease symptoms caused by B. cinerea.
FIG. 18: Images show that liposomes containing fluorescein-labelled Bc-DCL1/2-dsRNAs were taken up efficiently by B. cinerea cells.
FIG. 19: Images show that externally applied liposomes carrying Bc-DCL1/2-dsRNAs remain effective on plants for two weeks to inhibit pathogen virulence on flower petals.
FIG. 20: Images show liposome-protected dsRNAs that target trafficking pathway genes VPS51, DCTN1, and SAC1 were effective for up to 15 days.
FIGS. 21A and 21B: Images show that Phytophthora infestans cysts take up both naked dsRNAs and liposome-protected dsRNAs. Scale bars, 10 μm.
FIG. 22: A schematic drawing shows cationic liposome delivery systems for siRNA delivery (thin-film hydration) (Podesta and Kostarelos, Methods Enzymol. 464:343-54, 2009).
FIGS. 23A and 23B: Schematic drawings and images show sRNA liposome preparation by extrusion method.
DEFINITIONS The term “pathogen-resistant” or “pathogen resistance” refers to an increase in the ability of a plant to prevent or resist pathogen infection or pathogen-induced symptoms. Pathogen resistance can be increased resistance relative to a particular pathogen species or genus (e.g., Botrytis), increased resistance to multiple pathogens, or increased resistance to all pathogens (e.g., systemic acquired resistance). In some embodiments, resistance of a plant to a pathogen is “increased” when one or more symptoms of pathogen infection are reduced relative to a control (e.g., a plant in which a polynucleotide that inhibits expression of a fungal pathogen target gene is not expressed).
“Pathogens” include, but are not limited to, viruses, bacteria, nematodes, fungi, oomycetes or insects (see, e.g., Agrios, Plant Pathology (Academic Press, San Diego, Calif. (1988)). In some embodiments, the pathogen is a fungal pathogen. In some embodiments, the pathogen is Botrytis. In some embodiments, the pathogen is Verticillium. In some embodiments, the pathogen is Sclerotinia. In some embodiments, the pathogen is an oomycete pathogen.
The term “nucleic acid” or “polynucleotide” refers to a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5′ to the 3′ end. Nucleic acids may also include modified nucleotides that permit correct read through by a polymerase and do not significantly alter expression of a polypeptide encoded by that nucleic acid.
The phrase “nucleic acid encoding” or “polynucleotide encoding” refers to a nucleic acid which directs the expression of a specific protein or peptide. The nucleic acid sequences include both the DNA strand sequence that is transcribed into RNA and the RNA sequence that is translated into protein. The nucleic acid sequences include both the full length nucleic acid sequences as well as non-full length sequences derived from the full length sequences. It should be further understood that the sequence includes the degenerate codons of the native sequence or sequences which may be introduced to provide codon preference in a specific host cell.
Two nucleic acid sequences or polypeptides are said to be “identical” if the sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below. “Percentage of sequence identity” is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity. When percentage of sequence identity is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated according to, e.g., the algorithm of Meyers & Miller, Computer Applic. Biol. Sci. 4:11-17 (1988) e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif., USA).
The term “substantial identity” or “substantially identical,” as used in the context of polynucleotide or polypeptide sequences, refers to a sequence that has at least 60% sequence identity to a reference sequence. Alternatively, percent identity can be any integer from 60% to 100%. Exemplary embodiments include at least: 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, as compared to a reference sequence using the programs described herein; preferably BLAST using standard parameters, as described below. One of skill will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like.
For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
A “comparison window,” as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman Add. APL. Math. 2:482 (1981), by the homology alignment algorithm of Needleman and Wunsch J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson and Lipman Proc. Natl. Acad. Sci. (U.S.A.) 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection.
Algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1990) J Mol. Biol. 215: 403-410 and Altschul et al. (1977) Nucleic Acids Res. 25: 3389-3402, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (NCBI) web site. The algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, supra). These initial neighborhood word hits acts as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a word size (W) of 28, an expectation (E) of 10, M=1, N=−2, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a word size (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)).
The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.01, more preferably less than about 10−5, and most preferably less than about 10−20.
The term “complementary to” is used herein to mean that a polynucleotide sequence is complementary to all or a portion of a reference polynucleotide sequence. In some embodiments, a polynucleotide sequence is complementary to at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, at least 75, at least 100, at least 125, at least 150, at least 175, at least 200, or more contiguous nucleotides of a reference polynucleotide sequence. In some embodiments, a polynucleotide sequence is “substantially complementary” to a reference polynucleotide sequence if at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of the polynucleotide sequence is complementary to the reference polynucleotide sequence.
A polynucleotide sequence is “heterologous” to an organism or a second polynucleotide sequence if it originates from a foreign species, or, if from the same species, is modified from its original form. For example, when a promoter is said to be operably linked to a heterologous coding sequence, it means that the coding sequence is derived from one species whereas the promoter sequence is derived another, different species; or, if both are derived from the same species, the coding sequence is not naturally associated with the promoter (e.g., is a genetically engineered coding sequence, e.g., from a different gene in the same species, or an allele from a different ecotype or variety).
An “expression cassette” refers to a nucleic acid construct, which when introduced into a host cell, results in transcription and/or translation of a RNA or polypeptide, respectively. Antisense constructs or sense constructs that are not or cannot be translated are expressly included by this definition. One of skill will recognize that the inserted polynucleotide sequence need not be identical, but may be only substantially similar to a sequence of the gene from which it was derived.
The term “promoter,” as used herein, refers to a polynucleotide sequence capable of driving transcription of a coding sequence in a cell. Thus, promoters used in the polynucleotide constructs of the invention include cis-acting transcriptional control elements and regulatory sequences that are involved in regulating or modulating the timing and/or rate of transcription of a gene. For example, a promoter can be a cis-acting transcriptional control element, including an enhancer, a promoter, a transcription terminator, an origin of replication, a chromosomal integration sequence, 5′ and 3′ untranslated regions, or an intronic sequence, which are involved in transcriptional regulation. These cis-acting sequences typically interact with proteins or other biomolecules to carry out (turn on/off, regulate, modulate, etc.) gene transcription. A “plant promoter” is a promoter capable of initiating transcription in plant cells. A “constitutive promoter” is one that is capable of initiating transcription in nearly all tissue types, whereas a “tissue-specific promoter” initiates transcription only in one or a few particular tissue types. An “inducible promoter” is one that initiates transcription only under particular environmental conditions or developmental conditions.
The term “plant” includes whole plants, shoot vegetative organs and/or structures (e.g., leaves, stems and tubers), roots, flowers and floral organs (e.g., bracts, sepals, petals, stamens, carpels, anthers), ovules (including egg and central cells), seed (including zygote, embryo, endosperm, and seed coat), fruit (e.g., the mature ovary), seedlings, plant tissue (e.g., vascular tissue, ground tissue, and the like), cells (e.g., guard cells, egg cells, trichomes and the like), and progeny of same. The class of plants that can be used in the method of the invention is generally as broad as the class of higher and lower plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, and multicellular algae. It includes plants of a variety of ploidy levels, including aneuploid, polyploid, diploid, haploid, and hemizygous.
Detailed Description of the Invention I. Introduction A number of fungal virulence genes have been discovered. Moreover, it has been found that targeting (reducing) expression of these target genes in fungi will reduce their virulence and thus allow for control of them on plants. In some cases, dsRNAs, sRNA duplexes, sRNAs, antisense molecules or other polynucleotides targeting one or more of these target genes can be contacted to fungal pathogens, thereby reducing the fungal virulence.
Thus, one aspect of the present invention relates to controlling the diseases caused by aggressive fungal and oomycete pathogens by silencing one or more of the target genes of Table 1 or Table 2. In some embodiments, silencing is achieved by generating transgenic plants that express antisense constructs, double stranded RNA, RNA hairpin structures, or RNA duplexes (e.g., RNAi) that target one or more of the target genes of Table 1 or Table 2. In some embodiments, silencing is achieved by contacting (e.g., spraying) plants with sRNA duplexes or double stranded RNAs that target one or more of the target genes of Table 1 or Table 2. In some embodiments, silencing is achieved by contacting (e.g., spraying) plants with sRNA duplexes or double stranded RNAs that target one or more of the target genes from different pathogens.
II. Target Genes of Table 1 or Table 2 In one aspect, methods of inhibiting or silencing expression of one or more of the target genes of Table 1 or Table 2 in fungi are provided. In some embodiments, the method comprises expressing in a plant an expression cassette comprising a promoter operably linked to a polynucleotide that inhibits expression one or more of the target genes of Table 1 or Table 2. In some embodiments, the method comprises contacting the plant with sRNA duplexes or double stranded RNAs that inhibit one or more of the target genes of Table 1 or Table 2. In some embodiments, the polynucleotide comprises an antisense nucleic acid that is complementary to one or more of the target genes of Table 1 or Table 2 or a fragment thereof. In some embodiments, the polynucleotide comprises sRNA duplexes or dsRNAs that target one or more of the target genes of Table 1 or Table 2 or a fragment thereof (optionally from different pathogens). In some embodiments, the polynucleotide sequence comprises an inverted repeat of a sequence targeting one or more of the target genes of Table 1 or Table 2, optionally with a spacer present between the inverted repeat sequences. In some embodiments, the promoter is an inducible promoter. In some embodiments, the promoter is a constitutively active promoter.
In yet another aspect, expression cassettes comprising a promoter operably linked to a polynucleotide that inhibits expression in a pathogen of one or more of the target genes of Table 1 or Table 2, or isolated nucleic acids comprising said expression cassettes, are provided. In some embodiments, the expression cassette comprises a promoter operably linked to a polynucleotide comprising an antisense nucleic acid that is complementary to one or more of the target genes of Table 1 or Table 2 or a fragment thereof. In some embodiments, the expression cassette comprises a promoter operably linked to a polynucleotide comprising a double stranded nucleic acid that targets one or more of the target genes of Table 1 or Table 2 or a fragment thereof. In some embodiments, a plant in which the expression cassette is introduced has increased resistance to the pathogen compared to a control plant lacking the expression cassette.
TABLE 1
Botrytis cinerea target genes that are involved in vesicle trafficking
Gene Target gene Aligned Homolog in
name ID Gene description Targeted by At_siRNA score Sclerotinia
DTCN BC1G_10508 Dynactin protein TAS1c-siR483 (tasiRNA) 4.25 SS1G_04144
VPS51 BC1G_10728 VPS51 family TAS1c-srR483 (tasiRNA) 3.5 SS1G_09028
protein
SAC1 BC1G_08464 Polyphosphoinositide TAS2-siR453 (tasiRNA) 3.5 SS1G_10257
phosphatase
VPS52 BC1G_09781 Vps52/Sac2 family MIR159A (MicroRNA) 4.5 SS1G_01875
protein
Rgd1p BC1G_15133 GTPase activating MIR396A (MicroRNA) 4 SS1G_03990
protein
UFD1 BC1G_10526 Endoplasmic S10018 (IGN) 4.5 SS1G_04151
reticulum-associated
Ubiquitin fusion
degradation protein
UFD1
Integral BC1G_03606 Hypothetical protein S10140 (IGN) 4.5 None
similar to integral
membrane protein
Sec31p BC1G_03372 WH2 motif protein S1353733 (ORF) 3 SS1G_06679
Gyp5p BC1G_04258 GTPase-activating S1353733 (ORF) 4 SS1G_10712
protein
Pan1p BC1G_09414 Cytoskeleton S1353733 (ORF) 3 SS1G_05987
regulatory protein
Srv2p BC1G_14507 Adenylyl cyclase- S1353733 (ORF) 3 SS1G_13327
associated protein
TABLE 2
Botrytis cinerea genes targeted by host sRNAs
Target gene
Target gene Putative function GO_biological Targeted sRNA Aligned alignment
ID of target gene process by sRNA type score sRNA 3′-5′
BC1G_10728 Conserved vesicle TAS1c- tasiRNA 3.5 :||x|x|x|||||||||||x
hypothetical VPS51 transport siR483
protein
BC1G_10508 Predicted dynactin vesicle TAS1c- tasiRNA 4.25 ||||||x:||||||||:|||xx
protein transport siR483
BC1G_08464 Polyphosphoinositide vesicle TAS2- tasiRNA 3.5 :|||||||x||||||x|||||
phosphatase transport siR453
BC1G_15133 Hypothetical vesicle MIR396A miRNA 4 |:|||:||x|||||||||x||
protein similar to transport
GTPase activating
protein
BC1G_09781 Hypothetical vesicle MIR159A miRNA 4.5 ||||x||||:|||||x||||:
protein similar to transport
Vps52/Sac2 family
protein
BC1G_05327 Pyruvate metabolic IGN-siR1 IGN 4.5 x|x|x||||||||||x|||:
carboxylase process
BC1G_15423 Predicted FAD metabolic TAS1c- tasiRNA 3.75 |||x:||||||||||||:||:
binding protein process siR602
BC1G_09454 Retinol metabolic MIR157A miRNA 2.5 x|||||||x|||||||||||:
dehydrogenase 12 process
BC1G_15945 Hypothetical regulation of MIR396A miRNA 4 |:|x|:||||||||||||x||
protein similar to transcription
GAL4-like
transcription factor
BC1G_14887 Histone-lysine N- regulation of MIR396A miRNA 3 :|x||:|||||:|||||||||
methyltransferase transcription
BC1G_07589 Histone-lysine N- regulation of MIR396A miRNA 4.5 x||||||:|||x|||||:|
methyltransferase transcription
BC1G_05475 Hypothetical biosynthetic MIR159B miRNA 4.5 ||x||||:||||||x||||:|
protein similar to process
microcystin
synthetase
BC1G_07401 Botrytis cinerea biosynthetic S10044 TE 4.5 ||x|:|||||||:||||||x|
(B05.10) process
glutaminyl-tRNA
synthetase
BC1G_09015 Dual specificity signal MIR158A miRNA 3.5 |x||||x|:||||||||||:
protein kinase transduction
POM1
BC1G_03832 R3H domain of cell cycle MIR159A miRNA 4 ||||xx|x|||||||||||||
encore-like and
DIP1-like protein
BC1G_09907 Predicted cell wall MIR168 miRNA 4.5 x||x|x||:|||||||||||x
membrane protein biogenesis
involved in the
export of O-antigen
and teichoic acid
BC1G_02544 Hypothetical unknown MIR166A miRNA 4.5 |||x||x|||||||||||x|:
protein similar to
B230380D07Rik
protein
BC1G_11528 Predicted protein unknown MIR159B miRNA 3.5 ||x||||::|||||||:||||
BC1G_11528 Predicted protein unknown MIR159A miRNA 4.5 x|x||||::|||||||:||||
BC1G_04218 Predicted protein unknown MIR396A miRNA 4.25 ||||x:|||||||||x|||||
BC1G_00860 Domain of unknown MIR158A miRNA 4.5 |||x|||x|||||||||x|:
unknown function
(DUF4211) protein
BC1G_04811 redicted protein unknown S10086 IGN 3 ||||x|||||||||:|:|||
BC1G_05162 Predicted protein unknown S10131 ORF 4.5 x|x|||x|:||||||:|||||
BC1G_06835 Predicted protein unknown S10131 ORF 3 |:|x|||x||||||||||||:
BC1G_10526 Endoplasmic vesicle S10018 IGN 4.5 x|:||||x||||||x|||||
reticulum- transport
associatedUbiquitin
fusion degradation
protein UFD1
BC1G_03606 Hypothetical vesicle S10140 IGN 4.5 |x|:|||||||||:|:|||x
protein similar to transport
integral membrane
protein
BC1G_04443 Ketol-acid metabolic S10052 IGN 4 x|x||x|||:||||||||
reductoisomerase process
BC1G_12479 Isopenicillin N metabolic S10117 IGN 4 |||xx||x||||||||||
synthase and related process
dioxygenases
BC1G_06676 Fatty-acid amide metabolic MIR8167 miRNA 4.5 |:|||:|:|||:|x|||||||
hydrolase 1 process
BC1G_12472 Serine threonine- regulation of S10131 ORF 4.5 ||||:|x||||||x|:|||||
protein phosphatase transcription
dullard protein
BC1G_02471 RNA polymerase regulation of S10071 IGN 4 x|||||||||||||||||x||x
III transcription
BC1G_03511 Hypothetical biosynthetic S10083 Anti-ORF 3.5 x|:||x||x||||||||||||
protein similar to process
peptide synthetase
BC1G_03981 Hypothetical regulation of MIR8167 miRNA 4.5 |||:||x|||||||||x||:|
protein similar to transport
sulfate/anion
exchanger
BC1G_14507 70-kDa adenylyl vesicle S1353733 ORF 3 x||x||x||||||||||||||
cyclase-associated transport
protein
BC1G_09414 Protein similar to vesicle S1353733 ORF 3 x||x||x||||||||||||||
actin cytoskeleton- transport
regulatory complex
protein PAN1
BC1G_04258 GTPase-activating vesicle S1353733 ORF 4 x|||||x|||||||||||x||
protein GYPS transport
BC1G_03372 Hypothetical WH2 vesicle S1353733 ORF 3 x||x|||||||||||||||:|
motif protein transport
BC1G_14667 Predicted protein unknown MIR396B miRNA 4.5 ::|x|||x||||||||||||x
BC1G_14204 Predicted protein unknown S1353733 ORF 3.5 |:|xx||x||||||||||:|||
BC1G_10316 Predicted protein unknown S1353733 ORF 4.5 x|:||||:||||x|||||||:
BC1G_05030 Predicted protein unknown S1353733 ORF 4.25 x:||||||||||||x||||||
BC1G_00624 Predicted protein unknown S1353733 ORF 4 x||x||||||||||||||:|x
BC1G_15490 Bifunctional P- metabolic MIR396A miRNA 4.5 |x|:||:|:||||||||x|||
450/NADPH-P450 process *
reductase
BC1G_14979 Hypothetical metabolic S1353733 ORF 3 x||x||x||||||||||||||
protein similar to process
mitochondrial ATP
synthase B
BC1G_14979 Hypothetical metabolic MIR396B miRNA 4 |||||||||:||||||||:|
protein similar to process
mitochondrial ATP
synthase B
BC1G_12936 2-deoxy-D- metabolic MIR396A miRNA 4 |||x|||x||||||||x||||
gluconate 3- process *
dehydrogenase
BC1G_04424 Hypothetical regulation of S1353733 ORF 3 x||x|||x|||||||||||||
protein similar to transcription
ITC1
BC1G_14463 Hypothetical mitotic cell S1353733 ORF 4 x||x||x||||:|||||||||
protein similar to cycle
Usolp
BC1G_10235 Hypothetical mitotic cell S1353733 ORF 4 ||||x||x|||||||||||x||
protein similar to cycle
Smc4p
BC1G_12627 Hypothetical cell wall S1353733 ORF 4.25 ||:||:x|:|||||||||:||
protein similar to biogenesis
cell wall synthesis
protein
BC1G_09656 Hypothetical cell wall S1353733 ORF 4.5 x||x|||:||||||||||:|x
protein similar to biogenesis
HKR1
BC1G_07658 Hypothetical RNA catabolic S1353733 ORF 4.5 |::|:||||||:||||||:|:
protein similar to process
endoglucanase IV
BC1G_02429 Ribonuclease HI RNA catabolic S1353733 ORF 4 x|||:|||:||:|||||:|||
large subunit process
BC1G_09103 Botrytis cinerea cell cycle S1092315 TE 4.5 ||x||||||:||:|||||||x|
(B05.10)
hypothetical protein
similar to cell
division cycle
mutant
BC1G_02638 Cell cycle cell cycle S1353733 ORF 4.5 x||x||x|||||||:|||||:
checkpoint protein
RAD17
BC1G_02869 Guanine cell S1353733 ORF 4 |||||:|x||x||||||||||:
nucleotide-binding proliferation
protein
G(I)/G(S)/G(T)
subunit beta-1
BC1G_09169 Hypothetical cell S1353733 ORF 4 x||x||x|||||||||||:||
protein similar to proliferation
calpain 2 catalytic
subunit
BC1G_07037 Hypothetical tRNA S519888 ORF 4.5 :|x|||||||||:|||||x||
protein similar to processing
Msf1p
BC1G_10614 Hypothetical cell surface MIR396A miRNA 4.5 :||x|x|x||||||||||||x
protein similar to receptor *
GAMM1 protein signaling
pathway
In some embodiments, the pathogen gene to be targeted or silenced is from a viral, bacterial, fungal, nematode, oomycete, or insect pathogen. In some embodiments, the target gene is from a fungal pathogen. Examples of plant fungal pathogens include, but are not limited to, Botyritis, Verticillium, Magnaporthe, Sclerotinia, Puccinia, Fusarium, Mycosphaerella, Blumeria, and Melampsora. See, e.g., Dean et al., Mol Plant Pathol 13:804 (2012). In some embodiments, the pathogen is Botyritis. In some embodiments, the pathogen is Botyritis cinera. In some embodiments, the pathogen is Verticillium. In some embodiments, the pathogen is V. dahilae. In some embodiments, the pathogen is Sclerotinia.
In some embodiments, one or more of the target genes of Table 1 or Table 2 is targeted, silenced, or inhibited in order to increase resistance to the pathogen in a plant by expressing in the plant, or contacting to the plant, a polynucleotide that inhibits expression of the pathogen target gene(s) or that is complementary to the target gene(s) or a fragment thereof. In some embodiments, the polynucleotide comprises an antisense nucleic acid that is complementary to one or more of the target genes of Table 1 or Table 2 or a fragment thereof. In some embodiments, the polynucleotide comprises a double stranded nucleic acid (e.g., RNA) that targets one or more of the target genes of Table 1 or Table 2, or its promoter, or a fragment thereof. In some embodiments, the polynucleotide comprises a double-stranded nucleic acid having a sequence that is identical or substantially similar (at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical) to one or more of the target genes of Table 1 or Table 2 or a fragment thereof. In some embodiments, a “fragment” of a target gene of Table 1 or Table 2 or promoter thereof comprises a sequence of at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500 or more contiguous nucleotides of the target gene of Table 1 or Table 2 or promoter (e.g., comprises at least (e.g., at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500 or more contiguous nucleotides of one of the sequences provided herein). In some embodiments, the double stranded nucleic acid is a sRNA duplex or a double stranded RNA.
Host-Induced Gene Silencing
In some embodiments, the methods of inhibiting or silencing expression in a fungal pathogen of one or more of the target genes of Table 1 or Table 2 (e.g., RNAs comprising any of SEQ ID NOS: 1-78) utilizes a host-induced gene silencing (HIGS) mechanism for producing in a host plant inhibitory RNA that subsequently moves into the pathogen to inhibit expression of a pathogen gene or region. In some embodiments, HIGS is used to produce in a plant inhibitory RNAs (e.g., sRNAs or double stranded RNA) that target one or more of the target genes of Table 1 or Table 2. In some embodiments, wherein a pathogen has more than one target gene as shown in Table 1 or 2, RIGS is used to produce inhibitory RNAs (e.g., sRNAs) that target two or more of the target genes of the pathogen. In some embodiments, HIGS is used to produce inhibitory RNAs (e.g., sRNAs) against gene targets of multiple pathogens.
The use of HIGS for silencing expression of pathogen genes in plants is described, e.g., in Nowara et al. (Plant Cell (2010) 22:3130-3141); Nunes et al. (Mol Plant Pathol (2012) 13:519-529); and Govindarajulu et al. (Plant Biotechnology Journal (2014) 1-9). Pathogen sRNAs are described, for example, in US 2015/0203865, incorporated by reference herein.
Gene expression may also be suppressed by means of RNA interference (RNAi) (and indeed co-suppression can be considered a type of RNAi), which uses a dsRNA having a sequence identical or similar to the sequence of the target gene. RNAi is the phenomenon in which when a dsRNA having a sequence identical or similar to that of the target gene is introduced into a cell, the expressions of both the inserted exogenous gene and target endogenous gene are suppressed. The dsRNA may be formed from two separate complementary RNAs or may be a single RNA with internally complementary sequences that form a dsRNA or hairpin RNA. Although complete details of the mechanism of RNAi are still unknown, it is considered that the introduced dsRNA is initially cleaved into small fragments, which then serve as indexes of the target gene in some manner, thereby degrading the target gene. RNAi is also known to be effective in plants (see, e.g., Chuang, C. F. & Meyerowitz, E. M., Proc. Natl. Acad. Sci. USA 97: 4985 (2000); Waterhouse et al., Proc. Natl. Acad. Sci. USA 95:13959-13964 (1998); Tabara et al. Science 282:430-431 (1998); Matthew, Comp Funct. Genom. 5: 240-244 (2004); Lu, et al., Nucleic Acids Research 32(21):e171 (2004)). For example, to achieve suppression of expression of one or more of the target genes of Table 1 or Table 2 using RNAi, a gene fragment (e.g., from a target gene) in an inverted repeat orientation with a spacer could be expressed in plants to generate dsRNA having the sequence of an mRNA encoded by one or more of the target genes of Table 1 or Table 2 (e.g., RNAs comprising any of SEQ ID NOS: 1-78), or a substantially similar sequence thereof (including those engineered not to translate the protein) or fragment thereof, is introduced into a plant or other organism of interest. The resulting plants/organisms can then be screened for a phenotype associated with the target protein and/or by monitoring steady-state RNA levels for transcripts encoding the protein from the pathogens. Although the genes used for RNAi need not be completely identical to the target gene, they may be at least 70%, 80%, 90%, 95% or more identical to the target gene sequence. See, e.g., U.S., Patent Publication No. 2004/0029283 for an example of a non-identical siRNA sequence used to suppress gene expression. The constructs encoding an RNA molecule with a stem-loop structure that is unrelated to the target gene and that is positioned distally to a sequence specific for the gene of interest may also be used to inhibit target gene expression. See, e.g., U.S. Patent Publication No. 2003/0221211. Gene silencing in plants by the expression of sRNA duplexes is also described, e.g., in Lu et al., Nucleic Acids Res. 32(21):e171 (2004).
The RNAi polynucleotides can encompass the full-length target RNA or may correspond to a fragment of the target RNA. In some cases, the fragment will have fewer than 100, 200, 300, 400, 500 600, 700, 800, 900 or 1,000 nucleotides corresponding to the target sequence. In addition, in some embodiments, these fragments are at least, e.g., 10, 15, 20, 50, 100, 150, 200, or more nucleotides in length. In some cases, fragments for use in RNAi will be at least substantially similar to coding sequences for regions of a target protein that do not occur in other proteins in the organism or may be selected to have as little similarity to other organism transcripts as possible, e.g., selected by comparison to sequences in analyzing publicly-available sequence databases.
Expression vectors that continually express siRNA in transiently- and stably-transfected cells have been engineered to express hairpin RNAs or double stranded RNAs, which get processed in vivo into siRNAs molecules capable of carrying out gene-specific silencing (Brummelkamp et al., Science 296:550-553 (2002), and Paddison, et al., Genes & Dev. 16:948-958 (2002)). Post-transcriptional gene silencing by dsRNA is discussed in further detail by Hammond et al., Nature Rev Gen 2: 110-119 (2001), Hamilton et al., Science, 286:950-2. 1999, Fire et al., Nature 391: 806-811 (1998) and Timmons and Fire, Nature 395: 854 (1998).
Yet another way to suppress expression of a gene in a plant is by recombinant expression of a microRNA that suppresses the target gene. Artificial microRNAs are single-stranded RNAs (e.g., between 18-25 mers, generally 21 mers), that are not normally found in plants and that are processed from endogenous miRNA precursors. Their sequences are designed according to the determinants of plant miRNA target selection, such that the artificial microRNA specifically silences its intended target gene(s) and are generally described in Schwab et al, The Plant Cell 18:1121-1133 (2006) as well as the internet-based methods of designing such microRNAs as described therein. See also, US Patent Publication No. 2008/0313773.
Spray-Induced Gene Silencing
To avoid generating transgenic plants, another way to suppress expression of a gene in a plant is by application of pathogen gene—targeting dsRNAs, sRNA duplexes or sRNAs to a surface of a plant or part of a plant (e.g., onto a leaf, flower, fruit, or vegetable). For example the dsRNA or sRNA duplexes can be sprayed or otherwise contacted (e.g., by brushing, dipping, etc.) onto the plant surface. Methods of applying dsRNA and sRNA duplex onto external plant parts are described, for example, in Wang et al, Nature Plants, 19; 2:16151 (2016). WO 2013/02560 and in Gan et al., Plant Cell Reports 29:1261-1268 (2010).
In some embodiments, double stranded RNAs, sRNA duplexes or sRNAs can be applied as naked RNAs in an aqueous (e.g., water) solution. In some embodiments, such treatments can be effective up to 8 days or more (see, e.g., Wang et al, Nature Plants, 19; 2:16151 (2016); Koch A, et al., PLoS Pathog. 2016 Oct. 13; 12(10)).
In some embodiments, pathogen gene—targeting dsRNAs or sRNA duplexes can be applied in cationic liposomes, or other artificial lipid nanoparticles that can protect RNA molecules and enhance the pathogen uptake efficiency. For example, some eukaryotic pathogens, such as Botrytis cinerea, can efficiently take up lipid membrane vesicles within 1-2 hours (See, e.g., FIG. 2E).
An exemplary method of forming cationic liposomes comprising dsRNA or sRNA duplexes follows: In some embodiments, the first step is the formation of complexes of a lipid film. This can be achieved for example, by mixing DOTAP, cholesterol, and DSPE-PEG2000 (2:1:0.1). Then, the lipid film can be hydrated using a solution of RNA (e.g., in dextrose or sucrose (w/v)) prepared using RNase-free dH2O, and finally by sonication or extrusion (pass them through membranes that contain pores of a defined size) for size reduction that lead to the formation of PEG-lipid vesicles with embedded dsRNAs or sRNA duplexes. Once loaded on lipid vesicles, the RNAs will not leak out, and can be contacted to plants for long term protection.
In some embodiments, pathogen gene—targeting dsRNAs or sRNAs can be synthesized in planta and extracted from the plant for subsequent use on a target plant. As a non-limiting example, constructs for producing one or more dsRNA or sRNA sequences of interest can be transiently introduced into a plant (e.g., N. benthamiana), for example by infiltration with Agrobacterium. The dsRNA or sRNA sequences are produced by the plant and then RNA is extracted from one or more tissues of the plant in order to extract the dsRNA or sRNA sequences of interest.
Antisense and Sense Technology
In some embodiments, antisense technology is used to silence or inactive one or more of the target genes of Table 1 or Table 2 in a fungal pathogen. The antisense nucleic acid sequence transformed into plants will be substantially identical to at least a fragment of the gene to be silenced. In some embodiments, the antisense nucleic acid sequence that is transformed into plants is identical or substantially identical to one or more of the target genes of Table 1 or Table 2 in the pathogen to be blocked. In some embodiments, the antisense polynucleotide sequence is complementary to the one or more of the target genes of Table 1 or Table 2 (e.g., RNAs comprising any of SEQ ID NOS: 1-78) of the pathogen to be blocked. However, the sequence does not have to be perfectly identical to inhibit expression. Thus, in some embodiments, an antisense polynucleotide sequence that is substantially complementary (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% complementary) to one or more of the target genes of Table 1 or Table 2 to be blocked can be used (e.g., in an expression cassette under the control of a heterologous promoter, which is then transformed into plants such that the antisense nucleic acid is produced).
In some embodiments, an antisense or sense nucleic acid molecule comprising or complementary to only a fragment of one or more of the target genes of Table 1 or Table 2 (e.g., RNAs comprising any of SEQ ID NOS: 1-78) can be useful for producing a plant in which pathogen gene expression is silenced. For example, a sequence of about 15, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 nucleotides can be used.
Catalytic RNA molecules or ribozymes can also be used to inhibit expression of a one or more of the target genes of Table 1 or Table 2 (e.g., RNAs comprising any of SEQ ID NOS: 1-78) of a pathogen. It is possible to design ribozymes that specifically pair with virtually any target RNA and cleave the phosphodiester backbone at a specific location, thereby functionally inactivating the target RNA. In carrying out this cleavage, the ribozyme is not itself altered, and is thus capable of recycling and cleaving other molecules, making it a true enzyme. The inclusion of ribozyme sequences within antisense RNAs confers RNA-cleaving activity upon them, thereby increasing the activity of the constructs.
A number of classes of ribozymes have been identified. One class of ribozymes is derived from a number of small circular RNAs that are capable of self-cleavage and replication in plants. The RNAs replicate either alone (viroid RNAs) or with a helper virus (satellite RNAs). Examples include RNAs from avocado sunblotch viroid and the satellite RNAs from tobacco ringspot virus, lucerne transient streak virus, velvet tobacco mottle virus, solanum nodiflorum mottle virus and subterranean clover mottle virus. The design and use of target RNA-specific ribozymes is described in Haseloff et al. Nature, 334:585-591 (1988).
Another method of suppression is sense suppression (also known as co-suppression). Introduction of expression cassettes in which a nucleic acid is configured in the sense orientation with respect to the promoter has been shown to be an effective means by which to block the transcription of target genes. Generally, where inhibition of expression is desired, some transcription of the introduced sequence occurs. The effect may occur where the introduced sequence contains no coding sequence per se, but only intron or untranslated sequences homologous to sequences present in the primary transcript of the endogenous sequence. The introduced sequence generally will be substantially identical to the sequence intended to be repressed. This minimal identity will typically be greater than about 65% to the target gene sequence (e.g., one or more of the target genes of Table 1 or Table 2), but a higher identity can exert a more effective repression of expression of the endogenous sequences. In some embodiments, sequences with substantially greater identity are used, e.g., at least about 80%, at least about 95%, or 100% identity are used. As with antisense regulation, the effect can be designed and tested so as to not significantly affect expression of other proteins within a similar family of genes exhibiting homology or substantial homology.
For sense suppression, the introduced sequence in the expression cassette, needing less than absolute identity, also need not be full length, relative to either the primary transcription product or fully processed mRNA. This may be preferred to avoid concurrent production of some plants that are overexpressers. A higher identity in a shorter than full length sequence compensates for a longer, less identical sequence. Furthermore, the introduced sequence need not have the same intron or exon pattern, and identity of non-coding segments will be equally effective. In some embodiments, a sequence of the size ranges noted above for antisense regulation is used, e.g., at least about 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500 or more nucleotides.
III. Methods of Making Plants Having Increased Pathogen Resistance In another aspect, methods of making plants having increased pathogen resistance are provided. In some embodiments, the method comprises:
-
- introducing into a plant a heterologous expression cassette comprising a promoter operably linked to a polynucleotide that inhibits fungal expression of one or more of the target genes of Table 1 or Table 2; and
- selecting a plant comprising the expression cassette.
In some embodiments, the method further comprises introducing into the plant a second heterologous expression cassette comprising a second promoter operably linked to a second polynucleotide that inhibits fungal expression of a second target gene of Table 1 or Table 2; and selecting a plant comprising the second expression cassette.
In some embodiments, a plant into which the expression cassette(s) has been introduced has increased pathogen resistance relative to a control plant lacking the expression cassette(s). In some embodiments, a plant into which the expression cassette has been introduced has enhanced resistance to a fungal pathogen (e.g., Botyritis or Verticillium or Sclerotinia) relative to a control plant lacking the expression cassette.
In some embodiments, the promoter is heterologous to the polynucleotide. In some embodiments, the polynucleotide encoding the sRNA-resistant target is operably linked to an inducible promoter. In some embodiments, the promoter is pathogen inducible (e.g., a Botrytis or Verticillium or Sclerotinia inducible promoter). In some embodiments, the promoter is stress inducible (e.g., an abiotic stress inducible promoter).
In some embodiments, the method comprises:
-
- contacting a plurality of plants with a construct comprising a promoter operably linked to a polynucleotide that inhibits fungal expression of a target gene of Table 1 or Table 2, wherein the plant has increased resistance to a pathogen compared to a control plant that has not been contacted with the construct.
In some embodiments, the method further comprises selecting a plant having increased pathogen resistance.
In some embodiments, the method comprises:
-
- contacting a plant or a part of a plant with a dsRNA, sRNA duplexes, or sRNAs that targets a target gene of Table 1 or Table 2, wherein the plant or part of the plant has increased resistance to the pathogen compared to a control plant that has not been contacted with the dsRNAs, sRNAs or sRNA duplexes.
In some embodiments, the method comprises contacting the plant or the part of the plant with two, three, four, five, or more dsRNAs or sRNA duplexes (e.g., siRNAs) or sRNAs for targeting two, three, four, five, or more target gene of Table 1 or Table 2 from one, two, three or more different pathogens.
In some embodiments, the dsRNA or sRNA duplex (e.g., siRNA) or sRNA is sprayed or brushed onto the plant or part of the plant (e.g., onto a leaf, a fruit, or a vegetable).
Liposomes and Cationic Liposome Delivery Systems
Liposomes can be used to deliver dsRNAs or sRNA duplexes (e.g., siRNAs) or sRNAs that target one or more target gene of Table 1 or Table 2, or alternatively, one or more (e.g., two or more) fungal pathogen dicer-like (DCL) transcripts. The dsRNAs or sRNA duplexes or sRNAs can be packaged into liposomes and subsequently sprayed or otherwise contacted to plants in an amount sufficient to inhibit infection or pathogenesis by a fungal pathogen. Exemplary fungal DCL genes are described for example in U.S. patent application Ser. No. 14/809,063, which is incorporated by reference. Exemplary DCLs include those from Botrytis or Verticillium, as described for example in U.S. patent application Ser. No. 14/809,063.
Liposomes are vesicles comprised of concentrically ordered lipid bilayers that typically encapsulate an aqueous phase. Liposomes form when lipids, molecules having a polar head group attached to one or more long chain aliphatic tails, such as phospholipids, are exposed to water. Upon encountering such media, the lipids aggregate to form a structure in which only the polar head groups are exposed to the external media to form an external shell inside which the aliphatic tails are sequestered. A variety of liposome structures can be formed using one or more lipids. Examples of liposome structures include, e.g., small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs), and multilamellar vesicles (MLVs).
Cationic liposomes have a liposomal structure with one or more cationic groups that give a net positive charge. Three methods of siRNA delivery using cationic liposome delivery systems are shown in FIG. 22. Method 1 includes the following steps (see, e.g., Pandi et al., Int J Pharm. 550(1-2):240-250, 2018; Muralidharan et al., J Nanobiotechnology. 14(1):47, 2016; Taruttis et al., Nanoscale. 6(22):13451-6, 2014; and Zou et al., Cancer Gene Ther. 7(5):683-96, 2000): (1) DOTAP and cholesterol (2:1) are dissolved in chloroform:methanol (4:1 v/v) and the organic solvent is evaporated under pressure for 30 min at 40° C. using a rotoevaporator. The resulting thin lipid film is flushed with a stream of N2 to remove any trace of the organic solvent. (2) The lipid film is hydrated in H2O by rapid pipetting to produce large, multilamellar liposomes (MLVs). The MLVs are reduced to small, by extrusion through a 0.4 μm Anotop 10 filter (Whatman, UK). The liposome solution is then incubated at room temperature for a minimum 30 min to allow stabilization. (3) Liposomes and siRNA are diluted separately into 50% final volume. The siRNA is added to the liposome by rapid pipetting to prevent localized high siRNA:liposome concentrations. This is mixed thoroughly by pipetting and brief vortexing. The mixture is then incubated at room temperature for 20 min to allow complexation to occur.
Method 2 includes the following steps (see, e.g., Khatri et al., J Control Release. 182:45-57, 2014; and Amadio et al., Pharmacol Res. 111:713-720, 2016): (1) PEGylated liposomes are prepared using the same protocol in Method 1. Briefly, DSPE-PEG2000 (5 mol %) is dissolved in the organic solvent with DOTAP and cholesterol. The PEGylated liposome is hydrated, reduced in size, and measured in the same way in Method 1. (2) Liposomes and siRNA are diluted separately into 50% final volume. The siRNA is added to the liposome by rapid pipetting to prevent localized high siRNA:liposome concentrations. This is mixed thoroughly by pipetting and brief vortexing. The mixture is then incubated at room temperature for 20 min to allow complexation to occur.
Method 3 includes the following steps (see, e.g., Kedmi et al., Biomaterials. 31(26):6867-75, 2010; Mendez et al., Biomaterials. 35(35):9554-61, 2014; and Tagami et al., J Control Release. 151(2):149-54, 2011): (1) DOTAP, cholesterol, and DSPE-PEG2000 (2:1:0.1) are dissolved in chloroform:methanol (4:1, v/v). The organic solvent is evaporated under pressure at 40° C. for 30 min and the lipid film is flushed with N2 to remove residual solvent. (2) The lipid film is hydrated using a solution of siRNA in RNase-free dH2O. The amount of siRNA used to hydrate the film is calculated from the charge ratio. (3) Size reduction is performed by extrusion through a 0.4 μm Anotop 10 filter (Whatman, UK). The PEGylated liposome/siRNA solution is then incubated at room temperature for a minimum of 30 min to allow stabilization. The complex should be maintained in a sterile environment for subsequent gene silencing experiments.
IV. Polynucleotides and Recombinant Expression Vectors The isolation of polynucleotides of the invention may be accomplished by a number of techniques. For instance, oligonucleotide probes based on the sequences disclosed here can be used to identify the desired polynucleotide in a cDNA or genomic DNA library from a desired plant species. To construct genomic libraries, large segments of genomic DNA are generated by random fragmentation, e.g. using restriction endonucleases, and are ligated with vector DNA to form concatemers that can be packaged into the appropriate vector. Alternatively, cDNA libraries from plants or plant parts (e.g., flowers) may be constructed.
The cDNA or genomic library can then be screened using a probe based upon a sequence disclosed here. Probes may be used to hybridize with genomic DNA or cDNA sequences to isolate homologous genes in the same or different plant species. Alternatively, antibodies raised against a polypeptide can be used to screen an mRNA expression library.
Alternatively, the nucleic acids of interest can be amplified from nucleic acid samples using amplification techniques. For instance, polymerase chain reaction (PCR) technology to amplify the sequences of the genes directly from mRNA, from cDNA, from genomic libraries or cDNA libraries. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences that code for proteins to be expressed, to make nucleic acids to use as probes for detecting the presence of the desired mRNA in samples, for nucleic acid sequencing, or for other purposes. For a general overview of PCR see PCR Protocols: A Guide to Methods and Applications. (Innis, M, Gelfand, D., Sninsky, J. and White, T., eds.), Academic Press, San Diego (1990).
Polynucleotides can also be synthesized by well-known techniques as described in the technical literature. See, e.g., Carruthers et al., Cold Spring Harbor Symp. Quant. Biol. 47:411-418 (1982), and Adams et al., J. Am. Chem. Soc. 105:661 (1983). Double stranded DNA fragments may then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.
Once a polynucleotide sequence that inhibits expression of target gene of Table 1 or Table 2 or a fragment thereof, is obtained, it can be used to prepare an expression cassette for expression in a plant. In some embodiments, expression of the polynucleotide is directed by a heterologous promoter.
Any of a number of means well known in the art can be used to drive expression of the polynucleotide sequence of interest in plants. Any organ can be targeted, such as shoot vegetative organs/structures (e.g. leaves, stems and tubers), roots, flowers and floral organs/structures (e.g. bracts, sepals, petals, stamens, carpels, anthers and ovules), seed (including embryo, endosperm, and seed coat) and fruit. Alternatively, expression can be conditioned to only occur under certain conditions (e.g., using an inducible promoter).
For example, a plant promoter fragment may be employed to direct expression of the polynucleotide sequence of interest in all tissues of a regenerated plant. Such promoters are referred to herein as “constitutive” promoters and are active under most environmental conditions and states of development or cell differentiation. Examples of constitutive promoters include the cauliflower mosaic virus (CaMV) 35S transcription initiation region, the 1′- or 2′-promoter derived from T-DNA of Agrobacterium tumafaciens, and other transcription initiation regions from various plant genes known to those of skill.
Alternatively, the plant promoter may direct expression of the polynucleotide sequence of interest in a specific tissue (tissue-specific promoters) or may be otherwise under more precise environmental control (inducible promoters). Examples of tissue-specific promoters under developmental control include promoters that initiate transcription only in certain tissues, such as leaves or guard cells (including but not limited to those described in WO/2005/085449; U.S. Pat. No. 6,653,535; Li et al., Sci China C Life Sci. 2005 April; 48(2):181-6; Husebye, et al., Plant Physiol, April 2002, Vol. 128, pp. 1180-1188; and Plesch, et al., Gene, Volume 249, Number 1, 16 May 2000, pp. 83-89(7)). Examples of environmental conditions that may affect transcription by inducible promoters include the presence of a pathogen, anaerobic conditions, elevated temperature, or the presence of light.
In some embodiments, the promoter is a constitutive promoter. In some embodiments, the promoter is an inducible promoter. In some embodiments, the promoter is stress inducible (e.g., inducible by abiotic stress). In some embodiments, the promoter is pathogen inducible. In some embodiments, the promoter is induced upon infection by Botyrtis. Non-limiting examples of pathogen inducible promoters include Botyritis-Induced Kinase 1 (BIK1) and the plant defensing gene PDF1.2. See, e.g., Penninckx et al., Plant Cell 10:2103-2113 (1998); see also Veronese et al., Plant Cell 18:257-273 (2006).
In some embodiments, a polyadenylation region at the 3′-end of the coding region can be included. The polyadenylation region can be derived from a NH3 gene, from a variety of other plant genes, or from T-DNA.
The vector comprising the sequences will typically comprise a marker gene that confers a selectable phenotype on plant cells. For example, the marker may encode biocide resistance, particularly antibiotic resistance, such as resistance to kanamycin, G418, bleomycin, hygromycin, or herbicide resistance, such as resistance to chlorosulfuron or Basta.
V. Production of Transgenic Plants As detailed herein, embodiments of the present invention provide for transgenic plants comprising recombinant expression cassettes for expressing a polynucleotide sequence as described herein. In some embodiments, a transgenic plant is generated that contains a complete or partial sequence of a polynucleotide that is derived from a species other than the species of the transgenic plant. It should be recognized that transgenic plants encompass the plant or plant cell in which the expression cassette is introduced as well as progeny of such plants or plant cells that contain the expression cassette, including the progeny that have the expression cassette stably integrated in a chromosome.
In some embodiments, the transgenic plants comprising recombinant expression cassettes for expressing a polynucleotide sequence as described herein have increased or enhanced pathogen resistance compared to a plant lacking the recombinant expression cassette, wherein the transgenic plants comprising recombinant expression cassettes for expressing the polynucleotide sequence have about the same growth as a plant lacking the recombinant expression cassette. Methods for determining increased pathogen resistance are described, e.g., in Section VI below.
A recombinant expression vector as described herein may be introduced into the genome of the desired plant host by a variety of conventional techniques. For example, the DNA construct may be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the DNA construct can be introduced directly to plant tissue using ballistic methods, such as DNA particle bombardment. Alternatively, the DNA construct may be combined with suitable T-DNA flanking regions and introduced into a conventional Agrobacterium tumefaciens host vector. The virulence functions of the Agrobacterium tumefaciens host will direct the insertion of the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria. While transient expression of the polynucleotide sequence of interest is encompassed by the invention, generally expression of construction of the invention will be from insertion of expression cassettes into the plant genome, e.g., such that at least some plant offspring also contain the integrated expression cassette.
Microinjection techniques are also useful for this purpose. These techniques are well known in the art and thoroughly described in the literature. The introduction of DNA constructs using polyethylene glycol precipitation is described in Paszkowski et al. EMBO J. 3:2717-2722 (1984). Electroporation techniques are described in Fromm et al. Proc. Natl. Acad. Sci. USA 82:5824 (1985). Ballistic transformation techniques are described in Klein et al. Nature 327:70-73 (1987).
Agrobacterium tumefaciens-mediated transformation techniques, including disarming and use of binary vectors, are well described in the scientific literature. See, for example, Horsch et al. Science 233:496-498 (1984), and Fraley et al. Proc. Natl. Acad. Sci. USA 80:4803 (1983).
Transformed plant cells derived by any of the above transformation techniques can be cultured to regenerate a whole plant that possesses the transformed genotype and thus the desired phenotype such as enhanced pathogen resistance. Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, typically relying on a biocide and/or herbicide marker which has been introduced together with the desired nucleotide sequences. Plant regeneration from cultured protoplasts is described in Evans et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176, MacMillilan Publishing Company, New York, 1983; and Binding, Regeneration of Plants, Plant Protoplasts, pp. 21-73, CRC Press, Boca Raton, 1985. Regeneration can also be obtained from plant callus, explants, organs, or parts thereof. Such regeneration techniques are described generally in Klee et al. Ann. Rev. of Plant Phys. 38:467-486 (1987).
After the expression cassette is stably incorporated in transgenic plants and confirmed to be operable, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.
The expression cassettes and constructs (e.g., antisense and siRNAs) as described herein can be used to confer increased or enhanced pathogen resistance on essentially any plant. Thus, the invention has use over a broad range of plants, including species from the genera Asparagus, Atropa, Avena, Brassica, Citrus, Citrullus, Capsicum, Cucumis, Cucurbita, Daucus, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Lactuca, Linum, Lolium, Lycopersicon, Malus, Manihot, Majorana, Medicago, Nicotiana, Oryza, Panieum, Pannesetum, Persea, Pisum, Pyrus, Prunus, Raphanus, Secale, Senecio, Sinapis, Solanum, Sorghum, Trigonella, Triticum, Vitis, Vigna, and Zea. In some embodiments, the plant is a tomato plant. In some embodiments, the plant is a vining plant, e.g., a species from the genus Vitis. In some embodiments, the plant is an ornamental plant. In some embodiments, the plant is a vegetable- or fruit-producing plant. In some embodiments, the plant is a monocot. In some embodiments, the plant is a dicot.
VI. Selecting for Plants with Increased Pathogen Resistance Plants (or parts of plants) with increased pathogen resistance can be selected in many ways. One of ordinary skill in the art will recognize that the following methods are but a few of the possibilities. One method of selecting plants or parts of plants (e.g., fruits and vegetables) with increased pathogen resistance is to determine resistance of a plant to a specific plant pathogen. Possible pathogens include, but are not limited to, viruses, bacteria, nematodes, fungi or insects (see, e.g., Agrios, Plant Pathology (Academic Press, San Diego, Calif.) (1988)). One of skill in the art will recognize that resistance responses of plants vary depending on many factors, including what pathogen, compound, or plant is used. Generally, increased resistance is measured by the reduction or elimination of disease symptoms (e.g., reduction in the number or size of lesions or reduction in the amount of fungal biomass on the plant or a part of the plant) when compared to a control plant. In some embodiments, resistance is increased when the number or sizes of lesions or amount of fungal biomass on the plant or on a part of the plant is decreased by at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more relative to a control (e.g., relative to a plant in which a heterologous polynucleotide has not been expressed).
Increased pathogen resistance can also be determined by measuring the increased expression of a gene operably linked a defense related promoter. Measurement of such expression can be measured by quantifying the accumulation of RNA or subsequent protein product (e.g., using northern or western blot techniques, respectively (see, e.g., Sambrook et al. and Ausubel et al.).
VII. Examples Example 1 To identify plant host endogenous mobile sRNAs and to investigate how host sRNAs get into interacting fungal cells, we used an Arabidopsis—B. cinerea interaction system that displays bidirectional sRNA trafficking and RNAi (Weiberg, A. et al. Fungal sRNAs suppress plant immunity by hijacking host RNA interference pathways. (Science 342, 118-123, doi:10.1126/science.1239705 (2013); Wang, M. et al., Nature plants 2, 16151, doi:10.1038/nplants.2016.151 (2016)). Because the cell wall compositions of plants and fungi are different (Cosgrove, D. J., Nature Reviews. Molecular cell biology 6, 850-861, doi:10.1038/nrm1746 (2005); Bowman, S. M. and Free, S. J., Bioessays 28, 799-808, doi:10.1002/bies.20441 (2006)) (FIGS. 7A and 7B), we developed an efficient sequential protoplast purification method to isolate pure fungal cells from infected tissues (FIG. 1A). Weprofiled sRNAs isolated from the purified B. cinerea protoplasts, and identified nearly 80 Arabidopsis host sRNAs in both biological replicates by using 10 normalized reads per million of total reads (RPM) as a cutoff (Supplementary Table 1). To validate the deep sequencing results and to test whether host sRNAs are transported into fungal cells by a selective or concentration-dependent process (more abundant sRNAs are more likely to be transported into fungal cells), we performed sRNA profiling on total RNAs for comparative analysis. We found that although the more abundant sRNAs were more likely to be transported (Supplementary Table 2), there is clear selection in transferred sRNAs. Among the transferred Arabidopsis sRNAs, five were lowly abundant (<10 RPM) in the total sRNA libraries (Supplementary Table 3). Only 29 were present in the hundred most abundant sRNAs in the total sRNA libraries, 16 of which were miRNAs (Supplementary Table 2). miR166, miR159, and miR157 were among the most abundant sRNAs in both B. cinerea protoplast sRNA libraries and total sRNA libraries. Most strikingly, of the two trans-acting small interfering RNAs (tasiRNAs) generated from the same TAS2 mRNA precursor, only TAS2-siR453 was present in the B. cinerea protoplast libraries, although TAS2-siR710 had 30 times higher reads than TAS2-siR453 in the total sRNA libraries. Similarly, TAS1c-siR483, but not TAS1c-siR585, was highly enriched in the B. cinerea protoplast sRNA libraries, although both of them are generated from the same TAS1c mRNA precursor and belong to the top 20 most abundant sRNAs in the total sRNA libraries (Supplementary Table 2 and 3). Furthermore, Arabidopsis sRNAs that derived from an intergenic region, such as IGN-siR1 but not IGN-siR107, were highly enriched in the B. cinerea cells, although IGN-siR107 occurred at higher level in the total sRNA libraries (Supplementary Table 2 and 3). These deep sequencing results were validated by sRNA RT-PCR analysis of two additional biological replicates (FIG. 1B). These results suggest that host endogenous sRNAs are selectively delivered into fungal cells and that it is not simply the most abundant sRNAs that diffuse into the fungal cell.
Extracellular vesicles (EVs) are implicated in sRNA communications between cells and systemic transport in animal systems (Colombo, M. et al., Annu Rev Cell Dev Biol 30, 255-289, doi:10.1146/annurev-cellbio-101512-122326 (2014)). To test whether EV secretion is the mechanism by which plant hosts transfer sRNAs into B. cinerea cells, we profiled sRNAs of EVs isolated from the apoplastic fluids of Arabidopsis leaves using filtration and differential ultra-centrifugation methods. In both of the biological replicates analyzed, TAS2-siR453 and TAS1c-siR483 were accumulated to much higher levels in EVs than either TAS2-siR710 or TAS1c-siR585 (Supplementary Table 2 and 4), consistent with the results obtained from the B. cinerea protoplast samples. miRNAs, such as miR166, that were abundant in both total and B. cinerea protoplast samples were also abundant in the EVs. In contrast, sRNAs, such as miR822, that were abundant in total sRNA populations but below detection levels in the B. cinerea protoplast samples were accumulated to a very low level in EVs (Supplementary Table 2). Furthermore, the sRNAs that derived from intergenic region, such as IGN-siR1, accumulated at a much higher level in EVs than IGN-siR107 (Supplementary Table 2 and 4) indicating a correlation between EVs and B. cinerea protoplast samples. These deep sequencing results were validated by sRNA RT-PCR analysis of two additional biological replicates (FIG. 1C). Among the Arabidopsis sRNAs that transferred into B. cinerea protoplasts, 36 were present in the EV libraries, but 12 sRNAs were not (Supplementary Table 4). These latter sRNAs may utilize an EV-independent pathway to move into fungal cells, or they are still EV-dependent, but just under the level of detection in the EV fraction. To confirm that these sRNAs are indeed inside the EVs instead of simply bound to the surface, we performed nuclease protection assays. TAS1c-siR483 and TAS2-siR453, IGN-siR1 as well as miRNA166 were protected from nuclease digestion unless Triton-X-100 was added to rupture the EV membrane (FIG. 1D). These findings support that plant cells utilize secreted EVs to transfer sRNAs into fungal cells and that secretion is likely mediated by the selective inclusion of sRNAs into EVs.
Animal EVs are classified into different categories, such as exosomes, shedding microvesicles and apoptotic bodies based on their specific protein markers and origins (Mathivanan, S. et al., J Proteomics 73, 1907-1920, doi:10.1016/j.jprot.2010.06.006 (2010)), whereas plant EVs have not been well defined. Because exosomes have been shown to play an important role in transferring miRNAs between animal cells within an organism (Colombo, M. et al., Annu Rev Cell Dev Biol 30, 255-289, doi:10.1146/annurev-cellbio-101512-122326 (2014)) or even between interacting organisms from nematode parasites to mammalian host cells (Buck, A. H. et al., Nature communications 5, 5488, doi: 10.1038/ncomms6488 (2014)), we hypothesize that plants may also employ exosome-like vesicles (ELVs) to transfer sRNAs. Tetraspanins, such as CD63, CD81 and CD9, are small membrane proteins that serve as specific exosome markers in mammalian cells (Mathivanan, S. et al., J Proteomics 73, 1907-1920, doi:10.1016/j.jprot.2010.06.006 (2010)). Arabidopsis has 17 TETRASPANIN (TET)-like genes (Boavida, L. C. et al., Plant Physiol 163, 696-712,doi:10.1104/pp.113.216598 (2013)), but expression analysis reveals that only two closely related tetraspanin genes, TET8 and TET9 (Boavida, L. C. et al., Plant Physiol 163, 696-712,doi:10.1104/pp.113.216598 (2013); Wang, F. et al., Plant Physiol 169, 2200-2214, doi:10.1104/pp.15.01310 (2015)) are highly induced by B. cinerea infection (Ferrari, S. et al., Plant Physiol 144, 367-379, doi:10.1104/pp.107.095596 (2007)) (FIG. 2A), suggesting their potential function in defense responses. The structure and topology of TET8 and TET9 are most similar to the exosome marker CD63 in animals (Boavida, L. C. et al., Plant Physiol 163, 696-712, doi:10.1104/pp.113.216598 (2013)) (FIGS. 8A-8C).
Because TET8 is expressed at a much higher level than TET9 in the leaves and at fungal infection sites (Ferrari, S. et al., Plant Physiol 144, 367-379, doi:10.1104/pp.107.095596 (2007)), we mainly focused on TET8 for subsequent analysis. Short staining by lipophilic dye FM4-64 allows visualization of membrane structures, such as fungal cell membranes and EVs that occur outside of plant cell (Nielsen, M. E. et al., Proc Natl Acad Sci USA 109, 11443-11448, doi:10.1073/pnas.1117596109 (2012)). In transgenic plants expressing TET8-GFP under its native promoter, there was an accumulation of TET8-GFP at the fungal infection sites that were coincident with FM4-64 staining patterns (FIG. 2B). These observations suggest that TET8 is involved in host responses to fungal infection, and that TET8-associated membrane structures/vesicles are likely to be secreted.
To confirm that TET8-associated vesicles are secreted, we isolated the extracellular apoplastic vesicles from transgenic plants expressing TET8-GFP. Numerous TET8-GFP-labeled fluorescent EVs were observed (FIG. 2C). Consistent with this result, an immunoblot for GFP revealed the presence of TET8-GFP exclusively in the ELVs derived from TET8-GFP plants (FIG. 2D). Thus, TET8 serves as a good marker for plant ELVs.
To test whether plant ELVs can be taken up by fungal cells, we isolated EVs from apoplast fluids containing TET8-GFP labeled ELVs and incubated them with B. cinerea cells in vitro. GFP signals were clearly observed in the fungal cells within 2 hours (FIG. 2E). After treatment with 1% Triton-X-100, a procedural step that ruptures all EVs but not fungal cells, the GFP signal still maintained in the fungal cells (FIG. 2E), indicating that B. cinerea cells are capable of taking up plant secreted ELVs. Consistent with the occurrence of ELV uptake by the fungal pathogen, TAS1c-siR483, TAS2-siR453, and miRNA166 were detected inside fungal cells (FIG. 2F). These results support the conclusion that TET8-associated host ELVs are important for host sRNA transfer to fungal cells.
Tetraspanin proteins often interact with each other and form specific membrane microdomains that are essential for their cellular functions (Andreu, Z. and Yanez-Mo, M., Frontiers in immunology 5, 442, doi:10.3389/fimmu.2014.00442 (2014)). As TET9 is the only other Arabidopsis tetraspanin gene that is induced by B. cinerea infection (Ferrari, S. et al., Plant Physiol 144, 367-379, doi:10.1104/pp.107.095596 (2007)) (FIG. 2A), we examined whether TET8 and TET9 interact with each other and function together in response to fungal attack. Indeed, TET8-CFP protein was co-localized with TET9-YFP at the fungal infection sites (FIG. 3A). Interaction of TET8 with TET9 was further confirmed by reciprocal co-immunoprecipitation (Co-IP) in vivo (FIGS. 3B and 3C). To obtain insight into the physiological role of TET8 and TET9, we challenged the loss-of-function mutants with B. cinerea. The tet8 single mutant displayed enhanced susceptibility to fungal infection as compared with the wild type (FIG. 3D). Enhanced susceptible phenotype was potentiated in the double mutant when TET9 was knocked down in the tet8 mutant background (FIG. 3D and FIG. 9). Furthermore, levels of transferred host sRNAs to fungal cells were reduced in tet8, and the tet8tet9 double mutant, even though the total cellular level of these sRNAs was unchanged (FIG. 3E). These results suggest that TET8 and TET9-associated ELVs are important for host sRNA transfer into fungal cells, and contribute to plant immune responses against fungal infection.
To determine whether transferred host sRNAs contribute to host immunity and are functional in the fungal cells, we first performed infection assay on the Arabidopsis siRNA biogenesis triple mutant dcl2/3/4 that showed markedly reduced tasiRNA and heterochromatic siRNA production (Henderson, I. R. et al., Nat Genet 38, 721-725, doi:10.1038/ng1804 (2006); Gasciolli, V. et al., Curr Biol 15, 1494-1500, doi:10.1016/j.cub.2005.07.024 (2005)). Enhanced susceptibility to B. cinerea was observed in the triple mutant as compared with the wild type (FIG. 4A), suggesting that these transferred host tasiRNAs and heterochromatic siRNAs are likely to suppress fungal virulence by target fungal essential genes. We found that at least seventeen of the transferred Arabidopsis sRNAs have predicted target genes in B. cinerea (Supplementary Table 1 and 5). Gene ontology enrichment analysis of these fungal targets revealed a strong bias towards vesicle transport pathways (9 out of 45 genes) (FIG. 10), suggesting that vesicle trafficking is important for fungal virulence. We performed functional analysis on TAS1c-siR483 and TAS2-siR453 and the most abundant siRNA from intergenic region IGN-siR1 in the B. cinerea protoplast sRNA libraries, because they showed clear selective transport into fungal cells (FIGS. 1B and 1C). TAS1c-siR483 and TAS2-siR453 target two B. cinerea genes (BC1G_10728 and BC1G_10508) and one gene (BC1T 08464) respectively, all of which are involved in vesicle transport pathways. BC1G_10728 encodes a vacuolar protein sorting 51 (Bc-Vps51), which is the homolog of the Golgi-associated retrograde protein (GARP)/Vps51 in yeast and the Vps51 subunit in mammals (Bonifacino, J. S. and Hierro, A., Trends Cell Biol 21, 159-167, doi:10.1016/itcb.2010.11.003 (2011); Luo, L. et al., Mol Biol Cell 22, 2564-2578, doi:10.1091/mbc.E10-06-0493 (2011); Liu, Y. et al., PLoS Pathog 7, e1002305, doi:10.1371/journal.ppat.1002305 (2011)). VPS 51 plays a key role in the virulence of Candida albicans, a human fungal pathogen (Liu, Y. et al., PLoS Pathog 7, e1002305, doi:10.1371/journal.ppat.1002305 (2011)). BC1G_10508 encodes the large subunit of the dynactin (DCTN) complex Bc-DCTN1, which is the homolog of Nip 100p in yeast and p150glued in mammals (Steinmetz, M. O. and Akhmanova, A., Trends Biochem Sci 33, 535-545, doi:10.1016/j.tibs.2008.08.006 (2008)). DCTN binds to kinesin II and dynein and coordinates vesicle trafficking (Dell, K. R., The Journal of cell biology 160, 291-293, doi:10.1083/jcb.200301040 (2003); Schroer, T. A., Annu Rev Cell Dev Biol 20, 759-779, doi:10.1146/annurev.cellbio.20.012103.094623 (2004)). BC1T 08464 encodes a suppressor of actin (SAC1)-like phosphoinositide phosphatase that plays an important role in secretory membrane trafficking (Foti, M. et al., Mol Biol Cell 12, 2396-2411(2001); Guo, S. et al., J Biol Chem 274, 12990-12995 (1999)). IGN-siR1 targets BC1G_05327, which encodes pyruvate carboxylase (Bc-PC) that catalyzes the formation of oxaloacetate (OAA), an important intermediate in the tricarboxylic acid cycle (Plassard, C. and Fransson, P., Fungal Biol Rev 23, 30-39, doi:10.1016/j.fbr.2009.08.002 (2009)). OAA is an important precursor of organic acids in fungi, such as oxalate (Plassard, C. and Fransson, P., Fungal Biol Rev 23, 30-39, doi:10.1016/j.fbr.2009.08.002 (2009)), and causes wilting symptoms in infected plants (vanKan, J. A. L., Trends in Plant Science 11, 247-253, doi:10.1016/j.tplants.2006.03.005 (2006)). Indeed, these predicted target genes were indeed down-regulated after infection (FIG. 11A). Relative expression of these predicted B. cinerea target genes was clearly elevated in B. cinerea collected from the infection sites of the dcl2/3/4 triple mutant that has largely reduced levels of tasiRNAs and siRNAs (FIG. 4B and FIG. 11B), supporting specific silencing of fungal genes by transferred plant sRNAs.
To determine the role of these target genes in vesicle trafficking pathways is important for B. cinerea pathogenicity, we attempted to generate mutant strains that deleted these target genes using homologous recombination. We generated vps51Δ,dctn1Δ and sac1Δ mutant strains (FIG. 12A). The vps51Δ and dctn1Δ mutant strains showed reduced virulence on Arabidopsis (FIG. 4C) and reduced growth on media (FIG. 12B). The sac1.4 mutant strain showed reduced virulence on Arabidopsis (FIG. 4C) but no obvious reduced in growth on media (FIG. 12B). Thus, functional study of transferred host sRNAs led to the identification of an important virulence pathway that is essential for fungal infection—the fungal trafficking pathway.
To further confirm the positive effect of the transferred host sRNAs on host plant immunity, we generated transgenic Arabidopsis lines that overexpress TAS1c-siR483 or TAS2-siR453 (FIG. 13A). Both overexpression lines displayed reduced susceptibility to B. cinerea (FIG. 13B). Consistent with the pathogen assay results, reduced expression of fungal target genes was observed in B. cinerea-infected overexpression lines (FIG. 13C). These findings strongly support that these transferred host sRNAs contribute to host immunity.
In this study, we report that plant ELVs play an essential role in cross-kingdom sRNA trafficking between plant host Arabidopsis and interacting fungal pathogen B. cinerea. Arabidopsis has evolved an ELV-mediated sRNA export pathway to deliver its endogenous sRNAs into B. cinerea cells to silence fungal genes involved in vesicle trafficking and reduce fungal virulence. Although such cross-kingdom sRNA trafficking mechanism has not enabled Arabidopsis to fully overcome B. cinerea infection, it has made Arabidopsis one of B. cinerea's least favorite hosts, as many other plants are more susceptible to B. cinerea than Arabidopsis. Functional studies of host mobile sRNAs will help identify novel virulence pathways and genes in the interacting pathogens and pests. Furthermore, since transgene-derived Bc-DCL-targeting sRNAs were detected in EV fractions isolated from transgenic Arabidopsis expressing the Bc-DCL RNAi construct (Wang, M. et al., Nature plants 2, 16151, doi:10.1038/nplants.2016.151 (2016)) (FIGS. 14A and 14B), it appears that transgene-derived sRNAs are delivered by ELV-mediated trafficking pathways as well. The discovery of exosome-mediated cross-kingdom sRNA trafficking mechanisms involved in plant immunity may be useful in developing effective strategies for the delivery of membrane protected RNA with the goal of enhancing the control of pre- and post-harvest diseases in crop species.
Methods and Materials
Plant materials used in this study include the Arabidopsis thaliana ecotype Col-0 and Nicotiana benthamiana. Arabidopsis mutants tet8 (Salk_136039), dcl2-ldcl3-ldcl4-2 (dcl2/3/4) and TET8pro::TET8-GFP lines were described previously (Boavida, L. C. et al., Plant Physiol 163, 696-712, doi:10.1104/pp.113.216598 (2013); Henderson, I. R. et al., Nat Genet 38, 721-725, doi:10.1038/ng1804 (2006)). For a detailed description of transgenic lines, see Methods online.
Isolate Pure Fungal Cells from Infected Plant Leaves.
B. cinerea protoplasts were purified from infected Arabidopsis leaves using a method that takes advantage of the differences between plant and fungi cell wall components (Cosgrove, D. J., Nature reviews. Molecular cell biology 6, 850-861, doi:10.1038/nrm1746 (2005); Bowman, S. M. and Free, S. J., Bioessays 28, 799-808, doi:10.1002/bies.20441 (2006)). A detailed protocol was included in the Methods online.
Extracellular Vesicles Isolation.
Plant extracellular vesicles were isolated from apoplastic fluids and purified by differential ultracentrifugation (Rutter, B. and Innes, R. W., Plant Physiol, doi:10.1104/pp.16.01253 (2016)). For a detailed description, see Methods.
Illumina HiSeq Data Analysis of sRNA Libraries.
The sequences were mapped to Arabidopsis (TAIR10) or B. cinerea B05.10 genomes and only the reads that matched perfectly to each genome will be used for further analysis. Details of sRNA cloning and illumina HiSeq data analysis are provided in Methods.
Materials. Plant materials used in this study include the Arabidopsis thaliana ecotype Col-0 and Nicotiana benthamiana. Arabidopsis mutants tet8 (Salk_136039), dcl2-ldcl3-ldcl4-2 (dcl2/3/4) and TET8pro::TET8-GFP lines were described previously (Boavida, L. C. et al., Plant Physiol, 163, 696-712, doi:10.1104/pp.113.216598 (2013); Henderson, I. R. et al., Nat Genet, 38, 721-725, doi:10.1038/ng1804 (2006)). CFP or YFP-tagged TET8 and TET9 constructs were generated in pEarleyGate binary vectors. To generate the construct for the sRNA overexpression lines, the sRNA precursor was cloned using a miR319 backbone (Schwab, R. et al., Plant Cell, 18, 1121-1133, doi:10.1105/tpc.105.039834 (2006)) into a pEarleyGate destination vector using LR clonase II (Invitrogen). Arabidopsis plants were transformed using floral dip method with Agrobacterium tumefaciens strain GV3101 carrying the cloned vectors. B. cinerea used was strain B05.10. For generating B. cinerea target gene knockout mutants, we used a homologous recombination-based method to knock out B. cinerea genes described previously (Levis, C., Fortini, D. & Brygoo, Y., Current genetics, 32, 157-162 (1997)). All primers are listed in Supplementary Table 6.
Fungal Pathogen Assays.
The B. cinerea spores were diluted in 1% sabouraud maltose broth buffer to a final concentration of 105 spores/ml for drop inoculation of four-week-old Arabidopsis (Wang, M. et al., Nature plants 2, 16151, doi: 10.1038/nplants.2016.151 (2016)). The lesion sizes of B. cinerea-infected plant materials were calculated using ImageJ software. The relative fungal DNA content (fungal biomass) was quantified as described previously (Wang, M. et al., Nature plants 2, 16151, doi:10.1038/nplants.2016.151 (2016)).
Isolate Pure Fungal Cells from Infected Plant Leaves.
B. cinerea protoplasts were purified from infected Arabidopsis leaves using a method that takes the advantage of the differences between plant and fungi cell wall components (Cosgrove, D. J., Nature reviews. Molecular cell biology, 6, 850-861, doi:10.1038/nrm1746 (2005); Bowman, S. M. & Free, S. J., Bioessays, 28, 799-808, doi:10.1002/bies.20441 (2006)). After rinsing with sterilized water to remove ungerminated spores, the leaves were homogenized for 1 minute in isolation buffer (0.02 M MOPS buffer pH 7.2, 0.2 M sucrose) using a blender. The homogenate was centrifuged (1,500 g, 10 minutes) and the pellets were resuspended in 1% Triton X-100 then washed 3 times with isolation buffer to remove plant contents. The pellets were then processed for plant cell wall digestion as described previously (Yoo, S. D., Cho, Y. H. & Sheen, J., Nature protocols, 2, 1565-1572, doi:10.1038/nprot.2007.199 (2007)), followed by resuspension in 1% Triton X-100 and washing in isolation buffer 5 times to remove plant contents. The fungal protoplasts were isolated by incubation for 2-3 hours in lysing enzyme solution (2% lysing enzyme from Trichoderma harzianum (Sigma) in 0.6 M KCl, 50 mM CaCl2). The fungal protoplasts were filtered through a 40 μm nylon mesh, and gently overlaid with a 30% sucrose solution to form a distinct interface with the fungal tissue suspension and centrifuged at 4° C. for 10 minutes at 5,000 rpm. The fungal protoplasts were collected from the interface of the sucrose layer and the tissue suspension layer. The sucrose was removed from the purified protoplast solution by diluting five- to ten-fold with SM buffer (1.2 M-sorbitol and 0.02 M-MES, pH 6.0) and centrifuging (5,000 rpm for 5 minutes) in an angle head rotor. The pellet was resuspended in Trizol Reagent (Invitrogen) for RNA extraction.
Extracellular Vesicle Isolation.
Plant extracellular vesicles were isolated from apoplastic fluids and purified by differential ultracentrifugation (Rutter, B. & Innes, R. W., Plant Physiol, doi:10.1104/pp.16.01253 (2016)). The apoplastic fluids were extracted from Arabidopsis leaves by vacuum infiltration with infiltration buffer (20 mM MES, 2 mM CaCl2), 0.1 M NaCl, pH 6.0), then with low spinning at 900 g to collect the infiltrate. Before purification of vesicles, cellular debris was removed by spinning at 2,000 g for 30 minutes and filtering the apoplastic fluids through a 0.45 μm filter and then spun at 10,000 g for 30 minutes. After the large cell debris and large vesicles were removed by successive centrifugations at increasing speeds, the pellet from 100,000 g has been known as the exosomes (Thery, C. et al., Current protocols in cell biology/editorial board, Juan S. Bonifacino . . . [et al.] Chapter 3, Unit 3 22, doi:10.1002/0471143030.cb0322s30 (2006)). Thus, the final supernatant was spun at 100,000 g for 1 hour and the pelleted material is washed with filtered infiltration buffer at 100,000 g for 1 hour to collect extracellular vesicles.
sRNA Cloning and Illumina HiSeq Data Analysis.
The sRNA libraries were made using Illumina TruSeq® Small RNA Sample Prep Kits and sequenced on an Illumina HiSeq system. The sequence datasets of sRNA libraries (PRJNA407577) were deposited in the NCBI database. The sRNA sequencing reads were preprocessed with the procedure of quality control and adapter trimming by using fastxtoolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html). The sequences were mapped to Arabidopsis (TAIR10) or B. cinerea B05.10 genomes and only the reads that matched perfectly to each genome were used for further analysis. After removal of tRNA-, rRNA-, snoRNA-, and snRNA-mapped reads, the read numbers of sRNA in each library were normalized by the total number of sRNA reads, resulting in reads per million (RPM). The sRNAs selected for analysis were detected in both biological repeats. For purified B. cinerea cell libraries, using 10 normalized reads per million (RPM) sRNA reads as a cutoff, and the sRNAs selected for analysis had 10 times higher read numbers than the control libraries. For total Arabidopsis sRNA libraries, using 10 normalized RPM sRNA reads as a cutoff. For Arabidopsis extracellular vesicles libraries, using 40 normalized RPM sRNA reads as a cutoff. The B. cinerea target gene prediction for Arabidopsis sRNAs was performed as previously described (Weiberg, A. et al., Science, 342, 118-123, doi:10.1126/science.1239705 (2013)). The sRNAs list is given in Supplementary Table 1-5.
sRNA and Gene Expression Analyses.
RNA was extracted using the Trizol method. Purified RNA was treated with DNase I and first strand cDNA was synthesized from the Superscript III kit (Invitrogen, Carlsbad, Calif.). sRNA RT-PCR was performed as previously described (Weiberg, A. et al., Science, 342, 118-123, doi:10.1126/science.1239705 (2013)). Quantitative PCR was performed with the CFX384 real-time PCR detection system (Bio-Rad) using the SYBR Green mix (Bio-Rad) (Primers are described in Supplementary Table 6). When determining if the sRNAs were protected inside the vesicles, EVs received 10 U micrococcal nuclease (Thermo Fisher) treatments with or without Triton-X-100. For Triton-X-100 treatment, vesicles were incubated with 1% Triton-X-100 on ice for 30 minutes before the nuclease treatments. Nuclease treatment was carried out at 37° C. for 15 minutes followed by RNA isolation. Expression of sRNAs uptake by B. cinerea cells were determined by ligation-based sRNA RT-PCR, which was described previously (Wang, M. et al., RNA biology, 1-8, doi:10.1080/15476286.2017.1291112 (2017)). All primer sequences are listed in Supplementary Table 6.
Confocal Microscopy Analyses.
Following the protocol of visualization of membranes and extracellular vesicles in plants (Nielsen, M. E. et al., Proc Natl Acad Sci USA, 109, 11443-11448, doi:10.1073/pnas.1117596109 (2012)), leaves with or without B. cinerea infection were syringe infiltrated with 10 μM FM4-64 30 minutes before examination. Samples were examined using a 40× water immersion or dip-in lens mounted on a Leica TCS SP5 confocal microscope (Leica Microsystems). For visualization of ELV-associated GFP-fluorescence in ultracentrifuge fractions, suspended pellets were examined using a 40× water immersion or dip-in lens mounted on a Leica TCS SP5 confocal microscope. For visualization of ELV uptake, purified ELVs were mixed with germinated B. cinerea at 37° C. for 2 hours following confocal analyses. For Triton-X-100 treatment, the incubated fungal cells were washed with 1% Triton-X-100 for 15 minutes to remove nonspecific associations. Samples were examined on a 40× water immersion or dip-in lens mounted on a Leica TCS SP5 confocal microscope.
Supplementary Table 1
This file contains a list of Arabidopsis endogenous sRNAs that present in the sRNA libraries of purified B. cinerea protoplasts from the infected tissue. The normalized reads of these sRNAs in the EVs and total sRNA libraries are compared.
Supplementary Table 2
This table contains the list of top 100 Arabidopsis sRNAs that present in the total sRNA libraries. The normalized reads of these sRNAs in the B. cinerea protoplast and EVs sRNA libraries are compared.
Supplementary Table 3
This table contains the list of sRNA in purified B. cinerea protoplast sRNA libraries that not present in top 100 total sRNA libraries. The normalized reads of these sRNAs in the B. cinerea protoplast and EVs sRNA libraries are compared.
Supplementary Table 4
This file contains a list of Arabidopsis sRNAs that present in EVs. The normalized reads of these sRNAs in the B. cinerea protoplast and total sRNA libraries are compared.
Supplementary Table 5
This table contains the list of B. cinerea genes targeted by Arabidopsis endogenous sRNAs that are present in the sRNA libraries of purified B. cinerea protoplasts.
Supplementary Table 6
This table contains the list of primers used in this study.
SUPPLEMENTARY TABLE 1
The list of Arabidopsis endogenous sRNAs that are present in the
sRNA libraries of purified B. Cinerea protoplasts from the infected tissue
The normalized reads of these small RNAs in the EV and total sRNA libraries are compared. Normalized read counts
are given in reads per million (RPM) in purified B. Cinerea protoplast sRNA libraries (BC), EVs sRNA libraries
(EVs), and total sRNA libraries (TOTAL) respectively. RPT, Repeat; BCF, below the cut off.
Num-
ber
of
tar-
sRNA get Normalized read counts of BC
SEQ se- gene Con- Con- Normalized read counts of EVs Normalized read counts of TOTAL
sRNA sRNA ID quence sRNA in B05_RP B05_RP trol— trol— B05_RP B05_RP MOCK_RP MOCK_RP B05_RP B05_RP MOCK_RP MOCK_RP
ID type NO: 5′-3′ length BC T1 T2 RPT1 RPT2 T1 T2 T1 T2 T1 T2 T1 T2
MIR miRNA 80 TCGGAC 21 1 2415.44 35891.69 59.59 169.58 71636.21 20786.48 16380.72 9618.88 16129.57 16838.16 36093.26 30198.15
166A CAGGCT
TCATTC
CCC
MIR miRNA 81 TTGACA 21 1 782.00 157.24 BCF BCF 6941.03 1249.49 939.99 321.31 13949.47 11099.11 18196.99 19707.76
157A GAAGAT
AGAGAG
CAC
IGN- IGN 82 GTCGAA 22 1 433.46 355.19 BCF BCF 105.33 74.19 40.49 56.52 136.68 133.25 84.62 81.67
siR1 CTCAGT
AACGCG
GGCT
MIR miRNA 83 TTTGGA 21 2 305.19 151.75 BCF BCF 7688.04 130.81 871.93 21.03 8098.22 6334.70 9457.97 13016.50
159B TTGAAG
GGAGCT
CTT
MIR miRNA 84 TTTGGA 21 3 302.10 613.36 BCF BCF 8165.26 123.00 942.56 24.44 19855.85 13861.61 31216.26 23555.57
159A TTGAAG
GGAGCT
CTA
MIR miRNA 85 TCGCTT 21 1 290.60 197.77 10.85 17.75 5522.36 15253.57 944.21 318.94 9532.05 14836.25 7841.71 7457.34
168A GGTGCA
GGTCGG
GAA
MIR miRNA 86 TTCCAC 21 5 255.21 176.77 BCF BCF 1976.09 2100.71 308.56 450.90 17322.33 16887.83 9892.52 14254.15
396A AGCTTT
CTTGAA
CTG
MIR miRNA 87 TCCCAA 20 2 236.63 528.20 BCF BCF 2044.96 7085.01 381.76 1184.60 20391.65 14562.15 18382.09 17208.83
158A ATGTAG
ACAAAG
CA
TAS1 tasi 88 TCCAAT 22 1 232.21 498.31 BCF BCF 27673.80 1940.62 5574.65 890.84 13779.67 9137.97 11358.65 14444.95
c-si RNA GTCTTT
R483 TCTAGT
TCGT
TAS1 tasi 89 TTCTAA 21 1 156.13 131.88 BCF BCF 3060.15 1905.48 479.98 558.42 8724.58 6840.09 9787.78 11121.49
c-si RNA GTTCAA
R602 CATATC
GAC
S135 ORF 90 GGTGGA 21 19 128.27 65.63 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
3533 GGAGGG
CGGC
S519 ORF 91 AGTTAA 21 1 113.67 33.82 BCF BCF BCF BCF BCF BCF 54.71 67.83 33.05 35.76
888 TTGAAC
GTTCGG
CGT
MIR miRNA 92 GTTCAA 21 3 76.96 13.07 BCF BCF 506.38 1036.69 167.20 152.77 3850.59 3879.47 2787.25 3357.24
396 TAAAGC
A* TGTGGG
AAG
MIR miRNA 93 TTCCAC 21 4 26.10 16.91 BCF BCF 650.60 105.43 143.83 40.21 250.71 153.27 249.45 272.07
396B AGCTTT
CTTGAA
CTT
S272 TE 94 CGGGTT 21 1 19.02 16.74 BCF BCF 139.36 283.09 124.35 128.92 24.32 28.73 30.41 23.75
4436 TGGCAG
GACGTT
ACT
S109 TE 95 GAAGTC 22 1 14.15 13.25 BCF BCF BCF BCF BCF BCF 83.64 196.45 259.14 203.99
2315 CTCGTG
TTGCAT
TCCT
TAS tasi 96 CGTAAA 21 1 13.27 23.01 BCF BCF 40.51 113.24 BCF BCF 48.21 44.29 67.28 46.71
2-si RNA AAAAGT
R453 TGTAAC
TCT
S466 IGN 97 TCCGCT 22 0 297.68 347.00 BCF BCF 4164.86 1173.35 528.16 258.73 484.86 747.43 623.62 418.41
8053 GTAGCA
CTTCAG
GCTA
MIR miRNA 98 TCGGAC 21 0 243.27 6209.88 BCF BCF 8720.25 866.84 2016.08 441.94 2152.01 1879.23 4357.68 4284.16
165A CAGGCT
TCATCC
CCC
S180 IGN 99 TGGTGG 22 0 191.08 107.47 BCF BCF 165.28 191.33 BCF BCF 306.89 325.99 309.09 266.80
4551 AACACT
GGCTCG
GCCC
MIR miRNA 100 TTAGAT 22 0 159.67 108.78 BCF BCF 2766.45 1882.05 409.87 299.09 3045.43 2092.35 2905.66 2255.49
403 TCACGC
ACAAAC
TCGT
MIR miRNA 101 TTGAAA 21 0 126.50 259.13 BCF BCF 6187.95 1761.00 975.20 571.82 26180.86 26166.46 38715.83 32807.12
161 GTGACT
ACATCG
GGG
S117 ORF 102 GAGTTA 22 0 113.67 33.82 BCF BCF BCF BCF BCF BCF 59.95 77.84 37.17 37.47
8334 ATTGAA
CGTTCG
GCGT
S373 ORF 103 AAACCG 24 0 108.81 30.25 BCF BCF 760.38 175.71 260.02 134.48 768.90 964.45 1220.20 1000.81
61 CAACCG
GATCTT
AAAGGC
S466 IGN 104 TCCGCT 20 0 83.60 47.94 BCF BCF 908.24 1993.33 138.48 349.08 1508.04 1548.23 1255.46 1086.45
7987 GTAGCA
CACAGG
CC
MIR miRNA 105 GGGTTG 21 0 64.58 28.50 BCF BCF 123.96 2493.13 52.61 252.37 1904.86 2112.37 2282.19 2880.78
398B ATATGA
GAACAC
ACG
MIR miRNA 106 TTGACA 21 0 60.60 243.88 BCF BCF 747.01 679.41 160.10 70.20 1280.18 889.76 1473.62 1477.01
156D GAAGAG
AGTGAG
CAC
TAS tasi 107 AGAATA 21 0 52.63 21.09 BCF BCF 454.53 103.47 BCF BCF 1239.51 794.13 903.03 1012.56
3-si RNA GAATCT
R392 GTAAAA
CGA
TAS1 tasi 108 AACTAG 21 0 50.42 52.73 BCF BCF 1332.38 1509.15 661.39 946.23 860.72 655.13 1030.40 1181.58
C-si RNA AAAAGA
R539 CATTGG
ACA
TAS1 tasi 109 GAACTA 21 0 50.42 52.73 BCF BCF 1313.75 1507.20 660.36 946.23 854.43 652.91 1025.11 1178.15
c-si RNA GAAAAG
R541 ACATTG
GAC
S158 IGN 110 AAGCAC 24 0 32.73 14.73 BCF BCF 326.92 134.71 BCF BCF 260.14 266.32 309.24 357.97
710 ATGTGT
AGAGTC
GAGCCT
S373 IGN 111 AGAACA 24 0 30.96 26.76 BCF BCF 193.23 60.52 BCF BCF 341.90 312.83 345.67 379.08
543 GAGACC
GTTGGA
AGAAAA
MIR miRNA 112 AAGCTC 21 0 29.63 95.09 BCF BCF 299.78 66.38 BCF BCF 770.58 654.95 1014.09 1003.72
390A AGGAGG
GATAGC
GCC
S262 IGN 113 CGAGAA 24 0 28.75 21.62 BCF BCF BCF BCF BCF BCF 875.81 3484.17 1130.00 921.25
2267 TGATGA
ACCAAT
TAGATG
MIR miRNA 114 GATCAT 21 0 27.42 29.81 BCF BCF 342.72 6319.70 114.49 412.02 2224.96 2093.65 4748.01 2986.47
167 GTTCGC
A* AGTTTC
ACC
S342 IGN 115 AAACAG 24 0 25.65 21.88 BCF BCF BCF BCF BCF BCF 582.34 421.99 525.48 434.89
70 GACCTA
ACAACC
S470 IGN 116 AGGATG 24 0 24.77 23.45 BCF BCF 466.27 70.28 BCF BCF 1492.32 1099.55 953.57 1083.81
808 AAAGGT
TTGACT
AGAACT
S289 ORF 117 CTGCAC 23 0 24.33 14.99 BCF BCF 375.53 93.71 BCF BCF BCF BCF BCF BCF
8187 GGGCTT
GGCTCA
TCCCA
S164 IGN 118 AAGCTG 24 0 23.88 13.68 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
118 TGGTTA
ACTGAA
AAAGCT
S539 IGN 119 ATAAGA 24 0 21.67 18.74 BCF BCF BCF BCF BCF BCF 63.31 46.15 80.95 73.49
660 GACGGA
ACACTG
GATATG
S149 Anti— 120 TAAACA 26 0 20.79 10.02 BCF BCF BCF BCF BCF BCF 18.66 19.83 21.74 32.59
0475 ORF AACTGT
ACTTTA
TGAGAG
CC
S619 TE 121 ATCTAA 24 0 15.04 26.41 BCF BCF BCF BCF BCF BCF 28.09 31.32 70.37 61.62
170 ACCCGT
CAATTC
TAGGAT
S842 ORF 122 CATGGG 30 0 14.60 80.89 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
617 CATCGA
CACCTT
GCGGCT
AGGAAC
S161 IGN 123 AAGCGA 24 0 13.71 20.05 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
025 AGGACC
CAGCAG
GGAAGC
MIR miRNA 124 TTGAAG 24 0 13.27 67.55 BCF BCF 4095.45 416.19 465.90 70.27 1843.99 1476.88 742.27 657.09
163 AGGACT
TGGAAC
TTCGAT
S100 ORF 125 CTGCAC 24 0 12.83 17.87 BCF BCF 1176.01 183.52 BCF BCF 25.36 38.55 23.65 26.13
7073 GGTCTT
GGCTCA
ACCCGC
S640 Anti— 126 ATGAGA 24 0 11.50 12.81 BCF BCF 130.04 54.67 BCF BCF 151.14 152.15 211.84 197.26
613 ORF GATTCG
GACTAT
CCAGCC
S111 IGN 127 AACGAA 24 0 11.06 13.34 BCF BCF 389.30 44.90 BCF BCF 175.88 149.93 445.27 419.59
989 CCGACC
GTCAGA
CATGGA
SUPPLEMENTARY TABLE 2
The list of top 100 Arabidopsis sRNAs that present in the total sRNA libraries
The normalized reads of these small RNAs in the Bc protoplast and EV sRNA libraries are compared here. Normalized read
counts are given in reads per million (RPM) in total sRNA libraries (TOTAL), Purified B. Cinerea sRNA libraries (BC)
and EVs sRNA libraries (EVs) respectively.
Num-
ber
of
sRNA tar- Normalized read counts of BC
SEQ se- get Con- Con-
gene Normalized read counts of TOTAL trol— trol— Normalized read counts of EVs
sRNA sRNA ID quence sRNA in B05_RP B05_RP MOCK_RP MOCK_RP B05_RP B05_RP RP RP B05_RP B05_RP MOCK_RP MOCK_RP
ID type NO: 5′-3′ length BC T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2
MIR miRNA 128 TTGAAA 21 0 26180.86 26166.46 38715.83 32807.12 126.50 259.13 BCF BCF 6187.95 1761.00 975.20 571.82
161 GTGACT
ACATCG
GGG
MIR miRNA 129 TCCCAA 20 2 20391.65 14562.15 18383.09 17208.83 236.63 528.20 BCF BCF 2044.96 7085.01 381.76 1184.60
158A ATGTAG
ACAAAG
CA
MIR miRNA 130 TTTGGA 21 3 19855.85 13861.61 31216.26 23555.57 302.10 613.36 BCF BCF 8165.26 123.00 BCF BCF
159A TTGAAG
GGAGCT
CTA
MIR miRNA 131 TTCCAC 21 5 17322.33 16887.83 9892.52 14254.15 255.21 176.77 BCF BCF 1976.09 2100.71 308.56 450.90
396A AGCTTT
CTTGAA
CTG
MIR miRNA 132 TCGGAC 21 1 16129.57 16833.16 36093.26 30198.15 2415.44 35891.69 59.59 169.58 71636.21 20786.48 16380.72 9618.88
166A CAGGCT
TCATTC
CCC
MIR miRNA 133 TTGACA 21 1 13949.47 11099.11 18196.99 19707.76 782.00 157.24 BCF BCF 6941.03 1249.49 939.99 321.31
157A GAAGAT
AGAGAG
CAC
TAS1 tasi 134 TCCAAT 22 1 13779.67 9137.97 11358.65 14444.95 232.21 498.31 BCF BCF 27673.80 1940.62 5574.65 890.84
c-si RNA GTCTTT
R483 TCTAGT
TCGT
MIR miRNA 135 TCGCTT 21 1 9532.05 14836.25 7841.71 7457.34 290.60 197.77 10.85 17.75 5522.36 15253.57 944.21 318.94
168A GGTGCA
GGTCGG
GAA
TAS1 tasi 136 TTCTAA 21 1 8724.58 6840.09 9787.78 11121.49 156.13 131.88 BCF BCF 3060.15 1905.48 479.98 558.42
c-si RNA GTTCAA
R602 CATATC
GAC
MIR miRNA 137 TTTGGA 21 2 8098.22 6334.70 9457.97 13016.50 305.19 151.75 BCF BCF 7688.04 130.81 BCF BCF
159B TTGAAG
GGAGCT
CTT
S702 TE 138 ATTATG 24 0 6026.92 5603.58 4017.89 4953.26 BCF BCF BCF BCF 821.55 44.90 BCF BCF
284 GACCGT
CCAACT
TGGCCC
MIR miRNA 139 GTTCAA 21 3 3850.59 3879.47 2787.25 3357.24 76.96 13.07 BCF BCF 506.38 1036.69 167.20 152.77
396 TAAAGC
A* TGTGGG
AAG
TAS1 tasi 140 CTTAGA 21 0 3328.00 3481.02 4680.58 4292.48 BCF BCF BCF BCF 1368.44 507.61 370.54 243.78
c-si RNA ATACGC
R581 TATGTT
GGA
MIR miRNA 141 TTAGAT 22 0 3045.43 2092.35 2905.66 2255.49 159.67 108.78 BCF BCF 2766.45 1882.05 409.87 299.09
403 TCACGC
ACAAAC
TCGT
TAS1 tasi 142 AGAATA 24 0 2930.55 3161.70 4144.23 3788.31 BCF BCF BCF BCF 781.04 144.47 191.70 54.95
c-si RNA CGCTAT
R585 GTTGGA
CTGAGA
MIR miRNA 143 TGAAGC 21 2 2600.39 1982.82 2671.64 3152.59 BCF BCF BCF BCF 5139.95 123777.84 1392.37 10493.13
167A TGCCAG
CATGAT
CTA
MIR miRNA 144 GATCAT 21 0 2224.96 2093.65 4748.01 2986.47 27.42 29.81 BCF BCF 342.72 6319.70 114.49 412.02
167 GTTCGC
A* AGTTTC
ACC
MIR miRNA 145 TCGGAC 21 0 2152.01 1879.23 4357.68 4284.16 243.27 6209.88 BCF BCF 8720.25 866.84 2016.08 441.94
165A CAGGCT
TCATCC
CCC
S300 ORF 146 AACGGA 21 0 1973.41 2863.87 2596.27 3497.37 BCF BCF BCF BCF BCF BCF BCF BCF
747 TTATGT
AAGAGA
GGT
MIR miRNA 147 GGGTTG 21 0 1904.86 2112.37 2282.19 2880.78 64.58 28.50 BCF BCF 123.96 2493.13 52.61 252.37
398B ATATGA
GAACAC
ACG
MIR miRNA 148 TTGAAG 24 0 1843.99 1476.88 742.27 657.09 13.27 67.55 BCF BCF 4095.45 416.19 465.90 70.27
163 AGGACT
TGGAAC
TTCGAT
S625 ORF 149 AATGGA 21 1 1700.06 2023.60 2450.54 3388.91 BCF BCF BCF BCF BCF BCF BCF BCF
977 TTATGT
AAGAGA
GGT
S251 IGN 150 AACATG 24 0 1654.15 2689.29 978.98 1384.91 BCF BCF BCF BCF BCF BCF BCF BCF
821 CGGATT
TGCTTT
GGCGCC
S466 IGN 151 TCCGCT 24 0 1623.75 1686.48 1394.73 1193.19 BCF BCF BCF BCF 10318.78 3359.96 850.64 565.68
7991 GTAGCA
CACAGG
CCAATT
S466 IGN 152 TCCGCT 20 0 1508.04 1548.23 1255.46 1086.45 83.60 47.94 BCF BCF 908.24 1993.33 138.48 349.08
7987 GTAGCA
CACAGG
CC
S470 IGN 153 AGGATG 24 0 1492.32 1099.55 953.57 1083.81 24.77 23.45 BCF BCF 466.27 70.28 BCF BCF
808 AAAGGT
TTGACT
AGAACT
S916 IGN 154 AAACGA 24 0 1441.59 1346.78 1536.49 1382.27 BCF BCF BCF BCF BCF BCF BCF BCF
11 GAACGT
AGACAG
AACAGA
S331 IGN 155 AACTGT 30 0 1430.90 1768.40 1567.64 1469.49 BCF BCF BCF BCF BCF BCF BCF BCF
775 GACGAT
AGCAAG
TGCCGT
CTGAGC
miR miRNA 156 CGATCC 21 0 1350.82 932.76 1766.55 1263.78 BCF BCF BCF BCF 757.14 933.21 101.93 57.69
NA8 CCGGCA
175 ACGGCG
CCA
S161 IGN 157 AAGCGC 24 0 1342.02 1631.07 1241.65 1047.13 BCF BCF BCF BCF 229.29 138.62 BCF BCF
570 GGAAAG
AACAGT
AGATGC
MIR miRNA 158 TTGACA 21 0 1280.18 889.76 1473.62 1477.01 60.60 2 43.88 BCF BCF 747.01 679.41 160.10 70.20
156D GAAGAG
AGTGAG
CAC
S326 IGN 159 GAGAAT 23 1 1249.36 4768.49 2127.64 1384.12 26.10 77.40 BCF BCF BCF BCF BCF BCF
0548 GATGAA
CCAATT
AGATG
TAS tasi 160 AGAATA 21 0 1239.51 794.13 903.03 1012.56 52.63 21.09 BCF BCF 454.53 103.47 BCF BCF
3- RNA GAATCT
siR GTAAAA
392 CGA
TAS1 tasi 161 TAGCAA 21 1 1129.46 923.86 825.61 1359.84 BCF BCF BCF BCF 310.71 302.61 91.63 53.61
C-si RNA CTGTTC
R196 TTTAGA
CGA
TAS tasi 162 ACACGA 21 0 1093.61 1062.86 462.31 949.75 BCF BCF BCF BCF BCF BCF BCF BCF
2-si RNA TGTTCA
R710 ATAGAT
TTA
S981 IGN 163 AACAGC 24 0 981.88 1123.46 1141.17 958.85 BCF BCF BCF BCF 665.58 82.00 BCF BCF
62 ATCGTC
CATCAT
TGAAGA
S164 IGN 164 ATAGCG 24 0 981.67 1011.89 607.31 727.42 BCF BCF BCF BCF BCF BCF BCF BCF
3241 GAAACT
AATTTT
GGCACC
S132 ORF 165 AGGACA 24 0 955.26 818.78 710.88 863.32 BCF BCF BCF BCF BCF BCF BCF BCF
3429 TTAGGT
TTATTG
GATTGG
TAS tasi 166 TTTTTA 21 0 930.52 1024.31 563.83 975.08 BCF BCF BCF BCF BCF BCF BCF BCF
2-si RNA CGGGGA
R441 TAAGAC
TGA
S598 Anti— 167 AATGAA 24 0 886.29 680.52 565.44 742.33 BCF BCF BCF BCF BCF BCF BCF BCF
359 ORF AAAGTT
GGAAAA
GTGCCT
A262 IGN 168 CGAGAA 24 0 875.81 3484.17 1130.00 921.25 28.75 21.62 BCF BCF BCF BCF BCF BCF
2267 TGATGA
ACCAAT
TAGATG
TAS1 tasi 169 AACTAG 21 0 860.72 655.13 1030.40 1181.58 50.42 52.73 BCF BCF 1332.38 1509.15 661.39 946.23
RNA AAAAGA
CATTGG
ACA
S203 TE 170 ATTATG 24 0 806.64 1293.03 723.95 898.16 BCF BCF BCF BCF BCF BCF BCF BCF
0573 AACCGT
CCAACT
TGGCCC
S337 IGN 171 GAGGGA 23 0 784.63 1156.08 1094.89 790.49 BCF BCF BCF BCF 1722.90 1048.40 321.53 99.38
1252 CGACGA
TTTGTG
ACACC
MIR miRNA 172 AAGCTC 21 0 770.58 654.95 1014.09 1003.72 29.63 95.09 BCF BCF 299.78 66.38 BCF BCF
390A AGGAGG
GATAGC
GCC
S373 ORF 173 AAACCG 24 0 768.90 964.45 1220.20 1000.81 108.81 30.25 BCF BCF 760.38 175.71 260.02 134.48
61 CAACCG
GATCTT
AAAGGC
S382 IGN 174 GGGACG 21 0 729.07 984.65 857.64 701.69 BCF BCF BCF BCF 1142.80 942.98 153.51 98.49
0025 ACGATT
TGTGAC
ACC
S376 IGN 175 GGATGG 21 0 715.66 957.96 1008.22 838.12 BCF BCF BCF BCF 2069.27 739.93 258.93 57.83
7705 TGAGGG
ACGACG
ATT
S488 ORF 176 TGACGA 22 0 687.15 467.77 597.32 753.55 BCF BCF BCF BCF BCF BCF BCF BCF
4863 GAGAAC
TTATTG
GCCT
S213 TE 177 ATTTAA 24 0 683.59 722.04 298.95 500.87 BCF BCF BCF BCF BCF BCF BCF BCF
5042 TTTGAT
GGGTTG
AGTTGT
S578 TE 178 AATCCG 24 0 659.06 509.10 651.53 668.31 BCF BCF BCF BCF BCF BCF BCF BCF
997 GTAGAA
CACTGA
AATGGT
S414 IGN 179 AAGCAG 24 0 614.41 1228.91 862.93 902.51 BCF BCF BCF BCF BCF BCF BCF BCF
602 TGGCGG
ATCTAG
GGAGGA
S179 IGN 180 ATCGGA 24 0 594.08 272.25 251.94 455.87 BCF BCF BCF BCF BCF BCF BCF BCF
1055 CAGTAC
AACTCT
ACGTAC
S125 IGN 181 AAAGAG 24 1 593.66 515.21 349.93 430.28 BCF BCF BCF BCF BCF BCF BCF BCF
711 GATTTA
AGTAGA
TAGTAC
S390 IGN 182 GGTGAG 26 0 589.46 713.88 833.55 687.97 BCF BCF BCF BCF BCF BCF BCF BCF
5459 GGACGA
CGATTT
GTGACA
CC
S496 IGN 183 TGCAAG 21 0 588.00 462.95 428.53 587.29 BCF BCF BCF BCF BCF BCF BCF BCF
1031 GTTCAA
GAACGG
ATC
S342 IGN 184 AAACAG 24 0 582.34 421.99 525.48 434.89 25.65 21.88 BCF BCF BCF BCF BCF BCF
70 GACCTT
AATAGA
ACAACC
TAS tasi 185 AACGTT 21 0 569.97 516.51 668.57 760.67 BCF BCF BCF BCF 252.78 95.66 BCF BCF
3-si RNA TAGAAA
R342 GAGATG
GGG
S629 IGN 186 AATGGG 22 0 568.50 432.37 392.24 405.21 BCF BCF BCF BCF BCF BCF BCF BCF
539 ATGGAG
AAGAAA
CTGG
TAS tasi 187 ATAAGA 21 0 542.51 399.94 367.41 377.50 BCF BCF BCF BCF 177.44 164.00 BCF BCF
2-si RNA CTGAAA
R461 CATATA
TGT
S976 IGN 188 ACTCGA 24 0 497.44 464.80 461.73 423.15 BCF BCF BCF BCF BCF BCF BCF BCF
189 GACTGT
TTTGGA
AACAAA
S214 Anti— 189 ATTTCA 24 0 498.70 437.56 298.51 382.51 BCF BCF BCF BCF BCF BCF BCF BCF
8545 ORF GGAGTA
GAATTT
TTCGCC
S177 IGN 190 ATCCTA 24 0 497.44 464.80 461.73 423.15 BCF BCF BCF BCF BCF BCF BCF BCF
0669 TCGGCT
GATTCG
GTTAGA
S348 IGN 191 GATGGT 20 1 495.55 704.25 453.79 295.82 BCF BCF BCF BCF 586.18 821.93 BCF BCF
7804 GAGGGA
CGACGA
TT
S162 IGN 192 ATACTC 24 0 493.46 891.43 307.62 404.68 BCF BCF BCF BCF BCF BCF BCF BCF
2646 TAATGG
ATGGAT
TGTTGT
S466 IGN 193 TCCGCT 22 0 488.86 744.43 623.62 418.41 297.68 347.00 BCF BCF 4164.86 1173.35 528.16 258.73
8053 GTAGCA
CTTCAG
GCTA
S466 IGN 194 TCCGCT 22 0 488.86 747.43 623.62 418.41 297.68 347.00 BCF BCF 4164.86 1173.35 528.16 258.73
8053 GTAGCA
CTTCAG
GCTA
S428 TE 195 TAAACA 24 0 479.41 424.77 423.09 361.53 BCF BCF BCF BCF BCF BCF BCF BCF
7096 TCTGAT
CGTTTG
ACTTGA
MIR miRNA 196 ACGGTA 21 1 478.36 603.43 533.86 224.04 BCF BCF BCF BCF 222.81 179.61 BCF BCF
391 TCTCTC
CTACGT
AGC
IGN- IGN 197 GGTTTA 24 0 462.85 430.15 453.94 406.92 BCF BCF BCF BCF BCF BCF BCF BCF
siR GAATTG
107 GATTGT
AACAGA
S308 TE 198 GAACCG 24 0 453.21 503.91 1065.66 1032.22 BCF BCF BCF BCF BCF BCF BCF BCF
3589 ACCGTC
AGACAT
GGATGA
S846 Anti— 199 ACCGGA 24 0 448.60 414.58 371.23 333.30 BCF BCF BCF BCF BCF BCF BCF BCF
357 ORF ACTGCT
TGAAAT
AATGGA
S209 IGN 200 ATTGAG 24 0 440.00 390.30 183.34 262.05 BCF BCF BCF BCF BCF BCF BCF BCF
3887 TAACAG
GAGGAC
TATGCC
S323 IGN 201 GAGAAA 24 0 429.10 399.38 315.26 374.20 BCF BCF BCF BCF BCF BCF BCF BCF
8006 CTAAAG
TCGGCG
GACGAC
S121 Anti— 202 AGATGA 24 0 423.44 468.88 413.69 365.62 BCF BCF BCF BCF BCF BCF BCF BCF
8093 ORF TGGGCT
TAGATG
ATGGGC
S148 IGN 203 GTTTTG 20 1 421.35 568.77 294.69 258.48 BCF BCF BCF BCF 45.37 439.27 BCF BCF
4048 GACAGG
TATCGA
CA
S350 TE 204 AAACAT 23 0 421.35 407.72 361.98 263.36 BCF BCF BCF BCF 153.13 117.14 BCF BCF
60 CTGATC
GTTTGA
CTTGA
S542 TE 205 TTGAGG 23 0 402.27 315.06 161.60 221.93 BCF BCF BCF BCF BCF BCF BCF BCF
1719 ATAATG
TTGCAT
AAATA
S855 IGN 206 ACCGTG 23 0 398.92 277.44 231.52 229.85 BCF BCF BCF BCF BCF BCF BCF BCF
381 AGGCCA
AACTTG
GCATA
S376 IGN 207 GGATGG 20 1 384.66 533.19 750.69 603.26 BCF BCF BCF BCF 275.47 259.66 BCF BCF
7704 TGAGGG
ACGACG
AT
MIR miRNA 208 ATCATG 21 2 375.02 243.89 406.20 400.59 BCF BCF BCF BCF 2126.79 1710.01 409.99 150.67
292B CGATCT
CTTTGG
ATT
S466 IGN 209 TCCGCT 20 1 368.73 513.73 341.56 269.96 BCF BCF BCF BCF BCF BCF BCF BCF
8051 GTAGCA
CTTCAG
GC
MIR1 miRNA 210 TCAATG 20 3 355.31 207.57 324.08 322.21 BCF BCF BCF BCF BCF BCF BCF BCF
61* CATTGA
AAGTGA
CT
S125 TE 211 AGCATA 24 0 345.88 447.01 214.04 287.25 BCF BCF BCF BCF BCF BCF BCF BCF
2933 TCATGA
TGTGGT
TGGTGT
S501 IGN 212 TGGAAG 24 0 345.04 382.15 254.88 277.35 BCF BCF BCF BCF BCF BCF BCF BCF
2356 GATTAC
GGGCCA
TTGCCT
S274 IGN 213 AACCGG 24 0 342.95 387.89 247.83 266.00 BCF BCF BCF BCF BCF BCF BCF BCF
111 ATGTAT
GCAGAG
ATGATC
S130 TE 214 AGGAAA 24 0 342.74 288.56 257.82 250.70 BCF BCF BCF BCF BCF BCF BCF BCF
5579 TACTAT
GCTGTA
AAAAGG
S949 ORF 215 ACTAAC 24 0 342.32 352.68 232.99 308.09 BCF BCF BCF BCF BCF BCF BCF BCF
704 TAAGGT
ACTATG
GATTGG
S373 IGN 216 AGAACA 24 0 341.90 312.83 345.67 379.08 30.96 26.76 BCF BCF 193.23 60.52 BCF BCF
543 GAGACC
GTTGGA
AGAAAA
S102 IGN 217 ACTTTC 21 0 338.54 442.38 614.36 372.09 BCF BCF BCF BCF BCF BCF BCF BCF
9881 TGGAGA
CCAAAC
CCT
MIR8 miRNA 218 TGCGGG 21 3 335.19 297.45 498.89 578.19 BCF BCF BCF BCF BCF BCF BCF BCF
22A AAGCAT
TTGCAC
ATG
S505 ORF 219 TGGATT 21 0 312.34 497.61 541.06 651.68 BCF BCF BCF BCF BCF BCF BCF BCF
1044 ATGTAA
GAGAGG
TGA
MiR miRNA 220 TGATTG 21 1 312.13 261.13 181.28 272.73 BCF BCF BCF BCF BCF BCF BCF BCF
170 AGCCGT
GTCAAT
ATC
S180 IGN 221 TGGTGG 22 0 306.89 325.99 309.09 266.80 191.08 107.47 BCF BCF 165.28 191.33 BCF BCF
4551 AACACT
GGCTCG
GCCC
MIR miRNA 222 ACTCAT 21 1 306.89 289.85 295.87 292.79 BCF BCF BCF BCF 45.37 48.81 BCF BCF
5026 AAGATC
GTGACA
CGT
S428 IGN 223 TAAACA 24 0 299.76 288.56 230.35 232.09 BCF BCF BCF BCF BCF BCF BCF BCF
7100 TCTGAT
CGTTTG
ATTTGA
S115 IGN 224 AGAGAT 24 0 299.34 179.58 269.87 296.48 BCF BCF BCF BCF BCF BCF BCF BCF
3819 AAGAAA
CGATAG
TCGGTT
S378 IGN 225 GGCCCA 26 0 298.72 336.00 151.02 144.35 BCF BCF BCF BCF BCF BCF BCF BCF
5664 CGGGTC
GGATCT
GTTGTG
GC
S559 IGN 226 AATATG 24 0 294.10 457.76 146.76 222.99 BCF BCF BCF BCF BCF BCF BCF BCF
726 TATGTG
TTGGAA
GGGTGT
S266 IGN 227 CGCGGA 23 0 279.85 441.64 293.52 288.83 BCF BCF BCF BCF BCF BCF BCF BCF
9656 TAATAT
GGGCTT
GACCA
SUPPLEMENTARY TABLE 3
The list of sRNA in Purified B. Cinerea sRNA libraries
(BC) that are not present in top 100 TOTAL libraries
The normalized reads of these small RNAs in the Bc protoplast and
EV sRNA libraries are compared here. Normalized read counts are given in reads
per million (RPM) in total sRNA libraries (TOTAL), Purified B. Cinerea
sRNA libraries (BC) and EVs sRNA libraries (EVs) respectively.
RPT, Repeat; BCF, below the cut off.
Number
of Normalized read Normalized read Normalized read
SEQ sRNA target counts of TOTAL counts of BC counts of EVs
sRNA sRNA ID sequence sRNA gene B05_ B05_ MOCK_ MOCK_ B05_ B05_ Control_ Control_ B05_ B05_ MOCK_ MOCK_
ID type NO: 5′-3′ length in BC RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 RPT1 RPT2
IGN- IGN 228 GTCGAACTCAGT 22 1 136.68 133.25 84.62 81.67 433.46 355.19 BCF BCF 105.33 74.19 40.49 56.52
siR1 AACGCGGGCT
S1353733 ORF 229 GGTGGAGGAGGA 21 19 BCF BCF BCF BCF 128.27 65.63 BCF BCF BCF BCF BCF BCF
GGCGGCGGC
S1178334 ORF 230 GAGTTAATTGAA 22 0 59.95 77.84 37.17 37.47 113.67 33.82 BCF BCF BCF BCF BCF BCF
CGTTCGGCGT
S519888 ORF 231 AGTTAATTGAAC 21 1 54.71 67.83 33.05 35.76 113.67 33.82 BCF BCF BCF BCF BCF BCF
GTTCGGCGT
S158710 IGN 232 AAGCACATGTGT 24 0 260.14 266.32 309.24 357.97 32.73 14.73 BCF BCF 326.92 134.71 BCF BCF
AGAGTCGAGCCT
MIR396B miRNA 233 TTCCACAGCTTT 21 4 250.71 153.27 249.45 272.07 26.10 16.91 BCF BCF 650.60 105.43 143.83 40.21
CTTGAACTT
S2898187 ORF 234 CTGCACGGGCTT 23 0 BCF BCF BCF BCF 24.33 14.99 BCF BCF 375.53 93.71 BCF BCF
GGCTCATCCCA
S164118 IGN 235 AAGCTGTGGTTA 24 0 BCF BCF BCF BCF 23.88 13.68 BCF BCF BCF BCF BCF BCF
ACTGAAAAAGCT
S539660 IGN 236 ATAAGAGACGGA 24 0 63.31 46.15 80.95 73.49 21.67 18.74 BCF BCF BCF BCF BCF BCF
ACACTGGATATG
S1490475 Anti_ 237 TAAACAAACTGT 26 0 18.66 19.83 21.74 32.59 20.79 10.02 BCF BCF BCF BCF BCF BCF
ORF ACTTTATGAGAG
CC
S2724436 TE 238 CGGGTTTGGCAG 21 1 24.32 28.73 30.41 23.75 19.02 16.74 BCF BCF 139.36 283.09 124.35 128.92
GACGTTACT
S619170 TE 239 ATCTAAACCCGT 24 0 28.09 31.32 70.37 61.62 15.04 26.41 BCF BCF BCF BCF BCF BCF
CAATTCTAGGAT
S842617 ORF 240 CATGGGCATCGA 30 0 BCF BCF BCF BCF 14.60 80.89 BCF BCF BCF BCF BCF BCF
CACCTTGCGGCT
AGGAAC
S1092315 TE 241 GAAGTCCTCGTG 22 1 83.64 196.45 259.14 203.99 14.15 13.25 BCF BCF BCF BCF BCF BCF
TTGCATTCCT
S161025 IGN 242 AAGCGAAGGACC 24 0 BCF BCF BCF BCF 13.71 20.05 BCF BCF BCF BCF BCF BCF
CAGCAGGGAAGC
TAS2- tasiRNA 243 CGTAAAAAAAGT 21 1 48.21 44.29 67.28 46.71 13.27 23.01 BCF BCF 40.51 113.24 BCF BCF
siR453 TGTAACTCT
S1007073 ORF 244 CTGCACGGTCTT 24 0 25.36 38.55 23.65 26.13 12.83 17.87 BCF BCF 1176.01 183.52 BCF BCF
GGCTCAACCCGC
S640613 Anti_ 245 ATGAGAGATTCG 24 0 151.14 152.15 211.84 197.26 11.50 12.81 BCF BCF 130.04 54.67 BCF BCF
ORF GACTATCCAGCC
S111989 IGN 246 AACGAACCGACC 24 0 175.88 149.93 445.27 419.59 11.06 13.34 BCF BCF 389.30 44.90 BCF BCF
GTCAGACATGGA
SUPPLEMENTARY TABLE 4
The list of At-sRNAs that present in EVs.
The normalized reads of these small RNAs in the
B. cinerea protoplast and total sRNA libraries are compared.
Normalized read counts are given in reads per million (RPM)
in EVs sRNA libraries (EVs), Purified B. Cinerea sRNA
libraries (BC) and total sRNA libraries (TOTAL) respectively.
RPT, Repeat; BCF, below the cut off.
Number
of Normalized read Normalized read Normalized read
SEQ sRNA target counts of EVs counts of BC counts of TOTAL
sRNA sRNA ID sequence sRNA gene B05_ B05_ MOCK_ MOCK_ B05_ B05_ Control_ Control_ B05_ B05_ MOCK_ MOCK_
ID type NO: 5′-3′ length in BC RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 RPT1 RPT2
MIR166A miRNA 247 TCGGAC 21 1 71636.21 20786.48 16380.72 9618.88 2415.44 35891.69 59.59 169.58 16129.57 16838.16 36093.26 30198.15
CAGGCT
TCATTC
CCC
TAS1c- tasiRNA 248 TCCAAT 22 2 27673.80 1940.62 5574.65 890.84 232.21 498.31 BCF BCF 13779.67 9137.97 11358.65 14444.95
siR483 GTCTTT
TCTAGT
TCGT
S4667991 IGN 249 TCCGCT 24 0 10318.78 3359.96 850.64 565.68 BCF BCF BCF BCF 1623.75 1686.48 1394.73 1193.19
GTAGCA
CACAGG
CCAATT
MIR165A miRNA 250 TCGGAC 21 0 8720.25 866.84 2016.08 441.94 243.27 6209.88 BCF BCF 2152.01 1879.23 4357.68 4284.16
CAGGCT
TCATCC
CCC
MIR159A miRNA 251 TTTGGA 21 3 8165.26 123.00 942.56 24.44 302.10 613.36 BCF BCF 19855.85 13861.61 31216.26 23555.57
TTGAAG
GGAGCT
CTA
MIR159B miRNA 252 TTTGGA 21 2 7688.04 130.81 871.93 21.03 305.19 151.75 BCF BCF 8098.22 6334.70 9457.97 13016.50
TTGAAG
GGAGCT
CTT
MIR157A miRNA 253 TTGACA 21 1 6941.03 1249.49 939.99 321.31 782.00 157.24 BCF BCF 13949.47 11099.11 18196.99 19707.76
GAAGAT
AGAGAG
CAC
MIR161 miRNA 254 TTGAAA 21 0 6187.95 1761.00 975.20 571.82 126.50 259.13 BCF BCF 26180.86 26166.46 38715.83 32807.12
GTGACT
ACATCG
GGG
MIR168A miRNA 255 TCGCTT 21 1 5522.36 15253.57 944.21 318.94 290.60 197.77 10.85 17.75 9532.05 14836.25 7841.71 7457.34
GGTGCA
GGTCGG
GAA
MIR167A miRNA 256 TGAAGC 21 2 5139.95 123777.84 1392.37 10493.13 BCF BCF BCF BCF 2600.39 1982.82 2671.64 3152.59
TGCCAG
CATGAT
CTA
S4667996 IGN 257 TCCGCT 29 0 4867.31 204.99 455.06 54.80 BCF BCF BCF BCF 29.35 36.69 BCF BCF
GTAGCA
CACAGG
CCAATT
TCACT
S4668053 IGN 258 TCCGCT 22 0 4164.86 1173.35 528.16 258.73 297.68 347.00 BCF BCF 484.86 747.43 623.62 418.41
GTAGCA
CTTCAG
GCTA
MIR163 miRNA 259 TTGAAG 24 0 4095.45 416.19 465.90 70.27 13.27 67.55 BCF BCF 1843.99 1476.88 742.27 657.09
AGGACT
TGGAAC
TTCGAT
TAS1c- tasiRNA 260 TTCTAA 21 1 3060.15 1905.48 479.98 558.42 156.13 131.88 BCF BCF 8724.58 6840.09 9787.78 11121.49
siR602 GTTCAA
CATATC
GAC
MIR403 miRNA 261 TTAGAT 22 0 2766.45 1882.05 409.87 299.09 159.67 108.78 BCF BCF 3045.43 2092.35 2905.66 2255.49
TCACGC
ACAAAC
TCGT
S2794789 IGN 262 CTACTG 27 0 2256.83 464.66 559.74 63.98 BCF BCF BCF BCF 37.73 76.36 45.98 13.59
CACGGT
CTTGGC
TCAACC
CGC
MIR393B miRNA 263 ATCATG 21 2 2126.79 1710.01 409.99 150.67 BCF BCF BCF BCF 375.02 243.89 406.20 400.59
CGATCT
CTTTGG
ATT
MIR158A miRNA 264 TCCCAA 20 2 2044.96 7085.01 381.76 1184.60 236.63 528.20 BCF BCF 20391.65 14562.15 18382.09 17208.83
ATGTAG
ACAAAG
CA
MIR396A miRNA 265 TTCCAC 21 5 1976.09 2100.71 308.56 450.90 255.21 176.77 BCF BCF 17322.33 16887.83 9892.52 14254.15
AGCTTT
CTTGAA
CTG
TAS1c- tasiRNA 266 CTTAGA 21 0 1368.44 507.61 370.54 243.78 BCF BCF BCF BCF 3328.00 3481.02 4680.58 4292.48
siR581 ATACGC
TATGTT
GGA
TAS1c- tasiRNA 267 AACTAG 21 0 1332.38 1509.15 661.39 946.23 50.42 52.73 BCF BCF 860.72 655.13 1030.40 1181.58
siR539 AAAAGA
CATTGG
ACA
TAS1c- tasiRNA 268 GAACTA 21 0 1313.75 1507.20 660.36 946.23 50.42 52.73 BCF BCF 854.43 652.91 1025.11 1178.15
siR541 GAAAAG
ACATTG
GAC
S1007073 ORF 269 CTGCAC 24 0 1176.01 183.52 BCF BCF 12.83 17.87 BCF BCF 25.36 38.55 23.65 26.13
GGTCTT
GGCTCA
ACCCGC
S4667987 IGN 270 TCCGCT 20 0 908.24 1993.33 138.48 349.08 83.60 47.94 BCF BCF 1508.04 1548.23 1255.46 1086.45
GTAGCA
CACAGG
CC
S702284 TE 271 ATTATG 24 0 821.55 44.90 BCF BCF BCF BCF BCF BCF 6026.92 5603.58 4017.89 4953.26
GACCGT
CCAACT
TGGCCC
S2794744 Anti_ 272 CTACTG 25 0 805.75 111.28 BCF BCF BCF BCF BCF BCF 10.27 12.42 BCF BCF
ORF CACGGG
CCGGCT
CAACCC
G
TAS1c- tasiRNA 273 AGAATA 24 0 781.04 144.47 191.70 54.95 BCF BCF BCF BCF 2930.55 3161.70 4144.23 3788.31
siR585 CGCTAT
GTTGGA
CTTAGA
S37361 ORF 274 AAACCG 24 0 760.38 175.71 260.02 134.48 108.81 30.25 BCF BCF 768.90 964.45 1220.20 1000.81
CAACCG
GATCTT
AAAGGC
miRNA8175 miRNA 275 CGATCC 21 0 757.14 933.21 101.93 57.69 BCF BCF BCF BCF 1350.82 932.76 1766.55 1263.78
CCGGCA
ACGGCG
CCA
MIR156D miRNA 276 TTGACA 21 0 747.01 679.41 160.10 70.20 60.60 243.88 BCF BCF 1280.18 889.76 1473.62 1477.01
GAAGAG
AGTGAG
CAC
S98162 IGN 277 AACAGC 24 0 665.58 82.00 BCF BCF BCF BCF BCF BCF 981.88 1123.46 1141.17 958.85
ATCGTC
CATCAT
TGAAGA
MIR396B miRNA 278 TTCCAC 21 4 650.60 105.43 143.83 40.21 26.10 16.91 BCF BCF 250.71 153.27 249.45 272.07
AGCTTT
CTTGAA
CTT
MIR396A* miRNA 279 GTTCAA 21 3 506.38 1036.69 167.20 152.77 76.96 13.07 BCF BCF 3850.59 3879.47 2787.25 3357.24
TAAAGC
TGTGGG
AAG
S470808 IGN 280 AGGATG 24 0 466.27 70.28 BCF BCF 24.77 23.45 BCF BCF 1492.32 1099.55 953.57 1083.81
AAAGGT
TTGACT
AGAACT
TAS3- tasiRNA 281 AGAATA 21 0 454.53 103.47 BCF BCF 52.63 21.09 BCF BCF 1239.51 794.13 903.03 1012.56
siR392 GAATCT
GTAAAA
CGA
MIR841A miRNA 282 TTTCTA 21 1 418.47 119.09 BCF BCF BCF BCF BCF BCF 212.56 168.65 326.87 331.58
GTGGGT
CGTATT
CAC
S2898195 IGN 283 CTGCAC 23 0 392.54 93.71 BCF BCF BCF BCF BCF BCF 11.74 18.90 BCF BCF
GGTCTT
GGCTCA
ACCCG
S111989 IGN 284 AACGAA 24 0 389.30 44.90 BCF BCF 11.06 13.34 BCF BCF 175.88 149.93 445.27 419.59
CCGACC
GTCAGA
CATGGA
S2898187 ORF 285 CTGCAC 23 0 375.53 93.71 BCF BCF 24.33 14.99 BCF BCF BCF BCF BCF BCF
GGGCTT
GGCTCA
TCCCA
S4964170 IGN 286 TGCACG 24 0 371.48 898.07 260.94 148.69 BCF BCF BCF BCF BCF BCF BCF BCF
GTCTTG
GCTCAA
CCCGCC
S4403479 IGN 287 TACTGC 26 0 366.21 50.76 BCF BCF BCF BCF BCF BCF 22.01 17.24 29.53 24.15
ACGGTC
TTGGCT
CAACCC
GC
S2794780 ORF 288 CTACTG 26 0 342.72 111.28 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
CACGGG
CTTGGC
TCATCC
CA
MIR167A* miRNA 289 GATCAT 21 0 342.72 6319.70 114.49 412.02 27.42 29.81 BCF BCF 2224.96 2093.65 4748.01 2986.47
GTTCGC
AGTTTC
ACC
S158710 IGN 290 AAGCAC 24 0 326.92 134.71 BCF BCF 32.73 14.73 BCF BCF 260.14 266.32 309.24 357.97
ATGTGT
AGAGTC
GAGCCT
TAS1C- tasiRNA 291 TAGCAA 21 1 310.71 302.61 91.63 53.61 BCF BCF BCF BCF 1129.46 923.86 825.61 1359.84
siR196 CTGTTC
TTTAGA
CGA
TAS2- tasiRNA 292 TTTGCA 21 0 305.45 327.99 45.30 76.87 BCF BCF BCF BCF 171.26 104.71 154.25 175.36
siR165 TATACT
CGAATA
CCT
MIR390A miRNA 293 AAGCTC 21 0 299.78 66.38 BCF BCF 29.63 95.09 BCF BCF 770.58 654.95 1014.09 1003.72
AGGAGG
GATAGC
GCC
MIR850A miRNA 294 AAGATC 22 0 271.82 158.14 BCF BCF BCF BCF BCF BCF 50.73 164.39 86.67 78.51
CGGACT
ACAACA
AAGC
S995284 IGN 295 ACTGCA 25 0 261.70 46.86 BCF BCF BCF BCF BCF BCF BCF BCF 14.25 10.69
CGGTCT
TGGCTC
AACCCG
C
TAS3- tasiRNA 296 AACGTT 21 0 252.78 95.66 BCF BCF BCF BCF BCF BCF 569.97 516.51 668.57 760.67
siR342 TAGAAA
GAGATG
GGG
S4435833 miRNA 297 TAGCCA 20 1 252.50 1182.35 58.76 58.72 BCF BCF BCF BCF 233.21 82.29 275.89 236.84
AGGATG
ACTTGC
CT
S2794745 IGN 298 CTACTG 26 0 250.76 91.76 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
CACGGG
CCGGCT
CAACCC
GC
TAS1c- tasiRNA 299 AGAATA 21 1 245.09 64.43 46.84 27.18 BCF BCF BCF BCF 100.20 64.68 104.01 117.96
siR586 CGCTAT
GTTGGA
CTT
S1452355 IGN 300 AGTAAC 27 0 232.53 199.14 90.83 52.21 BCF BCF BCF BCF BCF BCF BCF BCF
GCGGGC
TTGTGA
TCCAAG
TGG
S161570 IGN 301 AAGCGC 24 0 229.29 138.62 BCF BCF BCF BCF BCF BCF 1342.02 1631.07 1241.65 1047.13
GGAAAG
AACAGT
AGATGC
MIR391 miRNA 302 ACGGTA 21 1 222.81 179.61 BCF BCF BCF BCF BCF BCF 478.36 603.43 533.86 224.04
TCTCTC
CTACGT
AGC
TAS1b- tasiRNA 303 AATGGG 21 1 221.59 101.52 BCF BCF BCF BCF BCF BCF 131.85 141.96 161.30 125.22
siR89 AGATGT
CCGGAA
TGA
S373543 IGN 304 AGAACA 24 0 193.23 60.52 BCF BCF 30.96 26.76 BCF BCF 341.90 312.83 345.67 379.08
GAGACC
GTTGGA
AGAAAA
S1153818 TE 305 AGAGAT 23 0 185.94 91.76 124.23 45.69 BCF BCF BCF BCF BCF BCF 10.28 11.35
AAGAAA
CGATAG
TCGGT
TAS2- tasiRNA 306 ATAAGA 21 0 177.44 164.00 BCF BCF BCF BCF BCF BCF 542.51 399.94 367.41 377.50
siR461 CTGAAA
CATATA
TGT
S4195153 TE 307 GTTCGA 24 0 176.62 60.52 BCF BCF BCF BCF BCF BCF 252.39 223.32 436.61 308.23
TCCCCG
GCAACG
GCGCCA
S311972 TE 308 AACTAA 23 0 167.31 60.52 BCF BCF BCF BCF BCF BCF BCF BCF 14.84 13.19
ACCGGA
ACAGTG
TACCT
S1804551 IGN 309 TGGTGG 22 0 165.28 191.33 BCF BCF 191.08 107.47 BCF BCF 306.89 325.99 309.09 266.80
AACACT
GGCTCG
GCCC
MIR162B miRNA 310 TCGATA 21 1 161.64 228.42 BCF BCF BCF BCF BCF BCF 160.15 143.26 184.22 159.79
AACCTC
TGCATC
CAG
S35060 TE 311 AAACAT 23 0 153.13 117.14 BCF BCF BCF BCF BCF BCF 421.35 407.72 361.98 263.36
CTGATC
GTTTGA
CTTGA
S2907277 IGN 312 CTGGAA 23 0 139.76 165.95 115.08 60.13 BCF BCF BCF BCF BCF BCF 41.13 24.81
TACTTG
AACTAC
CATCT
S2724436 TE 313 CGGGTT 21 1 139.36 283.09 124.35 128.92 19.02 16.74 BCF BCF 24.32 28.73 30.41 23.75
TGGCAG
GACGTT
ACT
S366682 IGN 314 AAGACA 23 0 132.47 181.57 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
ATCAGC
ACGGAC
ATTGT
S3849690 IGN 315 GGGGAC 25 0 130.04 183.52 49.88 101.82 BCF BCF BCF BCF BCF BCF BCF BCF
ATTAAG
ATGGTG
GAACAC
T
S640613 Anti_ 316 ATGAGA 24 0 130.04 54.67 BCF BCF 11.50 12.81 BCF BCF 151.14 152.15 211.84 197.26
ORF GATTCG
GACTAT
CCAGCC
S2806230 IGN 317 CTAGTT 23 0 128.82 306.52 172.05 129.29 BCF BCF BCF BCF BCF BCF BCF BCF
CGTCGA
TATGTT
GAACT
S4403442 Anti_ 318 TACTGC 25 0 124.77 44.90 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
ORF ACGGGC
CGGCTC
AACCCG
C
MIR398B miRNA 319 GGGTTG 21 0 123.96 2493.13 52.61 252.37 64.58 28.50 BCF BCF 1904.86 2112.37 2282.19 2880.78
ATATGA
GAACAC
ACG
S1010856 IGN 320 ACTTAG 22 0 121.13 54.67 BCF BCF BCF BCF BCF BCF 43.39 43.18 51.71 52.12
AATACG
CTATGT
TGGA
S5185716 IGN 321 TGTTCG 24 0 120.32 115.19 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
ATCCAC
GCTCAC
CGCACC
S284031 IGN 322 AACGAA 27 0 118.70 62.47 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GGACCT
ATGGGT
GAAACG
CTT
S99841 IGN 323 AAACGT 21 0 118.29 74.19 BCF BCF BCF BCF BCF BCF 306.47 213.68 401.94 411.94
TTAGAA
AGAGAT
GGG
S3849698 Anti_ 324 GGGGAC 25 0 114.64 171.81 45.41 89.60 BCF BCF BCF BCF BCF BCF BCF BCF
ORF ATTAAG
ATGGTG
GGACAC
T
S3155730 Anti_ 325 GAATGA 23 0 114.24 224.52 BCF BCF BCF BCF BCF BCF 16.35 10.01 10.58 12.14
ORF CACATG
TAAACA
TCTGA
S4099527 TE 326 GTGCTT 26 0 113.02 113.24 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
TGGCGA
GAGTAG
TACTAG
GA
S3371251 IGN 327 GAGGGA 22 0 108.57 64.43 BCF BCF BCF BCF BCF BCF 26.41 41.33 31.73 29.03
CGACGA
TTTGTG
ACAC
IGN- IGN 328 GTCGAA 22 1 105.33 74.19 40.49 56.52 433.46 355.19 BCF BCF 136.68 133.25 84.62 81.67
siR1 CTCAGT
AACGCG
GGCT
S4493439 IGN 329 TATCAA 21 3 103.30 48.81 BCF BCF BCF BCF BCF BCF 39.83 26.69 40.84 41.17
GATCCA
TCTTAC
TCT
S4195144 IGN 330 GTTCGA 23 0 97.63 185.47 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
TCCACG
CTCACC
GCACC
S639704 Anti_ 331 AATGTC 23 0 96.41 78.09 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
ORF TGTTGG
TGCCAA
GAGGG
S4195152 TE 332 GTTCGA 23 0 94.79 42.95 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
TCCCCG
GCAACG
GCGCC
S2646760 TE 333 CGATCC 20 1 93.17 285.04 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
CCGGCA
ACGGCG
CC
S284030 IGN 334 AACGAA 26 0 91.96 91.76 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GGACCT
ATGGGT
GAAACG
CT
S3484554 IGN 335 GATGGG 29 0 90.34 82.00 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
ACGTTG
GGTCGA
TCTCAT
TGGGC
S1149208 TE 336 AGAGAG 23 0 87.10 72.24 71.61 54.43 BCF BCF BCF BCF 13.63 12.79 BCF BCF
GACAGA
AGAAAC
TACCC
S87743 TE 337 AAACCG 23 0 87.10 44.90 BCF BCF BCF BCF BCF BCF 15.51 31.88 12.78 14.25
GAACAG
TGTACC
TAACT
S2898159 IGN 338 CTGCAC 23 0 86.29 91.76 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GGGCCG
GCTCAA
CCCGC
S3582663 IGN 339 GCCCAC 25 0 84.26 201.09 BCF BCF BCF BCF BCF BCF 24.32 17.61 12.78 13.85
GGGTCG
GATCTG
TTGTGG
C
S3745708 IGN 340 GGAGGG 21 0 83.45 56.62 BCF BCF BCF BCF BCF BCF 34.38 38.92 44.95 27.05
TCGAAT
CTTAGC
GAC
S484509 Anti_ 341 AAGTAA 23 0 83.05 146.42 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
ORF CGTCCT
GCCAAA
CCCGT
S4002660 Anti_ 342 GTATCG 23 0 82.24 150.33 BCF BCF BCF BCF BCF BCF 48.84 52.26 73.01 49.61
ORF TTCCAA
TTTTAT
CGGAT
S4433586 IGN 343 TAGCAA 23 0 80.62 101.52 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
CTGTTC
TTTAGA
CGACT
S447310 ORF 344 AAGGAG 23 0 80.21 44.90 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GTGGAA
ATGATG
ATATT
S3875595 Anti_ 345 GGGTTG 20 0 80.21 2288.13 40.84 163.65 BCF BCF BCF BCF 10.69 16.86 BCF BCF
ORF ATATGA
GAACAC
AC
S263266 IGN 346 AACCAT 23 0 78.18 48.81 BCF BCF BCF BCF BCF BCF 17.82 13.16 16.01 15.83
ATCTTT
TGTCGG
AAGAT
S3649197 IGN 347 GCTCGT 22 0 76.56 165.95 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
TCCCAG
CTGGAC
CACC
S3438612 IGN 348 GATATG 24 0 74.54 58.57 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
ATCGAT
GTTCCT
AAATTA
S1280309 ORF 349 AGCGGT 23 0 74.13 117.14 BCF BCF BCF BCF BCF BCF 136.26 160.12 119.73 146.86
TGTTAG
CGATTG
GCACC
S3548872 IGN 350 GCACGG 22 0 73.73 862.93 45.07 134.70 BCF BCF BCF BCF BCF BCF BCF BCF
TCTTGG
CTCAAC
CCGC
S3829653 IGN 351 GGGAGG 23 1 72.51 89.81 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GTGCTA
TGCTTA
AGGTC
S3894000 ORF 352 GGTCAA 23 0 72.11 134.71 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GTCTGT
TGAGAT
GCACC
S3648408 IGN 353 GCTCGG 20 1 66.44 273.33 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GTCTCA
TGTCTT
CT
S4099310 TE 354 GTGCTT 26 0 66.44 74.19 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GGGCGA
TAGTAG
TACTAG
GA
S5147946 IGN 355 TGTCCG 22 1 64.01 76.14 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
TGCTGA
TTGTCT
TGCT
S1499603 TE 356 AGTGCA 23 0 63.20 46.86 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
TTCGGG
TCATAT
GGTAC
S3821314 ORF 357 GGGACG 20 0 61.58 138.62 BCF BCF BCF BCF BCF BCF 21.17 28.17 14.98 17.68
GGTTTG
GCAGGA
CG
S1013425 ORF 358 ACTTAT 23 0 61.58 50.76 BCF BCF BCF BCF BCF BCF 16.14 16.31 17.78 15.04
TTACAA
TGGCTG
CCACT
S3365114 ORF 359 GAGGCA 28 0 59.55 56.62 150.89 64.13 BCF BCF BCF BCF BCF BCF BCF BCF
AGTTCT
TTGACC
CGTTAG
GACT
S3908870 Anti_ 360 GGTGCC 21 1 59.55 269.42 BCF BCF BCF BCF BCF BCF 50.31 56.53 55.09 46.18
ORF AAGAGG
GAAAAG
GGC
S3347795 ORF 361 GAGGAC 21 0 58.74 370.94 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
TACGAT
GTTGGT
GAT
S274029 ORF 362 AACCGG 23 0 58.74 142.52 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
ATCTTA
AAGGCG
TAAGA
S1894035 TE 363 ATGCAC 23 0 58.33 41.00 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GTGAAA
AAACGC
GGACT
S4964105 IGN 364 TGCACG 22 0 58.33 244.04 43.13 59.76 BCF BCF BCF BCF BCF BCF BCF BCF
GGCCGG
CTCAAC
CCGC
S276315 TE 365 AACCGT 23 0 57.93 68.33 BCF BCF BCF BCF BCF BCF 16.14 11.12 BCF BCF
GACTGA
TTTGTT
TCATA
S1896074 IGN 366 TTCGAT 23 0 57.12 50.76 BCF BCF BCF BCF BCF BCF 304.17 193.11 460.26 293.58
CCCCGG
CAACGG
CGCCA
MIR848A miRNA 367 TGACAT 21 0 54.28 460.75 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GGGACT
GCCTAA
GCT
S3849740 IGN 368 GGGGAC 25 0 53.47 105.43 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
ATTTAG
ATGGTG
GAACAC
T
S4261718 Anti_ 369 GTTTGG 22 0 52.66 76.14 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
ORF CAGGAC
GTTACT
TAAT
S4964134 ORF 370 TGCACG 24 0 52.26 83.95 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GGCTTG
GCTCAT
CCCATC
S4261719 Anti_ 371 GTTTGG 23 0 51.85 48.81 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
ORF CAGGAC
GTTACT
TAATA
S2898158 IGN 372 CTGCAC 22 0 51.85 142.52 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GGGCCG
GCTCAA
CCCG
S242686 IGN 373 AACAGC 23 0 51.85 70.28 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
ATCGTC
CATCAT
TGAAG
S3369834 Anti_ 374 GAGGGA 22 0 50.64 76.14 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
ORF AAAGGG
CTATTA
AGCT
S3948143 ORF 375 GTAAAC 22 0 50.64 156.19 57.66 76.94 BCF BCF BCF BCF 24.74 24.46 14.98 14.12
ATCTGA
TCGTTT
GACT
S3144730 IGN 376 GAATAC 20 0 49.83 450.99 45.19 263.92 BCF BCF BCF BCF BCF BCF BCF BCF
TTGAAC
TACCAT
CT
MIR827A miRNA 377 TTAGAT 21 0 49.83 89.81 BCF BCF BCF BCF BCF BCF 62.47 105.45 49.07 35.63
GACCAT
CAACAA
ACT
S3940632 ORF 378 GGTTTC 23 0 49.02 66.38 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GATCCC
GACAAT
GACCT
S3398825 ORF 379 GAGTGA 22 0 49.02 113.24 59.71 48.43 BCF BCF BCF BCF BCF BCF 10.58 10.69
CGCTTG
GGACGA
AACT
S1382018 IGN 380 AGGCTG 23 0 47.80 64.43 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
TGAACG
GTAACC
AAAAC
S2312814 IGN 381 CACGGT 22 0 46.99 52.71 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
CTAAAA
GTTATG
GAGT
S4766414 IGN 382 TCTAGT 23 0 46.99 64.43 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
TCGTCG
ATATGT
TGAAC
S346019 TE 383 ACTCAT 21 1 45.37 48.81 BCF BCF BCF BCF BCF BCF 306.89 289.85 295.87 292.79
AAGATC
GTGACA
CGT
S1484048 IGN 384 GTTTTG 20 1 45.37 439.27 BCF BCF BCF BCF BCF BCF 421.35 568.77 294.69 258.48
GACAGG
TATCGA
CA
S3110547 IGN 385 GAAGAG 23 0 44.56 46.86 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GATAGT
TGTTAC
GCACT
S1726881 IGN 386 ATCACC 23 1 44.16 42.95 BCF BCF BCF BCF BCF BCF BCF BCF 11.61 13.59
GTTGAG
AGAAGT
ACTGG
S1346557 TE 387 AGGAGG 23 0 43.75 58.57 BCF BCF BCF BCF BCF BCF BCF BCF 24.09 17.29
TTCTGG
CCGAAG
CCCGT
S2826446 IGN 388 CTCACG 23 0 43.35 50.76 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GTCTAA
AAGTTA
TGGAG
S4491090 IGN 389 TATATG 21 0 43.35 50.76 BCF BCF BCF BCF BCF BCF 108.38 103.60 112.09 135.38
TTTCAG
TCTTAT
CCC
S4046464 TE 390 GTCTAA 22 0 43.35 64.43 BCF BCF BCF BCF BCF BCF 55.34 89.33 40.40 30.88
TGATTG
TGAAGT
GCCT
S4884864 ORF 391 TGACGA 23 0 43.35 52.71 BCF BCF BCF BCF BCF BCF BCF BCF 10.58 12.67
GAGAAC
TTATTG
GCCTT
S2542718 TE 392 CCGGCC 22 0 42.13 50.76 BCF BCF BCF BCF BCF BCF BCF BCF 12.05 12.27
AACTGT
ACATAT
ACAT
S3448137 IGN 393 GATCCA 23 0 41.73 44.90 BCF BCF BCF BCF BCF BCF BCF BCF 12.34 15.31
TGTAAG
TCTTAG
GCTGT
S3696733 IGN 394 GGAAGG 23 0 41.32 89.81 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GTGCTT
AGCCTA
AGGTC
S4004827 TE 395 GTATGA 23 0 40.92 54.67 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
TCGCAT
CCGTTA
GTATA
S281438 TE 396 AACCTT 23 0 40.51 42.95 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
GAAGCA
AACTGG
ACAGG
TAS2- tasiRNA 397 CGTAAA 21 1 40.51 113.24 BCF BCF 13.27 23.01 BCF BCF 48.21 44.29 67.28 46.71
siR453 AAAAGT
TGTAAC
TCT
S283245 TE 398 AACGAA 23 0 40.11 41.00 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF
CCGACC
GTCAGA
CATGG
Supplementary Table 5 The list of B.Cinerea genes targeted by Arabidopsis endogenous
sRNAs that are present in the sRNA libraries of purified B.Cinerea protoplasts
Target
Targeted gene
Target Putative function of target GO_biological by sRNA Aligned alignment
gene ID gene process sRNA type score sRNA 3′-5′
BC1G_10728 Conserved hypothetical VPS51 vesicle TAS1c- tasiRNA 3.5 :||x|x|x|||||||||||||x
protein transport siR483
BC1G_10508 Predicted dynactin protein vesicle TAS1c- tasiRNA 4.25 ||||||x:||||||||:|||xx
transport siR483
BC1G_08464 Polyphosphoinositide vesicle TAS2- tasiRNA 3.5 :|||||||x||||||x|||||
phosphatase transport siR453
BC1G_15133 Hypothetical protein similar to vesicle MIR396A miRNA 4 |:|||:||x|||||||||x||
GTPase activating protein transport
BC1G_14507 70-kDa adenylyl cyclase- vesicle S1353733 ORF 3 x||x||x||||||||||||||
associated protein transport
BC1G_09781 Hypothetical protein similar to vesicle MIR159A miRNA 4.5 ||||x||||:|||||x||||:
Vps52/Sac2 family protein transport
BC1G_09414 Hypothetical protein similar to vesicle S1353733 ORF 3 x||x||x||||||||||||||
actin cytoskeleton-regulatory transport
complex protein PAN1
BC1G_04258 GTPase-activating protein vesicle S1353733 ORF 4 x|||||x|||||||||||x||
GYPS transport
BC1G_03372 Hypothetical WH2 motif vesicle S1353733 ORF 3 x||x|||||||||||||||:|
protein transport
BC1G_02544 Hypothetical protein similar to unknown MIR166A miRNA 4.5 |||x||x|||||||||||x|:
B230380D07Rik protein
BC1G_14667 Predicted protein unknown MIR396B miRNA 4.5 ::|x|||x||||||||||||x
BC1G_14204 Predicted protein unknown S1353733 ORF 3.5 |:|x||x||||||||||:|||
BC1G_11528 Predicted protein unknown MIR159B miRNA 3.5 ||x||||::|||||||:||||
BC1G_11528 Predicted protein unknown MIR159A miRNA 4.5 x|x||||::|||||||:||||
BC1G_10316 Predicted protein unknown S1353733 ORF 4.5 x|:||||:||||x|||||||:
BC1G_05030 Predicted protein unknown S1353733 ORF 4.25 x:||||||||||||x||||||
BC1G_04218 Predicted protein unknown MIR396A miRNA 4.25 ||||x:|||||||||x|||||
BC1G_00860 Domain of unknown function unknown MIR158A miRNA 4.5 |||x|||x|||||||||x|:
(DUF4211) protein
BC1G_00624 Predicted protein unknown S1353733 ORF 4 x||x||||||||||||||:|x
BC1G_05327 Pyruvate carboxylase metabolic IGN- IGN 4.5 x|x|x||||||||||||x|||:
process siR1
BC1G_15490 Bifunctional P-450/NADPH- metabolic MIR396A* miRNA 4.5 |x|:||:|:||||||||x|||
P450 reductase process
BC1G_15423 Predicted FAD binding protein metabolic TAS1c- tasiRNA 3.75 |||x:||||||||||||:||:
process siR602
BC1G_14979 Hypothetical protein similar to metabolic S1353733 ORF 3 x||x||x||||||||||||||
mitochondrial ATP synthase B process
BC1G_14979 Hypothetical protein similar to metabolic MIR396B miRNA 4 |||||||||:|x|||||||:|
mitochondrial ATP synthase B process
BC1G_12936 2-deoxy-D-gluconate 3- metabolic MIR396A* miRNA 4 |||x|||x||||||||x||||
dehydrogenase process
BC1G_09454 Retinol dehydrogenase 12 metabolic MIR157A miRNA 2.5 x|||||||x|||||||||||:
process
BC1G_15945 Hypothetical protein similar to regulation of MIR396A miRNA 4 |:|x|:||||||||||||x||
GAL4-like transcription factor transcription
BC1G_14887 Histone-lysine N- regulation of MIR396A miRNA 3 :|x||:|||||:|||||||||
methyltransferase transcription
BC1G_14887 Histone-lysine N- regulation of MIR396B miRNA 3.5 x|x||:|||||:|||||||||
methyltransferase transcription
BC1G_07589 Histone-lysine N- regulation of MIR396A miRNA 4.5 x||||||:|||x|||||||:|
methyltransferase transcription
BC1G_07589 Histone-lysine N- regulation of MIR396B miRNA 4 :||||||:|||x||||||:|
methyltransferase transcription
BC1G_04424 Hypothetical protein similar to regulation of S1353733 ORF 3 x||x|||x|||||||||||||
ITC1 transcription
BC1G_14463 Hypothetical protein similar to mitotic cell S1353733 ORF 4 x||x||x||||:|||||||||
Uso1p cycle
BC1G_10235 Hypothetical protein similar to mitotic cell S1353733 ORF 4 |||x||x|||||||||||x||
Smc4p cycle
BC1G_03832 R3H domain of encore-like and mitotic cell MIR159A miRNA 4 ||||xx|x|||||||||||||
DIP1-like protein cycle
BC1G_12627 Hypothetical protein similar to cell wall S1353733 ORF 4.25 ||:||:x|:|||||||||:||
cell wall synthesis protein biogenesis
BC1G_09907 Predicted membrane protein cell wall MIR168A miRNA 4.5 x||x|x||:|||||||||||x
involved in the export of O- biogenesis
antigen and teichoic acid [Cell
wall/membrane/envelope
biogenesis
BC1G_09656 Hypothetical protein similar to cell wall S1353733 ORF 4.5 x||x|||:||||||||||:|x
HKR1 biogenesis
BC1G_07658 Hypothetical protein similar to RNA S1353733 ORF 4.5 |::|:||||||:||||||:|:
endoglucanase IV catabolic
process
BC1G_02429 Ribonuclease HI large subunit RNA S1353733 ORF 4 x|||:|||:||:|||||:|||
catabolic
process
BC1T_09103 Botrytis cinerea (B05.10) cell cycle S1092315 TE 4.5 ||x||||||:||:|||||||x|
hypothetical protein similar to
cell division cycle mutant (1320
nt)
BC1G_02638 Cell cycle checkpoint protein cell cycle S1353733 ORF 4.5 x||x||x|||||||:|||||:
RAD17
BC1G_02869 Guanine nucleotide-binding cell S1353733 ORF 4 ||||:|x||x||||||||||:
protein G(I)/G(S)/G(T) subunit proliferation
beta-1
BC1G_09169 Hypothetical protein similar to cell S1353733 ORF 4 x||x||x|||||||||||:||
calpain 2 catalytic subunit proliferation
BC1T_07401 Botrytis cinerea (B05.10) tRNA S2724436 TE 4.5 ||x|:|||||||:||||||x|
glutaminyl-tRNA synthetase processing
BC1G_07037 Hypothetical protein similar to tRNA S519888 ORF 4.5 :|x|||||||||:|||||x||
Msf1p processing
BC1G_10614 Hypothetical protein similar to cell surface MIR396A* miRNA 4.5 :||x|x|x||||||||||||x
GAMM1 protein receptor
signaling
pathway
BC1G_05475 Hypothetical protein similar to biosynthetic MIR159B miRNA 4.5 ||x||||:||||||x||||:|
microcystin synthetase process
BC1G_09015 Dual specificity protein kinase signal MIR158A miRNA 3.5 |x||||x|:||||||||||:
POM1 transduction
SUPPLEMENTARY TABLE 6
Primers used in this study
SEQ
Primer ID NO: sequence(5′-3′) description
TAS1c- 399 GCGGCGGTCCAATGT sRNA Rev.
siR483-F CTTTTC transcription
TAS1c- 400 GTCGTATCCAGTGCA PCR
siR483- GGGTCCGAGGTATTC
RT GCACTGGATACGACA
CGAAC
TAS1c- 401 GCGGCGGAGAATACG
siR585-F CTATGTTGG
TAS1c- 402 GTCGTATCCAGTGCA
siR585- GGGTCCGAGGTATTC
RT GCACTGGATACGACT
CTAAG
TAS2- 403 GCGGCGGCGTAAAAA
siR453-F AAGTTG
TAS2- 404 GTCGTATCCAGTGCA
siR453- GGGTCCGAGGTATTC
RT GCACTGGATACGACA
GAGTT
TAS2- 405 GCGGCGGACACGATG
siR710-F TTCAAT
TAS2- 406 GTCGTATCCAGTGCA
siR710- GGGTCCGAGGTATTC
RT GCACTGGATACGACT
AAATC
IGN- 407 GCGGCGGGTCGAACT
siR1-F CAGTAA
IGN- 408 GTCGTATCCAGTGCA
siR1-F- GGGTCCGAGGTATTC
RT GCACTGGATACGACG
CCCGC
miRNA166- 409 GGCGGTCGGACCAGG
F CTTC
miRNA166- 410 GTCGTATCCAGTGCA
RT GGGTCCGAGGTATTC
GCACTGGATACGACG
GGGAA
miRNA822- 411 CTCGTATTGCGGGAA
F GCATTT
miRNA822- 412 GTCGTATCCAGTGCA
RT GGGTCCGAGGTATTC
GCACTGGATACGACC
ATGTG
Bc- 413 ACAATCCTATCTTTC
DCL1-F GGAAGC
Bc- 414 AGACTCTTCTTCTTG
DCL1-RT AAGACAG
Bc- 415 GATTGTGCAAAGTCT
DCL2-F CAACA
Bc- 416 ATTGGGTTTGACTAT
DCL2-RT ATGTCTTA
sRNA 417 GTGCAGGGTCCGAGG
PCR T
universal
R
lib-RT 418 GCCTTGGCACCCGAG
reverse AATTCCA
primer
Bc-ITS F 419 TCGAATCTTTGAACG Biomass
CACATTGCGC
Bc-ITS R 420 TGGCAGAAGCACACC
GAGAACCTG
At- 421 CTTATCGGATTTCTC
iASK1 TATGTTTGGC
At- 422 GAGCTCCTGTTTATT
iASK2 TAACTTGTACATACC
Bc-actin 423 TGCTCCAGAAGCTTT qRT-PCR
F GTTCCAA Gene
Bc-actin 424 TCGGAGATACCTGGG Expression
R TACATAG
At-actin 425 CAGTGGTCGTACAAC
F CGGTATT
At-actin 426 GTCTCTTACAATTTC
R CCGCTCT
UBQ5 F 427 GGAAGAAGAAGACTT
ACACC
UBQ5 R 428 AGTCCACACTTACCA
CAGTA
Bc- 429 TTGGACTCTCACTTG
Vps51-F TCTCATCA
Bc- 430 ATCAGCCATAGCAGT
Vps51-R CGATAAAC
Bc- 431 GACGTTGTCATGGAG
DCTN1- GGACT
F
Bc- 432 ACTTTCCTTTCCTGG
DCTN1- GGCAG
R
Bc- 433 GCGGCATTGTAAATG
SAC1-F ACTACTTC
Bc- 434 CATCCTCCAATAAAT
SAC1-R TCTTCACG
Bc-PC-F 435 GATTTGGCTCAGATC
AAGAAAGA
Bc-PC-R 436 ACCTTACCCTTCTCC
AACTCAAC
TET8-F 437 CACAACGGGAACACA
CACT
TET8-R 438 TCCTGAAAGCACAGC
AACCA
TET9-F 439 GGTTGCTGCAAGCCC
TCTAA
TET9-R 440 CTTTTCCATGCGGCC
TTGAG
Bc- 441 ATCTGAGGTACCGGT B. cinerea
SAC1- AGTGTTGATCCTGTG target gene
5′F-KpnI AGCTAAA knock out
Bc- 442 ATCTGACTCGAGTAT constructs
SAC1- CAGATTTTCCTTCAG
5′R-XhoI TGACTCC
Bc- 443 ATCTGACTGCAGACG
SAC1- ATCAAATCTAGTCCT
3′F-PstI TTTGAGG
Bc- 444 ATCTGATCTAGAGGA
SAC1- ATTTGTATGAGAGCG
3′R-XbaI AGTTTTC
Bc- 445 ATCTGAGGTACCGAT
DCTN1- CTTACAGAACAAGGA
5′F-KpnI ATGAGGA
Bc- 446 ATCTGACTCGAGCAG
DCTN1- GTGTGTATGGCGGCA
5′R-XhoI TGTT
Bc- 447 ATCTGAGAATTCTCT
DCTN1- CCAAGACAATAAGAG
3′F- CACAGTT
EcoRI
Bc- 448 ATCCCATCTAGAATA
DCTN1- AAATGCTGCATTTGG
3′R-XbaI ATCA
Bc- 449 ATCTGAGGTACCACC
VPS51- AAACTCTGTAATTCC
5′F-KpnI CTCTCTT
Bc- 450 ATCTGAGTCGACGTC
VPS51- TATAACTCCCTCCGA
5′R-SalI CCAGT
Bc- 451 ATCTGACTGCAGCGA
VPS51- ATTCTACGAGATATC
3′F-PstI AGAGCAG
Bc- 452 ATCTGATCTAGAACT
VPS51- AAACAGCAGCAGAAA
3′R-XbaI AGATGAG
TET8 F 453 CACCATGGCTCGTTG Subcellular
TAGCAACAATC Localization
TET8 R 454 AGGCTTATATCCGTA
GGTAC
TET9 F 455 CACCATGGTACGTTT
TAGTAACAGTC
TET9 R 456 AGAATTGTTGAAACC
ATTGGAAC
TAS1c- 457 gaTCCAATGTCTTTT sRNA over
siR483 I CTAGTTCGTtctctc expression
miR-s ttttgtattcc
TAS1c- 458 gaACGAACTAGAAAA
siR483 II GACATTGGAtcaaag
miR-a agaatcaatga
TAS1c- 459 gaACAAACTAGAAAA
siR483 CACATTGGAtcacag
III miR*s gtcgtgatatg
TAS1c- 460 gaTCCAATGTGTTTT
siR483 CTAGTTTGTtctaca
IV tatatattcct
miR*a
TAS2- 461 gaCGTAAAAAAAGTT
siR453 I GTAACTCTtctctct
miR-s tttgtattcc
TAS2- 462 gaAGAGTTACAACTT
siR453 II TTTTTACGtcaaaga
miR-a gaatcaatga
TAS2- 463 gaAGCGTTACAACTT
siR453 ATTTTACGtcacagg
III miR*s tcgtgatatg
TAS2- 464 gaCGTAAAATAAGTT
siR453 GTAACGCTtctacat
IV atatattcct
miR*a
miRNA- 465 gaTCTGTTACTAAAA
TET9 I CGTACCACtctctct
miR-s tttgtattcc
miRNA- 466 gaGTGGTACGTTTTA
TET9 II GTAACAGAtcaaaga
miR-a gaatcaatga
miRNA- 467 gaGTAGTACGTTTTA
TET9 III CTAACAGTtcacagg
miR*s tcgtgatatg
miRNA- 468 gaACTGTTAGTAAAA
TET9 IV CGTACTACtctacat
miR*a atatattcct
Example 2—Naked RNA Uptake and Vesicle-Mediated RNA Uptake Many fungi can take up naked RNAs from the environment, which makes the spray induced gene silencing possible to control these fungal pathogens (FIG. 15). Moreover, Phytophthora infestans, the potato late blight oomycete pathogen, which caused Irish famine in the 1800s, can also take up naked RNAs from the environment. As shown in FIGS. 16A and 16B, different cell types have different uptake efficiency.
Furthermore, treatment with extracellular vesicles isolated from Arabidopsis efficiently suppressed grey mould disease symptoms caused by B. cinerea. As shown in FIGS. 17A-17C, extracellular vesicles (EVs) extracted from the B. cinerea-infected Arabidopsis leaves were mixed with B. cinerea spores and dropped onto the tomato leaves (right side of the leaf). Non-treated spores used as control (left side of the leaf). EVs were quantified by the protein concentration of EVs. EVs of 5 ng/μl, 10 ng/μl, and 100 ng/μ1 had strong inhibition on grey mold disease symptoms, and the high concentration of EV treatment (100 ng/μl) can even suppress the disease lesion size (infected without EVs) on the other side of the leaves, suggesting that EVs can move long distance within the plant tissue.
To confirm that external EVs can traffick in the leaves, we dropped only the B. cinerea spores on the left side of Arabidopsis leaves, and only the 100 ng/μ1 EVs on the right side. We found that EVs (100 ng/μl) can clearly reduce the lesion size on the other side of the leaves (FIGS. 17D and 17E). These results support that EVs can travel within the plant tissue, which increase the capability of plant protection.
Example 3—Liposome-Mediated RNA Uptake To investigate whether fungi can take up RNA-containing liposomes from the environment, we synthesized fluorescein—labelled Bc-DCL1/2-dsRNAs targeting Bc-DCL1/2 genes and encapsulated the RNAs into liposomes. The liposomes were mixed with B. cinerea cells and fluorescent RNAs were accumulated inside the B. cinerea cells within 3 h, suggesting that liposomes can efficiently deliver dsRNA into fungal cells. Fluorescence signals remained visible in the B. cinerea cells after triton X-100 wash and MNase treatment, confirming that the labeled RNAs were inside the fungal cells. Fluorescence signals was observed in B. cinerea protoplasts after MNase treatment. Liposome-fluorescein-labelled-dsRNAs was applied onto germinated B. cinerea spores and protoplasts were isolated after culturing for 3 h. The fluorescent signals were detected within fungal protoplasts after MNase enzyme treatment. As shown in FIG. 18, liposomes containing fluorescein-labelled Bc-DCL1/2-dsRNAs were taken up efficiently by B. cinerea cells.
Example 4—Liposome Stabilization of RNAs dsRNA-containing liposomes were sprayed on the rose petals first and then challenged with B. cinerea at 0, 5, 8, and 15 days post liposome spray treatment. H2O, naked dsRNAs, and empty liposomes were used as controls. Pictures were taken 2 days after the fungal inoculation (dpi). We found that the liposome-dsRNAs remained effective for up to 15 days after RNA treatment whereas naked RNAs were effective up to 5 days. Thus, liposomes provide a longer protection than naked dsRNA against B. cinerea infection. Encapsulation of RNAs with liposomes protects and stabilizes RNAs and extends their effective period on plants than naked RNAs. FIG. 19 shows that liposomes containing double stranded RNAs and/or small RNAs were taken up efficiently by fungal cells. Externally applied liposomes carrying Bc-DCL1/2-dsRNAs remained effective on plants for two weeks to inhibit pathogen virulence on flower petals. FIG. 20 further shows liposome-protected dsRNAs that target trafficking pathway genes VPS51, DCTN1, and SAC1 were effective for up to 15 days.
Example 5—Liposome Stabilization of RNAs Fluorescein-labeled PiDCL1 dsRNA were applied onto P. infestans cysts and fluorescent signals were detected in the P. infestans cells at 12 h post culturing in water. As shown in FIG. 21A, fluorescence signals remained visible in the P. infestans cells after MNase treatment. Further, fluorescein-labeled PiDCL1 dsRNA were packed into liposome and applied onto P. infestans cysts. The fluorescent signals were detected in the P. infestans cells at 12 h post culturing in water. As shown in FIG. 21B, fluorescence signals remained visible in the P. infestans cells after Triton treatment. This experiment shows that Phytophthora infestans cysts take up both naked dsRNAs and liposome-protected dsRNAs.
Example 6—Cationic Liposome Delivery Systems Method 3 of the cationic liposome delivery system for siRNA delivery is used on HeLa cells. HeLa cells are transfected with siPlk1 using: DOTAP:Chol liposomes mixed with siRNA; DOTAP:Chol:DSPE-PEG2000 (5 mol %) liposomes mixed with siRNA; or DOTAP:Chol:DSPE-PEG2000 (5 mol %) liposomes hydrated with siRNA using the encapsulation protocol. Liposome/siRNA complexes are prepared at N/P 2:1, 4:1, and 6:1 with a final siRNA concentration of 50 nM. Cell viability is assessed by the MTT assay 48 h posttransfeccion (Zou et al., Cancer Gene Ther. 7(5):683-96, 2000).
Example 7—Extrusion Method to Prepare sRNA Liposomes We made sRNA liposomes for encapsulation of siRNA using the lipid film hydration method (Podesta and Kostarelos, Methods Enzymol. 464:343-54, 2009). DOTAP, cholesterol, and DSPE-PEG2000 (2:1:0.1) were dissolved in chloroform: methanol (4:1, v/v). After mixing the lipids, the organic solvent was evaporated under hood for 120 min. The lipid film was hydrated using a solution of siRNA in RNase-free dH2O. The amount of siRNA used to hydrate the film was calculated from the charge ratio (N:P) (FIG. 23A). After hydration at 4° C. overnight, the crude liposome was extruded by Mini-Extruder (FIG. 23B). Extrusion of liposomes was performed using a Mini-Extruder (Avanti Polar Lipids, Alabaster, USA). Liposomes were extruded 11 times through a 0.4 μm polycarbonate membrane.
Informal Sequence Listing Botrytis cinerea, Bc_DTCN, BC1G_10508
SEQ ID NO: 1
GCAGGGGTCGGATCAACATGTCTATAAACAAACATATGTACCGGCGTTGATCTCTCCTGCAGACTGCATTTGCACTTG
CTTCCCTCTTCCTCCTCCCGTTTCCTGGTCTTCTTCTACAAGCTGCAGGCGAGAGAGATAACTTCTACGCACCTTCCAT
ATCCCTCACCTCTTCTCTCCCCACAAGTTCGTTCATAATCCTTTCGTCCTGTTGTTTTGTCTAGCATTACCTTGCAATTCT
TAACAACGGCCGATCGTGGACATCAATCAATAAAAAGGACGACAAATCATCTTATAATTATTATCCCAAACTTTCATTGC
ACAAATTTGAATTGGATACTCATTTGGCTTTATTCGGAGCGATAAACGTAGAAATTAATCGTATAGGGGCTTTTATCAGA
CAATCAAGAACGGTGATTGGCTCACAGCGGTGAATTGTGAGGGGTGGTAATACAGAAAACAAATAGTATAGGGAGTAT
TTTTGGGTGGATTGTTACCAATGTCTACCACAAGAATCTCAACACCGAAAAGGTCCCCCAAAAAATCGACTTTTGTCAA
AACTGGAATCTTGACCACCAAATCAACGCCCAATCTCAACGCCTCCTATAATTTGGCATTACTACAAGCTTCAGGAGCT
ACACCCGTTCCTGCATATCCTTCCAATAACGGTCAAAGTTTTGCCCTAAATAATCCTAGGTCGCAACCGTCTCGACAAG
TCTCACTCGCTTCCCTTACCTCGAATTCACTTGCGACAATCCCGGATGCAAGCAAGAGATACCCTCTTTCTACAGTCTT
TGATGAGGATATGCCAACAGTAGGCAACATGCCGCCATACACACCTGCTCGAGTTGGCGGTGGACCGGAAGAACTAG
AGGTTGGTGATATAGTCGATGTGCCAGGTAACATGTATGGTATCGTCAAATTTGTTGGCAGTGTGCAAGGCAAAAAGG
GTGTATTTGCTGGGGTAGAATTAAGTGAAACGTTTGCTTCGAAAGGGAAAAACAATGGCGATGTCGAAGGAATTCAATA
CTTTGACACAACCATCGATGGTGCTGGGATTTTTCTTCCAGTCAACAGGGCGAAGAGACGTAGCACCCCTTCGTCGCA
TGATGAGTCATTTCCCCTTTCACCGGCGTCTCCATCGATGGGCAATAGGGCTGGGAGATTAGGATCTGAATTAAATGG
TCAGCCAACACCTTTGTTACCAAAATTCGGTCAATCTGTTGGTCCAGGCAGAGCGGCAAACCCATATGTCCAAAAAACA
CGTCCATCCATGGCTACACCTACCACCTCAAGACCGGAATCACCAGTTCGAAGAGCAGCCAATGCCAACCCATCATTA
AATACACCTGCACAAAGAGTCCCATCTCGATATGCAAGCCCTGCGCAGGCAAACTTTGGACAGAGCGTTAGAGGAACA
CAAGATTCTAGAGATCCAAGTAAGAAAGTTGGCTACACCCCCCGAAATGGCATGAAAACACCAATACCTCCACGAAGT
GTTTCTGCACTTGGAACGGGGAATAGACCTGCACCAATGAACTCGATGAATTTCAGTGATGAAGAGACACCTCCTGCA
GAGATTGCACGTACGGCAACAAACGGAAGCGTAGGCTCAGTCTCTTCTTTCAACGCGAAATTACGTCCAGCATCAAGA
TCCGCATCGCGTACAACTTCCAGGGCTACCGACGACGAATTTGAGCGATTGAGAAGTTTGTTAGAAGATCGCGATAGG
GAAATAAAAGAACAGGCTTCTATTATAGAAGACATGGAGAAAACTCTCAGTGAAGCACAATCGTTGATGGAGAACAATA
ACGAGAACGCAAGTGGTAGACATAGTCAGGGAAGTGTGGATGACAAGGACGCAACACAGTTGAGAGCAATAATACGT
GAAAAGAACGACAAAATCGCCATGCTGACTGCCGAGTTTGATCAGCATCGAGCTGATTTCAGAAGCACGATAGACACG
CTCGAAATGGCCGGTGCGGAAACCGAGCGAGTGTACGACGAGCGCATGCGTGTTCTCGTAATGGAGCTCGATACAAT
GCACGAGAATAGTCATGATGTAAAGCACGTTGCTGTACAACTGAAACAGCTAGAAGAGCTCGTTCAGGAGCTCGAGGA
AGGTCTTGAAGATGCACGACGTGGTGAAGCCGAAGCTCGGGGAGAAGTTGAGTTCTTGCGTGGAGAGGTTGAAAGAA
CTCGATCTGAACTCCGCCGCGAGCGAGAGAAGACTGCCGAAGCTCTTAGCAACGCAAATTCTCCTACGAGCGCAAGT
GCGGAAACACATTCCAAAGAGATTGCTCAGAGAGATGACGAGATTCGTGGATTGAAAGCCATCATCCACTCGCTCAGC
AGAGATGCCATACCTGATGGGAATTTCTCGGATCATGAGGCAACACCAAATATTCTACGACCTGGACTAAACCGAAGT
CGAACAGAAAGTGCTTCGGTTTCTGAGGAGGAGCGCCGTACTCGGGAAAAGCTAGAGCGAGAAGTGAGTGAGCTTC
GTGCTCTCGTCGAAAGCAAAGACAATAAAGAAGAACAAATGGAGCGCGAGTTGGAGGGATTGCGAAGAGGAAGTGTT
AGCAATCCTACTACGCATCGTACTAGTGCCATGAGCAGCGGAACTGTGACTCAGGATAGGAATTCTCTCCAAGACAAT
AAGAGCACAGTTGTAAGCTGGCGAGAACGTGGTGCCTCAGATGCTCGCCGCTACAATCTGGATTCAATGCCAGAGAA
TGACAGCTACTCCTCTGCAGCTGAGGATTTCTGTGAATTATGCGAAACCTCAGGTCATGATGTTCTACATTGCCCGATG
TTTGGCCCCAATGGTAACAGCAGCAATTCTAAGGATGAGTCACCTAAACAGCAACGAACAGGAAAAGACGTTGTCATG
GAGGGACTTAAATTATCACCCAAACCTTCTCAAGAAGAATACAAACCGGCGCCGTTAGCGCCAGCTAAGAAGTCGCCT
GATGCGTCGCCTATCAAGACTGTTCCCAACCTTATGGAACCAGGACCTGCCCCAGGAAAGGAAAGTGGAGTAATCAA
CATGGATAAATGGTGCGGTGTATGTGAAAGAGATGGACATGACAGTATTGATTGTCCTTTTGAAGATGCTTTTTAGGAG
ACTACTGCTTTCGATGTTTCAGGATAAGCAGTCACAACGACGACTTTTTTCATAGATTTTCTTTGTTAATCATAGGCAAG
GCCGCATTGCATTGCAGGAGCGTAATCCGTCTGCGATATACCCTTTCGGTTCTCTGTTTGAAGTATGCTTTTCAAGCGA
TAAGTTTAGAGGGGAAGATGATGTTTTTACGAGGATTGAATGAGATGGATGAATGCAGGCTAAATCGGGGAAGGGGG
AGGGAAGACAAACATGAGTTGAACGGACGTAATGATCATGTAGTATACTTTGTCAAATTAATGATCCAAATGCA
Sclerotinia sclerotiorum, Ss_DTCN, SS1G_04144
SEQ ID NO: 2
ATGTCGACTACAAGAATCTCAACTCCAAAAAGGTCTCCAAAAAAATCGACATTCACTAAAACAGGAATTCAAGTCACAAA
ATCAACTCCCAATCTCGGTGCCTCCTACAATTTGGCTTTATTACAAGCTTCAGGAGCTTCACCGGTTCTTGCACATTTTT
CCAATAACGGTCAGGGTTTTGGTCTAAACAATCCTAGGTCGAAGCCATCTCGACAAGTCTCACTCGCATCCCTTACCTC
AAATTCACTGGCGGCAATACCGGATGCTAGTAAAAGATACCCTCTTTCAACCGTTTTTGATGAGGATATGCCACCAGCA
GGCAACATGTATACACCTTCTCGAGTTGGTGGTGGGCCCGATGAGTTGGAGGTGGGTGACATAGTTGATGTTCCTGG
TAACATGTATGGTACTGTCAGATTTGTCGGCAGTGTGCAAGGCAAGAAGGGGGTCTTTGCCGGAGTGGAATTGGATG
AGATGTTTGCTTCCAAAGGGAAGAACAATGGTGATGTTGAAGGTCAATCAGTTGGCCCAGGTAGAATTCAAAAAACCC
GACCATCGATAGCCACACCAACCACATCACGACCAGAGTCTCCAGTACGAAGAGCAGCCGCTGCTAGGACATCAATA
AATGCACCCGGGCAGAGAGTCCCATCTCGATATGGAAGTCCTGCAGCGGCGAACTTTGGGCAGAACATTAGAGGAGT
GCAAGATGCTAGAGACCCAAGCAAGAAAGTCGGTTACGCCCCAACAAATGGCATGAAGACACCAGTCCCTCCACGAA
GTGTTTCGGCACTTGGCACAGGGAGTAGACCTGCAGCAATGAACCTCAGTGATGAAGATACACCTTCTGCTGGAATTA
CACGGACGGCAACAAACGGGAGTGTGAGCTCAATCTCTTCCTTCAACGCAAAGTTACGACCTGCATCAAGATCCGCCT
CGCGTGCGTCCCGAGCTACTGACGACGAGGTCGAGCGATTGAGAGGTCTACTGGAGGAGCGCGATCGGGAAATAAA
AGCACAAGCTTCAATCATAGAAGACATGGAAAAGACTCTTAGTGAAGCTCAGTCACTGATGGAGGACAACAATGAGAA
CGCGGGCGGTCATAGAGATAGCCGGGGAAGCATGGAGGACAAAGACGCAGCACAATTGAGAGCAATAATTCGTGAA
AAGAATGAAAAAATCGCCATGCTGACTGCTGAGTTTGATCAGCATCGAGCTGATTTCAGAAGTACAATAGACACACTTG
AGATGGCTGGTGCTGAAACCGAAAGAGTCTACGATGAGCGCATGAGTAATCTTGTAATGGAGCTCAGGACGATGCAT
GAGAACAGTCATGATGTGAAGCATGTTGCTGTACAACTGAAACAGCTAGAAGAGCTTGTTCAGGAGCTTGAGGAAGGT
CTTGAAGATGCGCGGCGTGGTGAAGCCGAGGCTCGCGGTGAGGTCGAGTTCTTGCGTGGAGAGGTTGAAAGAACTC
GATCTGAGCTTCGTCGTGAGCGGGAGAAAACTGCTGAAGCTCTCAGTAACGCAAATCCTGCTACGGGTGTGGGTGCA
GCAACACTTTCTAAAGAGATTGCACAAAGAGATGACGAGATCCGCGGTTTGAAAGCTATCATTCACTCGCTTAGCCGA
GATGCCATACCTGATGGGAATTTCTCGGATCATGAAAAGACACCAAGTGTTACACGACCAGGGCTACATCGAAGCCGT
ACGGAAAGCGCTTCAGCTTCAGAGGAGGAGCGTCTTAGCCGGGAGAAGTTGGAACGAGAAGTGAGCGAACTTCGTG
CCGTCGTAGAAAGTAAAGACAGCAAGGAAGAAGAAATGGAGCGTGAGCTAGAGGGGCTACGAAGGGGAAGTGTCAG
CAATTCTACTACGCAGCGTACTAGTGCCATTAGCAGTGGAACTGCAACCCAGGATAGAAACTCTGTCCGAGATTCCAA
AGGCACAGTTGGAAGCTGGCGGGACCGCGAAGGAACATCGGATGTTCACCACCACAACTTGGAGTCAATGCCAGAG
ATTGACGGTTACTCTTCAGCAGCGGAGGATTTCTGTGAATTGTGCGAGGCATCAGGTCATGATGTTCTACATTGCCCC
ATGTTCGGTCCTAATGGTAATAGTGGCAACTCTAGAGAGGAGTCTCCTAAAGAGCAACGAACAGGAAAAGACGTTGTC
ATGGAAGGACTCAAACTATCACCCAAACTAGCGCAAGAAGAATACGAACCAGCACCTTTAGCACCAGCCAAGAAGTCG
TCTGATGACTCGCCTATTAAAACCATCCCTAACCTCATGGACCCAGGTGCTGCTCCAGGAAAAGCAAGTGGAGTCATC
AATATGGACAAATGGTGCGGTGTATGTGAACGAGATGGACATGACAGCATTGACTGTCCGTTTGAAGATGCATTTTAG
Botrytis cinerea, Bc_VPS51, BC1G_10728
SEQ ID NO: 3
GACACATGCGATATGCAAAGTCTAGAACCTCGAATACTGATTCGAAAAAGACTGGCAATTCCATAAATCTACAGTATATT
TTAATCCGCAACTCATGAATGACTACATTTAATACGAATTACAAACATTCCCTAACGCCAAAATGGCAGCTACGATTCCC
CTCTCCACTACAACATGCTTGACCTCCTCAGAAGCTTTCAAATATCCTCTTCCACAGATTCGTCAATTCCACCGCGATCT
CACTACAGAGCTTGACGAGAAAAATGCACGTCTGCGGACACTGGTCGGAGGGAGTTATAGACAATTACTTGGAACCG
CCGAGCAAATCTTACAGATGCGACAGGATATTAGTGGAGTAGAGGAAAAGTTAGGCAAAGTAGGAGAAGGATGTGGG
AGAAATGTGTTGGTTGGAATGGTTGGCGGATTGGGAAAATTACAGGGAGAAATGAAGAATGGAAAGAAGGGCGAGGA
AATGCGGGTTGTGGCTAAGATGAAGGTATTGGGTATGTGTGGGATTGTGGTTGGGAAGCTCTTGAGGAGACCAGGGC
GAATGGATGGGGATGGTGGGAGAGGGAAGGAATTAGTAGTTGCTGCGAAAGTCTTAGTTTTGAGCCGATTGTTGGCG
AAGAGCTTGGAGAATACTGGAGATAAGGAATTCGTTGAAGAAGCGAAGAAGAAGAGGTCGGCTTTGACGAAGCGATT
GTTACGCGCAGTTGAAAAGACATTGGTTTCCGTCAAGGATGCTGAAGATAGAGACGATTTGGTACAGACACTTTGTGC
ATACAGTCTAGCTACTAGTTCTGGCACCAAAGACGTCTTGCGACATTTCTTAAATGTTCGTGGTGAAGCAATGGCTTTA
GCGTTTGACGATGAAGAGGAGTCGAACAAGCAGACCTCAGGTGTCCTACGCGCTTTGGAAATATATACGAGAACTTTA
CTAGATGTACAGGCTCTAGTGCCAAGGAGGCTGAGCGAAGCGTTGGCTGTGCTGAAGACGAAACCTTTACTGAAAGA
TGACAGCATTCGGGAAATGGAGGGATTGAGGTTGGATGTATGTGAGCGGTGGTTTGGCGATGAGATTATTTACTTCAC
ACCTTATGTCCGGCATGATGATTTGGAAGGGTCATTGGCGGTTGAAACACTACGAGGTTGGGCGAAGAAAGCGTCAG
AAGTGTTACTGGAAGGTTTTACGAAGACTCTTCAAGGGGGATTAGACTTTAAAGTAGTTGTTGAACTACGAACAAAGAT
TCTGGAGGTGTGGGTTAGAGATGGAGGCAAAGCAAGGGGATTCGATCCCTCTATACTTCTAAATGGCTTACGAGACGT
TATAAACAAACGACTCGTAGAGTTATTAGAAACTAGAGTTGGCAAACTTCATCTAGTGGGGACAGAGATAGAGTCCACA
TTAGCAACATGGCAAGAAGGAATCACCGACATACATGCAAGTCTTTGGGACGAAGATATGATGGCAACCGAGCTCAGC
AATGGTGGTAACATTTTCAAGCAAGACATACTTGCTCGCACGTTCGGACGGAACGATGCTGTTTCAAGAGTTGTTAACA
GTTTTCACACTTGGAGACATCTCATCGAGGAAATTGGTACTTATATTGATGAACTGAAGAAACAAAGATGGGATGATGA
TTTGGAAGATATGGAAGATGATGAAAGTCTCGAATCACGACAAAACCTTCTTAGCAAGGAAGATCCACAAATGCTACAA
GATCATCTCGATTCAAGCTTAGAAAATTCGTTCCAGGAGTTACACGCAAAGATCACTTCACTGGTGGACCAGCAAAAAG
ATAGTAAACATATCGGGAAAATATCGATATATATTCTCCGAATTCTACGAGATATCAGAGCAGAATTACCTAGTAACCCT
GCACTACAAAAGTTTGGACTCTCACTTGTCTCATCACTGCACGAAAATCTCGCAGGTATGGTCTCAGAAAACGCCATCT
TAGCCCTTGCAAAATCTCTCAAGAAGAAGAAGGTTGCGGGCAGAGCATTATGGGAGGGTACACCGGAACTTCCTGTTC
AGCCCTCCCCAGCAACATTCAAATTTTTGAGAGGTTTATCGACTGCTATGGCTGATGCTGGAGCCGATCTATGGAGCC
CTGTTGCCGTCAAAGTGTTGAAAGCGCGTCTGGACACCCAAGTTGAAGACCAATGGAGTAAGGCTCTAAAAGATG
AGGAAGAGCCTAGCAATGGAATCTCTGGTTCTCCCACCAATGCTCCCGAAGCAGATGCCGAGGAAAAAGAAGGGGAC
GCTTCTGCTCCTAATCCTGCTGCTGCTGTAGAAGTAGATGAAGAAAAACAAAAGGATTTACTAAAGCAATCACTGTTCG
ATATATCTGTCTTGCAGCAAGCTTTAGAATCACAGTCAGACAATAAGGAGAACAAACTTAAGAACTTAGCGGATGAGGT
GGGAGGAAAACTAGATCTCGAGGCGAGGGAAAGGAAACGTATGGTTAATGGCGCGGCGGAGTATTGGAAGAGGTGC
AGTCTTTTGTTTGGACTTTTAGCGTAGATTCCAGATGGATGAATTAGTGAGAGGCTTATAATGAATTATATTACGAATAC
TTTACTTTTGAGTATTCA
Sclerotinia sclerotiorum, Ss_VPS51, SS1G_09028
SEQ ID NO: 4
ATGGCATCTACAACCCTCTCCACAACAACATGCTTCACTTCCTCGGAAGCATTTAAACATCCTCTCCCTCAAATCCGGC
AATTCCACCGCGATCTCACCACCGAACTTGATGAGAAAAACGCACGTCTACGTACACTTGTCGGAGGTAGTTATAGAC
AATTACTGGGAACCGCTGAACAAATCCTACAAATGCGCAAGGATATCCGTGAAGTGGAGGAAAAGTTGGGGGAAGTA
GGGGAAGGATGTGGAAGAAATGTATTAGTTGGGATGGCTTCTGGATTAGGTAAATTACAGGGAGAAATGAAGAATGGG
AAGAAAGGGGAGGAAATAAGGGGATTGGCTAGAATGAAGGGTTTGGGTATGTGTGGGATTGTGGTTGGGAAACTTTT
GAGGAGGCAGGGAAGAGTGGATGGGGAGGGGAGAGGGAAAAGTTTAGTGATTGCTGCGAAAGTTTTGGTTTTGAGT
CGGTTGTTGGCGAAGAGTTTGGAGGGTTGTGTGAATAGTGCGGATAGAGAATTTGTTGAGGAGGCAAAGAAGAAGAG
GGTGGTTTTGACGAAACGATTGTTACGGGCGGTTGAGAAGACATTAGTCTCGACCAAGGATGGTGAAGATAGAGAAG
ACCTGGTACAGGCTCTTTGCGCGTATAGTCTTGCTACTAGCTCTGGTGCGAAAGACGTTTTACGACATTTTCTAAATGT
CCGAGGGGAAGCAATGGCATTAGCATTCGAAGACGAAGAGGAATCGAACCAGGAGACATCAGGTGTTTTGCGGGCAT
TGGAAATATATACGAGGACTTTACTTGATGTACAAGCATTGGTACCGAGTAGACTTAGCCAAGCATTGGCTGCGCTGAA
GACGAAACCTTTATTGAAAGATGAAAGTATTCGAGATTTGGAGGGATTGAGATTAGATGTATGTGAGCGGTGGTTTGGT
GATGAAATTCTTTACTTTACACCTTATGTTCGACACGATGATTTGGAAGGATCATTAGCCGTTGAGACATTAAGAGGTTG
GGCGAAGAAAGCATCAGAGGTACTACTGGAAGGATTCACAAAGACTCTTCAAGGTGGCTTGGACTTCAAGGTAGTAGT
CGAATTACGGACAAAGATATTGGAGGTATGGATACGGGATGGAGGAAAGGCAAGAGGGTTTGATCCGTCTATACTTCG
AGATGGACTGCGAGGTGTTGTTAACGAACGACTTGTAGAGTTATTGGAAACTCGAGTTGGCAAACTTCATCTAGTGGG
AACAGAAATAGAATCCACATTGGCTACATGGGAGAAATGGATTACTGATCATCATGCTAGTCTATGGGATGAAGATATG
ATGGCAACGGAACTCAGCAATGGAGGTAATATGTTCAAACAAGACATTCTTGCTCGTACCTTTGGACGTAATGATGCTG
TTTCAAGAGTAGTCAACAGTTTTCAGACTTGGAGACATCTCATCAAGGAAATAGGTACTGTTATTGATGAATTGAAGAAA
CAAAGATGGGATGATGATTTAGAAGATATCGAAGATGAAGAAAGTCTTGAGTCGCGACAAAATCTTCTTAGTAAGAAAG
ATCCACAAATGTTGCAAGATCATCTTGATTCAAGCTTAGAAAAAGCTTTTCAGGAGTTACATACGAAAATCACGACACTT
GTGGAGCAATACAAAGATAGCGAGCATATCGGAAAGATATCAATGTATATTTTACGAATTTTACGAGATATCCGAGCAG
AGCTACCGACAAATCCATCACTACAACAATTCGGTCTTTCACTGATCCCATTACTACACGAGAGCCTTGCCAGCACAGT
TTCTGAAAACCCTATCTCTTCTCTAGCAAAATCGCTCAAGAAAAAAAAAGTTGCAGGAAGAGCATTATGGGAAGGAACA
CCGGAACTTCCAATTCAACCTTCACCTGCTACATTTAAATTTCTTCGTGCTTTATCAAATGCTATGGCTGATGCTGGAGC
AGATCTTTGGAGTCCTATTGCTATTAAGACTTTGAAAGTACATCTCGATTCCCAAATTAATGAGAAATGGAGCATAGCCT
TGTCAGAGAAGATGGCTAGTAATAAAACAACTACTTCTTCCAGCAATCCACCCGATACTGAAAAATCCGCGGAAACAGA
AGAACCAAAAAATGAAGTTCAATCCCCGTTGGATAAAGAAGTAGAAGAAGAAAAAGAAAAAAATCTACTAAAACAATATT
TATTCGATATCTTCGTCTTACAACAAGCTTTAGCGCTACAATCTATACAATTTGGGGATAAGGAAAAGGAAAAGGAAAAA
GGGATTATGGGGATGAAAATCAAGAATTTGAGTGATGAGATTGAATTGGAATTGAAGCTTGAGATGCAGGAGAGGAAG
AGGGTGGGGAATGGTGCGAGGGAGTATTGGAAGAGGACGGGGCTTTTGTTTGGGTTTTTGGTGTAG
Botrytis cinerea, Bc_SAC1 BC1G_08464
SEQ ID NO: 5
GATCCACCCACATCCTTCCTCATATGACTTCGATGATAATTACATAGACACTGCCAGTATGCCTGGCCTCGTTCGCAAA
CTCCTTATCTTTGCCGCCATCGATGGGTTGATTTTGCAACCAGCAGCGCCAAAAGGCCAACGCCCCGCCCCCGCAAC
GAAGATCGCATACAAAGATAAGCATATCGGGCCAGTATTGAGTGATTTGCAGGATCTGGAGGGGTCGTCTGCGAAAA
GTTTCGAGGCATTTGGTATTGTCGGTCTCTTGACGGTTTCCAAAAGCTCCTTCCTGATATCGATTACGAAAAGAGAGCA
AGTCGCACAAATACAAGGGAAACCTATATATGTTATTACTGAAGTGGCTTTGACCCCATTAAGTTCCAAGAACGAAGCA
GAGATCTCGATTGATAGTACGAAAGCGGGGTTATTGAAGAGTAATATCGAGGGGCAGCATGGCTTGGACGAGAGTGA
TAGCGAGGATGATGTCGTTAGCGATGAAGTGGAGGACGATACAGCAGTAGAAGCACACAAAAGAACGAGTAGCGTAG
CTGAAGATGTGATCTCGAAGAAGGGGGGATATGGAAGATTTGCTCAAAAATGGTTCTCGAAGAAAGGATGGGCCGTG
GACCAGAAGAAGAACCTGGGGATGAGCGCTGAGCCGTATTCCACAGTGGAGCAAGCTTCCAAGGCCACCGATGTAC
CAGCTACGATTTCAGGAGTCACTGAAGGAAAATCTGATATCTCAATTCCCGATAAGGGCAAGGAAATTGAGGACATTG
AAACTCCTGAAAATATTAGCGACATTGCAGAGAGCATGCTGCCAAAATTACTACGAACATCGCAGATATTGTTTGGGGC
CTCTCGGAGTTACTACTTTTCTTACGACCATGATATCACAAGAAGTTTGGCAAATAAGAGGAATACAAATTCTGAATTGC
CATTGCACAAGGAAGTTGATCCACTCTTCTTCTGGAATCGGCATCTTACTTTACCATTTATTGATGCTGGCCAGTCTTCT
CTTGCCTTGCCTCTTATGCAGGGCTTTGTAGGACAGCGTGCATTTTCAATGGATAGTAATCCACCAAACCCTGCTATAG
GTTCAGACACTGGAAAGACTTCCGTGCAGATGAAGGATATTACAACAAGTAGTTCGGATGAGCAAATTTACACAGCAC
GTGCTGGTACAGACAAGTCGTATCTATTGACGTTAATATCTAGAAGGTCAGTCAAACGTGCCGGGCTTAGATATTTACG
CCGGGGTGTGGATGAGGACGGCAATACAGCCAATGGCGTGGAAACAGAGCAAATCTTATCGGATTCTGCTTGGGGCC
CTTCGAGTAAGACATATTCGTTCGTTCAGATACGTGGCAGCATTCCCATATTCTTCTCCCAGTCACCTTACTCTTTTAAA
CCTGTACCTCAAGTTCACCACTCTACCGAAACAAATTATGAAGCTTTCAAGAAGCATTTTGATAATATAAGTGATCGCTA
CGGGGCCATTCAAGTGGCTTCCTTGGTGGAGAAGCATGGAAACGAGGCAATAGTCGGTGGAGAGTACGAGAAATTGA
TGACTCTCCTTAATGTCTCCCGAGCTAGCGAGCTTAGGAAATCCATTGGGTTTGAATGGTTTGATTTCCATGCTATTTG
CAAAGGTATGAAATTTGAGAATGTCAGCCTGCTCATGGAAATACTGGACAAGAAGCTTGACTCGTTTTCGCACACTGTT
GAAACCGATGGGAAACTTGTATCGAAACAGAATGGCGTTTTAAGGACTAACTGTATGGATTGTCTGGATCGAACAAAC
GTTGTTCAAAGTGCAGTGGCAAAGCGAGCACTTGAAATGCAGTTAAAGAATGAGGGACTAGATGTCACTCTACAAATT
GATCAAACTCAACAATGGTTCAATACTTTGTGGGCCGACAATGGTGACGCCATTTCTAAGCAATACGCTTCTACAGCAG
CATTGAAGGGAGACTTTACTCGTACTAGGAAGCGGGATTATAAGGGGGCCATCACAGATATGGGGCTTTCTATCTCCA
GATTTTATAGCGGCATTGTAAATGACTACTTCAGTCAAGCTGCCATTGATTTCCTGCTTGGAAATGTGAGCTATCTTGTT
TTTGAAGACTTCGAGGCAAACATGATGAGCGGTGATCCTGGCGTTTCGATGCAAAAAATGAGGCAACAAGCCATTGAT
GTTTCTCAGAAACTCGTTGTTGCTGACGACCGTGAAGAATTTATTGGAGGATGGACATTTCTCACTCCGCAGGTACCCA
ATACGATCAAATCTAGTCCTTTTGAGGAATCCGTCCTCCTATTGACAGATGCTGCATTGTATATGTGCAATTTTGATTGG
AATATCGAGAAAGTATCATCTTTCGTGAGAGTGGACTTGAACCAGGTGAACGGCATCAAGTTTGGAACATACATCACGA
GTACTTTGTCACAAGCCCAGGCAGATGAGAAGAGGAATGTGGGCTTTGTAATAACTTATAAGGCTGGTTCAAACGACA
TTATTCGCGTGAACACGAGATCTATGGCTACGGAATTTCCTTCTTCGAAACTCTCTCTCGAAGACAAAACATCCACGCC
CGCTTCTACATCTACCACCAACTCTGTCGTCGCCCCAATTGCCGCCGGGTTTGCAAACCTAATCTCAGGTTTACAAAAT
CAAAGTATAGCGGAACCTAAAGATCTCGTGAAGGTTCTCGCATTCAAGGCTCTACCCTCCAGATCTGCGGTATCAGAT
GAAGGAGTTAGTGAGGCCGAGCAAGTGAAGAGTGTCTGTGGAGAGATTAGAAGAATGGTTGAGATTGGAAGTATAAG
AGAGGCTGGAGAGGAGAGAAAGGATATTGTAGAGGAGGGTACTATCATTAGTTTGGCCGAGGCCAAGAAAAGCACGG
GACTATTCGATGTGCTGGGACATCAGGTGAAGAAACTGGTTTGGGCTTAATGAAAGTGTATCGATACTCGTGCTAGTA
ATGCTTAGAGCAAAAGAAGCACTTCTTGAAGGATTTACGAATGGAATTGTGGAAGTTGGCAGGGAGGTTAGCGATCGT
CAAGAACGGGTATGTGGAATTCAATTCCATATTGAAGCTGCGAAACTCATTAACTTCAATAGAAGTGGATGTGTAGATA
GACCCGAGTATATGGTATTGGCCAGATAAGTAATTTTAATGGGGA
Sclerotinia sclerotiorum, Ss_SAC1, SS1G_10257
SEQ ID NO: 6
ATGCCTGGCCTCGTTCGAAAGCTTCTTATCTTTGCCGCCATTGATGGCTTGATTCTGCAACCAACGGCGCAAAAAGGC
CAGCGCCCCGCCCCCGCAACGAAGATCACGTATAAAGATAAGCATGTCGGACCAGCATCTTATGATTCTCACGATTAC
GAGGGGCCGTCTGCCAAAGGCTTTGAAGCATTCGGGATTGTCGGTCTCTTGACGGTTTCTAAAAGCTCCTTCTTAATA
TCGATTACGAAAAGGGAACAAGTCGCACAAATACAAGGAAAACCTATATATGTTATTACTGAAGTAGCTTTGACCCCTC
TAGCTTCCAGGATAGAAGCAGAGAACTCGATCAACAAAACAAGAGCGGGATTGTTAAAGAGTAGTATTGAAGATCATG
GATTGGACGACAGTGATAGTGAGGATGACGAAGTCAATGTTAGTGACGAAGTGGAGGACGATACAGCAATAGAAACA
CATACAAGAACGAGCAGTGTGGCCGAAGATGTAATTTCGAAGAAGGGAGGGTATGGGAGATTCGCTCAAAAATGGTT
CTCGAAGAAAGGATGGGCTGTGGACCAGAAGAGGAACCTGGGAATGAGCACTGAACCGTATGCTGCACGAGAGCAA
GATGCCAGGTCTGCCGACGTAGCAGCTACCACTTCAAAGGATGCTGAAGTGGAACCTGAGGTTTTGATTTCCGATGAG
GTCAGGGACATTGAAAATGTTGGAAAGTCTGACAAGGTTAAGAACGTTCAGGATATTGCTGAGAGCATGCTGCCAAAG
TTACTGCGTACGACACAAATATTGTTTGGGACCTCCCGGAGTTACTATTTTTCTTACGATCATGATATCACAAGAAGTTT
GGCCAATAAAAGGAACACAAACTCTGAATTGCCATTGCATAAGGAGTCGATCCACTCTTCTTCTGGAACCGACACCTTC
TGTTACCATTTATTGATGCTGGGCAAGCTTCACTTGCCTTGCCTATTATGCAGGGCTTCGTAGGACAACGAGCATTTGT
AATGGATAGCAATCCGCCAAAGCCTGTTGTAGGTTCGGACACTGAGAAGACCTCCATGGAACTGAATGAGATCACAAC
AGATAGTTCGGATGAACAAATCTCCACAGCACGTGTTAGTGCAGATAAGCCATATCTATTGACATTAGTGTCTAGAAGA
TCGGTTAAGCGTGCCGGGCTTAGATATCTTCGTCGAGGTGTGGATGAGGACGGCAATACCGCCAATGGTGTGGAGAC
GGAGCAAATTTTAATCAGATTCTACTTGGGCTCCTTCAAGTAA
Botrytis cinerea, Bc_VPS52, BC1G_09781
SEQ ID NO: 7
GATACAAAAGCTTTCGAAAGCCGCTTGAGTAAGTAAGAAGGCAATAAGAGAGGTCCTCGTCCGTGTCGAGATGTGATG
CTTGAGTCATTTTCCTGGTATAGCTTCTGCAATCGAGTTCACACTCTACTACTTGATTCAGATTACACCAGGAGTAACAC
CTCAAGTATTCCATATTAAATACAAACCTTTCCCATCTTAATCTATTGTTGGCGCATGGGGAGAGGAATTAATTGCTTTG
CTTTTTGGCCATCAGGATGTGGTCATTAGATCGATTATCCGGACACACAACACCTTCTGCCTCTCCACCTCCCCCGTTA
AATAGGATCCCAAATCTCCCTCGTCGTCCGAGTCATCTTGTGCCATCCCCAGTTGGTGGTAGACCTCCTTTCAACCCA
AGATCGTCTTCCCTGTCGTTAATCTCCAATGACTCTAATTCATCGTTGCTATCATCACGGAGACCCAATGGTTCGAATCT
CAAACAAGCAGTCACATCTCCGAATGTGCCAGATCCTTTGGAGGTTTTGGGAACACTACTGAATAATGGGGAAGAGAC
AAAATTGCCATCAGCGAAAAGCCCGGGGGCGACAAATGGGACAGTTGCTCCCATTGAAGAGGAAGACGATGAAGGC
GAATGGGATTTCGGAGGTTTAAGTCTGCAAGACATTGTAGCAGGAGAACCTCTCGATGTTGAGGATGAGCATGTGTAT
AAATCTCAAACGCTGGAAGAATATGAGCGCGAGAAAGAGAAGTTTGAAGACCTCCATCGATCAATTCGCGCCTGCGAT
GACGTTCTTAATTCAGTCGAGATAAACCTCACAAGCTTTCAAAACGACCTTGCTATGGTATCTGCGGAGATTGAAACTC
TGCAAGCACGATCGACGGCTTTGAGTGTAAGGTTGGAAAATCGCAAAGTAGTAGAGAACGGACTTGGGCCTATAGTG
GAGGAGATCAGTGTCTCTCCAGCTGTCGTTAAAAAAATTGTGGATGGAGCTATAGATGAAGCTTGGGTTCGAGCATTG
GCGGAAGTTGAGAAACGATCAAAAGCAATGGATGCTAAATCGAAGGAGCAACGTACTATAAAGGGCGTGAACGATCTT
AAGCCTTTACTGGAGAATCTAGTTTCCAAGGCATTGGAAAGAATCAGAGATTTCCTCGTTGCTCAAGTGAAAGCATTGC
GATCGCCCAATATAAATGCACAGATCATTCAGCAACAGCACTTTCTTCGCTATAAGGATTTATATGCATTCTTGCATAGA
CATCACCCAAAGTTGGCTGAGGAGCTTGGTCAAGCATATATGAATACAATGCGATGGTACTTCCTTAATCAGTTCACGA
GGTATTTGAAGGCGTTGGAAAAGATCAAGCTTCATGTGTTGGACAGATACGATGTGCTCGGATCAGATGACGGGTCTC
GTAAGGCCACTCTTCTTTCAGGATCCAAACAGACAGGTCCACCACACGACGCATTCAATCTAGGTCGACGAATCGACC
TTCTCAAGACGCCAAACCAAACTGCACTTCCCTCTTTCTTAGCCGAAGAAGACAAACAAACCCACTATATGGAATTTCC
TTTCCGTAACTTCAACCTCGCACTGATTGATAACGCTTCCGCCGAATACTCCTTTCTTACCTCTTTCTTCTCTCCCTCTC
TAAGCTACGCTACCATTTCCCGACACTTCAACTACATCTTCGAACCCACTTTTTCCCTCGGCCAATCTCTCACCAAATCC
CTCATCCACGAGTCCCATGATTGTCTCGGCCTCCTCCTATGTGTGCGCTTGAATCAACACTTTGCATTTTCCCTTCAAC
GCCGCAAGATCCCCGCTGTAGATTCCTACATAAATGCAACATCCATGCTCCTCTGGCCACGCTTCCAACTCACAATGG
ATATCCACTGCGAATCCGTCCGCACCCTAACATCCGCTCTCCCTACCCGCAAACCCTCAGCTTCGGAACAAGCTAAAC
AATCTGCAGCTCCACACTTCATGACCCAACGTTTCGGTCAATTCCTACAGGGTATCTTAGAATTGAGTACGGAAGCGG
GAGATGATGAACCTGTAGCGAGTAGTTTGGCAAGATTGAGAGGCGAGATGGAAGCATTTTTGACAAAGTGCGCGGGG
GTTATGCCGGATAAGAGGAAGAAGGAACGATTTTTGTTTAATAATTATTCGTTGATTTTGACAATTGTAGGGGACGTAG
AGGGTAAATTAGCCGGGGAACAAAGGGCGCATTTTGAGGAGCTGAAGAAAGCTTTTGGAGATGGTGTCTGATCCTTCA
CTTCATTTTGATACTTAATTGGAAGTTTTTGAGCGTGTACACTTATCAAAGCGTATTATTTGATCATGTATTTTGTATTTGT
GAAGAGAAACAAAGAACTTTTATTATGGTAGAAATAGAGCCGGAAATAATCTATGCTGTGGAAGAAACCA
Sclerotinia sclerotiorum, Ss_VPS52, SS1G_01875
SEQ ID NO: 8
ATGTGGTCATTAGACCGATTATCTGGACATACAACACCTTCTGCTTCTCCACCTCCACCATTAAATAGGAACCCCAGTC
TACCTCGTCGTCCGACTCATCTTGCGCCATTACCAGTCGGCGGTAGACCTCCATTTAATCCGAGATCCTCTTCCCTATC
ATTAGTCTCCAATGACTCCAGTACATCCTTGCTACCATCGCGGAGACCCAACGGGTCGAACCCCAAACAAGCAGCTAC
ACCACCCAATGTGCCAGATCCTTTAGAGGTTTTAGGAAGAATATTAAACAATGGAGAAGAGGCAAAATCACCACCTGC
GAAGGGCTTGGGAGCCATAAATGGAACAGCCGCTCCCATAAGAGAGAAAGATGATGAAGGCGAATGGGACTTCGAAG
GTTTAAGTCTACAAGATATCGTGGCAGAGGAACCTTCTGTCACTGAGGATGAGCATGTATATAAATCACAAACACTTGA
AGAATATGAGCGTGATATGGATAAGTTTGAAGATCTCCACAGATCGATTCGCGCTTGCGATGATGTCCTAAATTCCGTC
GAAATAAACCTCACCAGCTTTCAGAACGATCTTGCTATGGTTTCTGCGGAGATCGAAACTCTACAAGCACGATCAACG
GCGTTGAGTGTACGGTTGGAAAATCGAAAGGTGGTAGAGAATGGACTTGGACCTATAGTGGAGGAGATCAGCGTCTC
CCCAGCCGTCGTTAAGAAGATTGTGGATGGAGCTATAGATGAAGCTTGGGTTCGAGCATTGGCGGAAATCGAGAAGC
GATCAAAGGCTATCGATGCAAAATCAAAGGAACAACAGAATATAAAGGGGGTTAATGATCTCAAGCCTCTATTGGAGAA
TCTAGTGTCTAAGGCACTGGAAAGAATCCGAGATTTCCTCGTTGCTCAAGTGAAAGCTTTGCGATCCCCCAATATAAAT
GCCCAGATTATTCAACAGCAGCACTTCCTACGTTACAAAGATCTCTATGCTTTCTTGCATAGACATCACCCAAAATTGG
CCGAGGAACTTGGTCAAGCATATATGAATACGATGCGATGGTACTTTCTCAATCAATTTACACGGTACGCAAAAGCATT
GGAAAAGATCAAGCTCCATGTGTTGGACAGACACGATGTTCTCGGGTCAGATGATGGATCTCGCAAGACCACGCTCCT
CTCCGCGTCTAAACAAACAGGTCCACCACATGATGCATTCAATTTAAGTCGACGAATCGATCTTCTCAAAACCTCCAAC
GAAATTGCACTGCCGTCCTTTCTAGCAGAAGAAGACAAACAAACTCATTACATGGAATTCCCCTTCCGGAATTTCAACC
TCGCCCTAATCGACAACGCTTCCGCCGAATACTCCTTCCTAACCTCATTCTTCTCCCCGTCACTAACCTACGCAACCAT
CTCTCGCTACTTCACCTATATCTTCGAACCCACCTTCTCCCTCGGCCAATCGATCACCAAATCCCTCGTCCATGAGTCA
CACGATTGTCTTGGTCTCCTCCTGTGCGTGCGTCTTAACCAACATTTTGCATTTTCTCTCCAGCGCCGGAAAATCCCTG
TCGTAGATTCATATATCAACGCAACATCCATGCTCCTCTGGCCGCGCTTCCAACTCACAATGGACACACACTGCGACT
CGGTCCGCACCCTGACCTCGGCCCTCCCCACCCGAAAACCATCGGCTTCAGAACAAGCGAAACAATCCGCCGCCCC
CCATTTCATGACTCAACGTTTCGGCCAATTTCTTCAGGGCATTTTGGAACTAAGCACGGAAGCTGGAGATGATGAACC
CGTGGCGAGTAGTCTAGCGAGACTGAGAAGCGAGATGGAAGCGTTTTTGTCAAAGTGTGCGGCGATTATGCCGGATA
AGAGAAAGAAGGAACGATTTTTGTATAATAATTATTCGTTGATATTGACCATTGTGGGGGATGTGGAGGGGAAATTGGC
TGGGGAACAGAGGGCGCATTTTGAGGGATTAAAGAACGCTTTTGGGGAGGGCATTTAA
Botrytis cinerea, Bc_Rgd1p, BC1G_15133
SEQ ID NO: 9
GAGTATTCTCGATTAGACAATTAGAATTCTCGAACAATAGAAGCCGGAGCTCGAGTTCCTCGATCTTTACCTACCTGAA
GTCTCTCGATCAGAAGAGTGTCAAATTCCTATGATATCAATGATTATTGAGGATATATTTACAAAATCAAATCTCTTCAAT
GAATCTCTATCTACCTAAGCAAGTCAATTATGATTGATTACAATTATCGTTGTTGCACGGAATCCAGTCGCATTTGGTCC
CGGTCACTCGTAACAGCAACCACATCGGTATTTCGTAGATTCCCGAGTATTGCCTTTACATACCTAAGGAACTTTAAAT
CCCCCCAACAACAGAATTGACGACAGAATTACTACCATTACAAGTGAAAACACTCCATGGTACCCAAATACAACAGTCT
CATATAGCCATTTGATCGCAACTCGCATCTTTCATCTACAAAATGTCGTTTGGAGGGGACATCGGACTCGATACAACAT
CGTCGTCCAATGCTGCTGGTAATGGCGGCAACCAGGGCGAGACAACTGGAAGACCTGCCACCCCTCAAGATGCAAC
CGCAAAAGCAGTTCAAGATGTCACAAGCTCGGAGATTGGAATATCAACCTTGTTAACCCGACTGAAACAAAGTATTGCT
TCCGCAAAGGAATTCGCACTTTTCCTCAAGAAACGGTCCATCATGGAAGAGGAACATTCGAACGGTTTAAAAAAGCTGT
GTAAGGCAACCGGGGATAATATTCGCAGACCAGAGCATCGACACGGATCGTTTCTACAGTCATACGAAGAGGTCCTCA
TTATACACGAGCGAATGGCCGAGAATGGGGCTCAATTTGGCGTGTCTCTACATCAGATGCATGAGGATCTTATCGAAA
TGGCTTCGAACATAGAGAAGGGCAGAAAGCATTGGAAGAATACTGGGTTGGCAGCAGAACAACGTGCTGCTGATACC
GAAGCTGCCATGAAGAAGTCGAAGGCGAAGTACGACTCTCTGGCAGACGAGTATGATAGAGCTCGCACTGGGGACA
GGCAACCAGGAAAGATTTTTGGCCTCAAGGGCCCCAAATCGGCAGCGCAACATGAAGAGGACCTTCTTCGCAAAGTC
CAGGCTGCCGATGCAGATTATGCGTCCAAGGTACAAGCTGCGCAAAGCCAACGAACCGAGCTCTGGTCAAAATCAAG
ACCTGAGGCTGTGAAAGCTCTAGAAGATCTCATTCAAGAATGCGACTCTGCATTGACATTGCAGATGCAGAAGTTTGC
ATCCTTTAACGAAAAGCTACTTTTGAGCAATGGCTTGAATATAAGCCCTATCAAAGGAAAAGAGCAAGGGACATTAAAT
CGCAGTCTCCGTGAAGTTGTTCACGCAATTGATAATGTTAAAGACCTGAGCAACTACATCAGTAGCTTCTCTGGTAACA
TGCAGTCCCGGATCACGGAAATCAAATATGAGCGTAATCCGGTTTTGCAACCCGCACAAAATACCGCTCAGCGACAAT
CGGATCCCAACGCTCTCCAAGCTCGACAAGGACCCGTAATACCACCACAGCCATCTCACCAAGTTCATATGAGCCAAC
CTTTTAATCAAAGCAGTCCCCCAACTCACCAGCGCGAAAGAAGCTTTAGCCATGGCCCATCTCTTTCGCAACACATCGT
TGCACCTGTTGTATCGCCCACTAACCCAATATCCACCTCTCCCGACTTCAATACCTGGTCACCTCGTGCAGATGGCCC
CCCCCAGATATCAACCTTGCCATTTCAGCCACAACCTCAAAACGAGACACCAATACAACAGACACCACAAAACCCTACA
ACGCATGCACCAGTGTCCCATGGCCCATCCTCGGCACCACTATTCGGAGCGGGATCGGCTCCAGCTCCAGGCAACA
GCACTCATCTAGCACCTTTGAAACCAGTGTTTGGACTCAGCCTCGAGGAACTCTTTGACAGAGATGGCTCTGCTGTTC
CAATGATTGTCTACCAGTGTATTCAAGCAGTTGACCTCTTTGGGCTCGAGGTCGAAGGAATATACCGGCTATCTGGTA
CCGCATCTCATATAATGAAGATCAAGGCAATGTTCGATAACGACGCATCTAAGGTGGACTTCCGTAACCCGGAAAGCT
TCTTTCACGATGTCAATAGTGTGGCTGGTCTTCTCAAACAGTTCTTCCGCGAACTCCCAGACCCTTTATTGACTATCGA
GCAATATCCTGCATTTATCGAGGCTGCAAAGCATGATGATGAAATAGTCCGTCGCGACTCTCTACATGCGATCATCAAT
GGCCTTCCTGATCCCAATTACGCTACTCTTCGAGCCTTGACTTTACATTTAAATAGAGTACAGGAGAGTTCGGCATCTA
ACAGGATGACTGCAAGCAACTTGGCCATAGTATTTGGCCCTACACTCATGGGTGCTAATTCAGGACCGAACATGTCAG
ATGCTGGGTGGCAGGTTCGTGTCGTTGACACTATTTTGAAAAACACTTATCAGATATTTGACGACGACTGAGGCGAAG
AAGATTGTCGATTGACTTGAAGAGTTCTTAACGAGATACCATAGCTGCTCATATTATGAACCTGCCTTTGGAACAGAAA
CAAGGGCAGGGAATTCCTAGCATCAGACCTCTATTTGCCGACAAGACATTCTAAAGAAAGTACATGCCACTGTATTTCG
AATACTATTATTGTAAGGCACGGGCCTGTTGACAAATATTTACGGTCTATCAAGCGAGTGTACGTCAGGGGGTGGTCT
ACACCACGATCGATTTTGTAGGGTCATGTGCTCAGCTCTGATGCCAGTATTGGTGCAACTATTGAATCAAAAGGGTACC
AAGGTTTCAATACTCGTTAATTTTGGATCACGAAAAGATCA
Sclerotinia sclerotiorum, Ss_Rgd1p, SS1G_03990
SEQ ID NO: 10
ATGTCATTTGGAGGGGACACCGGACTTGATTCATCATCGTCGCCCAATATCGTCGGCAATGGCAACAATGGCGAGACA
ATCGGAAGGCCTGCAACTCCTCAAGATGCAGCCACGAAAGCGGTTCACGATGTTACAAGCTCCGAGGTGATTGAGTC
AACCAATTGGAATATCAACCTTGTTGAACCGGTTGAAACAGAGCATTGCTTCCGCAAAGGCAGTCCCCCCCGAACTTT
CAACGTCTGCATAGATATGGAGCTGACTTCTTCGAAACAGGAGTTCGCACTTTTCCTCAAAAAAAGGTCCATAATGGAA
GAGGAACATTCGAATGGATTAAAAAAGCTGTGTAAAGCAACTGGAGATAATATTCGCAAACCAGAGCATCGCCATGGT
TCATTCCTGCAGTCATATGAAGAGATTCTTATTATACACGAGCGAATGGCCGAAAACGGGGCTCAATTTGGCGTGTCTC
TACATCAGATGCATGAAGACCTTATTGAAATGGCTTCGAATATAGAGAAGGGTAGGAAGCACTGGAAAAATACTGGCTT
GGCAGCAGAGCAGCGTGCTGCTGACACGGAAGCCGCCATGAGAAAGTCAAAGGCGAAATATGATAGCTTGGCGGAT
GAGTACGACAGAGCTCGCACCGGAGATAGGCAACCGGGCAAGATATTTGGCCTCAAGGGACCTAAATCGGCAGCGC
AACATGAAGAGGACCTTCTCCGTAAGGTTCAGGCTGCAGATGCAGATTATGCAGCGAAGGTACAAGCTGCACAAAGC
CAGCGCTCTGAGCTCTGGTCAAAGTCAAGACCCGAGGCGGTGAAAGCGCTAGAAGATCTCATTCAGGAGTGTGACTC
TGCATTGACATTACAAATGCAGAAATTTGCGTCCTTCAACGAAAAGTTACTTCTTAGCAATGGTTTGAACATAAGCCCTA
TCAAAGCCAAAGAACAAGGCACCTCGAATCGTAGTCTGCGTGAAGCTGTTCATGCCATCGATAACGTTAAAGACCTGA
GCAACTACATCAGTAGCTTTGCCGGTAAGGTACCATCACGGGTCACGGAAATAAGATACGAGCGTAACACGGTCTTGC
AACCTGCAGCAAATATTGCCCAACGACAATCAGACCCCAACGCTCTCAACTCTCGACAAGGACCAGGAATATCATCTC
AGCAACCTCATCAGGTGCATGTAAGCCAAACCTTTAACCAAGGCACTCCGCAAACACACCAGCACGAAAGAAGTTTTA
GTCACGGCCCCTCTCTTTCGCAACACATCGTTCCAACTGTTGCATCGCCCACGGCGCCAACATCCACCTCCCCTGACT
TCACCACCTGGTCACCTCGTACAGATGGGCCTCCTCAAATCTCAACATTGCCGTTTCAGCCACTGCCTCAGAACGAGA
CAGTTTTGCAACAAACACCACCAAATCCTACGACTCATGCTCCAGCATCCCATGGACCACCTTCGGCACTATTATCTGG
ACCAGGACCTCCGGCTTCAGGCAATAATACACATCTAGCGCCTTTGAAACCAGTATTTGGGCTTAGCCTCGAGGAGCT
CTTTGAGAGAGATGGCTCTGCTGTTCCTATGATTGTCTATCAATGTATTCAAGCAGTTGACCTCTTTGGGCTCGAGGTT
GAAGGGATATACCGACTATCTGACGCATCTAAGGTGGACTTTCGTAACCCTGAAAGCTTCTTCCACGACGTTAATAGTG
TCGCTGGCCTTTTGAAGCAGTTTTTTCGAGAGCTCCCAGACCCTCTACTGACTAGTGAACAATACCCCGCATTCATCGA
GGCCGCAAAGCATGATGATGAAACAGTCCGTCGCGACTCTCTTCATGCCATCATTAATGGCCTCCCCGATCCTAACTA
TGCTACTTTGCGCGCCTTAACCTTACATTTAAATCGAGTGCAGGAAAGTTCGGCGTCTAACAGGATGACTGCAAGCAA
CCTGGCTATTGTATTTGGACCTACTCTCATGGGAGCTAATTCTGGACCAAACATACAAGATGCTGGGTGGCAGGTTCG
CGTCATTGACACCATTTTGAACAACACCTATCAGATATTTGATGACGACTGA
Botrytis cinerea, Bc_Ufd1, BC1G_10526
SEQ ID NO: 11
GTTTCCAAGTACAGTACAGTACCACTTCAAGTACATAAACTCAGCGCTCTTCTTGAGATAAAAGGTTAAAGGGTTGCAA
GATTTCTTTGATACATATCATTGGAAATAAAGTATTCCGGATTACATTAGAGGAAGCTCACTGTAACAGGTTTCTGCTTT
GTTGTTCATGGACATGATGGCAGCAACTCCAGACATTTCTTTGACCTGGTCATCAGTCTATAAAGTCGCCCCAAAAGAC
AACGTCTCGCTGCCCGGGGACAAGATACTACTACCTCAATCAGCGCTGGAACAACTACTATCGGCATCTACAGTTACG
GTGAATTCTAACACTCGCCCCAGCAATGTTGCATTTGATCCATTCAATCCATATTCATTGGCAGCCGCTCGCATAGAAC
AGTCGCAATGGAGAGATACCCAACAACAACTGCCCCATCCTCTCACCTTTAGGCTGGTCAACTCGAAGAACGGAAATG
TAGTATATGCAGGAATTCGAGAGTTCTCGGCAGATGAAGGAGAAGTTGTCTTAAGCCCATTTTTGCTAGAGGCATTAG
GGATCACTGCGCCCTTACGAAATCCAACACCACCAAGTTCAAAGGTTGAAAGCAGGAGAGGGTCGCCGGATACGCCT
ATAGATCTTACAGATAACCCTGCAATCGATCTTACGGGTGACGAGATGATAGACCTTACAGACGAAACCGAAGAACCG
GCGCAGATCACTGTACATGCGAAACAATTACCTAAAGGCACATACGTGAGGCTAAGGCCATTGGAGGCTGGTTATAAT
CCCGAGGATTGGAAATCATTGCTCGAAAAACACATGCGAGAAAATTTCACAACTTTAACGAAAGGAGAAATATTGACGG
TTCGAGGTTCAAAGTCGGAGGAATTCCGATTTCTGATTGATAAGTTTGCACCGGAAGGAGATGCAGTTTGCGTTGTTG
ATACAGATCTAGAGGTCGATATTGAGGCTTTGAATGAAGAGCAGGCTCGGGAAACCTTGAAGCAAATCATGTCAAAGG
CACAAAAAGCTCCAGGAACGGCTCAAGGGAGTTCAATTGGCGGAGAATTAGATCTTTGGAATGCTTTGCAGGGACAG
GTCGCAGAAGGTGATTATGTCGACTATACTTTACCTTCATGGGATCGATCAAATGGTCTTGATATTGAGCTTTCACTTGA
GGACGATGGTGATGGTGATGTGGAGATATTCATTAGTCCTCAATCAGCCCATCAAAGAGCAAAACCACGGGAGGATGA
ACATGTTCTCGGAGATTTCTCAAGTGACAAAATCAAGAGAATAACCATACAACAATCAAATGTGGAATTAGACGGAGCT
GATGCTATATTAATTTCTTTATACTGTCGAGGAACTGGAGCAGGCTCTGAGCCACCACATGGACCACGGAAGTATTCCA
TTAGAGTAAAATCGCTTGAAAAGGGGGCAAGCAATGGGGCCCCAAGCAACCCAATCTCGCTCGAAGAAGATGCCGAA
ATGCATGGATCTGATGAGGAGCAATGTAAAAATTGTCATCAATGGGTGCCAAAGCGGACAATGATGCTTCATGAGAAC
TTTTGTCTCCGCAATAATATCTCATGCCCTCATTGCAATGGCGTCTTTCAGAAGAAATCTTCAGAATGGCTGAATCATTG
GCATTGTCCTCATGATTCAGCCCATGGAAATTCCTCAGAAAGCAAAACTAAACACGACTCTATTTTTCACGAAGCTCGA
CAATGTCCCAATTGCCCTTACGAAGCAACAAATATGAGGGATCTTGCCACTCACCGTACGTCTATTTGTCCTGGCAAGA
TCATTCTATGTCAATTTTGCCATCTTGAAGTTCCTCAAGAGGGCGACCCCTTCGATCCGTCTCCAGAAAGTCTTATTTCC
GGACTTACAGCACACGAGCTTGCAGATGGGGCTCGAACTACGGAATGTCACCTGTGCAGCAAAATTGTTCGACTTCG
GGATATGACCACCCATCTTAAACATCACGAACTCGAAAAGAATAGCCGATTTAAACCAGCCATCTGTAGAAATGCAATC
TGCGGTAGAACTCTGGAGGGCGTTGGTAAGAATGGGGAAGTGGGCGCTGGATCGAGAATGGGCCAAGGACCTGGTA
ATGATTTGGGTCTTTGCAGTATCTGCTTCGGTCCACTATACGCTAGTATGCACGACCCATTAGGAAAAGCAATGAAACG
CCGCGTGGAACGAAGGTATCTGAGCCAGATGATCACGGGATGCGGCAAGAAATGGTGTACAAACATCTATTGCAAGA
CTGCAAGGGCGAAAGAAGCGAATGGGCCTCAGGCAATACTAGCGATGAAAGATGCCCTTCCTCTTATTCAGCCATTAG
TAGCCCAAGTAGAGGATAAGACCGAACCGATGCATTTCTGTGTCGATGAAGGAAACCAGAAGAGAAGAAATCTGGCTG
AAATGTTAGCTATGGAGCCTGGAGGTTGGGAATTGGAGTGGTGTGTTGCGGCTTGTGAAGCAGAAGGTGCAAATCTT
GATAAGGCCAGGACATGGTTATCTAATTGGGCTCCCAAGAAAGCTTGATGTGGTTCAGATCTGGAAGATATTTTGGTAT
GGATGAAAGGGATGGAGCATGGCGTGGTACCGATTGCATAAGTAAGGGAGTTCTGGTGGCTGATGACGATATGATAT
GATATGATACCAATTTATAGACCCGATTTTGTTGTGCGTACATAAATATACATGGTTGGCGTCGCATTAGCTAGAGATAG
ATCGAACAGATTAAGAATTTACTGCTAATACATAAACATATATACATTCTTCA
Sclerotinia sclerotiorum, Ss_Ufd1, SS1G_04151
SEQ ID NO: 12
ATGGCGGCGACTCCAGATATCTCTTTGAAATGGTCATCAGTCTATAAAGTTGCCTCAAAAGACAGCATATCTCTGCCTG
GTGATAAGATACTGTTACCGCAGTCTGCTCTGGAACAGCTATTAGCAGCATCTACGGTTACGGTCAATTCTAACAGCC
GCCTAATGTCGCATTCGATCCATTTAATCCATATTCTTTAGCAGCAGCTCGCATAGAACAGTCGCAATGGAGAGA
TACTCAACAGCAACTACCTCATCCTCTCACATTTAGGCTCGTCAATTCAAAGAATGGGAATGTGGTACATGCAGGAATC
CGAGAGTTCTCTGCAGATGAGGGAGAAGTTGTCCTGAGCCCATTCTTGCTTGAGGCATTGGGAATCTCTGCGCCCAC
ACGAAAATCTACGCCAAGTCCCAAAGTTGAGAGCGAGAGAGGATCCCCTAGTGCGCCTATAGACCTTACAGATAACCC
TTCGATTGACCTTACACGCGATGAGACGATAGATCTTACAGATGAAATTGAAGAATCTGCGCAAATCACCGTACATGCG
AAACAGCTATCTAAAGGTACATATGTGAGGTTAAGGCCGTTGGAAGCTGGGTATAATCCTGAGGACTGGAAATCGTTA
CTAGAAAGACATTTGCGGGAAAATTTTACAACTTTAACAAATGGAGAAATATTAACGGTTCGAGGGTCAAAGTCAGAGG
AATTTCGATTTTTGATTGACAAACTCGCGCCTGAAGGAGATGGGATTTGTGTTGTTGACACCGATTTAGAGGTCGATAT
AGAAGCTTTGAATGAGGAACAAGCCCGAGAAACCTTGAAGCAAATCATGGCAAAGGCACAAAAAGCTCCAGGAACGG
CCCAAGGAAGTTCTATCGGTGGAGAATTAGACCTATGGAAAGCTTCGCAAGGACAGATTGCTGAAGGAGATTACGTGG
ATTATACTTTACCTTCATGGGATCGATCAAATGACCTTGAGATTGAGCTGTCGCTCGAGGATGATGGCGATGTGGAGAT
TTTTATTAGCCCTCAATCAGCTCATCAAAGAGCAAAACCGCGAGAAGATGAGCATGTTTTTGGAGATTTCTCAGAAAAT
AAAACCAAGAGGCTCGTCATACAACAATCAGACGTGGAATTAATAGGAGCTGATGCAATACTAATTTCCATATACTTCC
GAGGGTCTGGAAGTGAGTCATCACAGGGGTTACGGAAATACTCTCTTAGAGTGAAATCGCTTGAGAAAGGGGCAAGC
AATGGATCTTCAAGTAATCCAGTTTCGCCCGAAGAAGATACTGAAATGCATGGATCTGATGAGGAGCAATGTAAAAATT
GCCATCAATGGGTACCGAAGCGGACAATGATGCTTCATGAAAACTTCTGTCTTCGTAATAATGTCTCATGTCCTCATTG
TAACAACGTGTTTCAGAATCCCAAGAATGGCAGGATCATTGGCATTGTCCTTATGATTCTTCCTACGGAAATACA
CCAGCAAGCAAAACCAAACACGATTCTGTATTTCACGAATCCCGCCAATGTCCCAATTGTCCCTATGAAGCAACAAATC
TCAGAGATCTTGCTACCCATCGTACGTCTGTATGTCCCGGCAAGGTTATTCTTTGTCAATTCTGCCATCTCGAAGTCCC
CCAAGAAGGCGACCCCTTCGATCCGTCCCCTGAAAGTCTCATATCTGGGCTCACAGCCCACGAGCTCGCTGATGGAG
CTCGAACTACGGAATGTCACCTTTGCAGCAGGATCGTTCGACTTCGCGATATGTCCACGCATCTCAAGCACCACGAAC
TTGAGAAGAACAATCGATTCAAACCAGACATCTGTAGGAATGTCAACTGTGGTAGAACTTTGGACGGTGTTGGTAAGAA
CGGGGAAGTAGGAGCAGGTTCGAGGATGGGTCAAGGACCAGGTAATGATTTGGGTCTTTGTAGTATTTGCTTCGGCC
CACTATACGCTAGTATGCACGACCCGTTAGGAAAGGCGATGAAGCGTCGTGTGGAACGAAGATACTTGAGCCAAATAA
TTACGGGATGTGGCAAGAAATGGTGTACAAATCTCTATTGTAAGACTGCAAAGACTAAAGACGCCAATGGGCCCCAGG
TGGCATTATCGGTAAAAGATGCACTTCCCCTCATTCAACCATTACTAGCCCAATTAGAGGATAAGACCGAACCAATGTA
TTTCTGTGTGGATGAAGCAAATCAGAAGAGGAGAAATCTGGCGGAAATGTTGGCCATGGAACCAGGAGGTTGGGATC
TAGAGTGGTGTGTTGCGGCTTGCGAAGCAGAAGGTCCAAATCTTGATAAAGTCAGGACATGGTTAAGTAATTGGGCTC
CAAGAAAAGCATGA
Botrytis cinerea, Bc_Integral, BC1G_03606
SEQ ID NO: 13
GGATCGCAACTAACTCTTCTGGAAGGTTCTTGTGGCAATATCAACCACATGGATCTTCAGTACCACCGCCGTCAAATTG
GCTGTGCTTGGGTTATATATGCGAATCTTCACCACGCCCGTTTTCAAGCGATGGGCCGTCTCTTTGATGACCATAGAC
GTTTGTTTCGGTATCACCTTCTTCGTCGTGTTTTTAACTCATTGCAACCCAGTCTCTCAAGAATGGAACCCTGTTCCACG
GGGTTCATGCAGATCTCTAACATTGTCCGAGTTTTCCTCCATCGCTCTCAATCTGGCTCTCGACACGGCAATCATCATT
CTCCCTATGCCATGGCTATACAAGCTTCAAATCGCATTAAATCACAAGCTTTTTGTGATGGTCATGTTCAGTTTCGGCTT
TGCAACTATTGCCATCATGTGCTATCGTCTTGAATTGACAGCCCGAAGCCCTTCTGATCCCATGATTGCCATTGCAAGA
GTCGGAGTGCTGAGCAATCTCGAGCTTTGGATTGGTATTATTGTTGCCTGCTTACCTACTATGAAACCTTTTGTTAGAG
TATATCTCAGACCCAGCCTATCAAAGCTCTCCCAAAAACTTTATGGCAGCCCCACAGTGTCAACAAAAGACGAAAATCC
ACAACTTCAGCTAAGGAACTTCGGGGGTTCCGGACCTTCACGCCCCCAAAAAAAACAGTAACTACACTGAACTTTCTG
AAGCTCCATCTGTGCAGACAGATACTGACGAGTTGCATCTCGTTCCAAATGAATCATCCAATTTTGATGCAAATTGTGA
ATCTAGCAACA
Botrytis cinerea, Bc_Sec31p, BC1G_03372
SEQ ID NO: 14
GAAGCTTTAAAACATACGATTATTTGATCCTGTTTGAACACGTTTTCTTGAAATTTCAAGCTTGAATGAAACACAACACCA
AGTCTATCGGCCAAAGGACCCCTTTGAGATTGCATTGAGCGTTGTCCCATCTCAAGATTTAACAACTGTTATTCACGAA
ATCATGCCTCCACCACCACCACCTCCTCCTCCGCCGCCTCCTCCGCCTGGAGGAGCTCCAGGAGGTATGCCATCCAG
ACCACCTGCGAAAGTTGCTGCAAATAGAGGCGCACTTTTGTCGGATATCACGAAGGGAAGAGCACTCAAGAAAGCTGT
AACTAACGATCGATCGGCACCGGTAGTAGGCAAAGTATCTAATGGTTCTGGACCTGCGCCAATAGGAGGTGCTCCTC
CAGTACCGGGAATGGCAAAACCTCCCGGTGGATTTGGCGCACCGCCAGTACCAGGAGGAAATAGAGCTCGAAGTGAT
AGTAACCAAGGGAGCAATAATGCGGTTTCGGGGATGGAACAAGCTCCACAGTTAGGAGGAATATTCGCAGGCGGCAT
GCCCAAGTTGAAGAAACGAGGTGGAGGAGTAGATACTGGCGCAAACCGCGACTCATCGACTGCATCGGAACCAGAAT
TCTCTGCTCCCAGACCGCCAGGTATGGCTGCTCCCAGACCTCCAACAAATGCAGCTCCGCCTTTGCCATCAGTCCGG
CCTCCTCCTCAACCTAGCGCTAGTACTCCCGCATTTGCGCCCTCGGTTGCAAATCTGAGAAAGACCGGCGGGCCATC
TATTTCTCGTCCTGCATCCTCAACCTCTCTCAAGGGGCCACCACCCCCTATTGGCAAAAAACCTCCTCCACCCCCTGG
AACTCGAAAGCCATCATCAGCGCTATCAACCCCACCACCACCACCGCCTCCAGCATTCGCCCCTCCACCTCCTTCTTC
AGCACCTCCGCCACCTGTTGCACCTCCACCACCACCTTCCCCAGCTCCACGCCCTCCGAGTAACCCACCTCGATCAC
ATGCACCACCGCCACCACCACCACCACCACCACCAACATCTCCACCTTCGACTAACGGAGGTAACCCAAGTCTTGCTA
TACAAGCAACAATTCGTGCTGCTGGCCAAGCATCACCAATGGGTGCACCACCACCACCACCACCGCCTCCTCCTCCAT
CTAATGGGCCTCCCTCTCTCTCGTCGCACAGAACGCCATCTCCGCCCGCGGCACCCCCAGCGGCACCCCCAGCGGC
ACCAATATCAAGAAGTCAAAGTCAACAAGGAAGAACTCACACAATGGATTCCAGTTCTTATACCCTTTCATCAAACGGC
AGTTTACCGCAAGCCTCTAGTTCTAGCAGAAGAATCATGATCAATGATCCTCGATGGAAATTTACAGATGAATCGGTAT
TCCCAAAACCTCGAGATTTTATTGGTGGGCCCAAAAAATACCGGGCTGGTCGTGGAAGTAGTGTTCCGTTGGATCTGA
GTGCTTACCATTAAGAATTTCGCTTACCAAAAAGAATATAACTCTTCGGATCGTATTCATGTGTTACCATTATGATTTAAG
GCGTTATAGCGGGATATCATTTAGAATCCGGTAAGGCGGCATCAAGCTATCTGAATTGGGAGTTATACATCAGGACAC
TAAAGATCGTCAAAAAATTTCCCCTGAATCGCGAGATGGAGATTGACGAGAGACATCAGCTCACTACCCAGGGTACCG
AGGAGGAAATCGCAGCTATAAATATCACGGGTGATGGGCAAATTCCACAGTGGAACCTTAAAAGAATGAGTACGGAGA
ATATTAAACTTTTGAGATTTATCTTTCTCTTCCTGTGATTTTAACCA
Sclerotinia sclerotiorum, Bc_Sec31p, SS1G_06679
SEQ ID NO: 15
ATGCCTCCTCCACCTCCTCCACCACCTCCTCCTCCACCGGGATTTGGTGGTCCTCCTCCCCCTCCACCTCCTGGAGG
AGCCCCAGGATCGATGCCATCAAGGCCACCTGCGAAGGTCGCTGCCAATAGAGGCGCACTTTTGTCAGATATCACAA
AAGGAAGAACACTCAAAAAGGCTGTAACCAACGACAGATCGGCACCAATAGTAGGCAAAGTATCCGGTGGCTCTGGG
CAAATGCCAATAGGAGGTGCTCCACCAGTACCTGGAATGGCAAAACCTCCTGGGGGTTTCGGCGCACCACCCGTACC
TGGGGGAAACAGAGCTCGAAGTGACAGTGAACATGGGAACGGCGTGTCTGCAGGAATGGAACAACCTCCACAGTTAG
GAGGAATTTTCGCAGGTGGCATGCCCAAGTTAAAGAAACGAGGCGGAGGAGTAGACACTGGCGCAAATCGAGATTCA
TCATTCACATCAGAACCCGAATTTTCTGCGCCTAAACCACCAGGTATGGCAGCTCCTAGACCTCCAATAAATGCAGCTC
CTCCGTTACCATCAGCCCGGCCTCCTCCTCAGCCCAGTCCTTCGGCACCTACATTCGCGCCATCGATTGCCAATTTGC
GAAAAACTGCTGGGCCATCAATTTCTCGACCTGCTTCTTCAACTTCTCTCAAGGGACCACCACCTCCTATTGGCAAGAA
ACCTCCTCCACCTCCTGGGACTCGAAAGCCATCAGCTTTATCAGCCCCACCACCGCCATCATCATTCGCACCTCCACC
TCCTTCTTCGGCCCCTCCACCGCCTGCTGCACCGCCGCCACCACCTTCTCCAGCTCCGCGCCCTCCCAGTAACCCAC
CTCGAGCACATGCGCCCCCTCCTCCACCAACGTCTCCACCTTCGGCTAATGGAGGTGGTCAGAGTCTTGCTATGCAA
GCAGCAATTCGTGCTGCCGGTCAAGCATCACCAATGGGTGCACCCCCTCCACCGCCGCCACCCCCATCTAGTGGACC
ACCCTCTATATCGTCACACAGAGCGCCATCTCCGCCTGCACCGCCAGCTGCACCAATATCAAGAAGTCAAAGTCAACA
ACAAGGAAGAACTCACCCAATGGATTCTAGCTCATATACTCTATCGTCGAACGGTACCTTACCGAAAACCGCCAGCTCT
GATAGGAGAGTTACAATCAACGATTCTAGATGGAAATTCACCGACGAATCAGTATTTCCCAAACCTCGGGAGTTTATTG
GTGGACCCAAGAAATATCGGGCTGGCCGTGGGAGCAGTGTTCCGTTGGATCTTAGTGCTTTCCATTGA
Botrytis cinerea, Bc_Gyp5p, BC1G_04258
SEQ ID NO: 16
GATATTGTACACGAGCCTCTTCCTGCATTGATTGATTGATTGCTCTTACACATATCCAGTTCATCTCCCACAAAATACCA
AGCGGCCGCATTTGGATGCAACATACATACTCACTACCTTCCACTTCACCTACCTACCTACTGACTTAATATACCTTCTT
GTCATCTTTGATGGCACTGAATAAAGTACCTTCCTATTAAAACTACCTCAACCAGTCCAGTCATTACTACCCACCTTACA
TCTCGAGAAGCCTCCTTCCTCGATATACATTCTTCTCTTATATTAATGCAAAGATGTCGGAGCACGAACATCAAAAACAT
CTTTCCGATTCTGAAGAAGATTCCATAATGGAAGAGAGAGAGGAGAAAAAGGGAAAAGACGAGATAGAGGAGAAAGA
CAAAAAAGACGAGAAAGACGAGATAGAGGAGAAAGAGGAGAAAGAGGAGAAGGAGAAAGACAAAAAAGACGAGGAA
GAGAGAGAGGAGAGAGAGGAGAGAGAAGAGAGAGAAGAGAGAGAGGATACAGTTGATCAGAGTTCTGATCATGAGA
GTGACACCTTCGAGGATGCCAATGATGTTGAAGACATTGCAGACACTCTTACCTCCCCAGTTGAAAGGACAAGATCTTT
AACGAAACGAAGATCATCATCCATTAAGAGCAATACACAAGACCTCAGTACCGATATCCCATCGGTCCCAACAGTACCA
CTTCCAGAAACGAATGGCGAAACGAATGACGAACAAATAGAATCCGATAATCCACTACCTAAATCTCCCCTTTTAACAT
CTCATCGCATGTCCACTACATCCCTACATAATGTGAATCTCGAAGACGGTGATGATTTTGGATCACCTCCACCACCTCC
TCCCGTTTCGAAAGTAGCACCAGAAGATCAACCACCCGAATTACCTCCAAAGCCCAATACAATAATTCCAATGCAGGG
CCTTTCTGGAGCCCTTCCAGATGTGCCATTCTCACCGCCCCCTCCTCCTCCTCCCGCTCCTCCCGCTCCTGCAAACCT
CGCTGCGCCAGCACCTGTCACCAGAAAATTAACCAGCCCATTCTCATGGCTGTCGAGAAATACCTCGGCTCCAAAAGA
GAACGTCAAGTCACCGCCATTACCTTCATCTCACGCAACCGAGCGTAGACATACCGCTTCTTCGATAGCGACCATTAG
CAGCAATCCTGAAATGATGGTAAACAAATTGGAGGAGGGTAATGATACAGATGCCGCGAATGGAGTTAGACGACCTG
GGAGGAATAGTTTACGGGACAGGTTTAAGCTCGTGAGAATGCGAGAAGAGGCTGGAATAACAGAATTGCCTGAAGAA
AAGGATGAAGCAGGCAACACAGCATTTGGGGGTCTCATTAGGCAGAGTACAAGTCTTGGTTTGGGATTTACCGCCTCA
AATGATGACAAAGACCCTTCTCCCGTATCTCCTGGTCCGCCTACGAGTCCCAACCCAATTAGTGTCAACCCTGCATTA
GCCCCCGGTACGGCATCTGGAGTTTCTGCAGGCCCTTCTGCATTGGGTGAATCAGAAGCACCAGTCGATTGGGATTT
GTGGCAAAATGTCGTCTGGGAAGGACCAGCTGCGGTAGCAAGAACAAGTGCAGAAGAGCTGAATCACGCTATTGCAA
CTGGTATACCACATGCTATCAGAGGCGTGGTATGGCAAGTATTGGCGGAGAGTAAGAATGAAGAGCTCGAGGTTGTC
TATCGGAATTTGGTCAATCGGGGCACAGACAAGGACAAGGACAGGATGAGTACATCTAGTGGGACACAAAGCAATGG
ATCAATCAAGGAGATTGTGGTTTCATCAGCATCATCAATACATTCAGAGAAATCTACACCCGCTACGACAATCACCAAT
GGAATGAGATCTCCTTCTCCCCCTAGTGAAAAGGATGTAGCCCAGTCTTTGGCTGAAAAGAAAAAGAAAGCTAAGGAG
GATGCGGCGGCATTGACAAAACTCGAGAGAGCCATAAAGCGGGACTTGGGTGCTCGAACAAGTTATTCAAAATTCGCT
GCAAGTGCTGGACTACAAGATGGATTATTCGGTTTATGCAAAGCATATGCTCTTTATGATGAAGGTGTTGGTTATGCAC
AAGGCATGAATTTCTTAGTTATGCCTTTGCTTTTCAACATGCCCGAAGAAGAAGCATTCTGTCTATTAGTACGACTTATG
AATCAGTATCACCTTCGAGATCTTTTTATTCAGGATATGCCAGGTCTACATAAACATCTTTATCAGTTTGAGAGATTATTA
GAAGATTTTGAACCAGCATTGTATTGTCATCTCCATCGACGTCAGGTCACACCTCACTTATATGCTACGCAATGGTTCC
TAACTCTTTTCGCCTATCGATTTCCATTACAGCTTGTGCTTCGAATTTACGATCTCATTTTAAGCGAGGGTCTCGAGGCT
ATTCTCAAATTTGGAATTGTACTCATGCAAAAGAATGCAGCTCATCTACTCACCCTCCATGATATGGCTGCATTGACTAC
GTTCCTGAAAGATCGACTTTTCGATGTTTACATTGATGCTTCACCTTCAGCAGGATCAATTCTAGAATCTGGTTTCTTTG
GAAATTCAGGAGCGACTATCGATAAGGAAGTTTATCGAGCAGATCATATGATTCAAGATGCTTGTGCCGTCAAAATTAC
ACCCAAAATGCTGGAAACTTACGCATTAGAATGGGAGGAAAAGACCAAGATAGAAAAGGATCGTGAAGCAGAATTAGA
ACACTTGAAATCAACAAATGTCGCCCTTACACACAAAGTTCGACGTCTGGAAGAAAGAGTCGAATCTCACGATACGGA
GCACGCAGCTTTGGCAACTGAACTTGTTCGGACTAAGGTCGAAAATCAAGAGATTCATGAAGAAACAGAAGTTCTTAAA
GAACAAGTTAAAGAACTGAAAAAAGTAATTGATAAGCTACCGGAAGAAATTGAAGCGAAATTACAGAGTGAGATGGATA
GATTGATGAAGAGAAATCAAGAAGTTCATGAAGAAAATCAAAAATTGGAGGATGAAATGAATGAAATGGAACAAAACTT
GGTGGAAACAAAAATGAAATATGCTGAGATGAATGCGGCCCATGAAGCTCTAACTCGTAAATGGACGGATTTGAGAAA
AGCTTTGGGTGATTAATATCGTTACTTTGAGATATCCTAAATTATTAAATACGACTTGTACAGTTCTTCTCAATTGATACC
GATGCCTTTGAAGTTTTTGGGGGGTAGGGGAGAGAGGCGTAAATGCCTATATTGGGGAACGAAGGAACAATGCTCTC
GTTTGGAAGCTTGCTGGATTTCTTGCTAGGTGGAGGGGATGATTGGGAATCAATCAGATTATACAGGTACTGCTGCAT
TGGTACGCAAATGGTATAGGAATTGGCGTGGGTTGTAAAAGTACCGGAGAAATACTTTGGGTGCTTGCTTGTCTTGTTT
CTCTCTCTTTTTTTTAGTCGTTTTAGCGAGTTGTGATGTTGGTAGGAAAGAAATTAAGAAATTATGGACGGGTAGGGGG
AGTGGAGAGAGGAAGGGAGGGGGTGAAAGAGGGTGGGGGGAGGGGAAGAAATAAAAATTAAGAATAAATGATCA
Sclerotinia sclerotiorum, Ss_Gyp5p, SS1G_10712
SEQ ID NO: 17
ATGTCTGATCACGAGCATCAACAGCATCATTCCGATGCAGAAAAAGATTCAATAATGGAAGAAACAGAGAAGAGGGTT
GAGCAGAGTTCGGATCATGAGAGTGACATGTTCGAAGATGCCAACGATGTTGAAGACCTCACAGATACTCCTACTTCC
CCAATTGAGAGAACTAGGTCTTTGACGAAACGAAGATCATCATCTATTAAGAGCAGTACACAAGATATCAGTAGCGATA
TTCCATCGGTCCCAACAGTACCACTTCCAGAATCAAATGGCGAAACGAATGACGAACAATTAGAATCCGATATTCCACC
ACCTAAATCCCCCCTTTTGACATCCCATCGCATGTCCGCTTCTTCCCTCCATAATGTAAATCTCGAAGACGGTGATGAT
TTTGGTTCACCTCCACCACCTCCTCCACTTTCGAAAGTAGCACCAGAGGAAATGACACCTGATCAACCACCCGAATTAC
CACCAAAACCCAGCATAATTACTCCAATGCAAGGTCTTTCTGGAATCCTTCCAGATGTGCCATTCTCACCGCCACCACC
CCCTCCTCCTGCTCCCGCGCCTGCGAATCTTCCTGCGCCCGCACCCGTTACAAGAAAATTAACTAGTCCATTTTCATG
GCTTTCAAGAAATACCTCGGCTCCAAAAGAGAACGTAAAATCGTCACCATTGCCCTCACCTCATGCGAATGAGCGAAG
ACATACCGCTTCCTCGATAGCAACCGTCGGCAGCAGTTCAGAAATGATGCTAAATAAATTGGAGGAGGGCAATGAAAC
AGATACCACGAATGGGGTCAGACGGCCTGGGAGGAATAGTCTGCGGGACAGATTTAAGCTCGTGAGAATGCGTGAG
GAGGCCGGTATTACAGAGTTGCCTGAAGAACAGGACGAGGCAGGCAATATAGCATTTGGAGGACTCATTAGACAGAG
TACAACTCTTGGTATGGGCTTTACAGGCTCTCACGACGACAAAGACCACTCACCCAACGGAGGTGTTCCACCTGCGAC
TCATAACCCAGTCAGTGTCAATCCAGCATTGGCCCCAGGTACGGCGTCTGGGGTTTCTGCGGGCCCTTCTGCGATGG
GTGATCCAGAAGCACCGGTCGACTGGGATTTGTGGCAGAATGTTGTGTACGAAGGGCCAGCCGCGGTAGCAAGGAC
AAGTGCAGAAGAACTCAATCAAGCTATCGCAACTGGTATACCGCATGCTATCAGAGGTGTGGTATGGCAAGTTTTGGC
AGAAAGTAAGAACGAAGAGCTCGAGGTTCTCTATAGAAGCTTGGTAAATCGAGGTACAGACAAGGACAAGGACAGGAT
GAGTACATCTAGCGGAGTACAAAGCAATGGATCAATAAAGGAGACTGTGGTTTCATCGGCATCGTCGATACATTCCGA
GAAATCTACCCCGGCAACTACTGTCACCAATGGAATGAGATCTCCCTCTCCGCCGAGCGAGAAAGATGTAGCATTGTC
GTTAGCTGAGAAGAAAAAGAAAGCGAAGGAAGATGCAGCGGCTCTGACAAAACTCGAGAGAGCCATCAAGCGAGACT
TGGGTGCTCGAACGAGTTATTCAAAATTTGCTGCAAGTGCTGGACTTCAAGATGGATTATTCGGTTTATGCAAGGCATA
TGCTCTTTATGATGAAGGTGTTGGCTACGCGCAAGGCATGAACTTTTTAGTTATGCCTCTGCTGTTTAACATGCCTGAA
GAAGAAGCATTCTGTCTATTAGTACGACTTATGAATCAGTATCACCTTAGAGATCTTTTTATTCAGGATATGCCAGGTCT
TCATAAGCATCTTTATCAATTCGAGAGATTATTAGAAGATTTCGAACCGGCGTTGTATTGCCACCTCCATCGACGTCAA
GTTACACCTCATTTATACGCAACACAATGGTTCCTTACTCTTTTCGCCTATCGTTTCCCATTACAACTTGTGCTTCGAATT
TATGATCTCATTCTTAGCGAAGGTCTTGAGGCAATTCTTAAATTTGGCATCGTACTCATGCAAAAGAATGCGGCCCACC
TTCTTACACTCACTGATATGGCTGCATTAACCACATTCCTTAAGGATCGACTTTTCGATGTTTATATTGATGCTTCTCCTT
CAGCAGGATCAATACTGGAAAATGGTTTCTTCGGAAATTCTGGTGCGAGTATTGATAAAGAAGTTTATCGAGCGGATCA
TATGATTCAAGATGCTTGTGCTGTCAAGATAACTCCAAAGATGTTAGAAACGTACGCATTAGAATGGGAAGAAAAAACC
AAATTGGAGAAAGAACGAGAAGCAGAGTTAGAAAACTTAAATTGACGAATATCTCTCTCACACACAAAGTTCGACGTCT
AGAAGAAAGAGTCGAATCTCATGATACCGAGCACGCGGCCTTGGCTACTGAGCTTGTTCGTACTAAAGTCGAAAATCA
GGAAATTCATGAAGAGATCGAGACTTTGAGGGAACAAGTTAAGGAGTTAAAAAATGTGATTGAAAAGCAACCTGACGA
AATCGAAGCAAAATTACAGAGTGAGATGGATCGATTAATGAAGAGAAATCAAGAAGTACATGAAGAAAATCAAAAACTC
GAGGATGAAATGAATGAAATGGAACAAAATTTGGTGGAAACAAAGATGAAATACGCCGAGATTAATGCAGCTCATGAA
GCTTTGAATCGGAAATGGACGGATTTGAGGAAAGCATTGGGCGATTAA
Botrytis cinerea, Bc_Pan1p, BC1G_09414
SEQ ID NO: 18
GGCTTCAATTGACGTTGAAACATGAATGCTGAATGATGATACGATACACTTTACTTCAGCCCCTTTAACATTTTGTCGCA
AAATCGGTGAAACTTGGGTTGTATGTATTTGTATATTAAAGATCGCTAAGCCCAGCCTCTATGGTAACAGATTACCTGA
GCTTCGTCATTTCGACCCCCGGACCGTGATCTTCTACCAACCTCGAACCCATTCCTTCAAATAAATGTCACAAATCTAT
CTTTCTTCATACCTATTTCTTTTTTGTTCATACTCATAATGTTTTCGGGTTCGAACTCGTACCTTGGTGGTAACACCGGC
CGCCAACCACCACAGCAACCGCAACAACAATATGGTGGTTTCCAGCCAAACCAAGGTTTCCAACCACAGCAGACTGGT
TTCCAGCCACAACAGACTGGTTTTCAACCTCAACCCACAGGATATGGTAATGCGGCTCCTTTACAACCCAATTTCACCG
GTTATCCACTTCAACCACAGCCTACGGGATATTCTCAGCCCTCTCAAGCAGGCTTCCCTGGAGGCCAGCAGCAACAG
CAGCAGTTCAACAATGCTCCTCAACAGCAGAACTTCCAAACGGGAGCTCCCCCAATCCCGCAGATTCCGCAGCAATTC
CAGCAGCCTCAACAAACGCAACAGGCTCAACCACCTCCTGCACCTCCTGTGCAGCAACCGCAAGCGACCGGATTTGC
TGCAATGGCAGATTCATTTAAACCTGCTGCTGCAGAGCCATCGAAGCCAAGAGGACGCAGAGCCTCCAAGGGGGGAG
CAAAGATACCTAGTATACGACTTTCCTTCATTACAGCCCAAGATCAAGCAAAGTTCGAAACTCTTTTCAAATCCGCTGTT
GGGGATGGGCAAACACTTTCTGGGGAGAAATCGAGGGATCTTTTACTACGCTCAAAACTAGACGGGAACTCACTGTC
GCAAATATGGACGCTCGCAGACACTACAAGATCTGGACAGCTACATTTTCCCGAATTCGCATTGGCTATGTACCTCTGT
AATCTCAAGCTAGTCGGCAAGCAGTTACCATCCGTGCTTCCCGATGTTATCAAAAATGAAGTTTCTAGCATGGTGGATA
TCATAAACTTCGCTATAGATGATGATGCACCAGCGGCAACGAATGCGCCCAGTTTTGATGGTCGACAAAACACCGCGA
CACCTCCGACTATCCAACAACCACAGCCAATGGCGTCTAATTCCGCCCTTCTCACTGCGCAAATGACAGGTTACCCTG
GACAGCAGAATAACTTTTCGGGTGGATTTCAACCACAACAAACAGGCTTCCAGGGCCAAATGCAAACTGGCTTTTCTG
GACAGCAAGGCGGATTGCAACCTCAGCCAACTGGATATAATCAGATGTCAAACCCTCAAGCAACGGGCTATAATGGAC
CGCGCCCTCCAATGCCTCCTATGCCATCTAACTTCAGTTCTCATTTATCTCCGGCTCAGACGGGTATGCAAGGTGGAA
TGATCGCGCCATTGAATAGCCAGCCTACAGGAGTCGATGGCCAATGGGGCTTGGTAAATGCGCCAGCCCCCAATATC
GATCTATTACATTCCCGGATGATGCCGCAACAGGGTCGAGAACAAGGCAACTTCACCACGGCTGGTATAACAGGCAAT
GCTGAAATTCCATGGGGAATTACGAAAGACGAGAAGACCAGATATGATTCCGTTTTCAAAGCTTGGGATGGGTTTGGT
AAAGGATATATTAGCGGTGATGTCGCTATTGAAGTTTTTGGGCAGAGTGGTCTCCCGAAGCCTGACCTGGAGCGCGTA
TGGACCTTAGCAGATCACGGCAACAAGGGAAAGCTCAACATGGATGAATTCGCGGTTGCCATGCATTTGATTTATCGA
AAGCTTAATGGATATCCTCTACCAGCCCAACTACCTCCGGCGCTCATACCCCCTTCCACTCGTAACTTCAATGATTCGA
TTGGGGCTGTCAAATCTTTACTTCATCAAGAATCTAATTTCCGCAAGAACTCTGGTGCTACCCTTTTGCCACAAAAGACT
GGAGTGAGCTACCTCAAAAATCATTCTTTCCGTGGTGATGCTACCCCAGGTCGCACAGGCCGTAAAGACGCTACAGTA
TACAAAAATAACGACGATGATGTTGGGTATAAATCTAGTGCTCGTCGCAGACTCGGGGCCTCTTCTCCACGACCTTCG
TCTCCGGGATCAACAACTTCCAACGATGACCTTTCACTAGACCAGCTTAGAAAGAAAATCGCGGAGAGACAAGTGATA
CTGGATGCAATTGATTTCAAGGCCGAAAATGCTGCAGATGAAGATGATGCTCTTGATCGTAAAGATCGTCGTGAAGCA
GAGGATCTTTATCACCGCATTCGTCGTATTCAAGAGGATATCGATGCGCATCCAGACGCATCGTTGCGTAATGTTGATT
CCGGCGCCGAGCGTCGTGCTTTGAAAAGACAGTTGCAGACATTGACAGATAAACTTCCAGATATTGCTTCGCGTGTCC
GAAGAACGGAAAGAAGCATTGCTGATGCCAAGCTTGAACTATTCCGTCTAAAGGATGCCAAAGCTCACCCTGGAAGTG
CCTCTAGCATTGTTGGAACTGGTCCTGGCGGCGCTATCACCGAATCAGATAGACTCAAAGCAAGAGCCAAGGCTATGA
TGCAACAACGTTCTGCTGCTCTCACTGGTAAGAAGATTGAGGCGAGTAATGATGACTTGGATGCGCCAAAACGCCTCG
AAGAAGAAAATCTCAAGATTCGAACTGAGAAGGAAAACAACGAGCGCATGGTTCAAGATGTTGAAGAGAGTGTCCGTG
ACTTTTCACGAGGACTGGAGGATAGTCTCAAAGATGGTGGTGAGAGCTCGTCCAGTGAGCATGAGAAGAGACGTTGG
GAGGATGGGCTAGGTGTTGAGGATGAAGTGAAGGACTTCATCTTCGATTTGCAAAGGAGCAGCAGGAGTGCCAGAGT
TCGAACTGATGATCGCAGCAGAGAGACTCCTCGTACTGAAGCGTCTCATGCTAGCCCTGCTCCAGCAGCTCGTAGCG
AAACTCCATCGTCACAGCCATCATCTACACCAACCCCTGCTGGAGGTTCATACTCACAATACAAGACTCCTGAAGATAG
AGCAGCTTATATCAAGCAACAGGCCGAGAAGCGCATGGCTGAACGTCTAGCTGCTCTTGGTATCAAGGCACCATCTAA
ATCTGGAGAAACAACACAACAGAGACTGGAACGTGAAAAGAATGAGCGTGCAGCCAAACTCAGACAAGCAGAAGAGG
AAGATGCTAAACGTGAAGCTGAGAGGCAAGCTAGGATCGCTGAAGAGCAGGGTGCACCACCACCTGCCCCCGAGCA
ACCAAAGGAAACCGCGAAAAAGCCACCTCCACCCCCTTCAAGGAAGGCCGCAAGAAGTGACGCTAGTGAGCGCAAG
GCCGAAGAGGAGAGAATCATTAACGAGCAAAAGGCACAAATTATTGCCACAAATGAGCTAGAGGACGATGCTCAACGA
CAAGAGGCCGAGCTTGCAAAGGAACGCGAGGCGGCTCAGGCTCGTGTCAAGGCCTTGGAAGACCAAATGAAGGCCG
GGAAATTGAAGAAAGAAGAGGAGAAAAAGAAGAGAAAGGCTCTCCAAGCTGAGACCAAACAACAAGAAGCTCGTCTC
GCAGCTCAACGCGCAGAGATTGAAGCCGCACAAGCACGTGAGCGAGAATTGCAACGTCAACTTGAAGCTATTGACGA
TTCAGATTCATCTGATGATGACGAAGGTCCTGAGCAAGTTACCCCTCAAGCATCAACGCCCACTCAAGGAAGTCAAGA
GCTTGAGCGCAAAGAACCTTCTCCACCACCTCCTCCACCTTCAATTCCAGTTGTTGTATCACCAGTCCCTGCTATTGCA
ACAACAACTAGTCTTCCATCACCAACCCCACAAGTTACTAGCCCTGTTGTCAGCCCTCCAGTCGATACAGAGACCCGC
AATCCTTTCTTGAAGAAAATGGCCCAATCCGGTGACGCATCTACCGCATCTACTGCATCTAACAATCCATTCCATCGTC
TTCCTGCTCAAGAGCTTTCTACACCTGCACCAATTCAAGTTCAACCAACAGGTAACAGGCCATCTCGTGTTCGTCCAGA
AGAAGATGATTGGGATGTCGTCGGATCTGACAAAGAGGATGATTCCTCTGACGATGAAGGACCAGGTGCAGGTGGTG
CGCGTCATTTGGCATCGATCCTTTTCGGAACCATGGCACCTCCTCGCCCATTGTCATCCATGGGTAACGAAGCTACAT
CTGCGCCTGAATCTCCTGCTGTAGCATCTCCACCAGCGGCAACCCCCCCACCTCCACCAGTACCTAACTTCAATGCAC
CGCCACCTCCTCCAATGCCATCAGCCGGTGCGCCAGGTGGTCCTCCACCACCACCTCCTCCTCCACCAGGGATGGG
TGCTCCACCTCCACCACCAATGCCACCAATGGGAGGCGCTCCTGCTCCACCAGCAGGTGTACGACCAGCTGGTCTCT
TGGGTGAAATCCAGATGGGGCGATCGTTGAAAAAGACACAAACTAAAGACAAGAGTTCAGCTGCTGTTGCTGGAAGG
GTTTTGGATTAAATACCTTTCAAATCATTGAGAAGAGACAAGATGAAATGGAGGTTTGTGGTTAGCGAGCCTAAGAACA
TGGATTGTATTATAAATTACTTTTGGTTCATAGTATTGGGCAAGGGGGCTTAGGTGTGGAAGGTGCGAAACAGGAAAG
ATAAGAGACGAGCATAATTTGTAGTCGAAGTAGCAATTTGAAAATATTCGTTCGTTTTGATAGTCATTTGATGCACTTAT
CACCA
Sclerotinia sclerotiorum, Ss_Pan1p, SS1G_05987
SEQ ID NO: 19
ATGTTTTCGGGTTCGAACTCGTATCTAGGTGGTAATAGTGGCCGGCAACCGCCACAACAACAACCACAGCAACAGCAA
CAGTATGGCGGTTTTCAGCCAAATCAAGGTTTCCAACCACAACAGACTGGCTTCCAGCCACAACAGACTGGTTTCCAA
CCTCAACCCACTGGGTACGGAAACGTCGCTCCTTTGCAACCCAATTTCACAGGTTATCCTCTTCAAGCACAACCTACA
GGATATTCTCAGCCGCCTCAATCAGGGTTTCCCGGAGGCCAGCAGCAGTTCAACAATGCTCCTCAACAGCAGAGCTT
CCAGACGGGAGCTCCGCCAATGCCGCAGATTCCACAACAATTCCAGCAGCAGCCTCAACAAATACAGCAAGCCCAGC
CATCTCCAGCAGCTCCCGTGCAGCAACCGCAAGCCACGGGATTTGCAGCGATGGCAGATTCATTCAAATCTGCTTCA
GAACCATCGAAGCCAAGAGGACGCAGAGCCTCTAAGGGTGGAGCAAAGATACCCAGTATAAGACTTTCGTTCATTACA
GCCCAAGATCAAGCGAAGTTTGAAACCCTTTTCAAGTCCGCAGTCGGAGACGGCCAAACATTGTCTGGCGAGAAATC
GAGGGATCTCTTACTGCGCTCAAAGTTAGATGGGAACTCATTGTCGCAAATATGGACGCTCGCAGACACTACAAGATC
TGGACAATTACATTTCCCCGAGTTCGCATTGGCAATGTACCTTTGCAATCTTAAGCTCGTCGGCAAGTCACTACCCTCG
GTACTTCCCGATCAGATCAAGAATGAAGTTTCTAGCATGGTAGATATCATAAATTTTGCTATAGAAGATGATGGGCCAG
CAGGAACGAATGCGCCGAGTTTTGATAGTCGACAGAGTACTGCAACGCCTCCGACTATCCAGCAGCCACAGCCAATG
CCGTCAAATTCTGCTTTACTCACTGCGCAAATGACTGGTTTCCCTGGACAGCAAAATAACTTCTCCGGTGGGTTTCAAT
CGCAACCGACAGGTTTCCAGAGCTCAATGCAAACTGGCTTTCCTGGGCAGCAAGGAGGATTGCAGCCTCAGCCAACT
GGATTCAGTCAGAATATGTCAAACCCTCAAGCAACGGGATATACTGGACCGCGCCCTCCAATGCCCCCTATGCCATCA
AACTTCAGTTCCAATCTGTCTCCTGCTCAGACGGGTATGCAAGGCGGCATGATTGCTCCGCTGAATAGCCAACCTACA
GGAGTCCCAGGTCAATGGGGATTGGTCAATGCGCCTGCAACTGGTTTGCCTAACATCGATCTACTACAATCTCGGATG
ATGCCGCAGCAAGGCCGAGAACAAGGCAATTTTACTACAGCTGGCATAACAGGCAATGCCGTCATTCCATGGGCAGT
TACAAAGGAAGAGAAGACTAGGTACGATTCCGTCTTCAAAGCTTGGGATGGATTTGGAAAAGGATTCATTGGTGGTGA
TGTCGCTATCGAGGTCTTCGGGCAGAGTGGCCTTGAAAAGCCCGACTTGGAACGCATCTGGACCTTATCGGATCACG
GCAACAAGGGAAAGCTTAACATGGATGAATTTGCGGTTGCCATGCATTTGATCTATCGAAAGCTTAATGGATATCCTCT
ACCAGCTCAATTACCTCCCGAGCTTGTACCCCCCTCCACTCGTAACTTCAATGATTCAATTGGAGCCGTCAAATCGTTG
CTTCATCAAGAATCAGATTTCCGAAAGAATTCTGGCGCGACACTTTTGCCCCAAAAGACTGGACTGAAGAAGAAAGTCA
GAGAGAAGCAAGTGTTATTGGACGCGATTGATTTCAAGGACGAAAATGCTGCGGATGAAGACGATGCCCTTGATCGTA
AGGATCGTCGTGAAGCAGAAGATTTGTATCGTCGCATTCGTCGTATCCAAGAGGACATTGATGCGCACCCAGACGCTT
CATTGCGTAACGTTGACTCCGGCGCCGAGCGTCGTGCCATGAAGAGACAGTTGCAGACATTGACAGATAAACTTCCG
GATATTGCGTCGCGTGTTCGACGAACAGAAAGAAGCATTGCCGATGCAAAGCTTGAACTCTTTCGTCTAAAGGATGCA
AAAGCTCACCCTGGAAGTGCTTCCAGCATTGTTGGAACTGGTCCAGGTGGCGCGGTTACCGAATCAGATAGACTCAAA
GCAAGAGCTAAGGCCATGATGCAACAACGCTCTGCTGCTCTCACTGGCAAGAAGATTGAGATAAGTAATGATGATTTG
GATGCACCAAAACGCCTCGAGGAAGAAAACCTTAAGATCAGAACCGAGAAGGAAAATAATGAGCGAATGGTTCAAGAT
GTCGAAGAAAGTGTCCGCGATTTTTCACGGGGTCTGGAGGATAGTCTCAAAGATGGTGGCGAGAGTTCATCTAGCGA
GCATGAAAAAAGACGCTGGGAGGATGGGCTCGGTGTTGAAGATGAAGTCAAGGACTTCATCTTTGATTTGCAAAGGAG
CAGTAGAAGTGCAAAAGTTAGGACTGACGATCGCAGTAGGGAGGCTCCCACTGAGACGTCTCGTGTTAGCTCCGCTC
CAGCAGCTCGTAGTGAAACTCCATCGTCGCAGCCTTCATCTACACCAACCCCTTCTGCAGGTACATATTCACAATATAA
GACAGCAGAAGATAGAGCAGCGTACATCAAGCAACAGGCAGAGCAGCGCATGGCTGAGCGTCTAGCTGCTCTTGGC
ATTAGGGCACCTTCTAAACCTGGAGAGACAACACAACAGAGATTGGAGCGTGAGAAGAATGAGCGTGCTGCTAAACTC
AAGCAAGCGGAAGAGGAAGATGCTAGACGTGAGGCCGAAAGGCAAGCTAGAATTGCTGAAGAGCAGGGAGTGGCCC
CACATACACCGGATCAACCAAAAGAAATTACGAAAAAGCCACCTCCGCCGCCTTCGAGGAAGGCTGCAAGAAGCGAC
GCTAGTGAACGTAAATTCGAAGAGGATAGAATCCTCAAGGAGCAAAAGTCACAAATTATTGCCACAAATGAGCTAGAG
GACGATGCTCAACGACAAGAAAATGAGCTTGCAAAAGAGCGCGAGGCAGCTCAAGCTCGTGTGAAGGCATTGGAAGA
GCAAATGAAGGCTGGGAAATTGAAGAAAGAAGAGGAAAAGAAGAAGAGAAAGGCTCTACAAGCCGAGACGAAGCAAC
AAGAAGCTCGTCTTGCAGCTCAACGTGCGGAGATCGAAGCCGCCCAAGCACGTGAGCGGGAATTGCAACGTCAACTG
GAAGCTATTGATGATTCAGACTCATCAGATGATGATGAAGGTCCAGAGCAAGTTACTCCTCAAGCGTCAACACCAACTC
AGGGGAGCCAAGAATTTGAGCGCAAAGAAGCCTCTCCACCCCCTCCTCCTCCCTCAGTCCCAGTCATTGTATCACCC
GTCCCTGCGGCAGCAACAACAACCAGCCTTCCCCCACCAACCCCACAAGTTACTAGCCCTGTTGTCAGCCCTCCAGC
TGAAACAGAAACCCGCAATCCTTTCCTGAAGAAAATGGCTCAATCTGGTGATGCTTCTGCCGCATCTACTGCATCTAAC
AACCCATTCCATCGTCTTCCTTCTCAAGAACTTCCCGCTCCTGCGCCAATTCAGGTTCAGCCAACAGGTAACAGACCAT
CTCGTGTCCGTCCAGAAGAGGATGATTGGGACGTTGTTGGATCTGACAAGGAGGATGATTCCTCTGATGATGAAGGA
CCTGGTGCAGGCGGCGCGCGTCACTTGGCATCGATTCTTTTTGGAACCATGGGACCTCCTCGTCCTTTGTCGGCTAT
GGGCAACGAAGCTACATCCGCACCTCATTCGCCTGCTGCGGCATCTCCACCAGTGGCATCTCCACCACCTCCACCAC
CCATGCCATCAGCCGGTGCACCAGGCGGTCCACCTCCACCACCTCCTCCTCCGCCACCAGGAATGGGTGCTCCACC
TCCACCACCAATGCCTCCCATGGGAGGGGCTCCTGCGGCCCCACCTGCGGGTGGACGACCAGCTGGATTCTTGGGT
GAAATCCAGATGGGGAAAGCTTTGAAGAAGACACAAACTAAGGACAAGAGTGCAGCTGCTACGGCTGGGCGAGTTTT
GGATTAA
Botrytis cinerea, Bc_Srv2p, BC1G_14507
SEQ ID NO: 20
GGGTGTGGGTGTAGATGAATTAAATGAAGAACATCAGCGTTCCAAGGTAATCCGTATCCATCATATCACATCACATCTC
TTCACATCACTCCAATATTCTCTCTTCTATCCTCTCTCTCTCTCTCTCTCCCTCTCCCTCTCTGTCTTCCTCCCCCTCGC
CGTCGTCGCTTCATTGTAGGAGACCTCTTTCTCGTCGCTCCATACCAGTCCCGCAAATCGATAGCTTCTTCCATTTGCC
TGCTAATTACCATTCCATATTACATTATTTATATGCGTAATTAGCAACCTTTTGCCTCCTTCCCCTTGCATTAGCACCACG
AAACATCGAGAACCAGACAGCTCCATTCCCTCAAACAACCTCCTATTCGATCGATCATTCCTTCTTCAACAAGACTTTG
GAACAACTACTGCACTTCAATATGTCTCAACAACCTGAAGCTGTAAATAATATGCATAATTTGACTACGCTCATAAAACG
ACTCGAAGCCGCAACCTCTCGTCTTGAAGATATAGCTTCCTCTACCATTCCACCACCTGCTTCATCATCCATCCCTCTA
ATTTCTCCTCCGGCCGAAGCTGCGAAAACAAATGGCACAACTCCGCCGCCGCCAACGATCCAAACACCAGATATCAAA
AAGATCATCGAGGATCCAATCCCAGGAGTAGTCTCAGAGTTCGATAATTTTATTCAGGGGGCGGTTAAGAAATATGTTA
ACTTGAGTGATGAGATTGGAGGGGTTGTTGCGCAGCAGGCATCTAGTGTATTGAAGGCATATGTCGGACAACGAAGAT
ATATTTTGATCACTACAAAGTCAAAGAAACCTGGCATGCAAGATGAACCATTCCAAAAGCTCATCAAACCTCTTCAGGAT
TCATTTACTGCCGTTGATGATATCCGAAAGTCCAATCGTGCATCTCCATTCTTCAATCATCTCAGTGCTGTTTCTGAAAG
TATTGGTGTACTTGCCTGGGTTACAATGGACAACAAACCATTTAAACATGTCGATGAATCATTGGGATCTGCTCAATATT
ACGGAAACAGAGTATTGAAGGAATTTAAGGAGAAAGACCCAAAACAAGTCGAATGGATTCAAGCATTCTATCAAATCTT
TAAAGATCTCAGCGAATATGCTAAGGATAACTTCCCAAACGGTATTCCATGGAATCCAAAGGGTGAAGATTTGGAAGTT
GCGATTAAGGATGTAGATGAAAAGGCTCCAGCCCCTCCTGCTCCTCATCCAAAGGCTGCAACTGCTGGAGGTGCCGC
ACCACCACCACCCCCTCCACCTCCTCCTCCACCAGTCTTCGATGACATTCCATCAAAGCCAGCACCAAACCAAGCAGA
TTCAGGTGCTGGACTAGGAGCCGTTTTCTCTGAACTGAATAAAGGAGCAGACGTTACAAAAGGATTGCGCAAAGTGAA
TGCTGATCAAATGACACATAAAAATCCTTCTTTGAGAGCAGGTGCTACAGTTCCCACCAGAAGTGATAGTCAATCCAGT
ATTAATTCGAACCGAGGAAAGAGTCCTGCTCCTGGTAAAAAGCCCAAGCCAGAGAGTATGAGAACTAAGAAACCCCCT
GTTAAAAAATTGGAGGGTAACAAGTGGTTTATTGAAAACTACGAAAACGAGTCTGAGCCAATCACAATTGAAGCATCTA
TTTCACACTCGATCCTCATTTCCCGCTGCTCAAAAACCACTATTATCATTAAAGGAAAAGCAAACGCTATTTCTATTGAC
AACTCCCCTCGTCTTGCCTTGGTAATTGATAGTCTCGTCTCATCGATTGATGTTATCAAAGCACCAAACTTCGCACTTCA
AGTACTGGGCACATTGCCAACGATTATGATGGATCAAGTTGATGGTGCTCAAATTTACTTGGGGAAGGAGAGTTTGAA
CACGGAAGTCTTCACGAGTAAATGTAGTAGTGTCAATGTGCTACTTCCAGATTTGGAGAGTGCAGACGGGGAAGGAGA
TTACAAGGAGGTGCCGTTGCCCGAACAGTTGAGGACTTGGGTGGAGAATGGAAAGGTCAAGAGTGAGATTGTTGAAC
ATGCTGGATAGATTGGTTGAGATGGATTGTGGAGTTTGGGGAGAGGCTCTGGCGAAAACTTGTTGGGGGTGAGGGGT
AATGAGATGTGATGGAGAATCTGGGTAGATTTGATATTATAGAGATAGTTGAGTGAAGTTTTATATCATCGCATGTTAGT
TGAAGTTTTCAGGCAGAGTAGAAGTCAAAGTTGAATTGTACATATCTATGTATATGTATATCCGAGGCTTGTCTCGCTTT
GTTGTTTAGTAGATTTCAAACCGAAGATTTTCTACTCATCATATCGTGCCGTGTGTTTTATATTGGGCGATGTGTCGTTG
TGCTTTTTCTCTCTCTATCTCTTTTACTTTCAGGGAAATAAATATA
Sclerotinia sclerotiorum, Ss_Srv2p, SS1G_13327
SEQ ID NO: 21
ATGGCTACAAATAATATGCATAATTTGACGACGCTCATAAAACGACTCGAAGCCGCGACCTCACGCTTAGAAGATATAG
CCTCATCAACTATTCCCCCTCCCAGTACTCCCAAAACAAATGGTACAACAAGCGTCGCATCTCCTACCGTACAAGCCG
CTACTCCTACAGTTGTAGCCCCGACTATTCAAACCATTATCGAAGATCCAGTTCCTGAATCAATCAGCGAATTCGATGC
TCTAATTCAGGGGCCTGTGAAGAAATATGTTAATCTTAGTGATGAGATTGGTGGGGTCGTTGCGGAACAGGCATCCGG
TGTATTGAAAGCATTTGTCGGGCAGCGAAGATACATTTTAATTACCACGAAGTCGAAGAAACCCGCTATGCAAGATGAA
CCATTCAAAAAACTCATCAAACCTACTCAAGATTCATTCTCTGCTGTTGACAAAATTCGAAAGTCTAATCGTGATTCACC
GTATTTCATTAATCTCAGTGTTGTTTCGGAAAGTATTGGTGTACTTGCTTGGGTTACAATGGATAATAAACCATATAAAC
ATGTTGATGAATCATTGGCATCGGCTCAATACTTTGGAAATAGATTATTGAAGGAATTCAAGGAGAAAGATCCCAAACA
AGTTGAATGGCTTCAAGCATTTTATCAAATCTTCAAAGAACTTAGCGAATATGCTAAGAATAACTACCCAAATGGTATTC
CGTGGAATCCGAAGGGAGCAGATTTAGAAGATGCTATCAACGAAGTAGATTCGAACGCTCCAGCCCCTCCTGCTCCTC
ACCCAACAGCGACTAGTGGAGGAGCCGCGGCACCACCACCACCTCCTCCTCCTCCTCCTCCACCAGTTTTCGACGAC
ATTCCAACAAAATCTGCACCAAAGCCAGGAGATGCAAGTGCTGGACTAGGAGCTGTTTTCTCTGAGTTGAATAAGGGA
GCAGATGTTACGAAGGGATTGCGCAAAGTCAATGCTGAACAAATGACACATAAGAATCCATCTTTAAGAGCAGGTGCT
ACTGTTCCTACTAGAAGTGATAGTCAATCTAGTATTAGTTCGAACCGTGGAAAGAGTCCTGCTCCTGGTAAGAAACCTA
AGCCAGAGAGTATGAGAACTAAGAAACCTCCTGTTAAGAAGTTGGAGGGTAACAAGTGGTTTATTGAGAACTACGAAA
ATGAATCATCGCCAATTGAAATCGAAGCTTCAATTTCGCATTCGATCCTCATTTCCCGTTGCTCAAAAACTACAATCATG
ATTAAAGGAAAAGCAAACGCCATTTCCATTGATAATTCCCCTCGTCTTTCCCTAATTATCGAGAGTCTCGTTTCATCAAT
TGATGTTATTAAAGCACAAAGTTTTGCGCTTCAGGTATTGGGGACATTGCCAACAATTATGATGGATCAGGTTGATGGT
GCACAAATTTACCTTGGGAAGGAAAGTTTGAACACGGAAGTTTTCACGAGTAAATGTAGTAGTGTTAATGTACTATTAC
CGGATCTGGAAAGTGAAGAGGGTGAGGGTGATTACAAGGAGGTGCCATTGCCGGAGCAATTGAGGACTTGGATTGAA
GATGGGAAGGTTAGAAGTGAGATTGTGGAACATGCCGGTTAG
BC1G_10728
SEQ ID NO: 22
GACACATGCGATATGCAAAGTCTAGAACCTCGAATACTGATTCGAAAAAGACTGGCAATTCCATAAATCTACAGTATATT
TTAATCCGCAACTCATGAATGACTACATTTAATACGAATTACAAACATTCCCTAACGCCAAAATGGCAGCTACGATTCCC
CTCTCCACTACAACATGCTTGACCTCCTCAGAAGCTTTCAAATATCCTCTTCCACAGATTCGTCAATTCCACCGCGATCT
CACTACAGAGCTTGACGAGAAAAATGCACGTCTGCGGACACTGGTCGGAGGGAGTTATAGACAATTACTTGGAACCG
CCGAGCAAATCTTACAGATGCGACAGGATATTAGTGGAGTAGAGGAAAAGTTAGGCAAAGTAGGAGAAGGATGTGGG
AGAAATGTGTTGGTTGGAATGGTTGGCGGATTGGGAAAATTACAGGGAGAAATGAAGAATGGAAAGAAGGGCGAGGA
AATGCGGGTTGTGGCTAAGATGAAGGTATTGGGTATGTGTGGGATTGTGGTTGGGAAGCTCTTGAGGAGACCAGGGC
GAATGGATGGGGATGGTGGGAGAGGGAAGGAATTAGTAGTTGCTGCGAAAGTCTTAGTTTTGAGCCGATTGTTGGCG
AAGAGCTTGGAGAATACTGGAGATAAGGAATTCGTTGAAGAAGCGAAGAAGAAGAGGTCGGCTTTGACGAAGCGATT
GTTACGCGCAGTTGAAAAGACATTGGTTTCCGTCAAGGATGCTGAAGATAGAGACGATTTGGTACAGACACTTTGTGC
ATACAGTCTAGCTACTAGTTCTGGCACCAAAGACGTCTTGCGACATTTCTTAAATGTTCGTGGTGAAGCAATGGCTTTA
GCGTTTGACGATGAAGAGGAGTCGAACAAGCAGACCTCAGGTGTCCTACGCGCTTTGGAAATATATACGAGAACTTTA
CTAGATGTACAGGCTCTAGTGCCAAGGAGGCTGAGCGAAGCGTTGGCTGTGCTGAAGACGAAACCTTTACTGAAAGA
TGACAGCATTCGGGAAATGGAGGGATTGAGGTTGGATGTATGTGAGCGGTGGTTTGGCGATGAGATTATTTACTTCAC
ACCTTATGTCCGGCATGATGATTTGGAAGGGTCATTGGCGGTTGAAACACTACGAGGTTGGGCGAAGAAAGCGTCAG
AAGTGTTACTGGAAGGTTTTACGAAGACTCTTCAAGGGGGATTAGACTTTAAAGTAGTTGTTGAACTACGAACAAAGAT
TCTGGAGGTGTGGGTTAGAGATGGAGGCAAAGCAAGGGGATTCGATCCCTCTATACTTCTAAATGGCTTACGAGACGT
TATAAACAAACGACTCGTAGAGTTATTAGAAACTAGAGTTGGCAAACTTCATCTAGTGGGGACAGAGATAGAGTCCACA
TTAGCAACATGGCAAGAAGGAATCACCGACATACATGCAAGTCTTTGGGACGAAGATATGATGGCAACCGAGCTCAGC
AATGGTGGTAACATTTTCAAGCAAGACATACTTGCTCGCACGTTCGGACGGAACGATGCTGTTTCAAGAGTTGTTAACA
GTTTTCACACTTGGAGACATCTCATCGAGGAAATTGGTACTTATATTGATGAACTGAAGAAACAAAGATGGGATGATGA
TTTGGAAGATATGGAAGATGATGAAAGTCTCGAATCACGACAAAACCTTCTTAGCAAGGAAGATCCACAAATGCTACAA
GATCATCTCGATTCAAGCTTAGAAAATTCGTTCCAGGAGTTACACGCAAAGATCACTTCACTGGTGGACCAGCAAAAAG
ATAGTAAACATATCGGGAAAATATCGATATATATTCTCCGAATTCTACGAGATATCAGAGCAGAATTACCTAGTAACCCT
GCACTACAAAAGTTTGGACTCTCACTTGTCTCATCACTGCACGAAAATCTCGCAGGTATGGTCTCAGAAAACGCCATCT
TAGCCCTTGCAAAATCTCTCAAGAAGAAGAAGGTTGCGGGCAGAGCATTATGGGAGGGTACACCGGAACTTCCTGTTC
AGCCCTCCCCAGCAACATTCAAATTTTTGAGAGGTTTATCGACTGCTATGGCTGATGCTGGAGCCGATCTATGGAGCC
CTGTTGCCGTCAAAGTGTTGAAAGCGCGTCTGGACACCCAAGTTGAAGACCAATGGAGTAAGGCTCTAAAAGAAAAAG
AGGAAGAGCCTAGCAATGGAATCTCTGGTTCTCCCACCAATGCTCCCGAAGCAGATGCCGAGGAAAAAGAAGGGGAC
GCTTCTGCTCCTAATCCTGCTGCTGCTGTAGAAGTAGATGAAGAAAAACAAAAGGATTTACTAAAGCAATCACTGTTCG
ATATATCTGTCTTGCAGCAAGCTTTAGAATCACAGTCAGACAATAAGGAGAACAAACTTAAGAACTTAGCGGATGAGGT
GGGAGGAAAACTAGATCTCGAGGCGAGGGAAAGGAAACGTATGGTTAATGGCGCGGCGGAGTATTGGAAGAGGTGC
AGTCTTTTGTTTGGACTTTTAGCGTAGATTCCAGATGGATGAATTAGTGAGAGGCTTATAATGAATTATATTACGAATAC
TTTACTTTTGAGTATTCA
BC1G_10508
SEQ ID NO: 23
GCAGGGGTCGGATCAACATGTCTATAAACAAACATATGTACCGGCGTTGATCTCTCCTGCAGACTGCATTTGCACTTG
CTTCCCTCTTCCTCCTCCCGTTTCCTGGTCTTCTTCTACAAGCTGCAGGCGAGAGAGATAACTTCTACGCACCTTCCAT
ATCCCTCACCTCTTCTCTCCCCACAAGTTCGTTCATAATCCTTTCGTCCTGTTGTTTTGTCTAGCATTACCTTGCAATTCT
TAACAACGGCCGATCGTGGACATCAATCAATAAAAAGGACGACAAATCATCTTATAATTATTATCCCAAACTTTCATTGC
ACAAATTTGAATTGGATACTCATTTGGCTTTATTCGGAGCGATAAACGTAGAAATTAATCGTATAGGGGCTTTTATCAGA
CAATCAAGAACGGTGATTGGCTCACAGCGGTGAATTGTGAGGGGTGGTAATACAGAAAACAAATAGTATAGGGAGTAT
TTTTGGGTGGATTGTTACCAATGTCTACCACAAGAATCTCAACACCGAAAAGGTCCCCCAAAAAATCGACTTTTGTCAA
AACTGGAATCTTGACCACCAAATCAACGCCCAATCTCAACGCCTCCTATAATTTGGCATTACTACAAGCTTCAGGAGCT
ACACCCGTTCCTGCATATCCTTCCAATAACGGTCAAAGTTTTGCCCTAAATAATCCTAGGTCGCAACCGTCTCGACAAG
TCTCACTCGCTTCCCTTACCTCGAATTCACTTGCGACAATCCCGGATGCAAGCAAGAGATACCCTCTTTCTACAGTCTT
TGATGAGGATATGCCAACAGTAGGCAACATGCCGCCATACACACCTGCTCGAGTTGGCGGTGGACCGGAAGAACTAG
AGGTTGGTGATATAGTCGATGTGCCAGGTAACATGTATGGTATCGTCAAATTTGTTGGCAGTGTGCAAGGCAAAAAGG
GTGTATTTGCTGGGGTAGAATTAAGTGAAACGTTTGCTTCGAAAGGGAAAAACAATGGCGATGTCGAAGGAATTCAATA
CTTTGACACAACCATCGATGGTGCTGGGATTTTTCTTCCAGTCAACAGGGCGAAGAGACGTAGCACCCCTTCGTCGCA
TGATGAGTCATTTCCCCTTTCACCGGCGTCTCCATCGATGGGCAATAGGGCTGGGAGATTAGGATCTGAATTAAATGG
TCAGCCAACACCTTTGTTACCAAAATTCGGTCAATCTGTTGGTCCAGGCAGAGCGGCAAACCCATATGTCCAAAAAACA
CGTCCATCCATGGCTACACCTACCACCTCAAGACCGGAATCACCAGTTCGAAGAGCAGCCAATGCCAACCCATCATTA
AATACACCTGCACAAAGAGTCCCATCTCGATATGCAAGCCCTGCGCAGGCAAACTTTGGACAGAGCGTTAGAGGAACA
CAAGATTCTAGAGATCCAAGTAAGAAAGTTGGCTACACCCCCCGAAATGGCATGAAAACACCAATACCTCCACGAAGT
GTTTCTGCACTTGGAACGGGGAATAGACCTGCACCAATGAACTCGATGAATTTCAGTGATGAAGAGACACCTCCTGCA
GAGATTGCACGTACGGCAACAAACGGAAGCGTAGGCTCAGTCTCTTCTTTCAACGCGAAATTACGTCCAGCATCAAGA
TCCGCATCGCGTACAACTTCCAGGGCTACCGACGACGAATTTGAGCGATTGAGAAGTTTGTTAGAAGATCGCGATAGG
GAAATAAAAGAACAGGCTTCTATTATAGAAGACATGGAGAAAACTCTCAGTGAAGCACAATCGTTGATGGAGAACAATA
ACGAGAACGCAAGTGGTAGACATAGTCAGGGAAGTGTGGATGACAAGGACGCAACACAGTTGAGAGCAATAATACGT
GAAAAGAACGACAAAATCGCCATGCTGACTGCCGAGTTTGATCAGCATCGAGCTGATTTCAGAAGCACGATAGACACG
CTCGAAATGGCCGGTGCGGAAACCGAGCGAGTGTACGACGAGCGCATGCGTGTTCTCGTAATGGAGCTCGATACAAT
GCACGAGAATAGTCATGATGTAAAGCACGTTGCTGTACAACTGAAACAGCTAGAAGAGCTCGTTCAGGAGCTCGAGGA
AGGTCTTGAAGATGCACGACGTGGTGAAGCCGAAGCTCGGGGAGAAGTTGAGTTCTTGCGTGGAGAGGTTGAAAGAA
CTCGATCTGAACTCCGCCGCGAGCGAGAGAAGACTGCCGAAGCTCTTAGCAACGCAAATTCTCCTACGAGCGCAAGT
GCGGAAACACATTCCAAAGAGATTGCTCAGAGAGATGACGAGATTCGTGGATTGAAAGCCATCATCCACTCGCTCAGC
AGAGATGCCATACCTGATGGGAATTTCTCGGATCATGAGGCAACACCAAATATTCTACGACCTGGACTAAACCGAAGT
CGAACAGAAAGTGCTTCGGTTTCTGAGGAGGAGCGCCGTACTCGGGAAAAGCTAGAGCGAGAAGTGAGTGAGCTTC
GTGCTCTCGTCGAAAGCAAAGACAATAAAGAAGAACAAATGGAGCGCGAGTTGGAGGGATTGCGAAGAGGAAGTGTT
AGCAATCCTACTACGCATCGTACTAGTGCCATGAGCAGCGGAACTGTGACTCAGGATAGGAATTCTCTCCAAGACAAT
AAGAGCACAGTTGTAAGCTGGCGAGAACGTGGTGCCTCAGATGCTCGCCGCTACAATCTGGATTCAATGCCAGAGAA
TGACAGCTACTCCTCTGCAGCTGAGGATTTCTGTGAATTATGCGAAACCTCAGGTCATGATGTTCTACATTGCCCGATG
TTTGGCCCCAATGGTAACAGCAGCAATTCTAAGGATGAGTCACCTAAACAGCAACGAACAGGAAAAGACGTTGTCATG
GAGGGACTTAAATTATCACCCAAACCTTCTCAAGAAGAATACAAACCGGCGCCGTTAGCGCCAGCTAAGAAGTCGCCT
GATGCGTCGCCTATCAAGACTGTTCCCAACCTTATGGAACCAGGACCTGCCCCAGGAAAGGAAAGTGGAGTAATCAA
CATGGATAAATGGTGCGGTGTATGTGAAAGAGATGGACATGACAGTATTGATTGTCCTTTTGAAGATGCTTTTTAGGAG
ACTACTGCTTTCGATGTTTCAGGATAAGCAGTCACAACGACGACTTTTTTCATAGATTTTCTTTGTTAATCATAGGCAAG
GCCGCATTGCATTGCAGGAGCGTAATCCGTCTGCGATATACCCTTTCGGTTCTCTGTTTGAAGTATGCTTTTCAAGCGA
TAAGTTTAGAGGGGAAGATGATGTTTTTACGAGGATTGAATGAGATGGATGAATGCAGGCTAAATCGGGGAAGGGGG
AGGGAAGACAAACATGAGTTGAACGGACGTAATGATCATGTAGTATACTTTGTCAAATTAATGATCCAAATGCA
BC1G_08464
SEQ ID NO: 24
GATCCACCCACATCCTTCCTCATATGACTTCGATGATAATTACATAGACACTGCCAGTATGCCTGGCCTCGTTCGCAAA
CTCCTTATCTTTGCCGCCATCGATGGGTTGATTTTGCAACCAGCAGCGCCAAAAGGCCAACGCCCCGCCCCCGCAAC
GAAGATCGCATACAAAGATAAGCATATCGGGCCAGTATTGAGTGATTTGCAGGATCTGGAGGGGTCGTCTGCGAAAA
GTTTCGAGGCATTTGGTATTGTCGGTCTCTTGACGGTTTCCAAAAGCTCCTTCCTGATATCGATTACGAAAAGAGAGCA
AGTCGCACAAATACAAGGGAAACCTATATATGTTATTACTGAAGTGGCTTTGACCCCATTAAGTTCCAAGAACGAAGCA
GAGATCTCGATTGATAGTACGAAAGCGGGGTTATTGAAGAGTAATATCGAGGGGCAGCATGGCTTGGACGAGAGTGA
TAGCGAGGATGATGTCGTTAGCGATGAAGTGGAGGACGATACAGCAGTAGAAGCACACAAAAGAACGAGTAGCGTAG
CTGAAGATGTGATCTCGAAGAAGGGGGGATATGGAAGATTTGCTCAAAAATGGTTCTCGAAGAAAGGATGGGCCGTG
GACCAGAAGAAGAACCTGGGGATGAGCGCTGAGCCGTATTCCACAGTGGAGCAAGCTTCCAAGGCCACCGATGTAC
CAGCTACGATTTCAGGAGTCACTGAAGGAAAATCTGATATCTCAATTCCCGATAAGGGCAAGGAAATTGAGGACATTG
AAACTCCTGAAAATATTAGCGACATTGCAGAGAGCATGCTGCCAAAATTACTACGAACATCGCAGATATTGTTTGGGGC
CTCTCGGAGTTACTACTTTTCTTACGACCATGATATCACAAGAAGTTTGGCAAATAAGAGGAATACAAATTCTGAATTGC
CATTGCACAAGGAAGTTGATCCACTCTTCTTCTGGAATCGGCATCTTACTTTACCATTTATTGATGCTGGCCAGTCTTCT
CTTGCCTTGCCTCTTATGCAGGGCTTTGTAGGACAGCGTGCATTTTCAATGGATAGTAATCCACCAAACCCTGCTATAG
GTTCAGACACTGGAAAGACTTCCGTGCAGATGAAGGATATTACAACAAGTAGTTCGGATGAGCAAATTTACACAGCAC
GTGCTGGTACAGACAAGTCGTATCTATTGACGTTAATATCTAGAAGGTCAGTCAAACGTGCCGGGCTTAGATATTTACG
CCGGGGTGTGGATGAGGACGGCAATACAGCCAATGGCGTGGAAACAGAGCAAATCTTATCGGATTCTGCTTGGGGCC
CTTCGAGTAAGACATATTCGTTCGTTCAGATACGTGGCAGCATTCCCATATTCTTCTCCCAGTCACCTTACTCTTTTAAA
CCTGTACCTCAAGTTCACCACTCTACCGAAACAAATTATGAAGCTTTCAAGAAGCATTTTGATAATATAAGTGATCGCTA
CGGGGCCATTCAAGTGGCTTCCTTGGTGGAGAAGCATGGAAACGAGGCAATAGTCGGTGGAGAGTACGAGAAATTGA
TGACTCTCCTTAATGTCTCCCGAGCTAGCGAGCTTAGGAAATCCATTGGGTTTGAATGGTTTGATTTCCATGCTATTTG
CAAAGGTATGAAATTTGAGAATGTCAGCCTGCTCATGGAAATACTGGACAAGAAGCTTGACTCGTTTTCGCACACTGTT
GAAACCGATGGGAAACTTGTATCGAAACAGAATGGCGTTTTAAGGACTAACTGTATGGATTGTCTGGATCGAACAAAC
GTTGTTCAAAGTGCAGTGGCAAAGCGAGCACTTGAAATGCAGTTAAAGAATGAGGGACTAGATGTCACTCTACAAATT
GATCAAACTCAACAATGGTTCAATACTTTGTGGGCCGACAATGGTGACGCCATTTCTAAGCAATACGCTTCTACAGCAG
CATTGAAGGGAGACTTTACTCGTACTAGGAAGCGGGATTATAAGGGGGCCATCACAGATATGGGGCTTTCTATCTCCA
GATTTTATAGCGGCATTGTAAATGACTACTTCAGTCAAGCTGCCATTGATTTCCTGCTTGGAAATGTGAGCTATCTTGTT
TTTGAAGACTTCGAGGCAAACATGATGAGCGGTGATCCTGGCGTTTCGATGCAAAAAATGAGGCAACAAGCCATTGAT
GTTTCTCAGAAACTCGTTGTTGCTGACGACCGTGAAGAATTTATTGGAGGATGGACATTTCTCACTCCGCAGGTACCCA
ATACGATCAAATCTAGTCCTTTTGAGGAATCCGTCCTCCTATTGACAGATGCTGCATTGTATATGTGCAATTTTGATTGG
AATATCGAGAAAGTATCATCTTTCGTGAGAGTGGACTTGAACCAGGTGAACGGCATCAAGTTTGGAACATACATCACGA
GTACTTTGTCACAAGCCCAGGCAGATGAGAAGAGGAATGTGGGCTTTGTAATAACTTATAAGGCTGGTTCAAACGACA
TTATTCGCGTGAACACGAGATCTATGGCTACGGAATTTCCTTCTTCGAAACTCTCTCTCGAAGACAAAACATCCACGCC
CGCTTCTACATCTACCACCAACTCTGTCGTCGCCCCAATTGCCGCCGGGTTTGCAAACCTAATCTCAGGTTTACAAAAT
CAAAGTATAGCGGAACCTAAAGATCTCGTGAAGGTTCTCGCATTCAAGGCTCTACCCTCCAGATCTGCGGTATCAGAT
GAAGGAGTTAGTGAGGCCGAGCAAGTGAAGAGTGTCTGTGGAGAGATTAGAAGAATGGTTGAGATTGGAAGTATAAG
AGAGGCTGGAGAGGAGAGAAAGGATATTGTAGAGGAGGGTACTATCATTAGTTTGGCCGAGGCCAAGAAAAGCACGG
GACTATTCGATGTGCTGGGACATCAGGTGAAGAAACTGGTTTGGGCTTAATGAAAGTGTATCGATACTCGTGCTAGTA
ATGCTTAGAGCAAAAGAAGCACTTCTTGAAGGATTTACGAATGGAATTGTGGAAGTTGGCAGGGAGGTTAGCGATCGT
CAAGAACGGGTATGTGGAATTCAATTCCATATTGAAGCTGCGAAACTCATTAACTTCAATAGAAGTGGATGTGTAGATA
GACCCGAGTATATGGTATTGGCCAGATAAGTAATTTTAATGGGGA
BC1G_15133
SEQ ID NO: 25
GAGTATTCTCGATTAGACAATTAGAATTCTCGAACAATAGAAGCCGGAGCTCGAGTTCCTCGATCTTTACCTACCTGAA
GTCTCTCGATCAGAAGAGTGTCAAATTCCTATGATATCAATGATTATTGAGGATATATTTACAAAATCAAATCTCTTCAAT
GAATCTCTATCTACCTAAGCAAGTCAATTATGATTGATTACAATTATCGTTGTTGCACGGAATCCAGTCGCATTTGGTCC
CGGTCACTCGTAACAGCAACCACATCGGTATTTCGTAGATTCCCGAGTATTGCCTTTACATACCTAAGGAACTTTAAAT
CCCCCCAACAACAGAATTGACGACAGAATTACTACCATTACAAGTGAAAACACTCCATGGTACCCAAATACAACAGTCT
CATATAGCCATTTGATCGCAACTCGCATCTTTCATCTACAAAATGTCGTTTGGAGGGGACATCGGACTCGATACAACAT
CGTCGTCCAATGCTGCTGGTAATGGCGGCAACCAGGGCGAGACAACTGGAAGACCTGCCACCCCTCAAGATGCAAC
CGCAAAAGCAGTTCAAGATGTCACAAGCTCGGAGATTGGAATATCAACCTTGTTAACCCGACTGAAACAAAGTATTGCT
TCCGCAAAGGAATTCGCACTTTTCCTCAAGAAACGGTCCATCATGGAAGAGGAACATTCGAACGGTTTAAAAAAGCTGT
GTAAGGCAACCGGGGATAATATTCGCAGACCAGAGCATCGACACGGATCGTTTCTACAGTCATACGAAGAGGTCCTCA
TTATACACGAGCGAATGGCCGAGAATGGGGCTCAATTTGGCGTGTCTCTACATCAGATGCATGAGGATCTTATCGAAA
TGGCTTCGAACATAGAGAAGGGCAGAAAGCATTGGAAGAATACTGGGTTGGCAGCAGAACAACGTGCTGCTGATACC
GAAGCTGCCATGAAGAAGTCGAAGGCGAAGTACGACTCTCTGGCAGACGAGTATGATAGAGCTCGCACTGGGGACA
GGCAACCAGGAAAGATTTTTGGCCTCAAGGGCCCCAAATCGGCAGCGCAACATGAAGAGGACCTTCTTCGCAAAGTC
CAGGCTGCCGATGCAGATTATGCGTCCAAGGTACAAGCTGCGCAAAGCCAACGAACCGAGCTCTGGTCAAAATCAAG
ACCTGAGGCTGTGAAAGCTCTAGAAGATCTCATTCAAGAATGCGACTCTGCATTGACATTGCAGATGCAGAAGTTTGC
ATCCTTTAACGAAAAGCTACTTTTGAGCAATGGCTTGAATATAAGCCCTATCAAAGGAAAAGAGCAAGGGACATTAAAT
CGCAGTCTCCGTGAAGTTGTTCACGCAATTGATAATGTTAAAGACCTGAGCAACTACATCAGTAGCTTCTCTGGTAACA
TGCAGTCCCGGATCACGGAAATCAAATATGAGCGTAATCCGGTTTTGCAACCCGCACAAAATACCGCTCAGCGACAAT
CGGATCCCAACGCTCTCCAAGCTCGACAAGGACCCGTAATACCACCACAGCCATCTCACCAAGTTCATATGAGCCAAC
CTTTTAATCAAAGCAGTCCCCCAACTCACCAGCGCGAAAGAAGCTTTAGCCATGGCCCATCTCTTTCGCAACACATCGT
TGCACCTGTTGTATCGCCCACTAACCCAATATCCACCTCTCCCGACTTCAATACCTGGTCACCTCGTGCAGATGGCCC
CCCCCAGATATCAACCTTGCCATTTCAGCCACAACCTCAAAACGAGACACCAATACAACAGACACCACAAAACCCTACA
ACGCATGCACCAGTGTCCCATGGCCCATCCTCGGCACCACTATTCGGAGCGGGATCGGCTCCAGCTCCAGGCAACA
GCACTCATCTAGCACCTTTGAAACCAGTGTTTGGACTCAGCCTCGAGGAACTCTTTGACAGAGATGGCTCTGCTGTTC
CAATGATTGTCTACCAGTGTATTCAAGCAGTTGACCTCTTTGGGCTCGAGGTCGAAGGAATATACCGGCTATCTGGTA
CCGCATCTCATATAATGAAGATCAAGGCAATGTTCGATAACGACGCATCTAAGGTGGACTTCCGTAACCCGGAAAGCT
TCTTTCACGATGTCAATAGTGTGGCTGGTCTTCTCAAACAGTTCTTCCGCGAACTCCCAGACCCTTTATTGACTATCGA
GCAATATCCTGCATTTATCGAGGCTGCAAAGCATGATGATGAAATAGTCCGTCGCGACTCTCTACATGCGATCATCAAT
GGCCTTCCTGATCCCAATTACGCTACTCTTCGAGCCTTGACTTTACATTTAAATAGAGTACAGGAGAGTTCGGCATCTA
ACAGGATGACTGCAAGCAACTTGGCCATAGTATTTGGCCCTACACTCATGGGTGCTAATTCAGGACCGAACATGTCAG
ATGCTGGGTGGCAGGTTCGTGTCGTTGACACTATTTTGAAAAACACTTATCAGATATTTGACGACGACTGAGGCGAAG
AAGATTGTCGATTGACTTGAAGAGTTCTTAACGAGATACCATAGCTGCTCATATTATGAACCTGCCTTTGGAACAGAAA
CAAGGGCAGGGAATTCCTAGCATCAGACCTCTATTTGCCGACAAGACATTCTAAAGAAAGTACATGCCACTGTATTTCG
AATACTATTATTGTAAGGCACGGGCCTGTTGACAAATATTTACGGTCTATCAAGCGAGTGTACGTCAGGGGGTGGTCT
ACACCACGATCGATTTTGTAGGGTCATGTGCTCAGCTCTGATGCCAGTATTGGTGCAACTATTGAATCAAAAGGGTACC
AAGGTTTCAATACTCGTTAATTTTGGATCACGAAAAGATCA
BC1G_09781
SEQ ID NO: 26
GATACAAAAGCTTTCGAAAGCCGCTTGAGTAAGTAAGAAGGCAATAAGAGAGGTCCTCGTCCGTGTCGAGATGTGATG
CTTGAGTCATTTTCCTGGTATAGCTTCTGCAATCGAGTTCACACTCTACTACTTGATTCAGATTACACCAGGAGTAACAC
CTCAAGTATTCCATATTAAATACAAACCTTTCCCATCTTAATCTATTGTTGGCGCATGGGGAGAGGAATTAATTGCTTTG
CTTTTTGGCCATCAGGATGTGGTCATTAGATCGATTATCCGGACACACAACACCTTCTGCCTCTCCACCTCCCCCGTTA
AATAGGATCCCAAATCTCCCTCGTCGTCCGAGTCATCTTGTGCCATCCCCAGTTGGTGGTAGACCTCCTTTCAACCCA
AGATCGTCTTCCCTGTCGTTAATCTCCAATGACTCTAATTCATCGTTGCTATCATCACGGAGACCCAATGGTTCGAATCT
CAAACAAGCAGTCACATCTCCGAATGTGCCAGATCCTTTGGAGGTTTTGGGAACACTACTGAATAATGGGGAAGAGAC
AAAATTGCCATCAGCGAAAAGCCCGGGGGCGACAAATGGGACAGTTGCTCCCATTGAAGAGGAAGACGATGAAGGC
GAATGGGATTTCGGAGGTTTAAGTCTGCAAGACATTGTAGCAGGAGAACCTCTCGATGTTGAGGATGAGCATGTGTAT
AAATCTCAAACGCTGGAAGAATATGAGCGCGAGAAAGAGAAGTTTGAAGACCTCCATCGATCAATTCGCGCCTGCGAT
GACGTTCTTAATTCAGTCGAGATAAACCTCACAAGCTTTCAAAACGACCTTGCTATGGTATCTGCGGAGATTGAAACTC
TGCAAGCACGATCGACGGCTTTGAGTGTAAGGTTGGAAAATCGCAAAGTAGTAGAGAACGGACTTGGGCCTATAGTG
GAGGAGATCAGTGTCTCTCCAGCTGTCGTTAAAAAAATTGTGGATGGAGCTATAGATGAAGCTTGGGTTCGAGCATTG
GCGGAAGTTGAGAAACGATCAAAAGCAATGGATGCTAAATCGAAGGAGCAACGTACTATAAAGGGCGTGAACGATCTT
AAGCCTTTACTGGAGAATCTAGTTTCCAAGGCATTGGAAAGAATCAGAGATTTCCTCGTTGCTCAAGTGAAAGCATTGC
GATCGCCCAATATAAATGCACAGATCATTCAGCAACAGCACTTTCTTCGCTATAAGGATTTATATGCATTCTTGCATAGA
CATCACCCGTTGGCTGAGGAGCTTGGTCAAGCATATATGAATACAATGCGATGGTACTTCCTTAATCAGTTCACGA
GGTATTTGAAGGCGTTGGAAAAGATCAAGCTTCATGTGTTGGACAGATACGATGTGCTCGGATCAGATGACGGGTCTC
GTAAGGCCACTCTTCTTTCAGGATCCAAACAGACAGGTCCACCACACGACGCATTCAATCTAGGTCGACGAATCGACC
TTCTCAAGACGCCAAACCAAACTGCACTTCCCTCTTTCTTAGCCGAAGAAGACAAACAAACCCACTATATGGAATTTCC
TTTCCGTAACTTCAACCTCGCACTGATTGATAACGCTTCCGCCGAATACTCCTTTCTTACCTCTTTCTTCTCTCCCTCTC
TAAGCTACGCTACCATTTCCCGACACTTCAACTACATCTTCGAACCCACTTTTTCCCTCGGCCAATCTCTCACCAAATCC
CTCATCCACGAGTCCCATGATTGTCTCGGCCTCCTCCTATGTGTGCGCTTGAATCAACACTTTGCATTTTCCCTTCAAC
GCCGCAAGATCCCCGCTGTAGATTCCTACATATGCAACATCCATGCTCCTCTGGCCACGCTTCCAACTCACAATGG
ATATCCACTGCGAATCCGTCCGCACCCTAACATCCGCTCTCCCTACCCGCAAACCCTCAGCTTCGGAACAAGCTAAAC
AATCTGCAGCTCCACACTTCATGACCCAACGTTTCGGTCAATTCCTACAGGGTATCTTAGAATTGAGTACGGAAGCGG
GAGATGATGAACCTGTAGCGAGTAGTTTGGCAAGATTGAGAGGCGAGATGGAAGCATTTTTGACAAAGTGCGCGGGG
GTTATGCCGGATAAGAGGAAGAAGGAACGATTTTTGTTTAATAATTATTCGTTGATTTTGACAATTGTAGGGGACGTAG
AGGGTAAATTAGCCGGGGAACAAAGGGCGCATTTTGAGGAGCTGAAGAAAGCTTTTGGAGATGGTGTCTGATCCTTCA
CTTCATTTTGATACTTAATTGGAAGTTTTTGAGCGTGTACACTTATCAAAGCGTATTATTTGATCATGTATTTTGTATTTGT
GAAGAGAAACAAAGAACTTTTATTATGGTAGAAATAGAGCCGGAAATAATCTATGCTGTGGAAGAAACCA
BC1G_05327
SEQ ID NO: 27
GGGTCTATTCACACCTCTCCCTCGATCAATACGACGTCTGCGGCTTCTGCAACCCATTGAGAAAGGTAGAAAAGAGGT
TCAAAAAGTCGAGATTCCCCGTGCCTATTCTTCCTTCTTCTTCCTGTTCTCCTCCCACTTTCCTCCGTGTGATACTTCGT
CTATATCTACCTCACCCCCTCCCCCTCGAACGCAGATTGTACCGATACCCCAAGTGATTCCGCCGTACCGTGTACGCG
TTTTCATTAATTTACCATATCGTATTACCTACCTATTACCTACTACCTATTACCCATTACCTACTCCCTCCCACCACTACT
CGACTCTACCTGGGTGCGTTGCGATTATATTCTTCTTCTTAGTAGCTCGTTTTACTAGAAAGCTTTCCCACCCACCCAG
CTTGAACCCCTCCATTACCAAGAACTTTAAACGCTACCCATCCATCCTTGGGCCGAACCTAGACCGAAAACCCCTCCG
TCCGTTGTGATAAATCCAACGAGCACAGAAGCTCAACAAATACCATCACCGTCCAAATCCCAATCTTCTCAAACGTTCA
GTCATGGCTCACCACGATGAGAAAGGTCCTCATGGAGATGGAGCTTACAGTGAGGTTTTTGAGGAGGGTTCCGACAT
CAAACACCCACATACCGTCCATCGTATCAGAGCCAACTCCTCTATTATGCAACTGAAGAAGATTCTTGTTGCCAATCGT
GGAGAAATTCCTATTCGTATCTTCCGTACAGCCCACGAGCTTTCTCTCCAAACAGTCGCAGTCTTTAGTTATGAGGACC
GTCTTAGTATGCACAGGCAGAAGGCCGATGAAGCATATGTTATTGGAAAGCGGGGTCAATACACACCAGTCGGTGCTT
ACTTGGCTGGAGATGAAATCATCAAGATTGCTCTCGAACATGGCGTTCAAATGATTCATCCTGGTTATGGTTTCCTTTCT
GAAAATGCCGAGTTTGCAAGAAACGTTGAGAAGGCTGGACTTATCTTCGTTGGTCCTTCGCCAACCGTTATCGATGCC
CTTGGAGACAAGGTATCTGCCAGAGAAATCGCCATCAAGGCCGGTGTACCAGTCGTTCCAGGTACCGAAGGAGCTGT
CGAAAAATTCGAGGATGTAAAGAAATTCACCGATGAATATGGTTTCCCAATTATCATCAAGGCAGCATATGGAGGTGGT
GGACGTGGTATGCGTGTTGTCCGACAACAAGCAGAACTCGAAGATTCTTTCAACCGTGCCACATCCGAAGCCAAGTC
GGCTTTTGGTAATGGAACTGTTTTCGTCGAAAGATTTCTCGACAAACCAAAGCACATTGAGGTACAACTTTTGGGAGAT
AACCACGGAAACATTGTTCACTTGTACGAACGTGATTGTTCCGTACAACGTAGACATCAAAAGGTGGTAGAAATCGCAC
CAGCTAAGGATCTTCCCCAATCAGTTAGAGATAACCTCTTGGCCGATGCTGTCAGACTTGCCAAGTCGGTCAACTACC
GCAACGCAGGAACGGCTGAATTCTTGGTTGATCAACAAAACCGTTACTACTTTATCGAAATCAACCCACGTATTCAAGT
CGAACATACTATCACCGAAGAGATCACTGGAATTGATCTTATTGCAGCACAAATTCAAATCGCTGCAGGTGCAACCCTT
GCTCAATTGGGTCTTACACAAGATCGCATTTCCACCAGAGGTTTTGCTATTCAATGTCGTATCACCACAGAAGATCCAT
CCCAGGGATTCTCACCAGATACTGGAAAGATTGAAGTCTATCGTTCAGCTGGTGGTAACGGAGTTCGTCTTGATGGTG
GTAATGGATTCGCTGGCGCAGTTATTACTCCTCATTATGATAGTATGTTGGTCAAATGTACTTGCCAAGGATCTACTTAT
GAAATTGCTCGAAGAAAGGTCCTTCGTGCTTTGATCGAATTCCGTATTCGTGGTGTCAAGACCAACATTCCTTTCTTGG
CTACTTTACTCACTCATCCTACCTTTATTGACGGTAACTGCTGGACCACATTCATCGACGATACCCCTGAACTGTTCGAT
TTGGTCGGTAGTCAAAACCGTGCTCAAAAATTGTTGGCATACCTTGGAGATGTTGCCGTAAACGGAAGTAGCATCAAA
GGTCAAATGGGAGAACCAAAATTCAAGGGTGAAATCATCATGCCAGAACTCTTTGATGAGAGTGGAGCCAAGATTGAT
ACCTCTGTACCATGCAAAAAGGGATGGAGAAACATTCTTCTTGAGGAAGGTCCTGAGGGATTCGCCAAGGCTGTCAGA
GCAAACAAAGGATGTCTTCTCATGGACACAACATGGCGTGATGCTCATCAATCGCTTCTTGCTACACGTGTTCGAACA
GTTGATCTTTTGAACATTGCAAAGGAGACAAGTCACGCTTACAGCAACTTGTACAGTTTGGAATGTTGGGGTGGAGCTA
CTTTCGATGTTGCCATGCGTTTCCTTTATGAAGATCCATGGGACAGACTCAGAAAGATGAGAAAGCTTGTTCCAAACAT
TCCGTTCCAAATGTTGTTGCGTGGAGCTAACGGTGTTGCTTACTCTTCATTGCCTGATAATGCTATCTATCACTTCTGTG
AGCAAGCAAAGAAACATGGTGTTGATATTTTCAGAGTTTTTGATGCTTTGAACGATATTGATCAACTTGAGGTTGGTATC
AAGGCTGTACACAAGGCTGGTGGTGTTGTTGAGGGTACAATTTGCTACTCAGGTGACATGTTGAACCCAGCCAAGAAA
TACAACTTGGAGTACTACTTGTCTTTGGCTGAGAAGCTTGTTGCTCTTAAAATTCACATCTTGGGTGTTAAGGATATGGC
TGGTGTTCTTAGACCAAGAGCTGCTACATTGTTGATTGGAGCTCTTCGCAAGAAGTATCCCGATCTTCCAATCCACGTT
CATACTCACGACTCTGCCGGAACTGGTGTCGCATCTATGGTTGCTTGCGCTCAAGCAGGTGCTGATGCTGTCGACACT
GCTACTGATAGTTTGTCTGGTATGACATCTCAACCAAGTGTTGGAGCTGTCCTTGCTTCATTGGAAGGATCAGAGCTTG
ACCCAGGCTTGAACGTTCACCATGTTCGAGCTATCGATACCTACTGGTCTCAACTTCGTCTCATGTACTCACCGTTTGA
GGCTGGTTTACACGGACCAGACCCAGACGTGTACGAGCATGAGATACCCGGTGGTCAATTGACCAACATGATGTTCC
AAGCATCTCAACTTGGTCTCGGTGCTCAATGGGCCGAGACAAAGAAAGCTTATGAGCAGGCCAATGACTTACTGGGTG
ATATCGTCAAGGTCACTCCAACATCTAAGGTTGTTGGTGACTTGGCACAATTCATGGTTTCCAACAAACTTGACTTCGA
TTCCGTTCAAGCTAGAGCCAGTGAATTGGATTTCCCAGGTTCCGTTTTGGAATTCTTTGAAGGTTTGATGGGTCAACCA
TACGGTGGTTTCCCTGAACCATTGAGAACCAATGCTCTCCGTGGCCGACCCAAGCTCGACAAGCGCCCTGGTCTCAC
TCTTGCGCCACTTGATTTGGCTCAGATCAAGAAAGACATCCATGCTAAATGGGGCAGCGTTACTGAGTGCGATGTTTC
AAGTTATGCCATGTACCCTAAGGTCTTTGATGAGTACCGAAAGTTCGTTCAGAAGTACGGTGATTTGAGTGTTCTTCCA
ACTAGATATTTCCTCTCGAGACCAGAAATTGGAGAGGAATTCCATGTTGAGTTGGAGAAGGGTAAGGTTTTGATCTTGA
AGCTTCTTGCTGTTGGTCCATTGTCAGATACCACCGGACAAAGAGAGGTCTTCTACGAGATGAACGGAGAAGTTCGAC
AAGTCACAATTGATGACAACAAGGCAGCTGTTGAGAACACAAGCAGACCAAAGGCCGATCCAGGAGATTCCAGCCAA
GTTGGAGCTCCTATGTCAGGTGTTGTCGTTGAGTTGAGAGTCAAGGATGGTGGTGAGGTTAAGAAGGGTGATCCACTT
GCTGTCTTGAGTGCCATGAAGATGGAAATGGTTATCTCTGCACCACATGCTGGTAAGGTCAGCAGTATGCAAATCAAG
GAGGGAGATTCAGTTGGAGGTTCTGATCTCATCTGTAAAATTGTCAAGGCAGGAGAGTAAATAGCAAATTTCAGTGTGA
ATGCAAGTTTTGGAGCGGTTATTATGATATCAGATGTTGCAAGTATTGATGGGATGAATGGATTATGATTGACAGGTTTA
AAGGTTATTGCTTGACCTACTTTTTATAGAATTATGAATAAGCTTTTATCAATTTCTGGTGTTTTTAGTGTCCTCATGAATT
GTATGTAACCTAACATGATGTGAAAATTGAGAGCCAATGATGTAATACTGCCTCTCGTATACA
BC1G_15423
SEQ ID NO: 28
GGAGAGGCGAGGGAGGGATTACTTGAAGATTATTTATACGAAATGATTTTCCCTATGTTTTGTTCCCGAGATTGTTTTC
CTCCATTGCTTTCTTCATTCTTGTAAAACCAAGTTTTTTTTCTTGTTCTACTTTGAGAAACTTTCTTCAGATATACCTGGC
GCTTAAATCTGCAATCCAACAACTACCCCACCGGCTCTTCACATTTGCCAACCTCGCATATCTCGCATCTACCCCCTGC
ATATCATACCAAGTATATAGAAGGTCGAGGTCACACTGACTCTCACCATAACGAGTCACAATGATCTCCCATCATTTTG
AAAGTCTCCCTGTTCCTCCCCTAGAGAATCTCAGCACAGAATATATACTCCAAGAAATTATCGACCACATTGGAAAACT
CGCCGATGATCTCCCACACACCAAGCTCAATTTGTTTCGCAAACAACTCTGGGACATTAGAAATCGGAATGTGGATCC
AAAAACACATTTGCGAGGTTTATTGAGAGTGTTTGAAAATACACATACATTCAAACATGCATTTGAGGAACTAGAACCCG
GTTTGCAAGCGCAGATTCGTGCGTTTATGGATGATGAAAAGGATGTGAAGGAGGAGGAGATTATGGGCATGGGGAAA
GTCAAAGGGGAATTTTTCATTCCGCCATCGCCGGCAGTGAAACATCATTTCAAGGAGATGGTCAAGGAGACGGTGAG
GGAAAAGGCTCACGAGAAGAAGATGAAGTTGGTGCAGAGTAAAGTGATGAAGAAGATTCAAGAAGCGAAAGAGGAGA
TTGAAAGAGAGATTGTGGAGGAGGTGGGAGGCCATATCGAGATGATTCAGAAGGTTGAGGACCATGTGGGGGAGTTT
TGGGGGAGACATGGTCACTTGGGAGCGTTGCTGAAGAGCAATGATGTTGTCTCTTTGACTTCAAAACTAGATGCTTCG
ATGCTTGGAAGTGGGAAATCTCCAAAGATCTGGGAAGATGAGAGAGGAGAGAGGATCATGGAAGTCCACAAAAATGC
CCCGTTTCATAATTGGGGGAACAGCGTGAAGAATACTCCTCTTTATACCTTTGTTCCTACCACAGTTCTGGGCCTGTCG
AATCTGGTCAAGTGGGCTAAAGTCGAGGGTTATAGAGTGAGATGTAGTGGGTACAGACACTCGTGGAGTAATACTTTC
TCGCAAGACAAACAGATTTTGGTCAGTATGTTGAACTTGGAGAGTGTGGAAAAAATCCCGGATGTCATGAGCATTACG
AAGGAGAAAGGAGATGTGGATTTGAATGGAGATGGAGTGATAGATGTCAATGAATTAAAGACGATTGAGTTGGCGCCG
AAAATTGAGGGATTGAGTTTGGCGGGGGATGAAAAAGGGAAAATGCTCTGTAGAGTTGGAGCGGCGGTTACGAATGA
ACAGTTTAGGAGGTGGGCCGTGGGTCATGGCAAATGGGCCTTGCCGGTGGATGTTATTCTTGTTGAGGTCACAGCAG
GTGGCGTCAACGGTCCCATTTGTCACGGCGCCGGTCGTCGTCATCAAACAGTATCAGATTATGTTCGTGCCATCGAAT
ACATCGATGCAAATGGTGTGCACCGCACCGTGACAAAACCAGCCCATCTCCGCGCCGCAGCTGGTTGTTTCGGACTC
CTCGGTATCGTAACCCACATAACACTCCTCCTCTCCCCCATGACATACGCCGTTCTCCGCCCCACCAAACCCGACATT
GCACTTGCCATCCCCCCTCTCTCCCCTACCGATATCCCCATCGCGCTCCGCAAATCGTGGACCCCAGCCCAATACGC
CGATGCGCTGAAAGAGTTTGAAGATAAAGCCAATAATGACTATTACAGCGAATGGTTTTGGTTTACGCGCAGTCAGCA
GGCGTGGGTCAATACGTGGAATGATACGGCGGATGCTGAGGGCGCAGTCGAGTATCCGAGCCCGTTTGATACGTTTG
TGCAGTGGGTTCAGGGGTGGGTGGGGAGTGTGTTGACGGGGAGTGAGGTTTTTGGTTTGTTGCCGGGGAGGTGGCA
GGCTTGTATCTTGAGTTCTTTTGGGATGGTCGCACTCCCCCCCTTTGAATTCAACGAATTCGAACAAAAGAAAACGGTC
GAATACAAAACCGCTCTTCCCAACGGTCTCCATTTCCGTCGCGGCATCCAAAACATGCGAGTCCGCGACCTCGAATTC
CAAATCCCCATCCCCTGTCTCCCCAACGCAACGCCCGATTACACCATCGTCCGACGCGCCTGGTGGGATATCATCAA
CCTCTGCTATCGCGATTCGGAAACGCCGATGCGGCTCACGCTCGAGTTACGGATCATGGGGGATTCGAATCTGATTAT
GGCGCCTCAGAGAGGGAATCGCTGGGGCACGGCGAGTATTGAGATTCTGAGTGTGCCCGATGCGGTGAGGGATGAG
GAGTGGTTGCCGTTTTGTCAGGAGGTGGTGGATTTGTGGGCGGGGTATAAAGGGAGGATGAGTGTTGATGGGGAAG
AGCGGTTGTTGAATGTGAGGCCCCATTGGGCGAAGGAGTGGGAGGGGGTGAAGATTAGAGGGAGGAAGGCGAGGG
AGTATGTGAGAGAGGTGGGGTATAGAGAGGAAGTGGGCGAGTTTCGAGCGGTGCTGGGTGAGATTGGGAGGGAGCA
GGGGTGGGGGTTGGAGGATTTGAAGGGGAGGTTTAGTAATGAGTTGTGGGATTATGTGGTTTTTGATGGGATGGAGG
GGGGGAAGGTAAAGGGGGGAGAGGGGGTGCAGAATGTTAAGATGGGGAAGGGAAACCCTGTTGTGATGGATGTCG
GTGTGGATGTTAAAGAGAACAAAGAGACTAAACCTCTTGGAGGGGTGGATGGTACAAAAACCACTAGTCCGGAGAATT
TAACAGATAACTTGATGTTGGAGAGGAAGGGGAAGGGGAAGGAACAGGAACAGGAACGGAAACGGGAAATCAAGATC
AACGAGGTGGAAAGTGTCGAGTCGAAGGGAGTAGCTAATAACGTAAGCGAGGTGAAGAGTTTGAGTAGTTCTGCTGT
GCAGGTGCAGGGGAAGGTGGTTGGGATTCAGGGAGGGAGTCACGCGTGTGGGGTTTTGCCTGTTAGGTTGGGGCG
GTAGATGATTGGATTTTTTGGGGGGGGGGGGGTTCTTGTTTTTCTTTTCTTGGAGGAGAAGGGAAGGGTGGGATGGA
TTCTTTGGTTTGGGGGTTTGGGGACTTGGGACTTGGGGTTGGGGTAGGGAGGGAAGGAAGGAAAGGGAATGAGAAA
GGGAATTGGAAGGGGTGTTTATTA
BC1G_09454
SEQ ID NO: 29
GAAACGTGATGATGAAATTAATTCGAATTTCACCAAATGCTATGGAGCTTTCCAAAAATCCGATTTCATCATGTCTTTCTT
CGTTCTCCTCACCTCTATTCTTATCCTTCTTTTGTCTATACCTCTCTTCTACCGTACAAAATGGTGGAGGGATGGGCTCG
AGCAAGTGTGTTTCAGACGGATTCCAATCAATGCGCTATCAATATCAAGTCTCCCCTCGAACTTCTCCATGCTATTAACT
CCAGTGCTCAGAATATCTCTTTCAAGACCTATTTCCACAATGTCATTCTTCTTAAATCATTTGAAATCACACACCCTAGTT
ACCTTACCCATTCCTGAAAAGAAGTTTACGGGGAAAACAATCATTGTCACAGGGAGTAATAGTGGATTGGGACTAGAG
GCCGCGAGGTGGTTTGTCCGTCTCGATGCCCAAAAAGTCATCCTTGCCGTCCGCTCCCTCTCAAAAGGTGAAGCTGC
ACGTCAATCCATCATAAGCAGTACCTCCTGCTCTCCAGACACCCTCGAAGTATGGAATCTCGATCTTTGCTCTCAATCT
TCTGTCAGAGAATTCGCGCATCGAGCAAATGCGCTCCCGAGACTTGATGTTTTGGTATCGAATGCTGGAATCTATGTTT
TTGATTTCGAAGTAGCAGAGGAAAATGAAGAGACGATTTGTGTAAATGTAATTAATACGTTTTTGTTGGCTTTGCTTTTG
TTGCCTCTGAGGGAAACTAGTATAGAATATGATACGAGGGGGGTAATGACATTCACGGGAAGTTTCGTGCATCAT
CTTACTACGTTCCCGGAACGGCGAGCCGGGAACGTATTTGAAGAATTGCGAGTGGAGGAAAGAGCAGATATGAAAGA
TCGATATAATGTGAGTAAACTCATCTCTCTGCTATTTTCCCGAGAACTCGCGTTTGCTCTTCGCGAATCTGAGAGGCGC
GGGAGGGAGGGACATGTTGTTGCGAATATTGTAATCCCGGGTTGGTGGATACGGAGATTATGAGACATGCGACGGG
AGCTACGAAACATTTGGTGAGGGGAGCGATGAAATTGATGGCGAGAAGTGTTGAGGAGGGGAGTAGGACTTTAGTGC
ATGCTGCTGGAGGAGAGGAGGAAACGAATGGAATGTATTTGGATGATTGTAAGATTGGGAAAGTATCACCATGGACAA
CATCACTCGATGGGATAGCAACCCAAAAAGACATTTGGATGGAATTATCGCAGGAATTGGAGAAGGTAGAACCAGGTA
TCATGGGGAATGTATGAGAGATTTAGATCGAAATTTATACTGCCTTTTGTAATCAATTCCCATGCCATTGTGTTAAAATTT
TGGGCATAAGTAACA
BC1G_15945
SEQ ID NO: 30
GAACTTTAAGGCGGAACCCGTATCTCAATCGGCACTAGCCCCAGCAAGAACGAACACACTCCAATCCAATTGGCTTTC
GCTGCTCACAATGATATTTCATGGTGGTCTCGGTGTATTGTCGCAATTCAATTCACCTCATACTCAAACTAATCACCAAG
AGCGACTCAATCGACAATTCGATTTGGTCAATCCTTACACCAATGCTTTATGGCAATTTCACGGATCGCTCATAGGAGA
ATCCAACAGTGACAAAGTATCGGCGGACAATATAATTGAGAACCGACAGAAGCGACGGATTGGGTGTCCAACGGCTT
CTTCCACCTCACTACATGATACGGCGTTTTCCGGCGCATTAGTTGCGACGATGCCTCCAAAACGAAATGCTTCTGGTG
AGCCAAACGGTTCGAATGCGCCCGTTGCTAAGCACATTAAATCGGAACAACATCCAGAAGAATTCTCAAATACCGTGA
AGAAGAAACTGCTGGCATCCACGAGAACTGGCCAAGCTTGCGACCGTTGTAAGGTTCGCAAGATACGATGCGATGGA
TTGGCTGGCGGTTGTTCGCCATGTATCCAAAACCACAACGAGTGTAAAACGACAGATAGAATAACAGGTCGTGCGACA
TCGCGGGGTTATGTGGAGGGAATCGAACAACAAAATCGAGATCTGCATCTTCGCATTCAGGAATTGGAGCATCGATTG
ATGCAAGGCGGTGCGGATATCAAACCGGCGAATGGTTATCAGGATTCGGGATCGGGCCAATATGGTTATGCTCAATC
CTCAAATGGCATGCAATCAACATGGAGCTCGACAGGTCCAGCATATACTTCACCCACTTCAACTACGTCGAACAATGG
CCAGCAGCAAGAAACTAATATGTTTCGCGCATTGCCTGCCTATCGCGCTGGATGTATGGGCGATAATTATCTCGGAGT
ATCGCCTGGCAGTTCTCACTTGAGCGCAATCAAAGGGACGGCTTTGTCGATTTTGGGTATGGAAATTGATATTGCGGA
CTTCCGTTCAACGGATATGGATGAACCAGATCCTTCGATTTTCCATCCCCAGCTATACAATAAATCATATCAGTCTTTTA
TGCAATCGGCTTGGAATGTAAATCCAAGGATTGAAAAGGTTGAATTGCCCGCACGCTCAGAGGCTCTCATTTATGCGG
AGTGGTATTTTCGTGTTATTAACCCATACTGTCCTCTACTTCACAGAGGCACTTTCATGAGATTGTTAACTCGCATGTAC
GACGATCCCAACTTTCGCCCCACGACTGCTGAGAATGTTATTGTTCATATGCTGTTCGCCATCATGTTCTTTCAATACG
CGACCAGAAATTGGGAAGATGCCGAACAACAAGCCAGTTTGAATTCTCAATCAAATACACATTATCATTACTGTCTTGG
AATGTTCTATCAACTGGCATGTAGTCACACAGCACAAGATGTTCAAGCATTGGCCTTGATCTGCTTGCACCTTCGAAAC
TTTCCTAAGCCGGGAGCCAGTTGGGTGCTTGCAAGAATGGCAATGACTCTTGCTATTGAGCTTGGCCTTCACCGATCA
ATGAAGAGATGGGCACCTGAATCGAACACGCTTAGTGAGCTCGACATTGAAATGCGCCGACGAACATTTTGGGTCATC
CTTGCTGTCAATGTCACTCTTAGCGGCAAGCTTGGCCGTCCAATGCCCCTTCGAAATGAAGATTACGACGTCGAATGT
CCATCACAAATTGATGACGATTACATTCCCGGAGAGGGTATAGATCCACCCAATCCAATAAAATGTAACCATGAGATTG
GAATTCAAGGTTTCAAATTGATACCATGCTATTTGGAGCTTTATTCGACTATCTATTCGATTTCTCGTCAACCAAGTACCT
ATATTGCAACTGTTAACCGATTGGAGGCAAAGATTCGTGCTTGGAAAGATGACTTGCCCCCAGAGCTTGTGAACGGAG
AGTTGGGACACAATGAACAAGAAGGACGGGTATTTGCTCTTTATGCTCAATCTTGGTCTCAAGAATTCCGTCTTCTTCT
TCGCCATCCTTCAGTTTCTATGACCACAGATCCAGATTTCAACGCGGAGAGTATGAGAATTTGTGTAGAGTCTTCCCGC
CAAATGTTAGGAGTTGTTCGTCAACTGCAGAAGTATAAGAGCCTTGATACGACTTGGTACAATACCTCAGTTTTTGTTAT
GGCACTTACTACTACACTTTTTGCCCAATGGGAAAAGCGTGGAGGGACTTCATCAGCTGATTTGGCTGCATTGAGAGA
AGAGATGGATATTTGGTTGGATATTATGGGTGATATAGGTTCACTTCTTGGTTCGGGAACACGGCTTAAGAAAGCTGTG
CAAGTTGTCACCGATGGGACACTCGGATTACTAAGTCGAAATTTACCTGCTAAGAATGACAAGAGCTACGCTTCCAATA
ATAATGCCCAGGAAGAAGTCAGACCTTCGGAGCAAACATCGAATACCAATGGAAATAATGGTTATCCGGTCAATGCTC
AAAACTTTAATTATAATGAACCAACTTCTGCTACGGGGACTGCGCCTACACCTAACTATTCACCCTCCGAAGGTCAAAT
GTCTCATCAACAAACACCCTATCCAGCAGCAACCCAATATTCACCATATCTTGAATCGGCTTCTGGTACTTCGGATTTG
ACATATGCGCAACCAGAGAATCAAGGTTATGGAGGATATTCGGCCCCAACTAGTGATTCTGTAGAAGCACCATTAATTG
CTGCGTTAGCTGCTCAGGCAACGCAGGTCGCCCCTAATACATGGCACAGAAACCCGATCCAGGTCAACACAGCGCCA
ACACAAGCCTGGCAACATTGGACATCTACCGTCACAGGTAACCTTGAGCCACAAGAATGTTACTCGGCAAGTGCTCTA
ATGCAATTAGGAGGAAGAGATATGAGTAATGGCGACACAACACAATTGAATACATCGATGGGCGATGTTCAAAGCGGA
GGAGTTAGTGAGCCAGGACATTTGGGTGGTCAAGTTTCGGGAGCCATCGCGGGTACTTGGCCGCTTAATCTTTTTGAT
ATTGGTGTGAATGGTTCGACGGGTTGATCCTTTTGGCTTTTCTGCTTGTGATTAATTTTCTTGTGCATATTATGATGGTG
GATGGAGATAACCGGCGTCTTAAGGATGGATGGGGAAAGATAGAAAGGCATGGTGCAATGGACGGGCCGGTCGGCT
TACTTGGAGTTATCAGGCGGTGGAAGGGGACTACA
BC1G_14887
SEQ ID NO: 31
GAGCAATTATTAGCAATTATCAACTACTTTGGGGGCTGAAAGCCATTTCAATTCATGAGTAGTGATATGTGAGCATTGG
GGCAGAGGAATTTAAGAGTTTGGTCTTTGCAATATGTTGCAGAGGTGAAATTGGAGGTTCAGCCGTCGCATTTCCATTA
CTTCGCTCCCATCTCAATCCATCCTCCCGTCCAACTTTTCCACGTCCCACATTCATTCACCGTGGCAAACAAGATCTTT
ATGCTCTTGCCAGCAGAAACTCGACCATATTTACGTCTGCGAAGCAATATCGACCTCGCCAGCTAATATTTCGCGACCT
TGCATGCAAGCTATTCGCGTTTTGCCATCCAGGCGCAACCACTTTCTTGACTTTCAGGTGTGCGCGCAACAAACAAGA
ATTAATTGCTTGCAAAGTCAAGGGGGCTTTATAACTACCAACATCATTAATACGGCGTTGTGTTCTACCGCCGTTGGGT
ACTTCACGTCTGCCACCACTAGTAAGGGAACAAAAGGCCGCTTCGAACACATTAATAAATAGTTCGGCTTCCCCTTCG
CCTCAACACACAAAAACAAAGTAATCGCACCACAACCTTACAAAGTCTCCTGCTCACGATGGAGGATGACATTCGGGA
GCTCCAGCCAGAAGCTGTAGATGCTGCGATTGGTGAAATGAAGATTGAGGAGGGGATTGAGGTCCAGGATTTTGCCA
ATGGCTTAAATGGATATATTTCTACTCCTACAGAAATCAAGAGATCTCACTCCAGCACACCGGGTCTTGTAAATTCTCG
CTCTCAGACACCGCCCAGAAAGCAAAGCACCAGCCAAACACCAAAATCCGGAGATGAAGAGGAAGAAGAGGTTATTG
GCGGTGATATCACCGTCACCGTCGAACCTGGCAAGGCACCGAAGCTATCGAGAAAATCGTCACAAAAAGTAATCCCTC
GACCACCCCCTCTCTTCAACGATCTTCCAGATTCTACAGAGGAGGCAGCTTCGGTATTTCAGGTAATCAAGGATTGTAT
TTATGGAGCTAAGCACATGGGAGCTTCAGATCACGATGCGTTGGATTGTGATTGTCCCGAGGAATTCAGCGATGGAAA
AAATTATGCCTGCGGAGAGGATTCTGATTGCATTAATCGACTGACCAAAATGGAATGTGGTGGAGGTCATAAAGATTG
CAATTGTGGTTTGGATTGTCAGAATCAACGCTTTCAACGCAAACAGTATGCCAAAGTTTCAGTGATCAAGACAGATAAA
AAGGGTTACGGTTTACGCGCAAATACTGATCTACAGCCTGATGATTTCATTTTCGAGTATATCGGAGAAGTTATTAACG
AACCAACGTTTCGACGACGTACTGTCCAATATGATCAGGAGGGGATCAAGCATTTCTATTTCATGTCTCTCACGAAGCA
TGAATTCGTGGATGCAACGAAAAAAGGGAATCTAGGTCGATTTTGCAATCATTCTTGTAATCCAAATTGCTATGTCGATA
AGTGGGTGGTCGGAGAAAAGTTGCGCATGGGCATTTTTGCCGAGCGTGCAATCAAAGCCGGAGAAGAGTTGGTCTTC
AATTATAATGTTGATCGATACGGTGCCGACCCTCAACCTTGCTATTGCGGCGAACCGAATTGTACCGGATTCATTGGA
GGCAAGACTCAAACTGAGCGTGCTACTAAACTTCCTCATGCTACCATTGAAGCTCTTGGTATCGATGATGGTGATGGTT
GGGACACAGCTGTTGCCAAGAAACCTCGGAAAAAGAAGACAGGTGAGGATGATGAAGAATATGTCAACAACGTTCAAC
CCAAGGGGCTCGATGAAAATGGAGTGCGGAAGGTTATGGCAACTCTTATGCAATGCAAAGAAAAATGGATTGCTGTCA
AGTTGCTTGGTCGAATCCAACGTTGCGATGATGATAAAGTTCGAAACAGAGTTATACAAATGCACGGTTATCAAATTCT
TCGTACGACCTTGACTACTTGGAAGGAAGACAACAACGTGATCCTCCAAGTTCTCGACGTCCTTTACAAATTTCCACGA
CTTACTCGAAACAAAATTGTTGATTCCAAAATCGAAACAGTTCTAGAAGAATTCACAACTTCCGAGCATGAAGATGTTGC
TTTCGAGTCAAAGAGGCTATTGGAAGCATGGAGCAAATTGGAGCATGCGTATCGAATCCCAAGAAGAGCCCCAACTCT
TGTTGCACAAGTATTTGAGCGGCGTCCAGACCAAGTAGAAAAGGTCACTCCATCGCCATCCCCTGTTATTGTCGCCCC
TACTGGCCCCCGAAGTGGTGTTCCTCAACGCAACGCCAATTTCGTTGCCAATCGCTCAATTTCTCGGCGCCCGTTCGT
CCCCATGGTATTACCACCTGGCTGGTTTACTGCGATGGACCAAAACGGAAATGCTTATTATTACAGTAAGACGGGACA
AACAACATGGGAGAGGCCATTTATGCCAGCAGGGGTATCGCCACCACCTCCACCACCCAAGGCAGCTCCAAAGAGTG
TGCAAACACAAAAAGCTCTTCAAGATATTATCGACAGTATTACAAAGGAGCCCTCGACGACTCCGGCACTTTCCTCCCA
TTCCGCCGAGGGTACACCCAAGGAGAAGAAGAAGAAGCCTGTGGAAAAGTGGCGCTCATTGCCTATCGAGAAGCAGA
TGAAACTGTACGAAAATACTTTATTTCCTCACATCAAACACGTAATGCAAAAATATTCTGGCAAACTTCCCAAGGATGAT
CTTAAAAAATTCGCCAAGGAATGTGGAAAGAAGCTCGTGGCTTCTGATTTCAAAAACAATCGCATTGAAGATCCCACAA
AGATATCTGACAGAAATCAAAGGAAAGTAAAGCAATATGTGTTTGAATATTTTAAGAAGGCTGTGGAAAAGAAAAGGGA
GATGGACGCCAAGCGAGCAGAGAGGAAAAGACGCGAAGCGCAGGCTAAAATCAATGGAAACGGCACGAGTGAAAAG
GGGATAAAGCGAGAGAATGTAAATTTGATCAGTAGTCCGGATGTGATTGATAATGAGGACGTAGAAGTTAACATACCAA
GTCCAACCGCATCGCCTAGTGGACAACTCGAGATGGAGTTGTTGAAGAGGAAGAGGGAAGATGACGAGGAAAGTCCA
TCGGAGAACAAGAGGGTAAAAGAGGATGATACTGAGAGTGCAACACCAACGGATTCATCTACGCCTCCTCCGCCTCC
TCCGCCGCCGCCCGCGGAAGGGATGCCTATGGCAGAGTCGGAAGATCCGGAGATGGCTAATGGCGAGGGAGAGGT
GAAAGAAGAAACGGAAGAGGAAAGAGAGTTAAGGATGCAGGAAGAAGATTTAATGAGGGAGAATGAAGAGGCTATGA
AGATGGAAATGGAAGTAGATACTGATGGAAGGTTAAAGGGGAATAATGGTTGTAGTGAGCATATCAATGGTGGAAATA
GTTGTGGGGAAGTCTCAACGGAGGGATGATATTTATTGCCAATGGAGGGACACAAAATTGGGAACCGCCTGTATCAAC
ATCATCATTATCTTCATTCAAAAAAAATCATCGGCATCGCATCGCATCGCATCGCATCAGGGGTCGGTTATATCATATTT
ATTATATGGATAGGGGAGCGAACTAAGTGAGTTTGGCGTTTACAATTTCTTCATCTCGTATTGGAGATCGAGAGATGAA
CATCATCTTAGATCAAAAGGATAGTTGGAAGGGATAGTCACAGAACAAATACACCCTGCTATTCCTCATGCATTAAAGG
AAAGTAGGCTATTTAGATACTAGGCAGTAAATGGAAATCAAGTGAAGTGTAATGATAATTATTAATCAAATGGCATTTGT
GAAAACTCCA
BC1G_07589
SEQ ID NO: 32
GAGTCGTGCCTGTCTGCAAGACTTTATTATTAGTCTTCATTAAATTTAACTCTTTCAAGATATACACTACATACACTACAT
ACTTCAATTTTCACTTCGCCCAGCCGTTTATACCCATCTTGAAGTTACAGCGAAAACATATTTTAATCTATCATTTTATTG
CATCTTACAAATAGTCCAATATTTGTTTATACTTTTGTTCTTGTTCTCAAAATCTGCAGGAATGAGCTTGAATTTTGGACT
GACCAATATTAAACCTGTGGCGCCAAAATTTAAATCCGAAAAGGTTCCAAAACAGAGGCCGACTCTATCTAGTAGGACA
TCCAGTAATGGCCTTCGAATTGGAACACCTGTATCCAAAGTCACTGATGCTCGTGGCAGACTAGCCGTCCCAAGCCCT
CCCCCCGAGGCAGGAAAGAAGAGGAAAGAAAGAGAAATCAGCGGAAGCCGCAACACTAAAAGAAACACAACTCTAAC
CCTTCGAAAAAGCCCCAGTCAACAGCCGTTGACGAGTGATAGCGAGGAAGATGAAGAGATCGCCGTGTCTTCCAAAC
GGGCCAAGCCGGAAAACATCGAGCCTGATTTGAAGAGGAATTTGAAGGACAAAAAAGCCTTTTCGACTGAACCCGATA
ATACGCAAGGCTCTACATGCAGAATGATCCATGCGGCGGATGTCATGATGACGAAACGCACGGCTAAGAGCGGCGAG
AAAGTTTGCGATAGGAAGAAGGAAGACGGCGACGCGGTCCTTCTAAGATATCCCAGTGTCAGTCGCAGAGAAAGATA
CCAACTTATCTCCGAAGGCGAAGTTATTGATCCCGCAGGAGAAGATTTGATCAACCCTTATGACGAGATACCGAAGATT
GTGGAAATTGTCAAGGATGAATATTTGACCGATGAACAAGCAGCGGAGTTCGCACATCCGGAAACGGGTATAATTCGA
AAAATCAACAAAGCGACGAACAATATTACCTGGACTCTTTCCAGCGCAAAAAAGCCCCACGACAAAGAGAAAATGAAG
GGGCTGTTGCTTGAGTTCAGGAATGCTGTGGGAGCTTACAATGACGCGCTCAGCACTCTCACTAAAAATGGATCGCTG
GCGAAAAATCTAGAAAACAAGCATTCACTGTCGTCTAAGCTTCTCAAAATGGTTCTCCAGCAAGTTTACGACCGAGCAG
TGTCTCCCCAAGTTGACTTGACTAATAAATACCAAAATGGCACGGATTATGTTTACGGCGAGCTCACATTCCCGTTCAT
ATCCCGAATCCTCAGGGAGGATACTCGCATGAAATCCGATCAAGTTTTCATAGATCTTGGTTCGGGAGTAGGAAATGT
CGTCGTGCATGCCGCGCTACAAGTTGGTTGCGAAAGTTGGGGTTGCGAAATAATGCCTAACTGCTGTAAGCTGGCTTC
CTTACAACAGACAGAATTTTCCGCACGCTGTAGGGCGTGGGGCCTCAGCGCCGGGTCAGTCAACCTCGAGGAAGGG
AATTTCTTGAATAACGAAAACATTCTCAAAGTTATGAAGAGGGCTGATGTTATCTTGGTTAACAATCAAGTTTTCGCACC
TGCTTTGAACCAAAGTCTTGTGAACCTATTCTTGGATTTAAAAGAGGGTTGCAAGATTGTAAGTTTAAAAACTTTCGTAC
CGGATGGTCACGTTATAAATTCTTACAATGAACACAATCCCATCAATTTATTGCGGGTGGAAAAAAAGACGTACGCGGA
AGGCGACGTTAGTTGGCATTCTAATGGAGGGGATTACTACGTTACTACGAAGGACAGCACTATCGTAGCTAAGTATCA
CCAGACCCCAAAGGATAGAAAGACACGGGGGAGTCGGGTTAGATGATTTTTGAATTTGAATATACGGTTTCCTTGCAC
AGTTGATACCATTGGGAAGGTTATTATTGGGTACTTGAGCACGAAGCGATATCACAGCGAGGCAGCATAGAGTAGATG
TATGGATAAATGTATGTATTTGTAACA
BC1G_05475
SEQ ID NO: 33
GATGCTGTGAAGCTAGCTCGACATATCTTGATCTCTTTCAAAAGAATTATCCTCCACCTGCATTGACTCCACCCTGAGT
ACCACAGCATTAGCACGAAATGGCCCCAGCTAACATAATAAGCATTCTGAGGCTCTGCGCTAGCAGAGACGACGGGC
GCGGTATTGTCACTTATCCACTGGGAAGCAGAAACAGTGTGAAGACGTTATACAAAGATTTAGAGTTCCAAGTGATCCA
CAACGCAAGATTCCTGTCACGTATCTCCAACTTCAGACCAAGATCAATCGTTTTACTTCATTTCACGGATCACCTTGATA
ACATCGTATGGTTTTGGTCCGTAATTGCTGCTGGAGGCATTCCTGCACTATCAACACCATTCAGTAATGTTGAAACCCA
GCGCCTGAAACATATTGCACATTTACACAATCTCTTGAAGGCTCCCCTCTGCATAACGAGACGTTCCTTGTTAGATCAG
TTCTCGGATCAGGATATACTGAGACCATACGTTATCGAAGACATCTTCTCCGCTCAAGTCGCCTTAGAAAATGATAATA
TAGACGAACTTGGTCAAGTTGCAAGAGAAGAGCATCCGGAAGACTTAGCTATATTAATGCTTACCTCTGGCAGCACGG
GAAACGCAAAAGCCGTCTGCTTGACTCATGGCCAAATTTTTGCCTCAATGGCTGGAAAGTCTTCAGTTCGGAAGGATA
TCCCCAAGGATTTCTCTGCCCTGAACTGGATAGGCTTTGACCATGTCGCCAACTTGACAGAGATACACCTTGAAGCCA
TGTACCTTAATATAGACCAAGTTCACGTACAGGCTCCAGATGTCATTTCTAACCCTCTGTTTTTACTGGAACTCATACAC
AAGCATCGTGTGGGATGGACATTTGCACCAAACTTTTTCTTGGGAAAATTGAGGAAACAGCTAGACACAGTTATTGTGG
ACACAAGTCTCTACCTAGACTTAAGCTGTCTCCGTCTTTTGGTTTCCGGTGGCGAGGCAAATGTCGTGGAGACATGTG
ATGTTCTTTCCCGCCATCTAGAAAAATACGGAGCACCATCAAATGTGATCTCTGCAGCCTTTGGTATGACAGAAACCTG
CGCTGGGTCTATCTATAATCTCGATTGCCCTAGATACGATGTTCATAATATGCAGCAGTTCTGTTCTCTTGGGCGTTGC
GTACCGGGAATAGAGATGCGAGTTACAATCCCTCAGGCTGGCGATGAAATTGTCCGGGCTTCAGCCAACGAACTTGG
CCTTCTTGAACTTCGTGGACCTATCGTGTTCAAGTCCTATTTCAATAATAAGTCCGCCACAACAGCTTCCTTCACTCCAG
ATGGCTGGTTTAGAACAGGAGATCACGCCACGATCGATCGAGCTGGAATGCTCCATCTGGCAGGGAGGACAAACGAT
ACCATGAACATCAATGGCGTTAAGTATCTCCCGAACGAGCTAGAGGCTGCTATCGAAGAGGTTGGAATTGAGGGTGTG
ACACCGAGTTACACAGTATGTTTTTCCTTTCGTCCACTTGGTGCGGAATCAGAGCAAATCGAAGTTGTTTACTTGCCCT
CCTTTGGACCCCAAAATGTCGATGCTCGAATTGCAGCTCGAGACGCCATTATTCAAGTCACAATGTTGCAAACTGGCT
CTCGACCTTCAGTTCTGCCATTGAACGATGCTTTGCTGCAGAAAACGACACTCGGAAAACTCTCTCGCGCCAAAATCA
GAGCTGCATTTGAACGTGGTGACTATAAGAAATGCCTGGAATTTGATAAGATGCAGATCGAAATATATAATTCATCCCA
TATGCAACAACCTTGTACTGAGAGTGAACGCATCATTCAAGAAGTATTTTGCGAGGATCTAGATCTCCATCCGCAAGAG
TTTGGCGTCAATACACATGTGTTTGAGATTGGCATTACCTCCATCCATTTAATCCGATTGAAGCAGAAACTTCAAAGCC
GCTTCTCTATCCCAGAGATTCCCATTCGCATGATGATGCAAAATTCGACCGTTCGAGAGTTAGCCACGGCTTTGGAGA
ACCTCGGTAAACCACGAAACTATGAACCCATCATATCACTTCAGAATATCGGACAAAAGGCTCCTCTATGGCTCTTTCA
CCCAGGAGTTGGCGAAGTTCTCGTATTTCTCAATCTCGCAAAGTATCTTCCTGATCGCCCAGTATTTGCTCTTCGTGCT
CGAGGCTTCGAAAAGGGGGAAACATTTTTCACAGATATTAAAGAAGCAGTAAACACATATTTCGAAGCCATAAAGAGCA
AGCAACCGAAAGGTCCATATCTTCTCGCAGGTTATTCGTATGGTACAATGCTCGCATTTGAAACCGCGAAACTGCTAGA
AGCGAGCGGTGATGAGATTTCCTTCCTTGGATCCTTCAACCTGCCCCCACATATCAAATTCAGAATGAGACAACTTGAT
TGGACCGAATGCTTGCTGCATCTGGCCTACTTCCTTAGTCTCATCGATGTCGAGCATTGCGAGATAATGGCACCACAG
CTCCGACAATATTCCAAAAAGCAAGCCATCCAATGCATCAGCAAAGTCGCAAACCCAAACCGTCTTCTTGAGCTTTCAC
TCAATGAAGAGATGCTTGGAAATTGGGTCGACCTTTCATATAGGCTGCAGAGCATGGCAAATAACTATGACCCCTCGG
GAACAGTTGCGATGATAGATATATTTGTTGCAGATCCCTTGCAAGCTGTGGCAGCGAATAGAGAGGATTGGAGGAAAA
ATTGCTTAAGCAAATGGGCGGATTTTAGCAGATCGAAACCAAGATTTCACGATGTAATGGGCGAGCATTACACAATGAT
TGGGGCGGACCATGTTTTCAGTTTCCAGCAGACTTTCCGTAAGGCATTAGAAGCAAGGGGATGTTGAAATTTTCGCAA
GATATAATAATATTATGCGAACCATACCTACTGCAGGTAGCAGTGTTTGGAGCAATGAAGGCAATATACTATGAACTGT
CCGAACATTATGCTAATATTTATAATTGTTAGATAGCACGTGTATTTTCA
BC1G_07401
SEQ ID NO: 34
GTTTAACCATCAAGATAATAACTGAAAAATCCTATCCACATCTGAAGCTCCTGAGCCTCGAGATATTTTCAAAAGCTCGA
GAGCATTAAACTACACCACAATCTAATCGGTTTGACCTTATCGTTCAATATGGCGGACGCAATTACCGAAGGAACGGC
CAAGCTCCAGCTTGATGAGGAGACAGGTGAGATGGTCTCGAAGGCCGAACTGAAGAAGAGATTGGCAAAACGTGCGA
AGAAAGCAGCACAAGCAAAAGCAAAATCAGCAGCACCACCTAAAGAAGCTGCTGCAACTAAACCTAAGAAGCCAGAAG
AGACCAAAGCAGCAGAGCCATCAAATGTATTCGCCCAAGGATTTCTCTCAGAAGTGTACAAGGAGCGTCCTGTCAAAC
CAGTCTTTACCCGATTTCCACCTGAACCCAATGGATACTTGCATATCGGTCATGCAAAAGCTATTGCTGTCAATTTCGG
ATTTGCTAAGTATCATGGCGGTCAGTGTTATCTGAGATTTGATGACACCAATCCCGAAGCAGAGGAAGAGAAATATTTT
ACAGCGAATAAAGAAATGGTTTCGTGGTTGGGCTTCACACCTTACAAGATTACACATTCCAGCGATAATTTCGATAAAC
TTTATGAGAAGGCAGAGGAGCTTATCAACTTAGGGGGGGCTTATGTTTGCCACTGTGGTGATGCTGAAATCAAAGCTC
AGAGAGGAGGTGAAGCACGGGGTCCGAGATTTAGATGCGAGCATGCGAACCAATCGATCGAAGAAAATTTGAGAAAG
TTTAGAGCCATGCGAGATGGCGAATACAAACCTAGGGAGGCATTCTTGCGCATGAAGCAGAACATTGAAGATGGAAAC
CCTCAAATGTGGGATTTGGCAGCATATCGAGTCTTGGATGCTAAACATCATCTAACGGGAGATAAATGGAAGATTTATC
CAACATACGACTTCACTCATTGTCTTTGCGATAGTTTTGAGAACATCACACACTCGCTTTGCACGACCGAGTTCATTCTA
TCAAGAGTATCGTACGAATGGTTGAATAGTACACTGAAAGTATACGAGCCCATGCAGAGAGAATATGGTCGCCTAAGC
ATTACGGGTACTGTCCTTTCTAAGCGAAAGCTCAAGAAACTTGTGGACGACAACTATGTTAGAGGATGGGATGATCCA
AGACTATATACATTGATTGGAATCAAAAGACGTGGTGTACCTCCTGGAGCAATCCTTGAGTTCATCAACGAACTAGGAG
TGACGACTGCTCCTACCAACATTCAACTTTCTCGTTTTGATCAAACTGTTCGTAAGTACTTGGAGCTCACAGTTCCCAG
ACTTATGTTAGTTCTGGATCCTGTACCTGTCGTCATCGAGGATGCCGAAGAGCTTGAACTTGACATTCCATTCTCACCT
AAAGTACCGGCAATGGGCAGCCACAAGGTCAAGTTGACTAGAACTGTTTACATTGAGAGAAGTGATTTCAGAGAAGTT
GATAGCAAAGATTACTTCCGTCTCGCCCCTGGAAAATCTGTCGGTCTACTACACGTTCCATACCCAGTCAAGGCAGTC
TCATTCTCTAAGGATGGAGATAAGGTCACAGAGATTCGTGCCGTCTACGATAAGGAGAGCAAGAAGCCCAAAACTTAC
ATTCATTGGGTTGCAGATGGTTCAAAAAATGTCGAAGTTAGAATTTTCAACAGTCTCTTCAAGAGTGAAAAGCCAGACG
ATGCTGAAGGTGGTTTCTTAAATGACATCAACCCTGATAGCGAAGAAGTTTGGCCCAATGCTGTTATCGAGTCTGGATT
TGACGAGGTACGAAAACGAGCTCCATGGCCAGAAGCTGCTGGAGAATCGGAGCTCGGCAAGGGAGGTCCTGAATCT
GTCAGATTCCAGGCCATGCGTGTAGCATACATGGCAATGGATTCGGACTCAACGGATGATAAGATTATATTGAATCGC
ATTGTTAGTTTGAAGGAGGATGCTGGAAAGTAGGGAATTAGGGGCCATTATGCAAGGGTCCAAAGAACTCATCAATTG
AGAAGTGCATGGGATATCATGAATGAATGATTTGTTGCAAAGAAGTTTACGTCTAGTCAAGAATATACTGGCCTTGAAA
AGCAGATTCATGCGCAAACAATTGAAGGGAATACTGAGTGAACAGCGTATCA
BC1G_09015
SEQ ID NO: 35
GAGCAAAAAGAAAAGACACTGCCCTTCCTGCGGACAGACTGTGCATACCGTACACACTACGTCCTACACGCTACTTGC
TACTTGCTACTCACTACTCGTACATAAACACAACGGTGCTAAAGGCAGAGGACCCCAGTCTTCTATTCTTCCAGTCCAG
TCGTCCAGTCGTCCAGTCGCCCAGTCGCCCAGTCGCCCAGCCCAGTCAGTCTCCCAGCCCATTCTCCCACTCGTCCC
AGTGCTCCCTCGCACCCTCGCACCCTCACACCCTCACACCCTCAGTCACTCACACGCAGTCACTCTCATCAGTCAGTA
CAGAATCTAGATCCACTTTTTGTTTCTATAGGCAACGGAAAAGACCTTGGTCATAAACCCCCAACCCTGACCACCCTGA
CTTTCCTGAGCCACCTCGAATCTCGAAAAGGTACGGGAAACATCAAGCTTTTATCCCATTCGCAGCACCAGCAACCAG
TAACGGGAACGTACAGGTACAGGCTTGCAATCCATTCCCCCAAATATTGTTCAACTCCTCTTAGTCTATCTGCAGCCGC
AAAGAGACTGACTCTCCATACAATAAAAAAAATACAACATCCACCGCTATCTTCATTTCACCACTAAACACAATCCACGA
GCCATTCCTCGAGATATCTTCCAAACTTCGAATGCAAAAAGAGGAGACCGTCAATTGACGCGCTTGATTTCTGTGGAG
AAGAGAAAAAAAAAAGATATTGACTCTCGAGAGACGCAGATACAGATAGCTTTCCGCTGCATTTTACTGGGTTCCTATT
TACAACGACTTCCCTGTTTACTAGTTATACCCTACGACGGCCATTTGAAATGAGATAGTCTATCGACAAACTCGGCCCT
TAAACGGACTGAGCTCAAGGAAAAGCAAAATCCTTTACTCGAGATTAATTTCTGTCGCTGGCTTTCCCCAGTGACTTTG
GTTCCTTATTCATGATTCGGGAACAGAGGGCTCCATCAGGTCCACGGCCTGACCTTTCACCCACAAGACAAAGGATTG
CTGAGAATTATCCTCCCAGTGTAGGCACCGGAGGATCGCGTCTGATAGCCGGGACAGAGCCTACACTGCATGCTCCG
CAACGAAACAATCATACTTTATTTACATTTGGGGCTCACAACGACGATAGTTCGACGTCTTACGACTTCTTGCCTTCTCC
CAGTTTTGACGACCTGCAAACCAGCATCTCCAATGAACTACAGCTTGCAGCTCAATATCCGGCAACAGGTGGGGGAGA
TTCAATGCCGAGAGAGAAGCCTTCAATGGGGGAAATCAAAGCATCTATGAACAATGGGCGGGGAATAGGTTCTGCGC
GTGGAGTGTCTGGACCACGACCGGCGAGAACCTCCTCTTTTCAACGTAGGCAGAGTGTGAGCAATCGTCAAGGTAGC
ATATCTTCAACAACTTCTTCAACTGCATCGGGGAATATGGACCCACCATCTGCTCCTCTAGCTGTTCGAACCCGACGAA
ATCAATATCCTCCGATATCTGGAAGTGCTGCCTCCAATGCGCCTGCTGCTAGAATACCGCGCAGATCTGTCGGAGGC
GCTGAGTCGGATAGCTCGAGCAAGGCGGGGACCACACAAAGACGACGTCCGAGTCTTGCTCCAAGTACATCATTACA
ATCTTTGTCGGATGCTGCCAATGCATCTGCAAGAATGAATAATACAGGGGTTCCAAGTTATATGGACGGAGCAAGAGG
TACAACGGCCTCGAGAGCAGCGAAAACTAAATCATTGCAACCTCCGAGTAAAGGGCAACCCCAAGTTTCTATTCAGCC
TGGCACACCAGATCACAGCAGATCATCATCCCTTGCTGCAAAGTCACCAGGGAGGCCCAGTGCAACAGGAATACCTG
CAACCACACCATCATCAACCTCGAAGCGGATGTCAGTTTTGCCAGGTACTTCCCATGCAAGTGGGCTTGGGGCTAGAA
CCATCAGCCCTACGGATACTCGAAGAGCCAAACGTTTATCGACTCATCAAGGAAACCCAACCGTTTCGCCGGGTACAC
CGCCAACTCCACAACCTGACTCTTATCCCGCATTTACTCCTCGAGGGTCTTCAAGATCTCCTTCCATGTTACCTAGAAA
GGTGCCTACACCTTCATCATCTCGAACTACCCCGGATAGTAACCGTAAGTACAATTCTGCTATTTCAGCTGCGTCGAGT
TCAAGCTGTAACACATCTCGAAATACTGCAGGTTCCTTACAGCCTCGAGTATCGTCACTTGCCCCCACAGCATCAAGG
TTACCAACACCTAAGTCACGAAATGTTCATAGCTCCGCTGGCAATAATGAGGAGGAGGATGTTCCGCCAGTTCCCGCG
ATTCCCAAAGCGTATGAATCCCCCAAAGATTCACCTATCGAAACTCCATTTTTCACCAAGAGGAAATCAAGTATGCCTTT
TGATGCTAGTAGTATTAACAGTACTTCAACAAATAGCATTTCTGGTAGGAATTCTGCACGTGAGCCAACTAAGGTTGAA
CGAGAGCCAAAGAGGTCAAGGCATGCACCACCCAGCTCGAATTCGGATCTTGAACAGCAAAAACAGAATACCACGAC
TCCCAAGAAAAAGAACCTTCAACCACTTCGTCTGCCACCCTTGAATTTGTTACCATTGAGTGCCCCCACGGCTGCAAA
GGCTGCGGCCATATCCAATCCTGAGCCCTTACCAAATGGTGCCATTACTCCTCCGCCTAAGCGGACAAATACAAAAAC
TCCAAGTTCACCCATGACAGCTTCCAAGACCTCATTCTTTTCCCGTCGCAACGAAGACAAATCAGAGCATCATATGCCC
AAAATGCGGAGCAATAGCTCTATTCATCATAGACCAACGGAGTCTTCGCAAGTATTTGGAAGTAACGGTGGGACAAAG
CCTATACCTATAGCTAATAACCGTCCACCGCCGCCTAGGGAAACCTCCCCATATTTGTCCTCATCTCTCCCTAAGAATA
ACGCTGGCCAACATCTTATGCCTCGATCCAAAACTAGTGGTGATTTCACTACGATGGACACCTCGACGACTGAAAACA
AGCCGGCAAGGTTGACTGGACCACGTGCCTTAAAGGTGAATAGATTAGCTAAAACGGATACTCCTGCGGAAGTCTCAA
GTCCAGAAGAACCCCCAACACCATCTTCAACAACTTCATTGCGAAGAAAGTTGAGTCTAGGCTGGAAGCGATCTGGAT
CGAAGAACACCGCCAGTGCTGCTCAAGCAACAGGCGGAAGAGAAGCCAATCAGCCTCCTCCTCCCCCAAAACATGAC
AATATGCCACCACCTAGATTGCCTGCTTCTTCTACCATGAATAATATGAGTAGCAATAATAAGGAAATACCTAGTCCTAG
TCCCTCGGTCAAGTCAACCACTACTACTTATCTCAATTCCAGTCGAAGAAAGAGCTCAGTTTCAAGCCTCAATATGATC
ACAGGTCACGACAGAACAAAGAGTGATAGCTGGGGTTTGAATCGAAACAGTCCGAAGAAAGAGACATCAACCGACTCT
ATGGCTTCTGAAAGGAATATCCCAACCGCGACTTCTCGAACTACATCTTCGGTTATGCATAGAATGCTGAATCCAAAGG
CTTCCAGTACCAGTATTAGACATCAGGATCACTGGACAGCGGAATTGGACAAGGATGATCTTCTGGCAGAAGATGAGA
TGAAGAAGCTCGGGAATAAACGAAAGGAAACAGAGACGGCAGCTCGTCAATTGGATGCTCTAAGAAAACGTGCTACTC
CTAAGGATCGAGCGAACCCTCAACAGGCCCTCAAACTTGTCTCGCATCTCAACATTTATGAGAAGGGGGAAATTGTCG
ATTACAAGGACATTTACTTCTGTGGAACATCTAGTGCAGCTAAACACGTTGGTCAGCTTCAATCTGATGCTGCCAATTT
CGGGTATGATGATGAAAGAGGAGATTATCAAATCGCCACTGGAGATCATCTCTCATATCGTTATGAAATCATCGATGTT
CTTGGCAAGGGAAGTTTTGGTCAAGTCGTAAGATGTATTGATCACAAGACTGGAGGATTAGTAGCTATAAAGATCATTC
GGAACAAGAAGAGATTCCATCAGCAAGCTTTGGTAGAGGTTAACATCCTCCAAAAGTTACGCGAATGGGATCCCAAAA
ACAAGCACAGCATGGTCAACTTTGTTCAAAGCTTTTACTTCCGTGGTCATCTTTGTATCTCTACTGAACTTTTAGATATG
AATCTTTATGAGCTCATCAAAGCTCATTCTTTCAGAGGTTTCTCACTGAAGATCGTTCGGCGATTTACAAAGCAAATGCT
TAGCAGTTTGTTGCTTTTGAAATCAAAGAAGGTCATTCATTGTGATTTGAAGCCCGAAAATATTCTCCTCGCACATCCTC
TTCATTCGGAGATTAAGGTTATTGACTTTGGATCAAGTTGTTTCGAGAATGAGAAGGTATATACATACATTCAATCCCGA
TTCTACCGATCGCCTGAAGTCATTCTCGGTATGACATATGGTATGCCAATAGATATGTGGAGTCTTGGATGTATCTTGG
CGGAACTTTTTACTGGAGTACCGATCTTTCCTGGTGAAAACGAACAGGAACAACTCGCCTGCATCATGGAAGTGTTTG
GTCCACCGGAAAAGCATTTGATTGAGAAGAGTACTCGCAAAAAGCTCTTCTTTGATTCTCTCGGAAAACCACGTCTTAC
GGTATCTTCAAAGGGACGTAGACGTCGACCATCCTCAAGATCGCTTCAACAAACCATCAAATGCGATGACGAAGTTTT
CCTTGACTTTTTGGCGCGTTGTCTCAGGTGGGATCCTGAAAAGCGTCTGAAACCTGATGAAGCTGTTAGACATGAATT
CATCACTGGCCAAAAACCTACTGCTCCACCTCGTATCAATACTCGAATCGACTCGCCAATAAAGCGACACAATACCACC
GCTGCACCTGCCTCCAATAGGCCTCTTCCAGAACCACCTGCTACTAGTTACAAGAGTGGTTCATCTGTTCGGCCACCC
GCAGCTGGGACAAGCCCAAGTAAAGCTCTTCCACCTCGAAGACAATCCAATGCCACAACATTAACTGGACCTCCTGGG
CCGAAACGTACAAGTACTGGAACCGTGGCAATTTCTGGTGGTAGCAGCTTACCCCGAGTTACACGAAGCGTCAGCTC
GAAACAGGATTTAGCATCAGCGGGGGCATCGGCAGCTATGAGTAGTCGGCGAGCATTATAGAATATGTAATGTATGAA
ACGAAAAGTGTTGAGAGTGAATAAATCATTCATATCACTCATTGGGTACATAAGGAGCGGATTATACGAATAGACGAGT
TTTTATTACTTCACTGCCATTTTCTTCCTTTCCTTCGTTTGAAGTTGTCCTTTATTGCATAGCAGCGAGGTCAACCGGAG
CATTTTTCTTTTCACATTTTTTTTCTTGTCCATGATGCATACCCACTGCGCAACAACTATACATACCTCATTCGTTTAAAAA
CACAATGCGAATCGTATAAATCTAGCCGAAGTCTTTCATTTGATACACTGAAAGTTAATCAGGCGTTCTTGTGGCAGCA
GGGCTGTGAGCTGGAACAGTCTGGAGTATCCTTTTTGCGGACCGACCGCGCATTCATTGATACGCATATAAACACTAC
TATAATTTAATTTGACGTCTTTCATTCACGAACTTATTTACTGGGAGTTTGGGAGTTTTTTTTAATTAAGAAAAGATGGGT
TGGAGGGGAAGATGAAGGAGGGGAAAAACATTTGTGGGGATGAGGAGGCTCGTTCGAAATAGCTTGTTCGAGGAAG
CTTGTTTGCATGTAGGGAGCTTGTTTGTATGGAGACTTTGGTCGCAGTAAATGCAATGCATAGCAAAAGGAAGGAAGC
GGGTACGGATTGGAATTGAATGATAGGGAATTGACGAATAGCATTGAGATGAATAAGATGAATAAATTA
BC1G_03832
SEQ ID NO: 36
GGCCAGCACAATCAATCAATCTCTTGATTTGATTTCCTAATAATCTGATGATGCACTTTGGAGATTCTTGAGATCTCCTG
TATGTGAACATCGACTTTTTATCCCGACCATACCAACCCAGTTATCACATATTCAAGCAAACTTTTACCGGTGTATTGAT
ACCCAAGACTTATCTGGGAAGGGAAAATAGTTTGTCGGTAATAGGAGTATCGGCGTATCAATTATCTTTGAAGGAAGTG
GGTTGTACCAAAAACCACATCAGGTATTCCACCAGACAATTCGGTACCGCAAAACGAATCTTCTAAAAGGACGGAAAC
CTTCAATTCACATTACTATTTTACAAAAGCTTGTCGGCCCAACGACAATGACCAGATGTCTATTCTTTCCATTGAACGCT
TTTGTTAATCTACTTCCTTAATCTACACCACTTCCAAAAGTATCCATTCTTCGACGACCCCTCTGCCAACCTGGGATTTC
GACATTGTCCAATCTGGACATATACGCTCATTTCCGCGATTTGATTTACAATTAACGCATACCTTTCATGGCTACTGCGC
CAATGACGACAGATCCATCGAGGCTGTCATTCGCAAAGGTTGCCGCTTCAGCTGGGAAGGATAATGTAGCTCTCGCTT
CGTTCGCAAAAATTGCTGCTTCTTCAACTTCTGTACGAGATACGAGATCTGAAAACATAGCTCCAACTGTACATAAAAAC
AAAGACACAAATATGCCTAGTGCTACACGCAATGATACTGGCAGTATGGCCACTCTCAAAGAGACGGGCACATCGACA
AACGATCAATCCTCAAAGAAGAGGACAATTACCGAGAGCAAACCTACGGCTGCTAAGAAGGAATCGGATTTGGCAGAT
GCGGTTAAAGCGATGCACATTCGTGATATCACACCAAGCCTTGTTGTAAATGGTTCAGGGATTGCACCTCCAACCCAC
AAAAGAGATTTGGGAGAAGGATTCCCAGAAGATCCATTTCAGAGAACAGAATCTGGGTCCGACCTAGGAACGAAGCCT
CCAAGTTTGGATGGAAAGAGCATTACCTCAGGCACAACGTTCGCTTTGGACGAGAAGGAGTCTTTACGTCCCGATGAC
AGCGCGAGCGTAAAAGCAGCCGAAGATGATGATACATTTTCTGGTCGCGGTTCCATTGTTGCTGGTTCTAGAATTGGA
TCTGAAGCAGCTGCAAGAGCTTATCGTGCACAGTTCTATGAGGCTCCTGATCGACGTAGTATACAACTCATGCAGGAG
CGTCAAACTCAGGGCATTGTTACTCCTCAAAGTGGTTCCTCTGGGCAGCAAACCACGGATGATAAATCCAAGCCGCTT
GTAGGCCCATCAGGATCAACTGAAGCAGCATTTACACTCTTCTATCGCCAGACTCCCGACGAAAAGCTTTTGGAGGCA
TTAGAGTCGCCAAAAGACCGCATCTTTCTCCTTCGTCTCGAGAAGGATGTTATCGAGTTTGTGAAGGACTCCAAGGAA
CCTTTCATTGATCTCCCACCGTGTAACTCCTTTTGCAGAATGCTGACTCACAAGTTGGCGGATTACTACCACATGACAC
ATCAAGTCGATGCTGTAGTTGGAGCAGTCCGTATTTTCCGAACACCATTTTGCAGGATTCCGCCATCACTAACAAGCAT
TTCCAATCCTCCTACTACTGGAAATACCCCACCTCCCAATCTACCTGCAATGAAGATCATGCGTAGAGGTGGTGATGGT
GACACTGGACCGAGCCCCTCAAAAGCTACTTCCGAGACTGGAAGCGATGGCAAGGAAAAGGCACAGTCCGCTAAAGA
GAAACTTTCGCGAGAGGAGCGAGAAGCCGTTTATCTTGCGGCTCGAGAAAGAATTTTCGGCAAAGAAGACAAATCTGG
CGAGGCTACACCAGAAACCGACGAGGGTAACGAGATGTCACGTTCCAGCTCTGTTTCTACAAAGGATAAAGGCAAGA
GGGGTAAAGTTGGAAAACAGCGTCGTGATGACTCTGAAAGCTTCGACGTTCGATCTCAATACACTCCCTACTTTCCAC
AACAACAAAATCAGCCGGCCTGGATCCCCACCCAGAATTTCGGCGCAATGGGAGTTCAGCAATACAATGGCGTCATG
CCAAACAATTATCAAAACCAGATGCAACCTCAATATGCTCCACCTCCGCAACCATTTAATCCTGCTATGATGAGCAATG
GAAACATGCAACCATACAATAATATGACACCACCGCAATTTCCTCAGCAAAGTCAGCCACGTTACCAACCACATAGCGC
TCCAATTACGACTTACGGCACACCTGCACAGTCCCCTCAACCTCCCCAACAATGGATTCCACAGAATCAATACCCAGG
AGGCCAGTATCAGTCACGAGGACCTGTTGCAGGAGGACCACCTAACACTATCCCTTACGCTTTTGGACAACTACCCAG
CACGGTAAACCCAGCCGATCCCAAAAGTCAACACCCGATTCCGGGAAGTTTCATTAATAGACATGCCTTCAATCCAAA
GACGCAGTCGTTTGTTCCTGGCAGTCAAGGTCTTCCTATCCCGCAGCCCATGTCTCATCATGGATCTCCTCACCATGG
TTCCCCACACCATGGATCTCCTCATCTCTCTTACAGCAACTTCTCTCCACCTCAGCAACAATACGGGGCTGGAATGGG
TTATAGCATGGCGAGACAAGGGTCTAATAGCTCTTTACCCTCGTATCATGCATCTCCACACATGGCACATAGACCAATG
ATGCATCAGAATATGCCGCAAGGTCTTCCTCAAGGCCTTTCCCAAGGTCACCTTCAAGGCTTACCACAAGGTTTGCCA
CAAGCTATGCCACATGGTATGCCACCAGGAATGCCACAGGGCATGGTTCCAAATGGTCAAGTTGGAAGCCACCTTCCT
AACTTTGGCAACCCGGCAACTTTACCTCCAAAGCCTCCAACTGGTGTTTAGGTGTCTTTTGAGGAATTGCGGATACATT
CTGTGATGAATAAACGGTGGCGTATGGTAGCATTGGTGGAGTTAGTGGGAAATGTGGGCATTAAAACGAAAGTCATTT
TAAGTACCTGGTTTATATTGGCTGATAGACCTATGATTACAAATACAATACATTTGATTACACCA
BC1G_09907
SEQ ID NO: 37
GACAGTCATTCTTCCCTTCCTGAGAATTTCTCCATATCAATCTTCTCATCATCACATGCGCACATGGACTCGCAAATGC
GAATGACAGGGCTGAGTGAATTCTGAGTAGTGCATGACTCGATTCGAAGTTCTATAATAGTTGAATCAGGATTCAGGAC
TTGATAGTACATCCCGCCCAATCAACCTCTTTGGTAAAAAGAGGGGGAGATATTCTCGCTGAGTATCACATCACCGCAA
AAGTTGACACATTCTTCTCAGCCCCTTTTCCACTGATCGAAATTCTGCATACTAAATTCTATCTTTCCCTAGTTCACTTAC
ACACGAGTGCACCACTGGGATATCTTATGTGTTTCGGATTGAGCAGGAAGTGAATAATATTAGTGTGTAATTTCCTAGT
TCGAGGCAATGCGGAATTTTAGATGACTTCGTGTAGAATCCAAACTCCAATTCATAAAGCTTTATAATCCTGCACAGCT
GTCTCTTTTCTCACACAACTAACTATATTTCATCCCCACGAACCAGTCTCGGAGAGTCAAATAAATATACCTGTTCGCAT
CATGGTTGATAAAGCCCAAGATGAGGCGGAAAAGGCCGCTTTGAACCCATCTCCAGAAGAAGGCGCCGTTCCCAAGG
AGAAAGTTGTTGAGCGAAGAGGTATGCCAGGGATTTGGAAGTCAGGAAGAAACTGCGTTTCGTACTTCGCTAGTCTCA
GCATCTTCACGATCACCACTCTCCTGATGATTCCGGGCCTCGCTCTTGCGTGCTATCATCAGAGAGCACTTCAACTCC
TTACGCTTACTACCATATCTACTGCTCCTGGTAAGACTATTGGAGGTTTGAATGCACAAATGGAAGTGGAGACAATCT
CACCTACAAGATTTATCTATGGTATTATTGTATCTTGGGCGTTGCTGCTGGAACTGGCAATTTTGTGACCATAACGGAT
GTTTGTCATCAATCAAGACAAGCATTGACCTATCACATTCTCCCTTCCCTCAATTCAACTTTCATACCCCCTCTTCCTGG
ATACGATGCCTCTGGTCCTATCATGACAATAAATGGTCTCTTTCAGAACTACGCATACCCGGCTTTCGCTTCATATGTC
GCCGCCATTTTTCTCTTGATAATTTTTGCAAGTTTCTTCAACTTGTGGTTCGGTGCTACCGCCACGCCACATAAGAAGAT
ACTTATGCTCGTACTTTCCATCTTTACAGGTTGTTTCGCTACCCTTGCAGCACTCCAAACCTATCTCTGCTACCAAACCG
TCTACGTGCTCAACCAAATCATGAAATATTCCAAATCCACTCTAAAAATATCCGTCACACCCGGTTTTCTCTACCTCATC
ATCATTCATCTCTTCTGGATCATCCTTCTTCTCAACGTCCTCATCATTCCCATCACAACTTGCACCAAGCGTCGCCGCG
CTAAGCGACAACTTCAAGCCCTAGAAGCCGATGCACAAGAGCTCAAAGAAAAAGAGACTCTAGGCGGCGACACGAAT
GTACGTAGTAGTCCAGCGAAGTCTGCTGATTCAGATTCTAGTGACGATGATCACGATATGTCTCCTCGTGGTGTGCCT
CAGTATGGTATGCCTCCTTATGGTATGTCCGCATATCCTCATCCCGGTATGCAAAATGAAGGATACTATGGTCATGGCT
ATGATATGCCGATGCCTATGCAACCACAGTCTGGAGAGCGCAAGAACAAGGGGAAGCGAGAGCAAGGAAGAGACAG
CGAACGACGACAACTCAGAGAATCTGATGTTTGAAAATTGCATATCTGCAATATCATGATTTTTTATACCATTTTAGTTGA
ATTCCTAGATTTAGGATGACTTGGAGGAGTTGGGCGGGCCAAATAAATTTCACAACTTTCA
BC1G_02544
SEQ ID NO: 38
GACGCGCAAGCAATTCCTTTTGATCAATAAGTTGAATGAAAACTCACTGTCCCCAATACCTCCTTCTGTGTCAAACATCT
TTACTCCATCTCTTGTGAGGAAGAAACATCAAAGTTGTCGCAATTGCTTTAACACGATTGATTCCCCAGCCGCATACATT
CCACAGCGAGAGCGCAGATACGGATACGATACCCACACATCTTACTTATCGATACCATCCATAGTCTTTCGAGCTTTG
GAAGTTCTATTTAGACAGTTGCTAGTAGTTTCCACGATCAAACCCTTTGGAAGGCCTTGGGGAGGAGCTCGATTGCGT
CCTTCTACAAAACTGAAAGCTGTATAAGACAATTTGAAAAGCAGAGCTGTGGTTGGATGCTGTTATCGACTTGTTTTGA
ATTGCTTATGACCTCATGGTTCTCTGATACCGATATTTGAGGAATCCAAGATATCAATCTTACCCCGGATATTCATTCGA
CAGGAACAAAGCTTCGTCCCGCTCCAAATAATACCTCTTGCCATACAAAAATCGTCATTCACGATGGTCACTCGAAAGC
CCGTTCCCCAATCTAGCATCCCTTCCAACAACACCTCATTGCCGCCATACCCCATATCCCCAGTTTCTTCCGATCCACA
TCATATTTCACACCCCGAAAGGAACCACAATGCGATTTATGATAGCTCTACAAATGACCTAGAGCCTAATGTTTGGAAT
GAAGAGGAGCATTCTCATCCTGATCCCAAAAGCCTACCTAACGCTTTAAGAGTTGGCCCATCGACAATCCCTCCCAGG
CCTTCTCAGGATATGTTAAAACCCAGTCCCTCAACCACGAACCCATTTTTAAGGAGGCAGCAATCGCAGAGTTCGCAA
AGTGCAGCATCCGATGGGAAGGAAAGTAGCGCAGATATCTGGAATGAGCTCACAGAGAAACCCACACAGCCGGCTTA
TCCACCCCCTCCTCCTCCTGTATCTCAAGTAACTCAACAATTTTCGACCATGGGAGTGTCTGGCCAAGACACGAACCC
TTGGCAACCCACCGCGAACGAAAAGCCGCCATTACAAACACCCAGTCTTCAACGCGAAGATTCGGGAAACGAAGCCT
GGTCAGGCGCAAATCCTCCAAATATCGTTACCTCTTCTGGCTTGTCTCAAAATTCGCAACATCCAGTTTTAGTAGATATT
GATGAACCTGAATCTCCAGCATGGGATGAGGATGATTATGACGATGGTGAAGAGGAAGAAGGAACGCCAGTCAGCCC
CAAGAAGTCTACGCTACCTACGCACGAAACGCAGGAGATACTAGAAGACCAACATGCATGGGATTCTACTCCTGGTCA
AAGTTCGGATCAATCGCAAACAATGCCAGTTCAGTCCTCTGGAAATACACAATATTCGAACCCTCCTACGGAAGGGTG
GAATTTGATTGATCATGATCCTATACCGGGGAATTTTCAGCAAAGCGGAGTAGTCGGAGCAGATGGCACAGAGATTTC
CAGAATGACCCCTGAAGAAGTTGCTCCAGCACTTCCACCGCGAAACTCTCAAGAACATCCTCCTCCTCAGCCTCCGCG
GCCAGTCTTAGTCGCGACAAACACAAGTACAACACCGGCTATGACACCTGATTTATCAGCGGCTGCTCTAAGACAGAA
GAAAGAGACGTACGAGATCAAAAAAATATCTTGGCATGACATCAACGCCCAACACAACCCCAGAATTTCACCTGTTCTA
GTGCAAAATGCAAATGGACCTTGCCCTCTGTTGGCTCTTGTGAATGCTCTGACTTTATCGACACCCGCAAATGTGGAAA
CTGCTTTAGTGGAGACACTCCGGTCGCGAGAGCAGGTAAGCCTCGGGTTACTGCTTGATGCAGTTTTTGATGAACTCA
TGTCCGGGCGACGTGGAGATGCTGCACAAGAGCTTCCAGACGTGGGTGATCTCTATTCCTTTCTCCTAACGCTTCATA
CGGGAATGAACGTGAACCCTCTCTTCTTTCCTGTTGATCCTATCCTATCAGTGAATGATCCCAGGAACTCAATGCCACA
CATTCATCCTGCGCAGCGTGAGAGCTCACTTCCAGGCACATTTGAGGAGACTCGTGAAATGAAATTATATGGTACTTTC
TCTGTGCCTTTGATTCATGGTTGGCTCCCCGAGGAAGAATCGCCTGCATACATGGCACTCAAAAGATCCGCCAAGTCG
TATGAAGATGCACAGAACTTGATGTTCCATGAAGAGGTATTGGAAGAGAAGTTAGCCGCTGAAGGCCTCAGTTTCGAG
GAACAAGGGATTCTAGAGGACATTTCGACTATAAAAGCGTTTTTTATCTCCGCAGCAACTCAGCTTACAGCTCATGGCT
TAGATCTCATAACTAAATCTATGAGTCCAGGTGCTGTAGCCATTCTATTTCGAAATGACCACTTCTCCACAATCTTCAAA
CACCCCACAACACTTCAACTATTGCAGCTCGTGACAGATTCTGGTTATGCAGGACATGCAGAAGTTGTATGGGAAGGC
CTTATTGATGTTAATGGAGAAAGGGCCGAGTTCTATTCTGGTGACTTTCGTTTAGTCGGCGGATCCTCTACATTACACC
AGGGAAATGAAGAAGGCAACTGGACCACAGTCACTGGTCGTAGAAATAATAACCGTGTTGAAAATTCACATGATGCAC
CATTAGGGAATCAACAAGAATCGCAGAATCACGAGCAAGGTACGAATGCAGAACAGGAGGATCACGATTTTGCCTTAG
CACTGCAACTACAGGAAGAAGAGGACGAGCGGAACCGAAATGAGACCGCCCGAAGGCGAAGAGAATCAGAGCTCTC
ACAGCAGTACATCGAGCAACAGGGTAGTAGCAACGACACTGGTAATGCCCCTGTCAGTCAGCGAGGCGGCAATGGAC
GAGGTAGTACCAGAGGCCGTGGAGTCAATGTACCAGTTCGAGGAGGGTCAATTCGTGGTAGTGCTAGTACCCGAGGT
CGTCCCGCGATTCCACCTCGCAACAATAATGTTGCCACTCCTGCCGCCGACCCAGAAGCAGGCATCGATGCACCGCC
TCCTACATACGAGCAAGCCGCTACTGAACCGGCTTACCAACCTCCAGATAATCATCCTGCACATCCAAACGCAGATCC
AAGTCGGAGAACAAGTGCTTACACGGCAACCGCTAATAGTCAACAACGTCCTCCAGCTAATGCCGCAGGTCGCCGTA
ATACGACTTCCCATAGTGGCATTGGAAGGGGCAGTCAGACACTCATAGATCAGGTTCCTGGGCGCAGGATCCAAGCC
CCAAATCAAGGGCTACCGAACTCCCAGCAGCCAGAAAGGCAGAAGGATTGTATTGTTATGTGATTATTGCGTTTTATGA
ATATATGGCAACGATGGATATGCAATTGGGGCACATTAGTTGAGCGGAATTTGAAGCTAGGCGTTTAGGCAATGGGTA
TATTGATTTATAAGAAGAAACATATCACGAGCTACGGTCGATGAGGGGACTTTTCATCATGTACTCATACGCTTTTTTCA
AATGGTTAATTTGCGGGCGATAAATAGGAGGATAGACTTGGAGGGTGGTTTGGTGGTTAATAATCAATTTATTAGTATA
CTTTGAAATTTATGGACTTCATTTTATGGCAGTATGCCTCTCTCCTGTTCAGACCATATCTTTAATTGATCGAGATTGGC
AAATCAGACGTATTCCTTCCA
BC1G_11528
SEQ ID NO: 39
GCTCTTACTTCTCAAATTATTTGTTTAGTACATTAATTATCATTATGGTAGATTCCACGGACTTTTCTCATTACCATCTTAC
AGGATGGAATATAGACGACGACTCCTTATCTTATATTGATCATGATTATTGGGAAGGCGTGCTAAATCAAATAGTCGAA
TCAGAAATGGGTAGAAAATTATCGGATCTGGATCGAGACAAACTGTTCCACAAAGGCTTTGGCCTCATCAACAACCCA
CCGCATGGCGATCGTTCAGGACTAAGACGTTACAGCAAATACTCAGAGAGTCGAAGGTTCAAATTTGTGATAAAATGTT
TATGGGATATCACTGCTGGTCGGGATCGTGGTTGTACATTAGACCTTGAAGGTAAGAGACGTAAGACTCGCGATTCAG
CAGATAATACACCATGTGGAAAGGATTTCGGCAACACCATATGCAACATGCCGGTTTCTACTAGGGGTTTCTTTTCCTT
TGTAGTGGCAACATTACACGCTGCCAAAGAATACGCGTCGAAGCGCAGTCAAATTCCAGCTCTTCATCAGTCAATTGA
AGTTGATTCAGAAGAAAGACTATCAAAAGAGACTTCTCCACCTCTGCTAAAAGAAACCTCGAGCAACCAGGAAGAACC
AACAATGGATCAACCAATGTCCAGTTCATCAAATGGATTAGACCATTCAAGTGTGGAACAATCAGATGACGATCTTTCA
GCGTCGATATCAATTGCATCTGAACAGTCGGAACATTCGACTGGGCAGGGGGAAGTTGTTGAACCGTTAGCAAATTCA
TCATGTGGATTGGGACACCTGGGTGAAGAACAGTTAGAAGTCGATCGTCCAGCATCAATGTCAATTGCATCGGACTCT
TCGGAAAATCCAGATGTTGGTCATCCAGAGACAATAGCAGTTACACCAGGCTCGTCAGAAAAATCAGACAGTGATCGT
TCAGCGACAATATCAATTGCATCGAACCCTTCGGAACAATCAAACAGTGTTCGTCCAGCACCAGTGTCAATTGAATCAG
ACTCATCGGAACATTCAATTCAGTCGGAGGAAGTTACTGATCTGATAGCACTTGCACCAAACGGATTGGGTCATTCAAT
TGGGCCTTACCATCCACCACTAGTTGGCATTGATATTACAGGTCATGGAAGTCTCCTTATCAAGAAAGCCTTCTTAGAC
AAAAGGACGGAATCGCAAAATGCCCTTCGAGTTTCTTTGAACGTTCTTTGTACACAGTCCAAGGACTACATCCTATGTG
GACTAAGATCTTGGGAGGAAGGAGGCCATGTCGAGGGCCAATTGGCTCTTGATATTGTTGGCGTGTGGCTTGAGAAA
TCAATGCGTCAATATTCTTGTCAAACCTTCATATGTTTCATACACGACCTCGGTGCAGGACAACAATTGGATTTGGAGC
AACTTTATAGGGCTGCTGGTGGATTTTCCCTTGTGGCTAGCCGAAGTAAATTCGATTTAGTTCCAAAAGACGCAGTAGT
TTCAAACCAGTCTCAGAACGTTTCGCATAATTCTTCTTCTCATCGGCACGTATTGCAAATTACGAACCAGAACGTTACTA
GTAAGTTCATTGGTCATGACGGAGCCAGCGCAAGAGAAGTCGAGGAAATTCTAGGATTATCCATGTCTATCGAGCATT
TTGATGGAAAAGAGTACATTGTGTGTAAGCCACACGCAAATCAAATTCTTGATCGACAGGAACATGTCAATCATGAAAG
GTGCCGGATTGGGTTGGAAATTATTAGTATATGGCTTTGGGAACATTGGGACGCAAAAAATGACTACATAGATTTGCCG
GGGTTCCTTGTTTGTCTGAAAGCATCAAACGATAAGATGGCTTTGGAGGAAATCTATGAAGCCGCAATACAGTCTATGA
GGCGAACAAGGCTGCCATATACCCAAAAAGCTTTCTTCAATTCAAATTATACCATAGAAGCAGAATCAGGAGCTTAGAA
AGATGGATATTTGAATCAATGTCAATCAGGTGGAGCAAGCAACTCATCAGTGATGTATCTTTTGGACATGCCCAATATT
AGAAAAGCATGACAATCATCACAAGGAAAAGAATCAATGGCCGAATAAACTTTGAACTGTGGCGCTTGAGA
BC1G_04218
SEQ ID NO: 40
GAGAAAGCATTGAATTTCATAACAAAATATACTTTTACAAGAGAAGGTTATATTTCAGAAGAACGATTATCCTGTCACTA
CGGCGATGGAAAACAAATTAGGTTAGTGTCTACTACGCTTTTTGTTACCCTGTACTGCCGTATCAAAGAAATTACAAGG
TATCATAGAAATGCATCCACAAACCTTTGATCTGCTCCGGATGGAGACTAGTCTTCGCAAAATGCAACTATTCGAGCCT
CACGATCCTGTCGTCATCGGCGTCGACCACAATTTGGATCCTTATTTCAAATCCCAGCATTCATTTTGCCTCTTTCCCA
GATTCCCGCCGGAGCTTCAGCTTATGATCTGGGCTGCGGCTGCCGATGATCGACAGATTGTTCGGATTAAACCTTGC
GCCGAGGATGGATCAGGAGAGGAAGGGTTCCGGGGTGATTATACCATGCCGGTGGCTCTGCGCGTTTGTCGCGACT
CTAGAAAAGAAGCGCTTAAAAGATACACGGTTATATTCAAAGGTATCCTTCGCAATCCTATTTATTTCAATTATCAGCAA
GATTACCTGAGTCTTGTTGGTAGTAGCGCACATGAGCATTTCCAAATTCTATCTGGAGAAGACCATATCATTTCAGAAG
AGATCCAAAAGGTCGAAAATGTGTTTTCGATGATTGCTGGTTGTGGAAGTGGTGAGAGCGAGGAAGATGTTTTGACTG
AGATATTGGGCATCTGGGATGGTATCAAGCGTCTAGTCATTGCAGAAAGATCGCCAACCTGGTGGGGCACATTCAAG
GAGATCTGGTCCGACAAGGAGGTGAAGAGGCTTGCTCGAGACGCCAAAGCTGACCGTATCAGGGAAGGAACTGCGA
CTCCAGAATTCCCTCAAGTTCGCATTGTCAAGTTTGATGATGTTCTAGATGCCGTAGCACGAGGTGAGCAACAATCAAT
GAGCAGTACGAACGCGACGCTTTCTTTTTTCGACTCGATATTTGAAGCAGATTCTACATATAACATTAAGAAACAGTCTA
AGAAAGCTTTGGAATCAGCATAGGCAAAGAAACAATGTAGCTTGCTTTGGTAACTGTTGGAATAATGCTTTATTCATAGA
AACCCATGGAAATAGATGGCGGTGTCAATGAAAGGAAGGTTGAAGCTCTAGTTATCTCATGTGTGGGGCATTGGATGG
CTTTTGGTTCAAGAATTATGTAACATAGATCAGCTTTCATTTCAAAGGTTGTCTACATATCATGTATTTTCATGATAATGA
AATTACCTCTATATTTCAAGGTTCCAGGCGGTCTTCCGTGTAATCGAAAAAAAAAAATTCTACACATCA
BC1G_00860
SEQ ID NO: 41
GCTTCTATTTCCACCACCATCATATTTCACGATCTATAATACTGCGTTCGCTGATTCTATTCAATCTTCCAACTTTGCGAT
CAAACTGTCAGATACGATTTCCAAAACAACCCCGCAGCCTTGGAGATTACAACAATATGGGCTCTTCAAATATAGCTCG
AAAGGAGCGGCGCAAAAAACAAACACGCTTGACATTCGATCCGATCTCCACCGAAGTGCCTTCAGATTTAGATTTACC
TGCCAAAAGCCAAGGACCGTCGCCTGCGAAGGTTAGATATGAGAGAACAAATGACGGCACATCTGCTGGAAGTGGAG
GAAGAATTACGCGCAGTGGATTGTCTTCAGGATCGCCCTCGAAAGTAACTTTGGATAGGAAAGGAAAATCTGGGGGCA
AAGGAAAGAATGCGAGAGATGGAAAAATCGATTTTGGAACATTACCAACGCCTGCGAAAAGCTCGCAGAAAGAGGATA
TTATTGTTGCAGATGCAGAAGTGACTAGCGGATCACGTCGAAGCACACGAAGTTCAAAAACGACTCCATCGAAGACTA
CGCCAAAGAAAAGATCGGTAACTTTATCGGATACAAGTGATGATGGCGTATTCACATCAAACTCAAGACCTTCACAACG
CTCTGGCCTATTTAGTCAGAAATCAGCTGCGCCAATAGAAAGTAGTGATGAATCTGGCGAGGAAGCTGACGAAGATTC
TGAGGATGATATACTGCCATCTTCTACTACGCGTCGACAAGCAACACGGATCGTTCCGCAAGTTGCACTTGAGATTGA
TTCCGAAGACCCGGATGATGAGCCTCCAACCTCACCCATGAAGAGAAAGCGACCCACCATAATTTCTGACGATGAGGA
TAGCGTTGTTAGGTCGCCTGCAAAGAGAGCGAGGGTTGTGGATGAGAGTGATTCGGATGATGATTTGCCGCATATGA
CTAAGCTATCTAAGACCACCCCCCCTGAATCTGATAGCCCAGCTCCTTCCCCACAAGTTAAACGAAAAGGACCGCCTA
GGAAGCACAGAACTGCTAAGCAGAAGCAATTAGAGATTCTCAAACGCAAGCGTGCTGGAGAAAGTAACCCCATTCTTA
CAGAATCCGAGTCTGATGAAGAAGAGGTTGGCGGTTTATATGATTCGGGTAGTGATGCATTGACTACATTTGAGGATG
AAGAAGAGGAGGAGGTGGAAGAGGAGGTTCAAGAAACGCGCAAACGAAAATCGCCAAAGAAGACTGTACGAGAGAAT
GAGGATGAGTACGATTCGGACTTTGTTGATGACGACGATGTTGGCCTTCTTGGAGTACCGGATTATGCTATGATTCCC
CTACATCTCACGGCCGCAGCCCACAAACCTCTCAGAGAACACTTTGTCGAAGCGGTTGAATGGTGTGTTCAAAACAAG
ATCAATCCAGGTTTCAACCAAAATCTCATGCCCATTTACAAGGCGGCGTGGAATAAGCTCGAAGACGCATACAGTGGA
TTATCTGGTAGCAAATTTGTTTCTACTTCATGGACTCGTGATTTTACCAAAGGCCTTTATGCCCGTCCCGAATTCATCAC
CAGGAGACTCGCCCCAGGAGAAGCAATTGATCTATTAGGCGAAGCTAAATGTGAGGCATGTAATCGTAGGAAGCATAT
ACCAACTTTTGGTATCACATTAAGGGGATCTGCATACCACAAGGATAGCTTAGCCGAGGTAGAGAAAGATGATAGTGA
TACTGAGGAAGACGACGAGGAAGATTCTGATGATGAGAAGGACACGCGGAGTTTGAACAGCAGGGATGAACCTCTAC
CACCTCAAGACAAAGAGTACATGGTCGGCTCTGTCTGTAAAGAAAATGCCGAAAACGCACACATTCTTATTCATTTGAA
GTATGCACTCAACCAATGGGTCATAGGCAGTCTAGAAAGTCAAGGGCATCTTACGATTGAGAAGCTTGCCAAGAGAGA
CAAGATGAGTGCAAAGAAGAGACAGAAGGAAGTCAACGGGATTGTCGATAAGTGGAAGGAGGAGAAAGAAATCAAAG
AATTGTATGGCATCTGGAAACAACAATTGGAGACGGCACAGAATGCCAGTACAACGGGAAGACGATAAGATACCACGT
GGTAGCTGAAGGTGTGAATTCGGAGACGAACATGAGAGGAATGGGATTTATGGCACATAATGGTAGAGAACTGGGAA
GATTTTAATGATGCTGGGTAAAGGATCAGGTATTTGGGAGCGAAATATGGAAGCAGCTAGCGATGATTTTGGAATCAT
GACTTTGATTCTTCTTCACTTTATTTCAGAGTCAGTAATTAGGGATGACTGGGAACAGAATTTTATTAAAATCAGAGATA
CGGCCTGATTTTAGATTTAGATATATATCCACATCCAATAGCAAATTATTAACAATTCA
BC1G_04811
SEQ ID NO: 42
GATCTTTTCAACAAACAAACCACTTTAGGTTCATAATGGTGGCTCTCTGATTAATACGGTTCGCTATCGATTATTCCACT
CGAGGAACGCTTGTTGCAGACTTGCGACATCTTACTTTTCTTCTGAACCCCTATTGACCCTACGATATGGATCTCTAAA
GTCTTCGCATTACTCTCTGCATATCTAGTGTCTTTATTATAAGGTTGACGAAATTCACCTTTCCGCGCTTTACTATTAGG
CCCGAATTGATTTCCATCCGTTCGAAAACAATCCTCTCGATAACACAAATCTTGGAGGGTTTGTGGTTACTCTGATCAA
ACAAATCAATCATTGTTCTTTTTTAAACACGTGCACTTCACGTGGGCCATAGATCGAATGCCTCCAATACGTCTTGACGA
GAGTGACGACGACTCTGAGCTTTCGGACGTTGACGTAGCTGAGATCGCCAGTGTAGCTCTCTCGGATACCCCAGGAT
CTACAGTAATTCCAACTGCCACAGGCTTACCTGGACACGATGAGATGAATAGGAATGTGTCTCCTCCTAGATCTCAGA
CCATTGCAGCATCATCAAACCCAGAAGAAGATGGTGGAATGATTGGTCTTGCCACCCGGCCACTGTTCCATGACAAAG
GCGATCCACGAAATAGTGTAAAGGCGGAATCTGAGTCTCCCAAACATACTCGATTGACCATACAAAATTCGGGACGTC
GAGGCAAGAAGTTATTGTTATCCACCGAACGGGAGTCTGGAAATAATCCATCCGAACAACCACCGAATACCCTGAAGA
GAAAATCATTTCCAAGTGACTCTCCTAATAATGCTTCCACGAGTCCCACAGCACACAGACAGCTTCGTCGTTCAGATCT
TGTTACGCCAACGCTAAGACAACCTTCCATAGCGACCTCTGAACGTCAGTCCATCCGCCACCACGAATCACCATCCAA
TGCCAAGATCCAAGAAGAAACTGCTCATTTAAGGGAAGTTTTATTGCATGTGTCAACTGAAGCGACTCAAGAAATATTG
AAGGAGCAGTGGAGAAACTTTCTTTTCACGAATGCAAAAGAGTCACACATCACATTCATTCTTCGAGCTGGATTGAAGA
ATGCTACTCCTAATGTTCTTGGACGAATCTACAACGACTCTGGTGTCATGAAAGATGCCTTCTTGGAGACTATCACCTC
TAAACAGCCCGTTGTCGCTAGGGTTCTCAAGAGTGCATCTGCAAATCAACTTGCAGATCTTGTGCCCAGTAAAGTTCTG
GATCAGGCGTTATCTGAACGGTTAAAGAGTGTTCCAGCAAAAACGCTCATACGATGGCTAGCTGAGGCTGACAGACTT
GGTTACAGTCTTGATGACATCCTGGATGAGAGCGATGAGACTGTCGTACCAAACATACCGAGTAGGGCGCAAAGTCAT
GACGCTGATGATGGTGATGATAATGATACAGAAATGATAGATGATGGACAAAAGAAATTGGAAGCCCCTTCTTTGGATC
CACTTGTTGCTGAACAGGAACGAATCAGCGCCCTGCAAAAGTCTCAAAACGATGCCCAAGCAAATCCTCCACGCGAGT
TAAGATGCCCCACATGCACCTATAAGTTTGATACCGTTAGAGGTCATAATTTCCATCGACAGAAGAATATCTGTACTAG
AACTCAGCCTCCGGGATTAAAGTTCTATTGTGGTAATTGTGCTCAAGGCTTTACGACCAAGCAAGGAATGCTATATCAT
GAAAAGAAGCGTGTTTGTCTTGGGGAAGAAGGAAGTGCAGACGACGAAACCATTTATCAAGACTACCGAGACGTTGTT
TCGAATTCGCCAAATGCTCAATACGGACAGCACCCTGATCACCCACAGACTACATCATTTGGCAATATCCCTCGCCCA
CCTCTCCACACTCCAGCATCGCGTTCCAAACATATCGAGGCGATTATTGCTTCATCTCCCTGGGACGGCGAGGCTCGT
CATTCACCATCTGAATTGCCACCCGAGAAACGTGCTGCTTTAGAAGATGCTCTTCAGAAAATCGAAGAGAAATATCTCG
AGGATCAAAGCAAGATTCCCGAGGACTGGACTCCCGAAAGACGAGAAGCACGTCTTATCTCTCTCAAGAATGGAAACG
CATCCCGCAAATCTCAAATCCGCAAACAATTTGGTGTTACTCTTCGTATGCGCGACAGAGATAAAGAGGCAAAGAAGAT
TCGCGAGGTTTTGGGAGCTAACTCTCCAATGGTGCCTACTGGCATGAACCGAGCTGAATACCGTAATTCACCAACGGT
TGCTGGCTATCCAGTAAATCCTCAGCAGCAAATGCAACCGAATCAAACACCGGCCAGCATAAGAATGGAGATGGTGGA
TGTGAGACCTGCTACAGGATTCTCGCCAATCAATGCCCCGCCGCAAAACCAGCAACACCAGCAACATCAGCAACACC
AGCAATATCCGCAAGCACCACCAGGTCACCACCCAATGCAATATTCAGGTCCACCTCAAGCTCAAGGTTTCCAACAAA
GTATTCCGCCTGTATCACAACTTCTGTCGCAGCAACGACCTAGCCAGGACCACCAAATGAGCCCCCTTGGGTATCAAG
GAGCTCCGGAGCAAGCATACAGAGGACCAGAAGATCACGCAAACAAAAGACTCAAGCGTGGATCAAGTGCAGGACTG
TCACGATCAGATGAAGAAAGAAGTAGGCATTTTGCATCAGCTGATTCGACTCCAATGGGTGTGAATGAGACAAGGGTT
TCAGGGGGAAGAACTCAGGCTTATAACGGTGCGGGAATGCTCTCTGTGGAAAATCAAAGATCTGTTTCTGCAGGAGCA
AATGGTGCTATGATTGAAGGTGAGAGTAGACCAAACTCTGCAGGCTCAAGTACTGTGCGAAAGAGGGTGCCAGTTGG
TGCGTTGCAGAGGCAATGGGAAGCGTTGAATGGCAAGGGGCCGGGTAGGAAGTCGGAGGTTGAAAATAAGGCGGG
GAATGTATTAATGAGTAGTGTGGACGGGAATGAGAAAGCAAATGGACGGGCTGAGGGTGGAAAGTTGGTTATGGGTG
GTAAAGGTAAGGAGCCAATGCACGAGGGAGTTAGGAATGTGGTCGATTTGATTAGTGATGATAGTTCGAGTGAGCGT
GGAATTAGGAGACCCAGTGGAGGAGGAAAATAGACTCCTGGGAGGGGCAGTGAGATCCTGAAGAGATCATACATTTG
TTCGATGGAAGCATGGATTTTCATTTTCATTCAAGGCTACTTGCCTTTTCTTTTATACCTGTTTTTGTCACACAAGCTTTT
TTTTTTCTTTCTTCATTCGGAGACCAAGCAAAGGAAAAGAAACAGCGAGATAGGAGACTTATTGGAATCTACATTACAG
AAATGGATAGATGGGAGAAGTGTCAAGAAACGTATTGTATTCTAAATACCTCGGTCTGCTTTTTTCCCTTTTTCTTTTTTT
CAAAACAGTTTTGATGCGACTCGATGCGATTCGATAAAATACAATACGATAGTTGATGATGTCCTTGGCCTACAAGATC
GTGGCTTTAAATATCGTATTTTGATGAAGATGCAGAAGAAGAAGATGATGATGATGATTACTTAGTTAGTTAATACGATG
AAATTACTGGATGTTGATTTTCGAGAACATTACAGGAGTTTTTATTGGATGGATGGATGGATGGATGGATGGATTGTATT
TGATAGTGTAGGTAGTGTATAATAGGTCATTAGATAGTACCTACCTAGGTAGGTTGATTGATTAATTGATCACCTCTTCC
ACCA
BC1G_05162
SEQ ID NO: 43
CAGGAACTATGCATCTTATCGGTGACTTCATTCAGTAAGAAATCCGAGAATGAAATGATTTTGAGCCTCATGAATTGTGT
ATTAATGGTGATTCCGTTTGCCGCGCCGTAATCAATATTTAGTCATTTTAAGTCGTTGAGTTTATCATGGACAAATTTTTA
TTCGACCAACATTTGCGAGATTGCACCATAGTGCAAGAAAAAACAACATGCTTCGAAACTTTTCTCTATGCTGATCCAG
AATACCGAACCACAGTGACCGAAGAGACCCTTCTTGAGGCCGAAGAGTTTGATGATTTTTTGAATCAAAAGGGCAGAT
TCGAAAACAGAAATCAAGGGTGCATCGGAGGAATTAGACTTATCTTACAAAGAAATGCAATCCATCCCCATACATTCGA
ACCCAAGTTTTTATCTTTACCTAATGGCTTTCATAAAAAGATTGTGGACGCAATGCATCTCCCTCACTCATGGATTGAGA
CTCTAAGCGCAGTGGGCCCATTTTACTGGTCTGGATATGAGCAAAACGATAACGATCTTTATCTTCAGATAATATACCG
CAAGAGCGACGTAAAAAAGCCATCCAATGCTCGAAACTGGGAATTGGTTCTTTCACACTCCCTCAAGACTGGTATCAC
GAATGCCTTTTTCAAGGGTACGCCTCGGGCTGATGTTACTCAATGTATTACATGTCTTCGTCAATGCATCAGTGAGATC
GATCACCCTTTATTCCTGCCTGCTCTGGTCTTTTCTTGTGACATTGATTTTGGAGAAGATAAACGTCACCGAGACAATC
GAGAGCGAGTCCGGATCTTAGAAAAACAAGTAGTCGATGCATCCCACATATATGCACATCCAGACTTTACCAAGCGAG
ATAAAGTCAACCTTTCACAAATCAATAGTGACTTGGTAGATTGCCATAAGAATGTGTTGTGGAAGCGGCCGGAAGGGT
ATATCACTATTGTACAAAAAATGGAGAAAACATTATACGAGTTCAAAACTTTGTGGCCGGTTGAAAGAAAGGAAAGATTA
AAAAAGCTTCAAACAATGATGGAAGGGAGGCTTGAACTGCTTCAGTCTAAGCTTCAGGGAATAAGCACCCATCGTGAA
GTTACAATCTCGAGATTGAAGTTAATTGGGGAGGTGTTGGAAAATTTGGTCTCGCTGGATATCTACAAGCAAGAGAAAC
AGCGGCAATTCAGTAAATTGCTGAGTCGAAAAACGGCACTTCTAGAGGAAACAAAACAAGAAGAGAGAAGAGAAATGG
AGAAAACACAGAGAGATCTAGAAGTAATGCTAGAAACAAGGAAACAGACGACTATGTCATTACTAGGCATTTTGTTTCT
ACCTGGTACATTTTTTGCAGCAATTTTCAGTACCACATTCTTCAACTTCCAACATGGTGATTATGCGGGAATCGTCTCTA
AGAAATTTTATATTTACTGGGCAGCTACGGTTCCGACCACTGTAACTTTGTTAGGCATGTGGCTCCTCTGGCAAAGAAG
AACTAAGAAAATGCTAGAGAAGAGAGATGATAAATTTCGGGACCTTGAAGCAAAGAGCAAGAAGGCACGAAACGATAT
CTTTAAAGAGGAAGAAAAACATTTTAGACCAGTTTGATTCCACAGCTCTTGAATATGTATTTTTCAACTTGGGGTTTTGTT
TGCTATAATTTGAAGAAGCGGGTCGCGATTCGTCCAAACACATAGTCGGTGTCGAAGAAAGATAGCATTACACCCGAT
GTAACAGCTTTTGGGGATTGTGGGAAAGATAGTCCAATACATGATCTTTCGCTGGAAAATTGCAGTACTGACTACACGC
AAAGTTGACGATGGTTCATGAGTTGTAACAGGAACTTATTAAAATGATCGAGCCCA
BC1G_06835
SEQ ID NO: 44
GGCCTCAATCTCTCCTTTTCACATATCGTGTCTTGTCTTCTGTTGAAAGTCGGCATTCACAATTTTTTTGGTTCAATCAAC
TTTTGGTTAATACATGCATGCATGTAATAGCTGTATCACGCATTTAATTTCGATTCATTCAAAATTACCTCCTTTTGTAAG
CATTCCATAAAGGACATGCTCCGTCGAAATAGTTCTAGTCGACCTGTTCGAAGCAAATCAACATTATCAACCTATCCAA
AACACGATTTTGTCGACCCTGAAGAGTCTCGTATGCATGCTCATGCTGCAGCAATGCATGCTTTCAATAGGGCCCAAG
AGAGGAATGGCACTAGTTATGGAAACAGGAACGGTCTTTCACGAAGCAACACTACAAGTCAAGAAAGTCAATGGCGGC
CGAGTCAACAAAATAGTTCTACAAGTCTTGATAACCCAGGGCTCAAGCGTCAGCAGAGTGTTCGATTTGCAGGCCCAA
ATGCGGTAAAGAGGCGCCAATCAGCGGGGAAAAGGACGGACCCGCCAGCACTGAACCAGAAACTAAGTACTGCTACT
TTGGGACCTGTTGTGATGACCACAAATACTCCAGTCCCAGCAGTGTATCGTCCACCCAGTCGTTCTTCTTCAATTGGCA
AAGCTTCACTTAACAAATCAGTCGTTCGAGACTACTCTGCTCATAATTACGTTACCAACTTAGATTTCGATGAATACTAT
ACGCAAGAGAACGATGTGGCCTCGACGCCATCTTCATATCGGCGAATCAGAAAGTCGAGGTCTATGTTCAGCCCCTTG
TCAGCGCCAACCAACATCTTCTACAGCAATGGCAGCCCTGATCGCACCAATTGTTCATCCACTCCGCGGACGCTAGAG
AATAATGCTCCATTACGGGCTCCAAAATCAATGAGCTTCCTCCGAGGGGGGCGGGACTATTTCAAATCTACATCGTCTT
GCGAAAGAAATGACGATGCCGTCCAAATGGCCAGAGATAGATTTTTTGTTCAAGCCAATCAACAAAGACTTCGGGAGC
AGCCATCTTTTCTCTTCAGATCGAAGGCACAACGGCAAGAGAAGCCTTTTCGAAAGTCGGTTCGAAGCAGCAGCGGAA
AGTCTGCAGCGACATATGATTCGGCCGAATCTATGAGAGAGGGTGGCCTAAGAGCCAAAGCTCGCAAGGTATCCCAA
GGATTAAAGAGCAAACTCCGAAAAGTTTTTGGCCGCAGCAAAGACGAACCCGTCGCTATCCCTAATCAACAGGTGGAT
GCCATTGAAACTCACGTTCGAGAATACGCTGGACAATTAGCGTCAGATCATGAGTCGTTCGATGATATTCCTATACCCG
ATGAGGCCGCATTTGCTCATGTGGCAGCTAGAGTCCCATCATTACGTGCTATTGCTTCAAGCCAGAGACTCAGATCAC
AAAGTGGTAGTATTCGTAGCTTACGAAGTGATCATAGTGATGAAAAGTCCAGAGTAACAAGCTGGACCAATAGTACAG
CTAACAATACTGTTACCAGTCAAGGATTGCGTCCTCCGCCTAGCAGAGACCAAAGACTTTCTATAATCAATGAATCAGG
CACGCATATCTCTAAAGCAGCATTTCATCGCCCAAATGTAAAGAATCAACATCCAGCTTATCCTGCATTTCATCGTCCTG
GCTATATCCAATCAATTCGACCAGGAGGTGTAGATAGCGCCAGACTTTGCTCTGCTTTGATGAAGCGTCTCGACGAGA
ATAGCCCAGAAGCAATACTCGCAAAGTCAAAGAAAGCCAGCACTGAAACTCTCGGACTTGAGAAAGTACCTAGACAAA
GTAGCTCCTTTACCAATACTCTTTCACGGCCCAAGCCATGGATTAGACAGGTACCTCCTGACTGTGACCCAGGAAATC
AGAGCCAAAATCAACTTCCTAACGTATACTGTTCGAACAACGCTGGCCCAATACCCGTCACGAGCGGCGAGGAACTAC
CTGGTCAGGCAATCGACTCTGAGTATCAATTCAAATCTGCAGGTTTACCATTACATAATCCACAACTTCAAAGCCAAGA
CGATGTGTTTTCCTCACTCCCAGGATCTAGTCATGGCAACTCCTTTCACCACGGTAGCTCATTTCATGAAGACAACTCA
TTTCATCAACGTGCTCACCAGCGTAATTCAAAGTCTGCACACAGACGCCACTTATCCGATATTGATGCCGCATATGACC
CTGTGCAAGACCCTTCAGGTCTCACTCCGCAGCAAGTCGCACAGCGGGACGATCCTATAGTTCCCAAACCAAAAGTTA
TCCGCGAGGCAAGGTCTGCATTTTTCGGAGGCACGACATTTGCAATTGACAGAGTCGGAAATACAAGTCCGTATCGTC
GCGCTTTGGCGGAAAGCGACAATTCTGCTGCCTACAACGAAGTGAGTATGGCACCGGTAAATGATGACGTTTATAGTG
AGAGTGTTTACTCTCGAAGTATTGGCCGTAATCTTTCGGAGGCTATGAGTAGTGATACATCGGTACCGCTCCCAAATGT
CCGTATGCCGTCATTGCCCGTCGATGGCTCAACTCCCAATGGTGGCGCTGTCATTATCAACAGCACAACCTATCGTCC
AACTCATCCAAGACAGCGAGGTGACAATTCCGGTGGTTCTATTGAGTGGCAAACATGGATGTCGTCTGAAGTGGCAAA
GTTGGAAAGACCATCTGAAAACGATCGCGTAAGCGTCAGCAACATCGAACAATCACTATCACCCACGCCTACGATGTC
AAACTCCTTTCACATTGTGCACAGAAGAGAAAAGGCTCAGATGGCTGATGATGATACGGATATCGCTCAGAAGAAACTT
CCTGCTGGTAAACAGCCGCTTGGTCTCATTCAACAGAATCTTAATGCCCAAGTTCTTCTGAAGCCGATTTTGAAAAATC
GCTCGACGACATCTTTGCCTGAAGATGATTTCATTGATAACTCTAAGCCGTTTAATATTCCTTCTGCACCACCACTTCCT
CTTAGATCGATATTAAGACCAGCACAAAGCAAAACGAGTCTGAAAAGTACCTCGAACTCTCAACACGCACCAACCCCA
AATCCCGTCACTCAAACCCAGAATCCAAATACCAGCGCTCGCAACGTCTTGCGCAAACGTCTCTCATCTACAACCCTAA
GAAGCGCACCAACAACACCTAATCATGGTGTAGAAAAACAATCCCCGAGTACGCGTAATGTACTCCACAAACGAAACG
TATCGGAAGCCACGATGAAAAGCGGCAAGAGTATTAGAAGCGTGAAGAGTTTCGATACGAGTGGAAGTCAAAGCCGT
AGCTTTACCACTAGTCCGGCGAAATTGGTCAAGAGGAGTGGGAGACCGGTGTATAATTTTACGCCGCAGAGTAGTCC
GGGTACGGGTATTGGGGCCGCGGTGGAGAGACAGTTTGGGAGTGCGAACGCGAAGCCGAATGCGAATACGAGTGG
AGGTTTGTATGGAACGGGGAGATCGAGAGTGAGGGCTGGGGGCAGGGAAAATGAAAGGGTCGGTGGAGGCGGCAC
GGATGATGTTTATGGGGTTGAGGGAAGTGGGGTGGGGGATTCGAATGGGTTGGGGTTGGGGTTGGATCAACAACAG
GTGGGTAGTAAACAGATGGTGGATATGTTTTTGAGTAGTAGACGAAAGAGAATTGCTAGTGTAGGGACGATCGCGGG
GGGGAGTATGGGGGGTGATGGGGGTGGGAGGAGTGATGGTGGAATGGATGATGGTGCGGTGTTTCTTTAGGCGTG
GGGATTGGTGTATGAGTATTGGGAATAGATGAGAGGGTAACGAAGTCATGACTTATGGATTTGGGTGCTTGAGACCAG
GATTAGGATTAGGATTATGTATATATTTTTAGCGGGTATATCATGTATTATACTTGGTGACTCGGTTACTGGGGATTGGA
GAATAGAACAATAAAGCGCTTGTGAGAGGGCTGATATAGTATGGATTAGGGTCGATGACATTACTTTTGCTTTTCTTTTC
TTTTTTAGAAAATTAGAGTTTAGTGTAAGTAGACAGCTGGTAGAGTAGTGTAGTGTAGTGCCAGTATGAATGGTAGTTG
AGGTATGGAAAATATTAG
BC1G_10526
SEQ ID NO: 45
GTTTCCAAGTACAGTACAGTACCACTTCAAGTACATAAACTCAGCGCTCTTCTTGAGATAAAAGGTTAAAGGGTTGCAA
GATTTCTTTGATACATATCATTGGAAATAAAGTATTCCGGATTACATTAGAGGAAGCTCACTGTAACAGGTTTCTGCTTT
GTTGTTCATGGACATGATGGCAGCAACTCCAGACATTTCTTTGACCTGGTCATCAGTCTATAAAGTCGCCCCAAAAGAC
AACGTCTCGCTGCCCGGGGACAAGATACTACTACCTCAATCAGCGCTGGAACAACTACTATCGGCATCTACAGTTACG
GTGAATTCTAACACTCGCCCCAGCAATGTTGCATTTGATCCATTCAATCCATATTCATTGGCAGCCGCTCGCATAGAAC
AGTCGCAATGGAGAGATACCCAACAACAACTGCCCCATCCTCTCACCTTTAGGCTGGTCAACTCGAAGAACGGAAATG
TAGTATATGCAGGAATTCGAGAGTTCTCGGCAGATGAAGGAGAAGTTGTCTTAAGCCCATTTTTGCTAGAGGCATTAG
GGATCACTGCGCCCTTACGAAATCCAACACCACCAAGTTCAAAGGTTGAAAGCAGGAGAGGGTCGCCGGATACGCCT
ATAGATCTTACAGATAACCCTGCAATCGATCTTACGGGTGACGAGATGATAGACCTTACAGACGAAACCGAAGAACCG
GCGCAGATCACTGTACATGCGAAACAATTACCTAAAGGCACATACGTGAGGCTAAGGCCATTGGAGGCTGGTTATAAT
CCCGAGGATTGGAAATCATTGCTCGAAAAACACATGCGAGAAAATTTCACAACTTTAACGAAAGGAGAAATATTGACGG
TTCGAGGTTCAAAGTCGGAGGAATTCCGATTTCTGATTGATAAGTTTGCACCGGAAGGAGATGCAGTTTGCGTTGTTG
ATACAGATCTAGAGGTCGATATTGAGGCTTTGAATGAAGAGCAGGCTCGGGAAACCTTGAAGCAAATCATGTCAAAGG
CACAAAAAGCTCCAGGAACGGCTCAAGGGAGTTCAATTGGCGGAGAATTAGATCTTTGGAATGCTTTGCAGGGACAG
GTCGCAGAAGGTGATTATGTCGACTATACTTTACCTTCATGGGATCGATCAAATGGTCTTGATATTGAGCTTTCACTTGA
GGACGATGGTGATGGTGATGTGGAGATATTCATTAGTCCTCAATCAGCCCATCAAAGAGCAAAACCACGGGAGGATGA
ACATGTTCTCGGAGATTTCTCAAGTGACAAAATCAAGAGAATAACCATACAACAATCAAATGTGGAATTAGACGGAGCT
GATGCTATATTAATTTCTTTATACTGTCGAGGAACTGGAGCAGGCTCTGAGCCACCACATGGACCACGGAAGTATTCCA
TTAGAGTAAAATCGCTTGAAAAGGGGGCAAGCAATGGGGCCCCAAGCAACCCAATCTCGCTCGAAGAAGATGCCGAA
ATGCATGGATCTGATGAGGAGCAATGTAAAAATTGTCATCAATGGGTGCCAAAGCGGACAATGATGCTTCATGAGAAC
TTTTGTCTCCGCAATAATATCTCATGCCCTCATTGCAATGGCGTCTTTCAGAAGAAATCTTCAGAATGGCTGAATCATTG
GCATTGTCCTCATGATTCAGCCCATGGAAATTCCTCAGAAAGCAAAACTAAACACGACTCTATTTTTCACGAAGCTCGA
CAATGTCCCAATTGCCCTTACGAAGCAACAAATATGAGGGATCTTGCCACTCACCGTACGTCTATTTGTCCTGGCAAGA
TCATTCTATGTCAATTTTGCCATCTTGAAGTTCCTCAAGAGGGCGACCCCTTCGATCCGTCTCCAGAAAGTCTTATTTCC
GGACTTACAGCACACGAGCTTGCAGATGGGGCTCGAACTACGGAATGTCACCTGTGCAGCAAAATTGTTCGACTTCG
GGATATGACCACCCATCTTAAACATCACGAACTCGAAAAGAATAGCCGATTTAAACCAGCCATCTGTAGAAATGCAATC
TGCGGTAGAACTCTGGAGGGCGTTGGTAAGAATGGGGAAGTGGGCGCTGGATCGAGAATGGGCCAAGGACCTGGTA
ATGATTTGGGTCTTTGCAGTATCTGCTTCGGTCCACTATACGCTAGTATGCACGACCCATTAGGAAAAGCAATGAAACG
CCGCGTGGAACGAAGGTATCTGAGCCAGATGATCACGGGATGCGGCAAGAAATGGTGTACAAACATCTATTGCAAGA
CTGCAAGGGCGAAAGAAGCGAATGGGCCTCAGGCAATACTAGCGATGAAAGATGCCCTTCCTCTTATTCAGCCATTAG
TAGCCCAAGTAGAGGATAAGACCGAACCGATGCATTTCTGTGTCGATGAAGGAAACCAGAAGAGAAGAAATCTGGCTG
AAATGTTAGCTATGGAGCCTGGAGGTTGGGAATTGGAGTGGTGTGTTGCGGCTTGTGAAGCAGAAGGTGCAAATCTT
GATAAGGCCAGGACATGGTTATCTAATTGGGCTCCCAAGAAAGCTTGATGTGGTTCAGATCTGGAAGATATTTTGGTAT
GGATGAAAGGGATGGAGCATGGCGTGGTACCGATTGCATAAGTAAGGGAGTTCTGGTGGCTGATGACGATATGATAT
GATATGATACCAATTTATAGACCCGATTTTGTTGTGCGTACATAAATATACATGGTTGGCGTCGCATTAGCTAGAGATAG
ATCGAACAGATTAAGAATTTACTGCTAATACATAAACATATATACATTCTTCA
BC1G_03606
SEQ ID NO: 46
GGATCGCAACTAACTCTTCTGGAAGGTTCTTGTGGCAATATCAACCACATGGATCTTCAGTACCACCGCCGTCAAATTG
GCTGTGCTTGGGTTATATATGCGAATCTTCACCACGCCCGTTTTCAAGCGATGGGCCGTCTCTTTGATGACCATAGAC
GTTTGTTTCGGTATCACCTTCTTCGTCGTGTTTTTAACTCATTGCAACCCAGTCTCTCAAGAATGGAACCCTGTTCCACG
GGGTTCATGCAGATCTCTAACATTGTCCGAGTTTTCCTCCATCGCTCTCAATCTGGCTCTCGACACGGCAATCATCATT
CTCCCTATGCCATGGCTATACAAGCTTCAAATCGCATTAAATCACAAGCTTTTTGTGATGGTCATGTTCAGTTTCGGCTT
TGCAACTATTGCCATCATGTGCTATCGTCTTGAATTGACAGCCCGAAGCCCTTCTGATCCCATGATTGCCATTGCAAGA
GTCGGAGTGCTGAGCAATCTCGAGCTTTGGATTGGTATTATTGTTGCCTGCTTACCTACTATGAAACCTTTTGTTAGAG
TATATCTCAGACCCAGCCTATCAAAGCTCTCCCAAAAACTTTATGGCAGCCCCACAGTGTCAACAAAAGACGAAAATCC
ACAACTTCAGCTAAGGAACTTCGGGGGTTCCGGACCTTCACGCCCCCAAAAAAAACAGTAACTACACTGAACTTTCTG
AAGCTCCATCTGTGCAGACAGATACTGACGAGTTGCATCTCGTTCCAAATGAATCATCCAATTTTGATGCAAATTGTGA
ATCTAGCAACA
BC1G_04443
SEQ ID NO: 47
GCACGGTTGGCTTGCCAAGACTTTCCCACCCACAGAAAGTGCGATACTGGAGAATACCCCTGTCAGAGGTACCTCCG
GAACCGGGCAGGAAAATTTCCTAGCTACTGTTGCCCACAACAAAAAGACGAAGAGTCACATCTACAACTTTTTGATTTA
AACCTCAAAATACCCATCTGTTATTCTTCCTTTTTTTTTGAACTCCACTCACTTCTTCCTTCAAAATGGCCGCCCGTACAT
TTTCCAGAGTCGCTAGACCAGTTGCACGTCAATTGACTGCACCAGCACGCAGAACTTTTGTCTCTGCTATCAATGCCTC
AGCCAGACCTTCCGCTGCTCGTGCTGTTGTTGGAGCTTCCCAACAAGTCAGAGGTGTAAAGACCATTGACTTTGCTGG
CACAAAGGAGAAGGTTTACGAGAGAGCCGACTGGCCAGTTGAGAGACTCCAGGAATACTTCAAGAATGACACAATGG
CCATTATTGGTTACGGTTCCCAAGGACATGCTCAATCTTTGAACATGCGTGATAACGGTCTTAACGTCGTGGTCGGTGT
ACGAAAGAACGGTCAATCATGGAAGGATGCTCAACAAGATGGTTGGGTTCCAGGAAAGAACCTCTTCGAGGTCGATG
AGGCTATCTCAAAGGGTACCATCATCATGAACTTGCTTTCTGATGCTGCTCAAAGTGAAACTTGGCCAGCACTTAAGCC
CCAGATCACCAAGGGAAAGACTCTTTACTTCTCCCACGGTTTCTCCCCAGTCTTCAAGGACCAAACCAAGGTCGATGT
CCCAACTGACGTTGATGTCATCCTCGTTGCACCAAAGGGATCTGGACGTACCGTCCGAACTCTCTTCCGTGAGGGTC
GTGGTATCAACTCTTCCATCGCCGTTTTCCAAGATGTTACCGGTAAGGCACAAGAGAAGGCTATCGCTCTCGGTGTCG
GTGTTGGATCTGGATACCTCTACGAGACCACCTTCGAGAAGGAGGTTTACTCCGACTTGTACGGTGAGCGTGGTTGCT
TGATGGGTGGTATCCACGGCATGTTCCTCGCACAATACGAGGTTCTCCGTGAGCAAGGTCACAGCCCAAGTGAAGCT
TTCAACGAGACTGTTGAGGAGGCTACTCAATCTTTGTACCCATTGATTGGTGCCAACGGTATGGACTGGATGTACGAG
GCTTGCTCTACCACTGCTCGTCGTGGTGCTATCGATTGGTCCGGAAAGTTCAAGGATGCTTTGAAGCCAGTCTTCAAC
GACTTGTATGACTCCGTCAAGACCGGAAAGGAGACTCAAAGATCCCTTGAGTTCAACTCCCAAAAGGATTACCGTGAG
AAGTATGAGGCTGAGATGAAGGAGATCCGTGATTTGGAGATCTGGAGAGCAGGAAAGGCTGTCCGTTCCCTCCGTCC
TGAAAACAACTAAGTGGATAGTTAATGGGGCCTTTGGGGCTGGAGTTGCATATTTGAAATTGGGCCAATTGTATCATAC
TCTCATGACTTTCCGTTTTTTTAATCAACGGTATCTGGAATTAAAAGTTTAAGCCATTGAATTCAAAAAAATTATATTTCCA
ATTGTTTTTATAATTGAC
BC1G_12479
SEQ ID NO: 48
GAGCACACCCACTTTCAAAATTTCTTCCAAGTTTTGGATACCTCGAAGTTACATTTCTGGTTATTCTAATAAGTATGGCG
CCTTCTCCGGTGACAGTAAGTCTAAAAGATTTGCAAAGTGGCAATGTTTCCTTCTCAACACTCGAAGAGGCTTTTGGCC
CCGAGTCTTTAGGTATTATACTCGTCAAAGATGTTCCAGAGCCATTCGTAGAGTTAAGACATAGTCTACTCTCATATTCA
TCTTATCTTGGAAACTTGCCTGAAGCCAGACTAGAGAAAATCGAAAACGCGGCTGCAAAATATCTTACCGGCTGGTCT
CGTGGTAAAGAAACTCTAAAAAATGGCCAAGTGGACACACTCAAAGGATCATACTATGCGAATTGTGCCTTCTACGTCG
ACCCATCTTTAGCATGTGCGATTCCTACTCCTGACTTTTCACCCGAAAATTTTCCCGAATATCTCAGTCCAAATTTATGG
CCTGGAGAAATCGTGTTGCCTGGCTTCAAGAGCACATTTGAGAGATTGTGTCGAATTATTATTGACACCGGAGTACTG
GTCGCTCGGGCTTGTGACAGATATGCAGAGAAGGAGATTCCAGACTACAAACCTGGATATCTTGAGCACGTTGTAAAA
ACTTCGACAACCACTAAAGCACGATTGCTACATTATTTTCCAGCAGAAGCCAAGGACTCTTCTGATGCTCTAGACGATG
ATTGGTGTGCAACCCATTTGGATCATGGCTGCTTAACTGGACTCACATCAGCTATGTTCATTAACGAGACTCGCAATCC
ACCCGTGATTCCAGTATCCTACTCATACCGTCCAACTACCCTTAGCCCTCTTAAGGAGCTTCCTACATCTCCGGACCCA
ACTGCGGGACTTTACATTCAATCTCGGAGTGGCGAGACTGTTCAAGTTAAAATTCCCAAAGACTGCATTGCTTTCCAAA
CGGGGGAGGCCCTCGAGAGAATCACCAAAGGTAAATTCAAGGCAGTTCCTCACTATGTGAGAGGTGTACGACCAGGA
GTTGCAGATGGCGAGAATGAAGGAGGAAGGATTGCGAGAAATACTATTGCCGTCTTTACTCAACCCAACTTGGACGAG
ATTGTAGACTCAGAGATGGGGATTACTTTTGGAGAGTTCGCGAGAGGGGTAGTTGCGAAAAATACAACGAAGTGAGGT
TATTCTAACAAATTATTCACAAGTTCATACAAAATACCCAGTACAGCTTTGTTTTTATCTAAATATATTTCATGATGCTCAA
TGTTTTAGCGAGGGGGTATTGGGGGAAATATTGAGGTGGCGAAGCGCATAACTTTCCAGTATCTCAGCCCAAAGGCC
CCCATTTGCCCCCCCAATTTATTGTATCGGATTGGAATTCTTCCGTCCGAGTGAAAAAAAAAGCAATAACATCCAAGGA
TGGCGGCGGTACGGGGACATTGGAAGGACGTTCCAAGACTAGGATCTTTATTTTATTCTGGTGGCAATAACCCCTA
BC1G_06676
SEQ ID NO: 49
GCTTGTCTTATCTGATCGATTGATCGGATTTCATTGGTTTTCATTCGACAATAGCCATGCGGTCCCGGATGTGACAACT
ATTTTCGAAGTGTGAGTTCGTATGAAAAGGTGGGCAGGCATGGTATGAAGTAACTGTGCTCCGTATCTATGGGGAAGG
ACGAGGCGTAGAGGTGGTCCGTTCTTTCTTGTCATATCCTGATATAAATATGTACTCCACGGAAGTCGTGATATGTAGT
CTTTGAATACTTTGCCATTCGGTGTGTTCTTTTCCATTTTGGCTAACGTTGCACATCTCTTTCTTTCTCTTGGAACTTTGA
GATTCGTTTTGATTTTACTGTATTCGTACAAACAGTCGGGAACACAATTCGCTTGACTTAAGAAGATCAGTGTCTTCCAA
TTCCCCAAACTATGGCTCCCTCCATCGCAGAACTTCCGTCTTCCCCCTCGACTACTGTCAAGGAAGCTCCTATATCTAC
CACTTCTGGGCGCGGCATCTTCAATGCAGAAGTACAACCTCCGGAAGCCTCTGCAGTTCCAATATGGCAATCCATCGC
TACTCGTCGCCAGCAAGAAATCAACTCTTCTATTCCTTCGGAATGGCTTCTTCCAACAGGCCTCCTCCAATCTAAACGT
CCTCTCGATCTAGTAAAAACATGCGGTTTGTTGGATGAAAGAGAGGTGAAGATTGTGTACAGTGCTGCTGTGGATTTG
CTCGAGAAAATGAGAACGAGAGAGTATACAGCTGTGGAAGTTACAACGGCGTTTTGTAAAGCGAGCGCTGTTGCCCAT
CAAGCGACAAACTGTCTCGCTTGGACGATGTACCCCAGCGCCCTCTCCCACGCCGCCAAACTCGACGCTCACATGTC
CCTAACCGGGACTCCCATCGGGCCCCTCCATGGTCTTCCCATCTCCGTAAAAGAACACGTCTACCTCATCGACACACC
TTCCACATCTGGTTTCGTAGGCTGGGCCGATAACTTCTGTACTTCCTCTGCCCAAGAAGGAATGTGCATCCAAGTCCT
CCGCGACAGCGGCGCAGTCTTTCACGTCAAGACTACTAATCCCCAAGGGCTCATGGCTCTCGAAACACAATCAAATCT
CTATTCAACCACTACCAATCCTCTCAATACCTTCCTCTCCCCAGGTGGTTCATCAGGTGGTGAATCCGCCCTGGTAGC
CATGCACGGGTCGATTCTCGGAATTGGCACCGACATCGGAGGGAGCATTCGAAATCCCGCCCTGAGTTGCGGTATCT
ACGGACTCAAACCCAGTGTGGCGCGACTTCCACATTCCGGACTCTCCGGCGCACACGACGGAATGGAAAGTGTGATT
GGGGTTGTGGGACCCATTGCTACATGTTTGGCAGATATGGAACTGTTTTGCAAAACGCTCTTGGATGCGCAGCCCTGG
AGACAGGAAGTTGGATTACTACCCATTCCATGGGGAAGTCGCGAAGCTATCGCTGCCGAGAAAGAAGAGAACAGGAA
ATTGAAAATCGGTATCATATACACTGATGGAGTACATACTCCTCATCCACCCATTACCCGTGTTCTGCACTCTACGGAG
TCAGCACTCAAAGATGCAGGACATGAAATCATTCCCTTCCCAACACATCTGCACTCTCCTATCGTCTCTACTGTCAATG
CATTATACCTCCTAGACAGCGGCGCCGAATATCTTTCCCACCTCTCTCTAACCTCTGAGCCTCCCACCTCATTACTCCA
ATGGCTTTTAGAAGAAGAGACCACGAAAAATCGTAGCATTCCCGAACAATGGAAGTTACATAAGGAGAGAAACAGGCT
TCAAGACGCATATGCGAAATTGATGTTGGAAACGGGTGTAGATTGTATCATAGCGCCAGGGGGTGTGACGGTAGCGA
ATGCACATGAAGAGGCGAAGTACTGGGGATACACGAATGTGTATAACGGGTTAGATCTACCGGTTGCCTGTTTGCCTG
CTGGAGAGGTGGAGGAGGGAGATGCGTGGGGCGATGAAAATGAAAATAAAATTGCAAAAACGCATATGGAAGCTCTG
TGGGGCCCTGGAAAAGAAGGAGCGCAAAAATATGAAGGAGGAAGTGTAGGATTACAGATTGTTGGAAGGAGGTTGGA
GGAGGAAAAGCTATTGAAGATGACCAAAATAATTGAGAGGGACTTGGGATTATCTGGGCCCAACTAGAAGAAAGAACT
CGAAGGTAATGTGAAAATGAAGATTAGAGATCAAATCTGAGATATCGAAGTGATTCAGATTTTTTTAGAAGAACA
BC1G_12472
SEQ ID NO: 50
GGCCCCGAATCTTTCATCTTTTTCCTGCAGGTTCCAAGTTTTAAGGTTCTGTCGAATCAAACGCGGTTTAATTATACAGC
CGTGAGATTTTGGTTAATCAGCCATAATCCATTATCCTTCACCCATTCATTACCCATCATCCCCATCCCCATCCCCATCC
CCATCGCCATTCAGAGCCTTTCATTACCGGGCCGTTATTTCGTACTTACTGCGCACCGGTGGTTGATTGATTGATTGAT
TGTGTACAGCGCTGGTTACAATCTCCATTTTCTGTTCCATCACAGCCACGGCCACGTCTTTTTTCCCATCGTTGTATTAT
TAGATATCGTACCGGATCCTCACATCGCCATCACCACTCTCACCACTCACCACTCACCACTCAGCTACACTCGGGTCA
AAGAATACAACATTTAAACCGTCCATTCTTTTCAACTGCCTCGAGTTTCTCCACCTATCGACCGTTCACTCTCGAGCCCA
TACCTACCGACCTACATATCCATATACACACGCCTACATATATTGGTACACCATCGTCCCAAACGCCATACATAGGTCC
CATACCACAGCCTTCAATTACGAAAAGAATTGCCACGATCGTTGCCAATGAGATCACAGTGTGTCTGATAAAACGAAAA
GAGGATCATCCCATAACCCCATAAACCCATTTTGGTCTTTCCAAGTGCAAAAGGTACAAACGAAAGAGACAATAAAGTT
TGATTGATTTGGAGAGATATCTTACTTTTTCTCGACTCGACCACCACGCATCTCGTCACCCATCTCGGCATTTCCCTCG
CAGAACGGATTACCTCTTGTATACTACTTATATCATCACCTTGCCTGTCTCCTTTCATTACATTTGTTTGTTTGTTTATTTA
CCAACCAAGCACTGACTGGTATAAAAAGAAGTGAAGCACGAAGTGAAAGAAGAAGTGATCTTATTATTATTATTATCATT
ATTATTACTATTACTATTACTGTAGCTCTGCTGAAGCTTGTTAGCGCAATCCAATCTCGCTAATTCAAAGGTCCTGAATG
TCCCATCCTATTATCGACACTCATCTCGTCCAATCTTCATTCAAAAGTCATTCTTTCAATTTCTCTCCTTCAGGAGCGTC
GAGATTTGTTGATTGGACATCAACTTAAATCATTCGACGCGTTTTGAAGATAAAAGTCCTTGGATTCGATTCGACAGATC
TTTATAAAGATTTAGTCCTCTGATAATCTTGTTTTTTCTTAATCAATATCGAATTGCCCTCGATGAGTAATGAGGTAGCTC
AGCCGACTGAGCAAGATCCTAGCCGCTCAACTTCATTGGAAGGAACGAAAGGAGCCAAACCACCTACCCTCGACACT
TCCAACTTCACCGCAGTTTCCCAACCACCCAGCTCATCTACACAGCAGTCAACTACCCAAAACACTTTGACAGGAGATT
CCGATAACGGTTTGAATTCGACCACAAACGTTGATAACGATCAAGGACGAACCAGCGAAACTTTGACTGAAACTCCCA
AGAAGAATAAAGACCTACTTAAAGTTCCATCGAGATCCTCTTCCAACAAAATTCAGCATTCGCCAACTTCTACAGGTTTG
AGTGGAGCGACGGCGAGCGAGGGAAGAGAGAGCATAGGTGGGCGATCCAAGGAATCGAAGGGTAGTTTTCTTGGGC
GAAGGCGGAATGGGAGTGCAGCAAGCAGCAAAATGTCGATAAAATCACCTGGAAATCCCACGGGCGCTGCAGGTGC
TTCGCAACCAGCAGTTCCAGACGCACCTTCAGTTCGTCAGCCGAAAAAGAAGAAGAGCTTTCTCTCTCTCCTTTGTTGC
GGTACTCCGGACCACGCCAATTCTTTGGATGCACCTGTTCCGGCCAACAAGGTCTCAAAATTTAGTTTAAGTCGCCCT
ACAACAGCTAAGCAACCCGACGCGAGTAAGATGGGACAACAAGCCAGTGTTCCCGCGGTACCACAAGTGGAGAAAGA
GAATTTGCTGCAACCACAACAGGCGCCTCAAGTCGAGAGTGGAGAGGAGAAGCATGACGCAACAAGCTCTCAAGAAA
CCGCCAAGGCTACCTCTTCTTCGGATGCCAATGGGGAGCTGAATCGTCCAATCAGCAACGCTCGCGATCAACCTTTG
CCAGACTTGCCCACTGTCGTAGAATCAGAGCCCACGCTACCCGAGACCGCAAACCCAACAGTATCTGTTGACACCCC
AGCGCAATCTGAAACGGCAATTGGAGCTGTATCTCCAAGTTCGGATCTGGGACAGCAAGATGGTGGGGATGAGAAGA
TCGCAAACTTGGATCCAGGAACTACGGAAATCGAAGAGGCCCCATTACCACTCCCAAAAGACGAACCATTGGCTGGTC
AAACTCTCCCCCCTCCTCCGCCCGTTCCTCAAATTCCAACTACCGAGGATGATGCCGAAGTAGAATCGATAGATCAAA
AACAACAATGGCTCTTACCACCAATTGCACCAAGATTCAAAGGGAAAAAATGTCTGGTTCTTGATCTCGACGAGACTTT
GGTACATAGTAGTTTTAAGATCTTGCACCAAGCAGATTTCACCATTCCTGTGGAGATTGAAGGGCAATTTCACAACGTA
TACGTGATCAAGCGTCCTGGTGTTGATCAATTTATGAAGCGAGTCGGGGAGCTCTACGAGGTTGTGGTCTTCACAGCT
TCAGTTTCCAAGTATGGTGACCCACTTCTCGACCAACTAGACATTCATCACGTTGTTCACCATAGACTTTTCCGTGAAA
GTTGTTACAACCATCAAGGAAATTACGTAAAGGATCTTTCTCAAGTCGGTCGCGATTTGAGAGAAACCATCATCATTGA
CAATTCACCAACCTCTTACATCTTCCACCCGCAACATGCTGTTCCTATCAGCAGTTGGTTCTCAGATGCTCACGACAAT
GAGCTTTTGGATCTAATCCCAGTTCTTGAGGACTTGGCCGGCTCGCAGGTCCGAGATGTCAGTTTAGTTCTTGATGTT
GCGCTCTAAGAAGGGGGCAAAATCTTCTTGCAATTCGCTTGATATCATAGCGGAAGGCGTTTCGGTTGATACCTTTGG
TTTCGTTGTAGAGTGTACTGTTTAATCTATATAATGGGCCAGCGTGCTGGGTCAGCCTTGGTGCAGGAAGGTATGCGA
GTGGGAGTGATGGAGGAAAATTGCTAGAAGGCGCGAGATTGAATAAGACCAACGGGTCAAAATCTCCGCGATTGAGA
TGTGAAAAAAATCACATCATCTCAGTGGAACAACGAACAGCAAAACAGCAAGCATCATACGATGCACACCGTACAACAA
CAGATCGGCCTGTCACATTCTTTTCCTGCCCAGCAAGATCTGAGGCACTTTGGGCAGACGCTTATCCGACATTTTCATT
TGTCCAACTCTTTTTTTTTTACTTTCCTACTTTATTAAAACTTCTCGGGGCTTTGCGCATGGCGCAGACTCTTCATGTATC
AAACACTCTATCCACCGTCTGTGAATGCTTTGGAGATAGCATTCATCAAATACCAAAAATGAAACGATTCCATACGACCT
TCTACTTTACTTACACTCCAATTACACCTTTCTTGTAAATAATTACTGGGTAAATAAAAACTTAATAATAATACTAAGATGC
ATTTTTGGGTGGCTATTTCTTATTGGTTTCCA
BC1G_02471
SEQ ID NO: 51
GAGCATTCGACAATCTGGAATTTCTACCTATTCTACAACTTTATTTAACATCTTCCATTTTGTCAATGAAATATCGGTAGT
AATTGTGGAAGCTCTAGGGATTCTGAAATCATCCTCTAGCAGCAACAAAAATCATGTCTAAATCCAAACATGCGGTTGA
GCTTTGCTCACTGCTAGTTGATGATATTTATGGCGAACTATCGTCTCGCATTTTTACTATTTTGCTCAGACGGGGAAGG
TTACCTATGAATGCGCTCAAACGACACACTCAACTCACAACGCGACAATTGAAGCTTGGATTAACGGTCTTAGTACGAC
AAAATTTGGTTTACCATAACTCAGAAGGCAGTGACACCCATTATGAAGCGAATATCGATGCCGCATATGCGTTGGTTAG
ATCTGGGAAAATCTTAGAAATTGCGGAAGAACGATTTGGGTCTGTTGCGGCCGAGATTATGGGACAATTGGTACTTTT
GGGCCACGCCAAAATATCCGACATAATCGCAGAGTTAAACAAGAACCATGAACCACACGCCAATGGCAACAGCAACG
AAACCAACGGCGCGACAAATGGCAATGGTGTTCATTCATATCCCTCAGGGCAATTGAACCATACATTGATCCAATTATT
GGAGGAAGGATTTATTCAACCTGTTGGCCAGAATATGTTTCGAAGTCCGACAGATAGTTATAACGCGGTTGAAAAGGC
GCTTCTTCAAGATAGTTATGGGGGAGCCACGAGAGGCACGAAGCAAAAAGACGAGTTGAGGATGAGAATCCGAGGAC
AGCTCCAAGAACTGAGAGCTCAGGTTCCAAATTGGAAACCTGTCGGTTACAATCGCTCATCTACCAATGGCCATACGA
ACGACATTGCCTCGAAACGAAGAAGACTCTCTCACAGCGGGGGTGCAACTAATGGGTATGACTTTGGCGACGACGAA
AGTAGCAAGCTTGACGGAAATTTGGTTTTACGAATCAACCATGAGAAATGCACTGTCTTTATGAGAAATCGACGACTTG
TTGAGCTTGCAAATTCCCGGATTGGCGTAACCACATCGTATATCTATGCGGAGCTTCTTCGACTCATGGCAGAGCAAAT
TCCTAGGTGTCGACCCGATCCTAGAATTGACGATGCTGTGGACGACGCTGATGGGCCTTCAATCATAATAACAACACA
AGAGTTGACTGATGCTTTAAGTAAGACAATCAACGTATCCACTGGAATCGGCAAAGCTACGAGCCAAAAGATCGACAC
TTCCAGACTTGACAAACTGCAGAACGGCAGAAAGAGAAAGGCTCAGGATGAAGCAGAAGTAGAAGGTGTGGCAAGTT
CTGACGAGGAGTCAGAAGATGATCACAAGCCTTTCACGAATGGAAACGGCCATGCAATGGATGTTGACGAAGATGATC
CATTTTCGGATCAACCCGGGGCTAACACCAGCAAACGAGCCGTCACTTTTAAAGACCGGGACAGAACTCCTCCTCCAA
CAGAGAGTCGCCAGGCCCGAATGATGCATGTAATGAGCCATCTCCAGTTGTTAGCCGCTGATGATTGCCAACTACTAC
GAAAGTGCGGTGCTCGGCAAATGGGCGAGTGGACGGTAGATTTTGAGCGTGTGATTGACCGACTTCGAGAATCCGAA
CTTGACTCCATCATTTATGAGAATTTTGGCCAAATTGGTCATCGACTTGTACGAGTCATGAGGAAGATGGGGAAGCTTG
AAGAAAAGCATATTGCCAAGCTGGCGTTGATCAAGCAGCAGGACTCCCGTACTACACTTGTGAACATGCAAATGCATG
GTATGGTTGATATCCAGGAAGTCCCCAGGGATACTGGTCGTATGATTGTGCGTACTATACACTTGTGGTTTTGTGATGA
AGACCGGGTTACCTCACTTTTGTTGGATCGAACTTACAAGGCCATGTCAAGATGTCTCCAGCGACTCGATGTAGAGAA
GCGACGCAAAGCAAATATCATTGCATTGTCAGAGCGTACAGATGTTCAAGGTCAAGAAGAGGCTTTTCTTCGACCAGA
ACAGATGAACCAGTTGCGTGAGATCCGGGCGAAGGAGGAAGATTTATTAGGACAGATTTGTAGACTCGACGAATTGGT
CGGCATATTTCAAGATTATTAACTCATATGGAGGGAAGGTTTTGGTTCGGGGCTTTAGCGTTCTTGATTTTTCACACTG
GGGCGGCGCCATCTACTGCATAAAGAAAGGCGTTCTAGTATAGTCGAGCAGCAATGGTTATTTCCAGTTGACTCATTA
CTTTGAGATACCATAGGTTTATTTCGTAGCCTAGATTAGTTGCTCAGGCAAATATTCTCCAAATTTACAGATTGTAAAGT
AGGTATGAAGCTTTTAATGCCATTGTTTCGCTTCTGATTATCTCCCCTTGAATAGATACAATATTACTTAATTACCTAATA
TTCTCCAGTCAATACATAAAACTCA
BC1G_03511
SEQ ID NO: 52
GACATATAAGACGACCACATGCACTTACAGCAGTCCAGATTATGAGGATCGACCTGCATGATCCAAAATGGATTCAAA
GATTTCGACTTTGAATGACCCTCCAAGACTTTTGTCCGGGCCACAACTTCTACATGATTTGATCCGATGGAATGAATAC
GAAAATTCTTGTGCAATTGACTTCACTAGTCACGATAGACGAGAGAGGTACCGTTATCGAGACATACAAGCTTGTGTGA
CATCTCTCGTTACACGAATCCAATCAACGATTAAAGTTTGTCAAACATCTCAACAGCAGCACATTGTCCCAATATTGTTA
CCGCAATGTCCTGGGTTATATATCTCTCAAATCGCAATCCTGCAGTCGGGAGGGGCCTTCTGCCCTATCAACCTCGAT
GCGCCGAGAGATAGGATACGATTCGTCGTGGGCGACGTTTCTGCGAGTATCATAATTACGACATCGGAGTTTCGAGA
CTCGGTTTCTTGGGAAAATGGACCCAGAGTTATTGTCGTCGACGAATTTCCCATTGCCCCCACGGAACTGGATGAATC
AACTGAATCACGTGAACCTACTAGCAATGATCTTGCATATGTTATGTATACTTCTGGTTCAAGCGGAACCCCAAAAGGA
GTTGCAGTCAGTCATCTCGCTGCTTCACAGTCTCTCTTGGCTCACGAGAGTCTTATTCCCAAATTTAAACGATTTCTCCA
GTTTGCCGCACCATCTTTCGATGTCTCCGTATTCGAGATTTTCTTCCCTCTGACTAGAGGTCAAACATTGGTTGGATGT
GATCGTAGTCAGCTACTTAACGATTTACCAGGCATGATCAACAATTTGGATATTGATGCTGCCGAACTTACTCCAACCG
TTGTGGGCGCTTTATTACAGAAGAGATCCTATGTTCCTAAATTAAGATTGCTGATGACGATTGGTGAAATGATGACGAG
GCCAATCGTGGAGGAATTTGGTGGATCTGATACAAAAGAGAGCATTCTTTATGGGATGTATGGACCGACTGAAGCAGC
CATTCATTGCACAATTCACCCCAAAATGGAAGCAAGTGCTAAGCCGGGTAATATTGGAGTACCCTTTGAGACAGTATCT
GCGTTCATAGCGGAAGCGGCTTCTGGGTCTGAAAATGAGCAGGATCTCAAATTTCTCCCACAGGGCGAGCTCGGAGA
GCTTATTTTAGGAGGCCCGCAACTAGCAAATGGTTATCTTAACAGAGAAGAGCAGAACAGGGCTGCTTTTCTGGCAGT
GGCAGATAAAAACTACTATAGGACTGGTGATAAAGGTCGGATTCTTGAAGATGGAAGTATAGAAATCCATGGCCGTAT
GAGCGGTGGACAAGTTAAACTACGTGGCCAACGTGTCGAACTTGGAGAGATAGAAGATGCTGTCTACAAACATCCGG
GGATCAGAGCTGTTGTAGCAGTCGTGATACGCGGGGTACTGGTTGTGTTCGCTCTCACAAGTGAAGAAGAAACTCATT
CCGAACAAGTTCTGAATACTTGCTCACAGTGGCTTCCGAGTTTCATGGTACCCAGTGAGATCATTATCCTGCAAGAGTT
TCCTTATCTACCGTCTGGAAAGGTAGATAAAAGGAAGTTGGAAGCGGGCTACCAGCAAGAATGTGAAGAAGGGGACG
AGCAATCAGACTTTACACAAAATGAAGTAATAGTGAGAGAGTTACTGCGCGAGATACTTGGTCCATTTCCCCCAAATAT
ACGTTTGGCAGCTGCAGGTCTTGACTCGCTCGTTTCTATCAAAGTATCTAGAGAACTTCGATTGCGAGGATTTAACGTT
GCGACTTTAGATGTTTTGAAAGCCGAAACATTAACGTCGCTTGCGAGGCTTTGTGAAAATTGCCCCGAGGTTTCAAGTT
CAGCCAAGGCTCAATTGGGCCCTACCAAGTCAGAAATGCACGCTATGCTGAATGGCAATGCACATGCCGTTGAAAGTT
CTTTCCCTTGCACTCCGCTTCAAAATGCAATGCTTGCTGAAACTGCCCTCGACGGGAGAGCTTACCGCAACTGGATCG
AGTTAGATTTACCTGGACTTAGCGACACCGAAAATCTTCGTACGAAGCTACACGACCTCGCTGATTGCAATCCAATCTT
GAGAACTGGCTTTGCAGAGTCTTCTGATAATAGCGGATATATGCAGTTTGTATGGAAATCATTTCCCGACTCGAACATT
AAAATTGTGGACGTATTGACCTACGATCTCGAAGTTGAAAATGCATCACTTCATCGCCCGATTGTTTTCGAGATTCTAC
CTACTAAGCCCTGCCTAAAACTCTTGATTCACATCCATCACGCTCTGTATGATGCCTGGTCGTTAGATCTTCTGCTTGAT
GATTTGAATTGTCTGTTGCAAGATGAGATTCCAATTCCACGTCCCTCATTTGCGGATGTTGTGGGGGGTTATCTCGACG
GCAGCATCTCTTCTGATTCTCGAGTCTCTAAAGATTACTGGAAAGATCATATGGCAAACCTCGAGCTTAGACATTTACC
TAATTTTCACACAAGCAACGTTGCTTCCGCTAGATTGGCTGTGGCGCATCACTCGACTCAGCTCTCAACTTTAGATGTT
GAAGTAGCCGCGAAACAATTAGCTTCGAGTTCGCAAGCTATTTTTCAAGCGGCATATGCTCTAATCTTATCCTCTTACTT
AGGAACAACAGACGTTTGCTTTGGCACTGTTTTTTCTGGCAGAACCATCCCCATTGTTGGAATAGAAGAAATTATCGGA
CCATGTCTCTCAACCTTGCCGATTCGTATAGATACCTCCATAGCCTCTACTCTCCAAGATCTTGTAGAAGAATTAAACAG
TATAAATAGGAAACATCTCAATCATAGCACCCTCCCACTTCGCGAGATCAAATCGGTCAATGGTTTCGAGCCTCGACAG
CCATTATTTGATACACTTCTGATATGGCAACAAACTCTCCATAGTTATGACCAGAGCAGAAGCAACGTCCTTCTTATCGA
CCAGCTTGATCAACTGGAGTTTAATCTAACTCTTGAAATAACTCCTACATCTAATACCATTCAATTCAAAGCAAATTATCA
ACAGTCGATATTCCCCGAAAGCCAGATAAACATGCTTCTGTGTCAAATTGAAGATGTCGCGAAAACAATCATCCAGCAT
GCAGGATCTTCACCTATAAATGTCTTCAATGAAAGTATCTCTGAATTATTATCTTTGGAGAACCATACACCTAGCGTTGC
CCTTGGACCCGAGACTCTGATATCTTCAGTGGAACAGATCGCAGAAGAAGATCCCGATCGTCCGGCAATTGCGTTTGC
TAGCAGAATCGAAGACGTCAGTTCAGACATTCGATACATGAGTTATGGTACTTTGAATAGTCGTGCAAACCAGCTGGG
ACACTATCTATCCAGTAATGGTGTTCTGCCGAATGATATTGTTTGCGTTTGTCTAGAAAAAAGTCATGATTTTTATGCCT
CAGTATTGGCTATCACGAAACTCGGTGCAGGCTATCTCCCAGTAACCCCTGATATTCCACATAGCCGGTTGCACCATA
TCTTGATGGAAGCCAAGGTAAAGGTATTGGTTGGACATTCTTCATCCCGGAAACTGCTGGAACAATTTACGGAACAAAA
AGTTGTTCAAATCGATGAGACTGAACTGGGTCAACAATCTACGAAAAACCTTTCTATTGCCTTCAAGCCAGAAAATATCT
CATATTGTGTGTTCACTTCGGGGAGCACTGGAACTCCAAAAGGAGTGCTTGTCACACAAGGCAATCTTCTAAGTAACCT
CGACGTGTTAGTAGAGATCTATCCAGCAACCAGCGATTCTAGACTTCTCCAGTCATGTTCACAGGCCTTTGACGTATCT
GTCTTCGAAATTTTCTTCACTTGGAGAATTGGGGGATGCCTGTGTTCTGCCGTGAAAGACGTTTTGTTTCGAGACATAG
AACTTGCGATTCGTGTTCTGGAAGTGACTCATCTCAGCTTGACACCTACTGTTGCTGCTCTTATCGATCCACTTAATGTA
CCTAAAGTAAAGTTCTTGGTCACTGCCGGAGAGGCTGTGACACAAAAGGTTTTCAACACATGGGCTGGCCATGGGCTT
TACCAGGGTTATGGTCCCAGTGAGACAACCAATATTTGCACTGTCAAGTCACAGGTCACCCTAGATGATCGTATTGACA
ATATTGGTCCTCCTTTCAAGAATACGTCAGCTTTTGTAATTGCTCGCAACTCAGAATTCTCCTTGGTACCAAGAGGTGG
CGAGGGTGAGTTTTGCTTTGGTGGCTCTCAGGTCTTCAGAGGGTACATGAATCGAGCTCAAGATGAGGGAAAGATTAT
TAATCATCCCGAATATGGGCGTCTATATAAAAGTGGCGACTTTGGGCGTCTGATGTCAGACGGATCCCTTGTTTTTACA
GGACGAAAAGATGACCAAGTCAAGGTCAGGGGCCAACGAGTTGAACTTGGCGAAATCAACAATATCTTGATCTCTTTA
CCAGATGTCGAAGATTGTGTAACAATGGTTATCAATGGACAAGGAAGTTCGCAACGCCTAGTTTGCTTTTTCACGCCAC
AGTCATTAACATCTGGAAATATTCTTCCTCTTCAAGTTGATCCAATTATTATTAGCGAACTCTATCGAATACTGGAGTCG
AAGCTCCCGAGCTATATGGTACCTTCAAATCTCATTCCGGTTTCAAACCTTCCATCGACATCGCAAGGCAAGATTGACA
AGCGTCGACTAATTAGCTTGTATGAAAACTTTGAGCTTGCGTATCTTGACTCTACTACTAAATCTTCAACGTCTTCTGTA
GATCATCAGTGGACAGAACTTGAGCTTGAGATCCGCTCCTCATTGAGTGAAATCTCAAAAGTTTCAGTAGATGATATCG
GTCCAGATACATCATTCTTTAGCTTTGGTATCGACTCGATTTCGGCAATTGCATTCTCCCGGAAGCTACGTCAAACAATT
GCAAAACCAATTGATATTTCTGATATTTTGAAGCATACTTCTGTAGTCAGACTTGCAGAACATTTATCAAGATCCGATGA
GCTTAGAAACGACGACATCTCGATGGTTGATACAAACTTAGGACTCAGCGATGAATTTTTAGAGTCTACTTTGTCTCAG
TTTACCACCCCGGAAAAAGTTGCGATAAGCGTTTCACCTTGTACGCCTTTACAAGAAGCTATGCTGTCCGCGGTTGAG
TCTTCCTCGGGCGTATCATATAACAACCATGTCATGTTCAATATATTTGGTGATCTCGAACGAATTCGTGGCTGTTGGC
AAGAAATGGTCCGGAGACATGAAATTCTTCGAACTTGTTTTCTTGCTACTGAAATGCAAAAACACCCTTACGTCCAAGT
CGTGTTTCAAGAATTTGAACTCAAATTCGGCTCTCTTGATTCTAACACTCTGGAGGCTGCCATTCTTGAAGTAGAGACA
AATTTAACACACAACGATGATAGCCCGCCTTACAAGGTTAACGTTTTGCACTTCAATGGCCAGCAGCATCTTTTGGTCT
CAATGCATCACGCACTTTATGATGGAGTCGCCCTGGCAATTCTTTACGATGAAATTGAAAGGCTGTACAATGATTTGCC
TCTACTTCCCCAGGTTTCCTTTACTCCATTTCTAGAGCACATAAGCTCAATGAATCTTGATTCTTCTGATAAATTTTGGG
GATCTACCTTACGAGGATATTATCCACTTCACTTCGAAGATATGCCAAATTTGACTAGCCAAGTTGAAGTGGACAGCAC
CCGCATTCAGAAGCTGATATCGAAAATTCCTCTTAGTAGCGTCGAAAATAATATCAAGAAGCATAGTACCACCCCTCTC
GCTGCGCTTCATGCGGTCTGGGCTGGCATCATTTCTGAACTTTTCAAAAGCACTGATATTTGTTTTGGCAATGTAGTCA
GTGGTCGCACTGCCCCAGTTAATGGTATAGAAAGACTGGTCGCGCCATGTTTCAACACGGTTCCAATCCGTTTGGAAA
ACATTCACAAGTCCACTTACCTCGAGGCATTCAGAAAATTACAAAATGCAAATGCCAACTCCTTGCCATACCAATTTACT
CCTTTACGACGACTTCAGTCAAAGTTCAGTCCTGATGGAACTCGTCTATTTGATACCCTTTTCATTTTACAACAGCCGTC
GAAGGAACTCGACTCTTCTATATGGTCCATTGCGGAAGAAAACGGTGCCATGGATTTTCCTTTAGTCTGCGAAATTATA
CCCAAACCAAGCAACGATACCCTTGAAATTGTTCTTCATACATCTACTTTAATGTTTTCCGATTACGATGCAAATAATTTA
ATTCAGAGATTCGAGGATTTACTACAAGTCGCCCTGGAGAACCCTCGGCGCCAGATTATTTCCTCTTCGGCAAGAGCG
CAGATCCTCGCTGTTGACGAGGAAAGAGAGAGAAAAAGGGTGCGAATTTTGGACCCGGAACACCAGGACAAAACCAT
GAGTCCATTGGAACTAGAAATTCGAAATATAGTTGCAGGATTTACAGACGTTCCCCCAGACAAGATCTCTCGGGATACC
AGTATTTTCAGGTTGGGTCTCGATAGTATCAGTACAGTTCAGGTTGCTTCTCGCTTGAGAGCTCAAGGGCATAACCTCC
TTGCGAGTGATATCCTACAGCACCCTACCATCGCTCAAGTTGCTTTGCATCTTGAACAAAATAAGTCTTCAGTGAAACA
AAAAAGCGTTCAGTATGATTTCGCTGCTTTTGACCAAAAACATCGCGAGCCAATCTGTTCGAAAATTGGAGTTTTATCTC
ATAATGTTGAAGCTATCAGACCTTGCACAGCTGTACAACAAGGCATGCTTGCTCAAAGTTTGCATTCTGGAGGTCATGA
ATATATCAACAGCGTGTCTCTGGAGATTTTACCCGATCACTCGTTGGAAGAAATTAAACATTCTTGGACTAAAGTCTGTA
AAGTTCATGACATGCTTCGTACAGCATTTGCTCAGATTGAAGACCCAAAGCATCCGTTCGCAATGATAACATTCACAGA
ACACTCCTTTGTTCTCCCGTGGTTTGAAAGTGGCGTCCAAACATTCTCTGAGGATAATGATCGTCTCCGAAACCCATGG
GACATGACGATGTACAAGAACGGGGACGGAACTATACTCACTTTCACTGCACATCATGCACTTTACGATGCTCAATCTA
TGGAAATGATATTTTCGGACTTTACAAAGTTATATCATCGTCAAGAATTGGCCAGTCGACCTAGCATGAACACATTGTTG
GGTTCAGTTCTTCAAGCATCCGAAGGAGCCCAAGATGAGAAGAAGACATTTTGGCAACTGCCTGAAAATCGAATTGTG
GTCAATAAGTTCCCTGATTTGACTCCCCTCCGTGTCGCAGCACCTAGTAATGCAGTTCGTGAGATAAAATCTTCTGCTT
CACTGAAAGACCTTGAGAATAGATGTCGAGAACTTGGAGTCACTATGCAAGCAGCTGGGCAAGCTACTTGGGCGAGG
TTGTTGATGGCATATACTGGAGAGAACGCTACGACTTTTGGAATGACCCTCTCTGGTCGATCTGTTCGTGATGATGCCA
ATTTAGTCGCCTTTCCAACTATCGTCACACTTCCGGTTAATTGCAACGTGATGGGCAGTAACGGCGATCTGTTGTCCAG
GACTATGTCAACCAATGCACAACTTCATAATCATCAATTTACGCCGCTGACATCAATTCAAAAGTGGTCTGGGTACCCC
GAGGGACGGATATTCGACACTTTATTTGCGTATCAAAAACTACCTGAAGATGGAGAAACTCTGAATTCTCCATGGAAAG
TAGTCAAAGAGGAGGCTACAGTGGACTACGTCATATCTCTAGAAGTCCAACCCTCATCATCGGGTGAAATCACAATTC
GATTATCATTCAGAGAAGATGTCGTACCCGCAGCTCATGCTGAGCTAATTGTCAAACAATTTGATGCGCTACTGCTGGA
TACGCTCCAAAACCCAGATCATCCCTGCAATGTAGCGCCTGATATTGGAGTTGAGTTGCTGTCCATTACTCCTGCACA
GGATCCTGTTCTTCCGGACTCCGTAGCCCTTCTGCATCAATACGTCGAAAGAGGGGCCAAGACATGGCCAGATAAGG
TCGCATTAGAGTTTGCAACTTGCCTTCAACCAGGCAATTATCAAAGCCAAAAATGGACATACCTACAATTGGACGAAGA
ATCCAACAGGGTGGCTCAGATGCTCCATGCACGTGGAACTACTCCGGGTGAGATAATTGCAGTTTGTTTTGACAAGTG
TGCCGAGGCTTCTTTCGCAATTATTGGTATCATGAAGGCTGGCTGTGGTTATGTTGCACTGGATCCTAATGCTCCTGCC
GATCGCTTAAAGTTTATCGTGGAGGATTCTGCTGCGAGATTAACCATCAGTGCAGGAAGCCCAGCCCAGAATTTGAAA
ACTTTCGTAGACGGGAAGATTATCGATCTGACTGATCCGACCACACTTCGCGAATTTGCCCCTGAAGCCCCGGAACTT
TCCAGAGAAATCACCCCTGACGACATATCCTATTGTTTGTACACGTCTGGAACAACAGGAACACCGAAAGGATGCCTG
CTTACTCATGAAAATGCGATTCAAGCGATGCTTGCATTTCAAAGACTGTTCTCTGGACATTGGACCACCGACTCGAAGT
GGCTACAGTTTGCTTCTTTTCACTTTGACGTGAGCGTCTTGGAACAATTTTGGAGTTGGAGTGTTGGAATTTGTGTAGC
TACAGCTCCTCGAGATCTGATATTTGAGGATATTCCAGTTGCGATTCAACAACTAGGTATCACGCACATTGATTTAACAC
CGAGTCTTGCACGCTTGTTACACCCAGACGACGTCCCGTCATTATGCAAAGGTGTTTTCATTACGGGTGGTGAACAAC
TAAAGCAAGAAATTCTTGATGTATGGGGCGAGCATGCTTGCATTTACAATGGATATGGGCCAACCGAAGCTACTATTG
GTGTGACTATGTATCCTCGAGTACCGAGAAATGGCAAACCTTCCAACATTGGTCCTCAGTTTGACAACGTCGGATCGTT
CGTTCTGAAGCCAGGAACTGAGCTACCCGTTCTAAGAGGAGGCATTGGTGAACTTTGCGTTTCTGGAAAACTAGTCGG
AAAAGGATATCTCAATCGCTCAGAACTTACGACTGAGAAATTCCCTACGCTTACTAATTTCAATGAGCGAGTGTATCGC
ACCGGAGATCTTGTTCGAATCTTGCACGATGGCACCTTCCTCTTTCTTGGTCGTGCTGATGACCAAGTCAAACTTCGTG
GACAACGTTTGGAGTTAAGCGAAATCAATGAGGTAATCAAGAAAAGCAGAAACGATCTAGAAGAGGTAGTCACATTAG
TTCTAAAACACAAAGCACAAGCTAAAGAGCAGCTCGTCACGTTTTTTGTCGTGTCAGGAAAGAGCCAGTTGAAAGATAG
TGAAGTAATTCCCTTCATCAGAGATGCCTGCAGCTCGCGACTTCCAGGATATATGGTCCCAACACATTTCATCCCCATC
AAAGCACTTCCTCTCAACGCAAACAACAAAGCGGATTCGAAACAACTCGCAGCAAAATTCGACGATTTGAGTATGGAG
GATCTTCAAAACATGAGTATTCAGGTGCAGAACCATGCGGAATGGACAAACAGAGAGGAGAAGGTGGTAGATACCATC
GTTAAGGTATTTCCCATCGATGTTCCCGAGTTAACGCGCAGCTCGAATATTTTCCAACTCGGTCTCGACTCCATTACCA
TGACTGCCTTTTCAAGCTCCTTGAGAACTGCGGGATACAATAACGCCACCAATGCCACCGTCAGAAGCAATCCCACGA
TCGGGAAGTTGGTTGAAGCACTTCTTGCTGCCAAAATGAATGATACCAGAGAAAACTCATATCTTGTTACAGCTCAACT
GAGAATTGCCGGCTTTTCACAGCAGCATACAGTCACCATTTGCAAAGACTTAGCGGTTTCACCCGAGCATATTGAGAG
CATCGCACCTTGCACTCCTGTGCAGGAAGCAATGATCTACAGGTTACTTGAGAGTGATGGAAGATTGTATTATAATCAC
TTCGAGTACAAATTGGCACCCGGAGTTAATTCTAAACACGTTTCCGATGCGTGGGATCGTGTAGTTTCTAATCTTCAGA
TCTTGCGAACCAGATTTGCCTTGACAGACGATGGCTATGCCCAGGTGGTTCTCAAACCCCAGGCATCTTCGAAGCATT
GGGAGTCGGGCATCGTATTAGAAACCTTGGAAATTCTCAATAACCCGTGGTGTTTCGATATCAAACATCATGGAGACG
AAGATACCGTATCGTTAAATATTTTTCATGGCCTTTATGATGGGAGCAGTCTAGGAATGATCTTGAATCATCTTTGCGAC
GAATCTCGCCAATTACCGAACATTCAGTATGGACCGGCTTTCCATTCATCGTTGGCTTATGGGCCGCTGTCGATAGTTC
CCGGAAAGGAGGAATTCTGGAAATCCCATCTAAAGACATGGACTCCCTATTATTTACCTCATGACTACGCAGATCCGG
GAACTCGGATATTTTCTCGTACACTTGACCTGCAAGATTTTGAAATCAGACGGAAAGCCTTATCTGTTGCGCCGCAGGC
CATAATCCAAGCAGCATGGATCTCAGCCATTCAAAAGATCATTTCTACCAAATTGACCACAATTGGCATTGTCACATCC
GGCAGAGCAATTGATTTCGAAGGAGTAGAAAAAGTTGTTGGACCCCTTTTCAACACCGTGCCCTTCCATCTTCCTGTAC
AGGCTGGCATTCAAATTTCCTCAATAATAAAGGAGTGCCACCGAATAAATATGGAAATGCAAGAATTCCAACACACGCC
ATTGAATGATATAAATAAATTAGTTTCTGCTGCAGTCACAGGTCCGCTCTTCGAGGCACTATTCGTGTTCCAACGTCCG
GATGCTAACGAAGAGCAATTATCGGATCTAATGGGAAATATTATCTCTCCTGAGGAGGATAGGAATGCAGATTATCCTA
TAGCACTCGAAGCTACTCTGAGCCACGATAGTACTAAGCTTATTTTGGAGATGGTCGTGAAGAGCTCAGCTGTGACGG
AAGAAATGGCACGCCTTGTGCTCATTGAGATGAATAATACCCTTAGAACTATTCTTCCCGGTAACGACAATGCGACAAG
AACAGTTGGGATTGATCTTCACCATCAAGCCCACTCAAGACTTCTCCCAAACCCCTTTCACTGGCTGAACTTAATTGAC
GATTCAAGTCACCTAAAGCAATCTTCGGGAGCTTTACATCAATCTGCGCGCTCAGGCCAAATACCTCTAACCAAAGAAA
AGGGTGATGTTGTTTGCAAGGAGGTTGCAAATTTGGCCAAAATTGACAAAATAGATATTGATGATCATAGATCTATCTTC
GAACTTGGACTTGATAGCATCGATGTGATCAAGTTGTCTTCACGTCTGCGGAAGAACGAGATTGTGATATCTGTCAGC
GAAATTATCAAATGTCAAACGATCACTAAGATTGTAGAAGCCGCGACACTCTCCAAAGAAATTGTATCCGACGCATTGT
CTACCAAGAAACTCGCGAGACTTAGTCACAAGCTTCACGGGTATCTAAAGCCTAGGCTTCCTGCAGACTTCGAATCCA
TTCTACCGGCTACACCTTTACAAGAGAGCATGTTAAAAGAAATGGTTGATTCCAATTTCAAAAGCTATTTGACCCTCCAG
GTTTTCGAACTGAGTGAAAACACCCAGGAGGGAAGATTGTTGGATGCTGTGGATATGGTTATCGAAAATTCGCCAATTT
TAAGAACCACCTTCCTTGAAGTTCAAGACCCGCAATCTCCCGTCAACTATGCACAGATTGTTCACAAAAAATGGAACAG
GGTGGCCGGAAAGTATCTACCTAATTTTGATGATCATGGGTGCCCCGAAGACCTTTTACAATTAGCAGAAAACAAACTA
AGAGCGGACATGTCGTCGATAGAGAGCCAATTGTTTGGAATACTTCCTGTACATTTCGAAAACAGGAGATTTATCGTAA
TGGGAATTTCACATGCTCTTTACGATGGGAAATCACTGCCGATGATACACGACGATATCAGCAAAGCTTATAGGTACCA
AACAATTGCTAGTCGTCCAGACTATAGACCGTGCCTTGCAGAGATCTTCAATTCTGATACTCATGAAGCGAATGACTTC
TGGAAAGCTACCCTGTGGAACTCGCCACCTGCAATATTTCCAAAGCAGGAACCATCATCAATTGGCGAGACTACGACG
TACCGATATGAGAAGCATTCTGAGTTCTCTCTAAAAAAAATCAGGAGCTTCTGCCGCTCTTCCAACATTACACTACAAAC
TCTGGGACAAGCATGCTGGGCTTTAGTTCTCGCAGAACTCATGGGCCAATTTGATGTTGTGTTTGGAACTGTACTTGC
CTGTCGTGATACAGGTGACACAGCCAATGAAGTAAACTTCCCACTGTTCAATACTGTGGCAGTTCGATCAGTACTTCGC
GGAACTGTGGGTCAAATGCTTCGAGATATGCAAGAGAAGAGCGATATGATTCGTCAATTTCAACAATTCCCCCTTAGGA
AAGCTCAAGCCCTCGCACTTGGCTCTCGAGACCATTCAACCAAAGATACCACATTGTTCGACACATTGTTCACATATCA
AGGCTCTCGACCTGAGAAGGAATCTGATCCATTATATTTGTCATTTGGTGGTTCTTCGGATGTTCAGTTCGCAATCTGT
GTCGAGATGGAGGTTGAAGATAAATCTGATCGTCTTTACTGGACAACAGCTTGTAAATCTGTGGCTAGAAATCACTTCC
AAACCAACGAAATTCTTGAAAAATTAGACAAGGTTCTTGGGAAAATCATGGCAGACAAAGAGGAACAGATCATTAAAAT
TTACAGCGACGGAGTCTCTGTATGCGGATCTCCCAAATTTCAACTTCGAGAAAGTCCCCATCAGAAAAACTTCCAAGTA
CCTTCTCCTTGTGAAAGTTGGTCTAAAACAGAAATGGAGATTCGAAAATCAATATCATTCATTTCAGGTGTCCCAGAGAA
AGATATCCTCAAAGACTCCACAATCTTTCAATTGGGCTTGGATTCAGTTACAGTCCTCAAGCTTCCAGCACATCTCAAAA
ACTACAACCTTCATCTGACTGTTTCGGAAATCATGAGACATCTCACAATTCAGGATATGGCTGATCATTTAGCTGAGAAA
CAAGACTCACAGTCGAATACTCCTGCCAACGTCGACGTTGACGTCGATGTTGATCTCATCCTGGCTCAATCTACACCAT
CGATTGATGAGACCCAGATCAAGCAATTGAATGAATCTTTTGGCGAGATAGACTACATTATGCCCGCAACTGCAGGAC
AAATGTATATGATTAGACATTGGCAAAACTCTCAAGGATCTCTCTTCCAAGCAACTTTTGAGTTCAGATTATCCAGCGGT
TACGACCCACAACTACTCGATTTTGCTTGGTATAATTTGCTACTTCAGCACGACATTCTACGAACTGGTTTCATTGACTT
GGACTCAACTATCGTTCAAGTTGTTTACAAAGAACCAACAAGTATGGTAAAATATGTTGAGGAGCTACCTAATCTTCAAC
AAGAATGTAGCCTTCAAGATCCACCAATAAGTCTTTTTGTCATCACGCCACAGAACACTTCAAAACAGGTCGATATGCA
TCTTGTTATTCACCATGCTCTTTACGATGGAATCAGCATCTCTTTGTTGCTTAAGGAATTGATGGCTTGGTATAATGACC
CGAACACCATGGCCAAGTCCACGTCTACAATCGCCAAAAATGAATGGAAGAAATTTGTTGCGACGACAATCGAGGAAA
AGAATAAACCGTCCGTGAGGGATCAATGGATTGAGTATCTTGGCACTGTTCCCTCTAAACAATCAAGCCCTGATTCAAA
TGTCGAATTCGAAGTAATAGGACCGGGAATCAGGAAGCCTAATCGAGTCGAAGTTTTCGAACCCAATGTGCCAGCAAA
AGGTGTAAAAAAATATGCACGAAATACAGGTGTTTCTATTGACCACATACTTATCGTTTTGGCATCGACAGTCTTGGGT
GATCAACAATTTAAGAATGTTGTGGATCTTGATGGAAATTTCATCGTTGGCCTGTATCTAGCCAATCGCTTTCCATTTTC
ACAGGACCTTTCTTCCATGATGGCACCTACGCTCAACATATTGCCAATCAGAATCGGGCCAAGTAATCGGAATGAAGA
TGATGGTTTTGCGATACCAGAGTTGGCCAAGAATGTGCAGAAGGGTTTGGCTAAGATTGGTAGAGGCGGAATGGCTA
ACGCGGGGCTGGACGAAATCTATCAGTGGACTGGCGTGAAAGTACATGGATGTATCAATATTGTTAAAGAGGTTTCTG
ATCATAGTGAGAAGATGGATGAGGCAAGCTCCGAGGAGATATCGGATTGGGAAGTTGTTGAAGACTTGAACGGAGAT
ACGGCGAAGGAGCATAAGAAACCTCGCGAGGAGGTCGGTTTACAGCCTGTGAAGAATGAGGAAAAGGATACGACCAA
GCGAGTTCTTTTCGAATCGTTGGAAGATATGAAAGGATATGCGAGAGTGGTGAAGCCGAAGAGGGATCAGACTATGTT
TGTTAGGAAGGATTCGGGCGCGTATCCTTCGTCAATCGATATAGAAATTCGCTATCATCCTGAGAGTGAAACCATCGAT
GTTGGCATTTTCGGGCCGGATGATATGTTGAGTCTTGAGGAGGCTGAGGAATCGATTAGAATGCTTAAAAGTTTTTGCT
TCTGAAAGGAGGTGATGGAATTTTTTATTGTCGTTGGGGAAATAACGGAGCGAGGGATTCTGTTCA
BC1G_03981
SEQ ID NO: 53
GATTTACTTATTCAATTAAACTAAGCTCACCTTCCGCAGTGACTGCGGGCAGTCTAAACCATGGGAAAGATAGCAACAA
AACTACGGGAGATCAAGGAAGGAATCAGAAACGATGAAAACTTAACTCGAGGAAGAAAGGGATTTGTTCGAGGAATAA
AAGGGTTACCGTCATCAACAGGGAAATATTTGGTTCGGAAGATTCCTTTCGTACATTGGTTCCCGAACTATGCTCCAAG
ATGGCTTGTGGACGATATGATTGCTGGGGTAACAGTCGCATTGGTCTTGATTCCCCAGGCTCTGGCATCTGCAGCGCT
AGCTGGCATACCATTGCAGCAAGGACTCTTTGCTAGCTGGCTACCATCGGTTATATACTTCTTCATGGGTACATCGAAA
GATATTGCTACAGGACCCACAACATCTTTGAGTCTACTTACCAATGCCGTTGTGTTATCGATTACTGCCGAAGGATTTC
CAGTACCACCAGCTCTCATTGCCTCCGGTCTCTCTTTCTCGATAGGTACCTTTTCTCTATTATTCGGACTCCTGAACCTT
GGATGGATCTTGAACTTCGTCACTGTTCCTATGCTAGTTGGGTTCCAAATGTCAGCCGCGTTGATCATTGTTCAAGGTC
AGATTCCATTAATTTTAGGAGAATCGGGCGTGGGCCAAAACTTTACGCTACAAGGGATGCAAATACCCAAAAACATTGC
AACTACTCAACCGTTGTCTTTGGCTGTTGGCGTAGCTTCAATAGTGATTATCATTTTATTGAAGCTCATGGGCAAAAAGT
GGGGGCACAAGAGTAGCATCATCAGGATCTTATCAAATTTACGGAACGCTTTTGTGATTGCTATTTCCACTACGATATC
CTTTATTATCAACAAAGATCTCGTCATTCCACAATTCCCCATTGCTGGGACGGTAGCATTAACCCTACAATCTCCACAAC
TTCCGACTAAACTTGTTCTACTTGTCGCCAAGAAATCCTTCCCCGTTTTTATAGCTGCCATAGCTCAGCATTTGATATTC
GCCAAGTCATTTGCTCGTGAGCACAACTATGAAATTGATGAATCGCAAGAACTTGTTTTTTTGGGTACCGCAAATATCG
TGAATAGCTTTTTTGGTGGGATGCCAGTATCCGGATCTCTTTCTCTATCGGCAGTAAATTCAACAACTGGAGTGAGATC
ACCACTTAGTGGACTTTTCTCTGCCGGGTTTGTTTTTCTTGCCATCAATATGTTGACGGAAACATTCCAGTGGATACCAA
CTGCAGCAACCAGTGCGATTATACTAGTCGCTGTAGGAGAAACATTACCTCCAAACAGTATTCCACTCACATACTGGAA
GGGATCATTTGCCGATTTCATAGGCTTTTTTGTTGTCATGAATGTGGCGTTAGTTACAAGTCTAGAGCTTGCTCTTGGA
CTTGGGATAGTCTACATAGCGCTCTACACTCTCCTACGCACATTGTTCTCCTCAATTAGTCCACTAAAGCCCCATGATA
TCGAAAACAGATACAGCTTTGAAAGTGTAAACAGAATGAGCATACCTCTTCAGGGAGGGCGCCTAGTACCCCAAGGCA
CGCAACTCATTACGTTAGAAACTCCCCTCATCTACTTGAACGCCGAGAGAGTTAAGAAAGATATCTTAGAAGCTATTTG
GACCTATCATGAGCCAACTCCGTATGGGCCGACGGAACGAAATGGATGGAGCGACTACCGAGTTCGAAGAACTGCCG
CTCTCCGTCGCAGGAGTAACATTAATACACCAACTAGATTCCTTCCAAGGCTTGAAGTTATCGTATTCAATTTCACACGA
GTCACATTTATCGATACCACCGGACTCACCTATCTTCAAGATCTCAAAGACGAAATTATGGCATATAGTGGTGACGCTG
TAGAGTTACGTTTCGTAGGTATGATTGACTCTGTACAGAAGAAATTCAAAAGAGTAGGATGGCCGTTGGGCACTTATCA
AGAATCACAAATCGGCCTAGTCGCGGGAATTGATATTATATTCGAAGATCTACACGATGCAGTTGCAGCACCTCGAAG
TGTAAGAGCATCTATGAATGGACTGGATTTTGGGTTTGCAAATCCAAGGAATGATATGGAACAATTTGGAGATGAGGAG
GCTTTTGAAAAGGGCAGGATGAATGTCATAGTTACGAATGTTGTAACAAAGGATGGGAGGGCATATAAGGAGAAAATG
TAAATATACCTTTGGGTGCTTTGGAGTATTTTGGGAGCGATCTTTGCTGTCTTTATTGGGAGAATAAGAATTGTACAAAT
ATATATGCGGAGAATCAATGCGGGAGGATGCTTTCTTGGACTGCATAGTCAAAACGATGAAAGGCGTTGAGACAGTCA
CCATATCAACTCACAAATTCCAACCGAAACA
BC1G_14507
SEQ ID NO: 54
GGGTGTGGGTGTAGATGAATTAAATGAAGAACATCAGCGTTCCAAGGTAATCCGTATCCATCATATCACATCACATCTC
TTCACATCACTCCAATATTCTCTCTTCTATCCTCTCTCTCTCTCTCTCTCCCTCTCCCTCTCTGTCTTCCTCCCCCTCGC
CGTCGTCGCTTCATTGTAGGAGACCTCTTTCTCGTCGCTCCATACCAGTCCCGCAAATCGATAGCTTCTTCCATTTGCC
TGCTAATTACCATTCCATATTACATTATTTATATGCGTAATTAGCAACCTTTTGCCTCCTTCCCCTTGCATTAGCACCACG
AAACATCGAGAACCAGACAGCTCCATTCCCTCAAACAACCTCCTATTCGATCGATCATTCCTTCTTCAACAAGACTTTG
GAACAACTACTGCACTTCAATATGTCTCAACAACCTGAAGCTGTAAATAATATGCATAATTTGACTACGCTCATAAAACG
ACTCGAAGCCGCAACCTCTCGTCTTGAAGATATAGCTTCCTCTACCATTCCACCACCTGCTTCATCATCCATCCCTCTA
ATTTCTCCTCCGGCCGAAGCTGCGAAAACAAATGGCACAACTCCGCCGCCGCCAACGATCCAAACACCAGATATCAAA
AAGATCATCGAGGATCCAATCCCAGGAGTAGTCTCAGAGTTCGATAATTTTATTCAGGGGGCGGTTAAGAAATATGTTA
ACTTGAGTGATGAGATTGGAGGGGTTGTTGCGCAGCAGGCATCTAGTGTATTGAAGGCATATGTCGGACAACGAAGAT
ATATTTTGATCACTACAAAGTCAAAGAAACCTGGCATGCAAGATGAACCATTCCAAAAGCTCATCAAACCTCTTCAGGAT
TCATTTACTGCCGTTGATGATATCCGAAAGTCCAATCGTGCATCTCCATTCTTCAATCATCTCAGTGCTGTTTCTGAAAG
TATTGGTGTACTTGCCTGGGTTACAATGGACAACAAACCATTTAAACATGTCGATGAATCATTGGGATCTGCTCAATATT
ACGGAAACAGAGTATTGAAGGAATTTAAGGAGAAAGACCCAAAACAAGTCGAATGGATTCAAGCATTCTATCAAATCTT
TAAAGATCTCAGCGAATATGCTAAGGATAACTTCCCAAACGGTATTCCATGGAATCCAAAGGGTGAAGATTTGGAAGTT
GCGATTAAGGATGTAGATGAAAAGGCTCCAGCCCCTCCTGCTCCTCATCCAAAGGCTGCAACTGCTGGAGGTGCCGC
ACCACCACCACCCCCTCCACCTCCTCCTCCACCAGTCTTCGATGACATTCCATCAAAGCCAGCACCAAACCAAGCAGA
TTCAGGTGCTGGACTAGGAGCCGTTTTCTCTGAACTGAATAAAGGAGCAGACGTTACAAAAGGATTGCGCAAAGTGAA
TGCTGATCAAATGACACATAAAAATCCTTCTTTGAGAGCAGGTGCTACAGTTCCCACCAGAAGTGATAGTCAATCCAGT
ATTAATTCGAACCGAGGAAAGAGTCCTGCTCCTGGTAAAAAGCCCAAGCCAGAGAGTATGAGAACTAAGAAACCCCCT
GTTAAAAAATTGGAGGGTAACAAGTGGTTTATTGAAAACTACGAAAACGAGTCTGAGCCAATCACAATTGAAGCATCTA
TTTCACACTCGATCCTCATTTCCCGCTGCTCAAAAACCACTATTATCATTAAAGGAAAAGCAAACGCTATTTCTATTGAC
AACTCCCCTCGTCTTGCCTTGGTAATTGATAGTCTCGTCTCATCGATTGATGTTATCAAAGCACCAAACTTCGCACTTCA
AGTACTGGGCACATTGCCAACGATTATGATGGATCAAGTTGATGGTGCTCAAATTTACTTGGGGAAGGAGAGTTTGAA
CACGGAAGTCTTCACGAGTAAATGTAGTAGTGTCAATGTGCTACTTCCAGATTTGGAGAGTGCAGACGGGGAAGGAGA
TTACAAGGAGGTGCCGTTGCCCGAACAGTTGAGGACTTGGGTGGAGAATGGAAAGGTCAAGAGTGAGATTGTTGAAC
ATGCTGGATAGATTGGTTGAGATGGATTGTGGAGTTTGGGGAGAGGCTCTGGCGAAAACTTGTTGGGGGTGAGGGGT
AATGAGATGTGATGGAGAATCTGGGTAGATTTGATATTATAGAGATAGTTGAGTGAAGTTTTATATCATCGCATGTTAGT
TGAAGTTTTCAGGCAGAGTAGAAGTCAAAGTTGAATTGTACATATCTATGTATATGTATATCCGAGGCTTGTCTCGCTTT
GTTGTTTAGTAGATTTCAAACCGAAGATTTTCTACTCATCATATCGTGCCGTGTGTTTTATATTGGGCGATGTGTCGTTG
TGCTTTTTCTCTCTCTATCTCTTTTACTTTCAGGGAAATAAATATA
BC1G_09414
SEQ ID NO: 55
GGCTTCAATTGACGTTGAAACATGAATGCTGAATGATGATACGATACACTTTACTTCAGCCCCTTTAACATTTTGTCGCA
AAATCGGTGAAACTTGGGTTGTATGTATTTGTATATTAAAGATCGCTAAGCCCAGCCTCTATGGTAACAGATTACCTGA
GCTTCGTCATTTCGACCCCCGGACCGTGATCTTCTACCAACCTCGAACCCATTCCTTCAAATAAATGTCACAAATCTAT
CTTTCTTCATACCTATTTCTTTTTTGTTCATACTCATAATGTTTTCGGGTTCGAACTCGTACCTTGGTGGTAACACCGGC
CGCCAACCACCACAGCAACCGCAACAACAATATGGTGGTTTCCAGCCAAACCAAGGTTTCCAACCACAGCAGACTGGT
TTCCAGCCACAACAGACTGGTTTTCAACCTCAACCCACAGGATATGGTAATGCGGCTCCTTTACAACCCAATTTCACCG
GTTATCCACTTCAACCACAGCCTACGGGATATTCTCAGCCCTCTCAAGCAGGCTTCCCTGGAGGCCAGCAGCAACAG
CAGCAGTTCAACAATGCTCCTCAACAGCAGAACTTCCAAACGGGAGCTCCCCCAATCCCGCAGATTCCGCAGCAATTC
CAGCAGCCTCAACAAACGCAACAGGCTCAACCACCTCCTGCACCTCCTGTGCAGCAACCGCAAGCGACCGGATTTGC
TGCAATGGCAGATTCATTTAAACCTGCTGCTGCAGAGCCATCGAAGCCAAGAGGACGCAGAGCCTCCAAGGGGGGAG
CAAAGATACCTAGTATACGACTTTCCTTCATTACAGCCCAAGATCAAGCAAAGTTCGAAACTCTTTTCAAATCCGCTGTT
GGGGATGGGCAAACACTTTCTGGGGAGAAATCGAGGGATCTTTTACTACGCTCAAAACTAGACGGGAACTCACTGTC
GCAAATATGGACGCTCGCAGACACTACAAGATCTGGACAGCTACATTTTCCCGAATTCGCATTGGCTATGTACCTCTGT
AATCTCAAGCTAGTCGGCAAGCAGTTACCATCCGTGCTTCCCGATGTTATCAAAAATGAAGTTTCTAGCATGGTGGATA
TCATAAACTTCGCTATAGATGATGATGCACCAGCGGCAACGAATGCGCCCAGTTTTGATGGTCGACAAAACACCGCGA
CACCTCCGACTATCCAACAACCACAGCCAATGGCGTCTAATTCCGCCCTTCTCACTGCGCAAATGACAGGTTACCCTG
GACAGCAGAATAACTTTTCGGGTGGATTTCAACCACAACAAACAGGCTTCCAGGGCCAAATGCAAACTGGCTTTTCTG
GACAGCAAGGCGGATTGCAACCTCAGCCAACTGGATATAATCAGATGTCAAACCCTCAAGCAACGGGCTATAATGGAC
CGCGCCCTCCAATGCCTCCTATGCCATCTAACTTCAGTTCTCATTTATCTCCGGCTCAGACGGGTATGCAAGGTGGAA
TGATCGCGCCATTGAATAGCCAGCCTACAGGAGTCGATGGCCAATGGGGCTTGGTAAATGCGCCAGCCCCCAATATC
GATCTATTACATTCCCGGATGATGCCGCAACAGGGTCGAGAACAAGGCAACTTCACCACGGCTGGTATAACAGGCAAT
GCTGAAATTCCATGGGGAATTACGAAAGACGAGAAGACCAGATATGATTCCGTTTTCAAAGCTTGGGATGGGTTTGGT
AAAGGATATATTAGCGGTGATGTCGCTATTGAAGTTTTTGGGCAGAGTGGTCTCCCGAAGCCTGACCTGGAGCGCGTA
TGGACCTTAGCAGATCACGGCAACAAGGGAAAGCTCAACATGGATGAATTCGCGGTTGCCATGCATTTGATTTATCGA
AAGCTTAATGGATATCCTCTACCAGCCCAACTACCTCCGGCGCTCATACCCCCTTCCACTCGTAACTTCAATGATTCGA
TTGGGGCTGTCAAATCTTTACTTCATCAAGAATCTAATTTCCGCAAGAACTCTGGTGCTACCCTTTTGCCACAAAAGACT
GGAGTGAGCTACCTCAAAAATCATTCTTTCCGTGGTGATGCTACCCCAGGTCGCACAGGCCGTAAAGACGCTACAGTA
TACAAAAATAACGACGATGATGTTGGGTATAAATCTAGTGCTCGTCGCAGACTCGGGGCCTCTTCTCCACGACCTTCG
TCTCCGGGATCAACAACTTCCAACGATGACCTTTCACTAGACCAGCTTAGAAAGAAAATCGCGGAGAGACAAGTGATA
CTGGATGCAATTGATTTCAAGGCCGAAAATGCTGCAGATGAAGATGATGCTCTTGATCGTAAAGATCGTCGTGAAGCA
GAGGATCTTTATCACCGCATTCGTCGTATTCAAGAGGATATCGATGCGCATCCAGACGCATCGTTGCGTAATGTTGATT
CCGGCGCCGAGCGTCGTGCTTTGAAAAGACAGTTGCAGACATTGACAGATAAACTTCCAGATATTGCTTCGCGTGTCC
GAAGAACGGAAAGAAGCATTGCTGATGCCAAGCTTGAACTATTCCGTCTAAAGGATGCCAAAGCTCACCCTGGAAGTG
CCTCTAGCATTGTTGGAACTGGTCCTGGCGGCGCTATCACCGAATCAGATAGACTCAAAGCAAGAGCCAAGGCTATGA
TGCAACAACGTTCTGCTGCTCTCACTGGTAAGAAGATTGAGGCGAGTAATGATGACTTGGATGCGCCAAAACGCCTCG
AAGAAGAAAATCTCAAGATTCGAACTGAGAAGGAAAACAACGAGCGCATGGTTCAAGATGTTGAAGAGAGTGTCCGTG
ACTTTTCACGAGGACTGGAGGATAGTCTCAAAGATGGTGGTGAGAGCTCGTCCAGTGAGCATGAGAAGAGACGTTGG
GAGGATGGGCTAGGTGTTGAGGATGAAGTGAAGGACTTCATCTTCGATTTGCAAAGGAGCAGCAGGAGTGCCAGAGT
TCGAACTGATGATCGCAGCAGAGAGACTCCTCGTACTGAAGCGTCTCATGCTAGCCCTGCTCCAGCAGCTCGTAGCG
AAACTCCATCGTCACAGCCATCATCTACACCAACCCCTGCTGGAGGTTCATACTCACAATACAAGACTCCTGAAGATAG
AGCAGCTTATATCAAGCAACAGGCCGAGAAGCGCATGGCTGAACGTCTAGCTGCTCTTGGTATCAAGGCACCATCTAA
ATCTGGAGAAACAACACAACAGAGACTGGAACGTGAAAAGAATGAGCGTGCAGCCAAACTCAGACAAGCAGAAGAGG
AAGATGCTAAACGTGAAGCTGAGAGGCAAGCTAGGATCGCTGAAGAGCAGGGTGCACCACCACCTGCCCCCGAGCA
ACCAAAGGAAACCGCGAAAAAGCCACCTCCACCCCCTTCAAGGAAGGCCGCAAGAAGTGACGCTAGTGAGCGCAAG
GCCGAAGAGGAGAGAATCATTAACGAGCAAAAGGCACAAATTATTGCCACAAATGAGCTAGAGGACGATGCTCAACGA
CAAGAGGCCGAGCTTGCAAAGGAACGCGAGGCGGCTCAGGCTCGTGTCAAGGCCTTGGAAGACCAAATGAAGGCCG
GGAAATTGAAGAAAGAAGAGGAGAAAAAGAAGAGAAAGGCTCTCCAAGCTGAGACCAAACAACAAGAAGCTCGTCTC
GCAGCTCAACGCGCAGAGATTGAAGCCGCACAAGCACGTGAGCGAGAATTGCAACGTCAACTTGAAGCTATTGACGA
TTCAGATTCATCTGATGATGACGAAGGTCCTGAGCAAGTTACCCCTCAAGCATCAACGCCCACTCAAGGAAGTCAAGA
GCTTGAGCGCAAAGAACCTTCTCCACCACCTCCTCCACCTTCAATTCCAGTTGTTGTATCACCAGTCCCTGCTATTGCA
ACAACAACTAGTCTTCCATCACCAACCCCACAAGTTACTAGCCCTGTTGTCAGCCCTCCAGTCGATACAGAGACCCGC
AATCCTTTCTTGAAGAAAATGGCCCAATCCGGTGACGCATCTACCGCATCTACTGCATCTAACAATCCATTCCATCGTC
TTCCTGCTCAAGAGCTTTCTACACCTGCACCAATTCAAGTTCAACCAACAGGTAACAGGCCATCTCGTGTTCGTCCAGA
AGAAGATGATTGGGATGTCGTCGGATCTGACAAAGAGGATGATTCCTCTGACGATGAAGGACCAGGTGCAGGTGGTG
CGCGTCATTTGGCATCGATCCTTTTCGGAACCATGGCACCTCCTCGCCCATTGTCATCCATGGGTAACGAAGCTACAT
CTGCGCCTGAATCTCCTGCTGTAGCATCTCCACCAGCGGCAACCCCCCCACCTCCACCAGTACCTAACTTCAATGCAC
CGCCACCTCCTCCAATGCCATCAGCCGGTGCGCCAGGTGGTCCTCCACCACCACCTCCTCCTCCACCAGGGATGGG
TGCTCCACCTCCACCACCAATGCCACCAATGGGAGGCGCTCCTGCTCCACCAGCAGGTGTACGACCAGCTGGTCTCT
TGGGTGAAATCCAGATGGGGCGATCGTTGAAAAAGACACAAACTAAAGACAAGAGTTCAGCTGCTGTTGCTGGAAGG
GTTTTGGATTAAATACCTTTCAAATCATTGAGAAGAGACAAGATGAAATGGAGGTTTGTGGTTAGCGAGCCTAAGAACA
TGGATTGTATTATAAATTACTTTTGGTTCATAGTATTGGGCAAGGGGGCTTAGGTGTGGAAGGTGCGAAACAGGAAAG
ATAAGAGACGAGCATAATTTGTAGTCGAAGTAGCAATTTGAAAATATTCGTTCGTTTTGATAGTCATTTGATGCACTTAT
CACCA
BC1G_04258
SEQ ID NO: 56
GATATTGTACACGAGCCTCTTCCTGCATTGATTGATTGATTGCTCTTACACATATCCAGTTCATCTCCCACAAAATACCA
AGCGGCCGCATTTGGATGCAACATACATACTCACTACCTTCCACTTCACCTACCTACCTACTGACTTAATATACCTTCTT
GTCATCTTTGATGGCACTGAATAAAGTACCTTCCTATTAAAACTACCTCAACCAGTCCAGTCATTACTACCCACCTTACA
TCTCGAGAAGCCTCCTTCCTCGATATACATTCTTCTCTTATATTAATGCAAAGATGTCGGAGCACGAACATCAAAAACAT
CTTTCCGATTCTGAAGAAGATTCCATAATGGAAGAGAGAGAGGAGAAAAAGGGAAAAGACGAGATAGAGGAGAAAGA
CAAAAAAGACGAGAAAGACGAGATAGAGGAGAAAGAGGAGAAAGAGGAGAAGGAGAAAGACAAAAAAGACGAGGAA
GAGAGAGAGGAGAGAGAGGAGAGAGAAGAGAGAGAAGAGAGAGAGGATACAGTTGATCAGAGTTCTGATCATGAGA
GTGACACCTTCGAGGATGCCAATGATGTTGAAGACATTGCAGACACTCTTACCTCCCCAGTTGAAAGGACAAGATCTTT
AACGAAACGAAGATCATCATCCATTAAGAGCAATACACAAGACCTCAGTACCGATATCCCATCGGTCCCAACAGTACCA
CTTCCAGAAACGAATGGCGAAACGAATGACGAACAAATAGAATCCGATAATCCACTACCTAAATCTCCCCTTTTAACAT
CTCATCGCATGTCCACTACATCCCTACATAATGTGAATCTCGAAGACGGTGATGATTTTGGATCACCTCCACCACCTCC
TCCCGTTTCGAAAGTAGCACCAGAAGATCAACCACCCGAATTACCTCCAAAGCCCAATACAATAATTCCAATGCAGGG
CCTTTCTGGAGCCCTTCCAGATGTGCCATTCTCACCGCCCCCTCCTCCTCCTCCCGCTCCTCCCGCTCCTGCAAACCT
CGCTGCGCCAGCACCTGTCACCAGAAAATTAACCAGCCCATTCTCATGGCTGTCGAGAAATACCTCGGCTCCAAAAGA
GAACGTCAAGTCACCGCCATTACCTTCATCTCACGCAACCGAGCGTAGACATACCGCTTCTTCGATAGCGACCATTAG
CAGCAATCCTGAAATGATGGTAAACAAATTGGAGGAGGGTAATGATACAGATGCCGCGAATGGAGTTAGACGACCTG
GGAGGAATAGTTTACGGGACAGGTTTAAGCTCGTGAGAATGCGAGAAGAGGCTGGAATAACAGAATTGCCTGAAGAA
AAGGATGAAGCAGGCAACACAGCATTTGGGGGTCTCATTAGGCAGAGTACAAGTCTTGGTTTGGGATTTACCGCCTCA
AATGATGACAAAGACCCTTCTCCCGTATCTCCTGGTCCGCCTACGAGTCCCAACCCAATTAGTGTCAACCCTGCATTA
GCCCCCGGTACGGCATCTGGAGTTTCTGCAGGCCCTTCTGCATTGGGTGAATCAGAAGCACCAGTCGATTGGGATTT
GTGGCAAAATGTCGTCTGGGAAGGACCAGCTGCGGTAGCAAGAACAAGTGCAGAAGAGCTGAATCACGCTATTGCAA
CTGGTATACCACATGCTATCAGAGGCGTGGTATGGCAAGTATTGGCGGAGAGTAAGAATGAAGAGCTCGAGGTTGTC
TATCGGAATTTGGTCAATCGGGGCACAGACAAGGACAAGGACAGGATGAGTACATCTAGTGGGACACAAAGCAATGG
ATCAATCAAGGAGATTGTGGTTTCATCAGCATCATCAATACATTCAGAGAAATCTACACCCGCTACGACAATCACCAAT
GGAATGAGATCTCCTTCTCCCCCTAGTGAAAAGGATGTAGCCCAGTCTTTGGCTGAAAAGATGAAAGCTAAGGAG
GATGCGGCGGCATTGACAAAACTCGAGAGAGCCATAAAGCGGGACTTGGGTGCTCGAACAAGTTATTCAAAATTCGCT
GCAAGTGCTGGACTACAAGATGGATTATTCGGTTTATGCAAAGCATATGCTCTTTATGATGAAGGTGTTGGTTATGCAC
AAGGCATGAATTTCTTAGTTATGCCTTTGCTTTTCAACATGCCCGAAGAAGAAGCATTCTGTCTATTAGTACGACTTATG
AATCAGTATCACCTTCGAGATCTTTTTATTCAGGATATGCCAGGTCTACATAAACATCTTTATCAGTTTGAGAGATTATTA
GAAGATTTTGAACCAGCATTGTATTGTCATCTCCATCGACGTCAGGTCACACCTCACTTATATGCTACGCAATGGTTCC
TAACTCTTTTCGCCTATCGATTTCCATTACAGCTTGTGCTTCGAATTTACGATCTCATTTTAAGCGAGGGTCTCGAGGCT
ATTCTCAAATTTGGAATTGTACTCATGCAAAAGAATGCAGCTCATCTACTCACCCTCCATGATATGGCTGCATTGACTAC
GTTCCTGAAAGATCGACTTTTCGATGTTTACATTGATGCTTCACCTTCAGCAGGATCAATTCTAGAATCTGGTTTCTTTG
GAAATTCAGGAGCGACTATCGATAAGGAAGTTTATCGAGCAGATCATATGATTCAAGATGCTTGTGCCGTCAAAATTAC
ACCCAAAATGCTGGAAACTTACGCATTAGAATGGGAGGAAAAGACCAAGATAGAAAAGGATCGTGAAGCAGAATTAGA
ACACTTGAAATCAACAAATGTCGCCCTTACACACAAAGTTCGACGTCTGGAAGAAAGAGTCGAATCTCACGATACGGA
GCACGCAGCTTTGGCAACTGAACTTGTTCGGACTAAGGTCGAAAATCAAGAGATTCATGAAGAAACAGAAGTTCTTAAA
GAACAAGTTAAAGAACTGAAAAAAGTAATTGATAAGCTACCGGAAGAAATTGAAGCGAAATTACAGAGTGAGATGGATA
GATTGATGAAGAGAAATCAAGAAGTTCATGAAGAAAATCAAAAATTGGAGGATGAAATGAATGAAATGGAACAAAACTT
GGTGGAAACAAAAATGAAATATGCTGAGATGAATGCGGCCCATGAAGCTCTAACTCGTAAATGGACGGATTTGAGAAA
AGCTTTGGGTGATTAATATCGTTACTTTGAGATATCCTAAATTATTAAATACGACTTGTACAGTTCTTCTCAATTGATACC
GATGCCTTTGAAGTTTTTGGGGGGTAGGGGAGAGAGGCGTAAATGCCTATATTGGGGAACGAAGGAACAATGCTCTC
GTTTGGAAGCTTGCTGGATTTCTTGCTAGGTGGAGGGGATGATTGGGAATCAATCAGATTATACAGGTACTGCTGCAT
TGGTACGCAAATGGTATAGGAATTGGCGTGGGTTGTAAAAGTACCGGAGAAATACTTTGGGTGCTTGCTTGTCTTGTTT
CTCTCTCTTTTTTTTAGTCGTTTTAGCGAGTTGTGATGTTGGTAGGAAAGAAATTAAGAAATTATGGACGGGTAGGGGG
AGTGGAGAGAGGAAGGGAGGGGGTGAAAGAGGGTGGGGGGAGGGGAAGAAATAAAAATTAAGAATAAATGATCA
BC1G_03372
SEQ ID NO: 57
GAAGCTTTAAAACATACGATTATTTGATCCTGTTTGAACACGTTTTCTTGAAATTTCAAGCTTGAATGAAACACAACACCA
AGTCTATCGGCCAAAGGACCCCTTTGAGATTGCATTGAGCGTTGTCCCATCTCAAGATTTAACAACTGTTATTCACGAA
ATCATGCCTCCACCACCACCACCTCCTCCTCCGCCGCCTCCTCCGCCTGGAGGAGCTCCAGGAGGTATGCCATCCAG
ACCACCTGCGAAAGTTGCTGCAAATAGAGGCGCACTTTTGTCGGATATCACGAAGGGAAGAGCACTCAAGAAAGCTGT
AACTAACGATCGATCGGCACCGGTAGTAGGCAAAGTATCTAATGGTTCTGGACCTGCGCCAATAGGAGGTGCTCCTC
CAGTACCGGGAATGGCAAAACCTCCCGGTGGATTTGGCGCACCGCCAGTACCAGGAGGAAATAGAGCTCGAAGTGAT
AGTAACCAAGGGAGCAATAATGCGGTTTCGGGGATGGAACAAGCTCCACAGTTAGGAGGAATATTCGCAGGCGGCAT
GCCCAAGTTGAAGAAACGAGGTGGAGGAGTAGATACTGGCGCAAACCGCGACTCATCGACTGCATCGGAACCAGAAT
TCTCTGCTCCCAGACCGCCAGGTATGGCTGCTCCCAGACCTCCAACAAATGCAGCTCCGCCTTTGCCATCAGTCCGG
CCTCCTCCTCAACCTAGCGCTAGTACTCCCGCATTTGCGCCCTCGGTTGCAAATCTGAGAAAGACCGGCGGGCCATC
TATTTCTCGTCCTGCATCCTCAACCTCTCTCAAGGGGCCACCACCCCCTATTGGCAAAAAACCTCCTCCACCCCCTGG
AACTCGAAAGCCATCATCAGCGCTATCAACCCCACCACCACCACCGCCTCCAGCATTCGCCCCTCCACCTCCTTCTTC
AGCACCTCCGCCACCTGTTGCACCTCCACCACCACCTTCCCCAGCTCCACGCCCTCCGAGTAACCCACCTCGATCAC
ATGCACCACCGCCACCACCACCACCACCACCACCAACATCTCCACCTTCGACTAACGGAGGTAACCCAAGTCTTGCTA
TACAAGCAACAATTCGTGCTGCTGGCCAAGCATCACCAATGGGTGCACCACCACCACCACCACCGCCTCCTCCTCCAT
CTAATGGGCCTCCCTCTCTCTCGTCGCACAGAACGCCATCTCCGCCCGCGGCACCCCCAGCGGCACCCCCAGCGGC
ACCAATATCAAGAAGTCAAAGTCAACAAGGAAGAACTCACACAATGGATTCCAGTTCTTATACCCTTTCATCAAACGGC
AGTTTACCGCAAGCCTCTAGTTCTAGCAGAAGAATCATGATCAATGATCCTCGATGGAAATTTACAGATGAATCGGTAT
TCCCAAAACCTCGAGATTTTATTGGTGGGCCCAAAAAATACCGGGCTGGTCGTGGAAGTAGTGTTCCGTTGGATCTGA
GTGCTTACCATTAAGAATTTCGCTTACCAAAAAGAATATAACTCTTCGGATCGTATTCATGTGTTACCATTATGATTTAAG
GCGTTATAGCGGGATATCATTTAGAATCCGGTAAGGCGGCATCAAGCTATCTGAATTGGGAGTTATACATCAGGACAC
TAAAGATCGTCAAAAAATTTCCCCTGAATCGCGAGATGGAGATTGACGAGAGACATCAGCTCACTACCCAGGGTACCG
AGGAGGAAATCGCAGCTATAAATATCACGGGTGATGGGCAAATTCCACAGTGGAACCTTAAAAGAATGAGTACGGAGA
ATATTAAACTTTTGAGATTTATCTTTCTCTTCCTGTGATTTTAACCA
BC1G_14667
SEQ ID NO: 58
GGTAAGATTAATTGTAAGGCAACTCTCTAATATTATTTCTTGAACGTCAATCGTCCCAAGTGTTCATCTTTAAGTTTATTT
CGTTCGTTTTACCATTTGTTTAATTTTTTCAATGCCAGTTAATCTTCAACCTTCTGTTGGTACTTCTGGTAGTCTCAGGAA
AGAAAATTCAAGAGGAGAGGGCACGAGAAGGATGCCGACCAATTCGCGACCTCCCCTATCGCATCGGATACGGGCAT
CATTTGAAGGAAGGAAATCTCATGATTCTACCAGTCCTAAACATGCGAGCTTCTCCGGTAGCAGTCCAACAGATCCGG
AACTCCTCCGACGGATAATCGATGAAGCTATCTCTGGAGAGGTCTTCCAGGCTGGACTTGCTTCACATATAGCCAAATT
GCTCAAGCCCGAGATCAAAACGGCTTTAGATACAATTGAGCCAGTTGTCAATGCAGTTCTACAACATGAGCTACTCTTG
AAGAGAACCAACAACAGCGTGGATCATGTTTTATTGAAGTTGGAGTCAATGGCAGATGACGAGGGAGCAATGACTCCA
GGCCAAGCACGACTTAGTTTTCACGGCGCCCTGACTTCACACCCGATAGCAGAAGAAGGGTCACTGCCAATATCAGA
GAATTCGGTCTCTGGAACTGGTACACCTGTTTCCGTTTCCAATCAGGAATCAAGACCCCTCTTCAACCGAGGCCTCAC
ATACACAGCCGGAAAATTAAATGAAATATCGGACTCTTTGGACTTGAATAACCATAAACTAGGGAAGGTGGTCGAAGGA
ATAGCGGAAATAAATAATCTATTGACATCGAACGAACGCTTGGATAGTTTGAAGGAAAGCTCAGACAAGAATGATACCA
AGACTTCGGTAATACAAACGCAAATAGATCAACTGCAGGAGAATGTTAGGGTAGTCATTACTCGAATTGGTCCGGATCT
AGGAATAAATGTAAAGGCTATCAATGATCATCTGACTGGAGAAACGACGATTCAAGAGACGAGGGCGGTGGCTTCCAA
TGGCAGTGGGGGTGATGTTGAGCTTCTTCAAGCCATATCTTCCAAATTAGAAGCCTTGAAGGATAGCTTGGAGACAGG
AACTTCGTCACATAATGATAACTTGGGACTATTGAAGGAACAAATCAATGCTCTACAGTCAACACTCGACGCGCAGAAA
GAGATATTAGGGGAGATTAAGGAAGCTGATAATAGCACTGAAGTTTTGGCTGGTATACACAAATCAAACGAGTCACATG
AAGCGCATGCCACAATTTTGGGCGAGCTCAAAGAGAGAAGTACAACACTTGCGGATTTATCAACTCAACCGGCTCCCA
CATCAGCAGACGCGGAAACACTCCAAACAATCTTGATAGAAGTACAGAAATCCAACGAGGCACATGAGAAACATACAG
CTGCGCTCGAGAGTTTGAAGGAATCGGATACAAATGCAGTCATATTAGCGGAAGTTCAAAAGTCGAACGACTTGCATC
TTTCGCATGCATCTGCTCTAGAAAGTCTCAAAAGTTCCACTCCACCACTAGAACAAACCACCGCAATCGATCTAGGAAG
TTTCGAAACTAAGATGGGCAGCTTAATAGAAACAAGCACAGCAATTCTTACGGAAGTTCAAAAATCAAACGAGTCACAT
GTTTCACACGCAGCTGCATTGGAAAATATCAAGGCCCTACCAACTCCACCTTCTGAAACTGAAACTGCAAGTGCAAGT
GTTGATTTGGGAGGCTTGGAGAAGGATATGGGAACTATTATTGAAAAGTTGGACTTGCACGCTGCTGTTCTAGAAGAA
ATCAAGACAAAGGATACTCCCGGAGCCGGAGTGATTGATGCTACTGCCTTTGATGGCCATTTTGGTTCCATTAATACTC
TCTTGGAAAGACACACAGCGGCATTGGATGAGATTAAATCGATAGATGCAGGAGGTAGTACGGATTTTAGTCCAATAA
CTGCCTTGTTAGAAGCTCACAGCGCAACATTGGAGGATATCAAATCGAGAGATTTAAAACCTGCTGATTTTGGTCCAAT
CGTATCGATGCTTGAAGCACATACTGTGGCTTTGGAAGAAATCAAGTCGAAAGATCCGGGATGTAATCCAGATTTCAGT
CCAATAAGTGCCTTGTTGGAAGCTCATACTGCAACCTTAGATGAAATCAAGGCCAAGGAAACTACAAACAGTATTGATT
TAAGTCCAATAACTGCATTGCTAGACGCTCATACTGCCAGCTTGGATGAAATCAAATCGAAAGATATGACAGCTGCTGA
TTTCAGCCCAATAACTGCATTGTTGGAAGCTCATACTACAACCTTGGAGGATATCAAGGCCAAGGACAGTGCAAACAA
CGTTGATTTAAGTCCAATTACTTCGACTCTGGATTCTCACCGTGCAGTTTTAGATGAGATTGTATCAAAGGATGTCCAAT
CTAGTGGTGTACCTGCGACAATCAACATGGATGCCTTCGATACACATTTCGGTTCAATCACAGGTATACTAGCAGCACA
CACAGCCGCATTGGACGAGATCAAGTCCAAAGATAGTCCTTCCAATGCTTCGCTGCCTGCAGAAAATACCATTGAAAT
CCTCGACAAACATTTTGGTTCTATCATTAACATGTTGGAAGCACACACTGCAGCACTGGAAGAAATTAAGGCAAAGGAT
TGCACGGCGACTACAGGACAAACGGAGTTGAACACAGCAGCATTTGATGATCACTTTAGTTCTCTGGCACGCATGCTA
GATTCACACACAGAAGCTTTGGATGAAATCAAATCAAAGAACAATGATTCCACTCCGCCTACAATATCAAGAGATAATAT
TGGCCTCGAATCATTCGAACCACATGTTACGGCGATTAAGAGTGCACTCGATGCTCATATGGTTGTGCTGCAAGACAT
AAAGTCCGAGGCCCTTGCCAAAAATGATATGGATGCAATGGTGGTAGACAATTTGCTGGAACCACACATCATAGCTAT
CAAAAATACATTGAATGCACACACAGAAACTCTGGAAGAACTTAAATCCAAAATTCCTACTAACACCACAAATTCATTCG
AAATTGCCAACGATGCTTTACCTAGGATCTTGGATACCCTTAATAGCCACACCGATCTACTCACAGAAATCAAGAATTC
AGATGTTAGTGACGAGATTTTGACAGCATTGCATGAGCTGCAGGAAGGCAATTCTTCAGCTTTCAATACCCTCAAGGAA
TCAGATGTCAGTGATGAGATACTTACTGCGTTGCATACATGCAATGATTCACAAGAAAAGCTGGATAGATCACTACTTG
AACTCCAAACAGTAGTGAATAACTCTATTTCCTCCGAACAGAATAGGAACAAGTCCATTGATACTGCTGAAGTAGTCCA
AGCACCGATTGCTGCTGTAGATTTGAGTGGATTGGAGACTCAGATTAGTGCCATTATTGCAACTCTCGAAGGCCAAAAT
GTGGTTTTAGGTGAGATCAAGGATACTACTAATGCTGGAATGGAAGCACATGGCTTGCATATCACGACTCTAGGTGAG
ATCAAGGATGCCACTAGTGCCTCAAATGATTCTCACGCAGCCCATGTGGCAGCTCTTGGAGAAATCAGAGATGCAGCT
AATGCTTCAAACGAATCCCATGACGCCCATACTTCTACACTAGGAGTCATCAGAGATGCAGCAGCCTCCTTGAGTACT
GCACATGCCGCCCAAATTGCTGCTTTGATTGAATTGAAGCAAGCAATAAACGCCTCTAATGAATCTCACAATACTCACA
CCAGTACCTTAGCAACGATACGAGATGCAGCAGTCAGCTCGAATGACGCAATTCTCTCTCACACGACTACTCTTAGTG
AGCTCAAAGAAGCAATCAATGCATCGAATGACTCTCACACTTCTCACGCCGCCGCTTTGACAGATCTGAAATCCATTCA
TCCAACACAGTCACCGCCAGATGATACGTCTGAGTCGACATCACCACCATTCCTTGATACAAGTGCACTAGACACCCA
GCTCACAACTATCATTACAACGCTTGAATCTCAAAATTCTACTCTGGGAGAGATGAAAGGTGCTCATGAATCTCACACA
ACAACTTTGAATGAAATCAAGGACGCAACAGCAGCATCAAACGTGTCACATACTTCACACACGACAATTTTGAGCGAAA
TCAAAGAAACAATTGCTCCTATTCGTGGCATCAATGAGGTCATAAGCACACACACAGGTCTATTGGAAGGTCTGAAAGA
AGACACTGGATCACAACATAATGAGGTGAGAAGTGATATCGATGGTTTAAGGAACCTTGTAGACGAAAATTCCAATAAA
CACGAGGAAAGTCTGTCAAAATTTGGGGATTTAATCAGGGAGCATGGCGACTTGGTTAAAGACAGCCATGATGGGTTG
AAGGGAACGATCGCCGGACTTGCTTTGGGTGGAATTGCCGGAGCGGGGATCATGAAAGCTGTGGATGATGGGGAAG
ATAACGATGGCGAGGTAAGTGATGTAGTAGAGCGGGATGTGAAAGTGCCGGAAGCTCCAGTCGAAGAAGACAAGGTT
ATTGAGGAAGAATCACCAGCATTGGAGCCCGAAGCACCTGCGGTGGAAGATCCAGCTCCAGAGTCTACAGAACAAAC
TCCGGAACTTCCAGTCGAAGAACAAGTTCTGCCTGAACCAGAAGCACAGTTAGAGCCCGAAGTGTCTATGGAAGAAGA
GAAGACCGCCAGTGAGGAAACGCTAGTAGAGCCAGAGCTAGAACCGAAAGTTATCTTGCCAGATCCTGAGGAGACGG
TCGACGTCAACGAAGATTCGGACCCTGCACCAGTAGACCAGGAACCGGGGCCAGAAGCTATTGACAAGGAATTTCCA
GCCGAGGAGCCGACACCAATCGAAACGGAGGCTCCAACGCAGGAGGCTGTCGTTGAAGAGCTGATTCCAACAGAGG
AAAAGCCGGAACCAGCTACCTTGGAAACCACGGAAGAAACACCAGCTATCGAATCCCAATATACTGAAAAAGATCTCC
CTGGCGAAGAAACAATCCCTCAAGGGGAAGCTGAGCCCATAGCAACCCCCGAAGATTCCTCTGAACCAAACCAAGGA
ATTGAAGTTCCAGCAAGTATTGAAAATCGGGAGCCCGAAGCTCTTGAGAAGGAACAAGAAATTGAAGTTACCACGCCA
AATTCGGTTGAACAATCGGATTTGGTCCAAGATACTACCGAAGAGGAAGCGCCTCAAATACAAGAAATAGAAGGAGAA
CCAATACCTGGAGAGGACGATGTCACAGAACTGTCTAAGGACGAATTGGATCCCGAAAGAGAGCTTGCCGTTGAGGA
GATACCTGGTGAGGAAGAGGCTGTTGCGATGGAAGGGTCTGAGGAGGAAGCAGTTGATGAGGGCGAGAGAGCTAAA
GTACAGGAAATTGAAGATCTAGGCGATGATGATTTGAAATCCACTGAAGAAATAGTGCCGGATGCTGTGGAGGAAGAG
AAATCAACAGAAGACATAGCTCCAGAAAATGTAGTCGAGTATGTGAACCCAAGCGAGGAAGCTCTACAGGCCGGAGA
AGATAAACCTGTCGATGAACCAATTTCACAGGAGTCAGATGTGAATTTGACTACCGACTTACAACATACACTTCCTGCA
GACGAAGAAGAAAAGCTGCCCGAAATCAAGGAATCTAATGAGCCAAGTTTGGAGGAAACAAACATCGAAAATGCTAGC
CCAGAGGTTTTGATAGACAAACCGACGGACTTGGAGGCGACTCCACCTTTGGAAATAAACGAACCTGTTCCGGAGACT
GAGCCAGCCAACGTATCTGGTTTTGCAGATCCGTCAGTGGAAACCGAAGAAATACCCATTGTTCCAGATCACGATGTC
GATAGTCATACTCAAGTACCCGAAGCAAGCGGTGAAGTTTCCGCGGATGACTTAGAAATTCCTACAGATTCTGAAGTC
ATTGAGCCGTTCAATGAAGAGCAAAAAGTTGATGAAGAAACCGAGAATGAACGACTGGCTGAACATCCGATCGATCCC
CAAGAAACAAATCTGAAAAATGAGGATCGAGAGCCTAACAATGAGGATATTCCTATCGAGAACGCGGAGAGTGTTGCT
GAACCATCGAAAGAGGATAAGTCTTCAGAATCAGTTGCGGAGATCGAGACACCGCACTTGGATTCAAACGATCAAAAT
GAAGGTTCTGCCGAGGTAGATACAAAGGATTTGGAAACAGAAGCTTTGTATCCCAGCAAGGAAGAGACACCAGACCA
GACAGAGGAAGCTGTAGAGCTCTCTAATGATCAAAGTAATCCCAGCCCTATTTTTGAAACCGATGTACCCGTTTCGGA
GATAGACGACCAAGATGAAAAGCCTGTTGAAGTTGAGGCGAGGGATTTGGAAATGGAAGATGGGGAACATCACAGCG
ATGAGGTACCTGAAAAATCTGCGGAGAAACCCTCACAAACCTTACAGGAAGAAAGCGATTCTGAACCGGTTGTCGAAA
CCGAGACATATGTTCCTGAATCAAACTCTCATGATCAAAATCCAATTGAAAGCGAAGAGAAACTAGCGGAACTTCCTGT
TAATCAACTTGTCACTGAGGAGATCTCTAGCGAGCCCAGAGAAGACTCTGAGACCTTACAAGGGAAAAACATTTCACA
ATCACCTGTCGAAACTGAGGAACATATTCCCGAGTTGAACACTTACGTCGAACCTTCAGTTGAGAACGAGCAACCCCC
TAAGGAGCCTGAGGACAGCGAATTTGTTGTCAAGGAACCTGAAAACTTCGAAGACTTGACCCGATCTGTCGAAAATGA
AGAAGAGACTTTCGAACCAGAAAACCAGGTATCTAGGAGTGAGAACACACCACTCGAAACCGAACAAACGGTTCCTCG
AGAAAAGACTCCAGTTTTAAATGCTGAATCCGAGATACCGGCGTTTGAGTCAGATGATCAAATGCAAATCCCTGCTGAG
AATGAAGAGAAGTCTATGGAACCCGCTCTTAGTGAGCCAGAAGCCGCAGGTTTGGAAATTACAGAGCCACAAGTGAAT
AATGAAGCTCAGATCACTGAAACATCGCCGCAAGATACTGTTGAGGAGCCGGTGGTTGAGAATCAAATTCCTGTTGTT
CCAGAATTGAGCAATGAGACTAGAGGGGTCACCGAAGATCATGAAACTCTTGAAACAGCAGAGCAACAAGCTGTCGA
GGTACCTGTCGAAAAATCAGTCATTGAGAGCCAACTTGAACTCTCCAACGAAGATAAAAGTATTGAGGACAATGCATCA
ACAGAAAATACCCCCGAGCCAGATGTCGTGGACAAACATATTTCTGATGGGTTTGGATCAAGCGAAGAAGGACAAATC
GTAACCGACCATGGAGACGAACCTCTATCAAATGAGAAAGAGATTCTTGATAATTATCAAGAAGAATCGGTTCCTGAAA
ACGGATCAACTTCTGAGAGTGTAATTCATGAATATTCCAGAGATATCAGAGATGCAGACCAACCAATGGAAATTGATGA
ACAGGTTGCGGATACAAGCGGTCAAGATTCAAATCCTCAAAGCCAACCAACATCAGAGGTAGCCATCTATGAAGATCC
TGAAGATATCAAAGCCCGTGAGGAAATTGCTGCTTTGAACGCGGAGATGGCTAAAATATTAGCTGAAGCTGAGGAGGA
GGAAAGGAGAAATGTTCCGGTAGAGACGGAAACAATTTCCGAGGATGAACCTATGGAGCCGGAGGTCGAATATCATG
TCGAAGAACCTATTGATGTCTCGGATACACAGCCACTGGTCGAAAGCCACGAAATCCCCGAAGACCGAACTGAGAATG
AGCATGCGCAGGAAGAAGTGACTGAACCGGAAGAAGAGCAGAAGTTTGCTGTTACTGATGAGGAGCGCTCAAACGAC
ACTAGCACAGAAGAACCTCTGGAAAGCCATGTTGTGTCCTCTACCGATTCTGAAGAGCATATCATGCCCATATTACCAG
AAACCAACGCCATCGAGTCTACCAATATTTTACCTGCAGATAAATTGCATCACGTCGAGGATACTATTCCGGTCAACTA
CGAGGATCTTAACGAGAGCCAAAATCAGATTACAGAGGATGGAAATATAGATGAAAAGCCTTCCGTGTTCTCTTCCGAA
GATGAGAATAGATCTTGGAATACCGTCCATAGCCGAGCAACCTGAGATGGAAGTTGTGAGCAATGAAAGTGCACCT
ATGCAAGATAAAGCTTTATCTAGAGAAGAAGTAAAAATTCCGGACATGGAATTGCTACCCTCTGAATCTCACATGGAGC
CCGAGACGGAAAACCTTGAGGGCGCACACTTAGGTGACCATGTTGTACTTCCTTTGGACAGCGAGGAAGACAAATCTT
TGTCTATCCAAACTGAATTTGAATCAGATCCTAGGGAGATAGCACCAGAGGGACAAAATCTGGAGGGAGAAATCAATC
CTGAACAATCTTTCGTAGAATCCGAACAGGAAAATCCAAAAGATGAAATGACATTCGAAGATTACCCTGTCGAAGAAAG
TTCGATTCCGAAGTTGGATTCCATTAAGGAAAGCACAGAGGATCCAGAAAGTGGAAACGAGGAAATAGAGAATGGCAG
TCCTTCAGTAGAGCATCTCGAGGTTGTAGAAACAGAGCCAAGTCCTGAGGAGCACCTAAAAGAGCTCGAATCCATAGA
TGACGGAGATTTCTACCCCGTAGAGCCTGAAACTGACCGAGAAGATTTCGAAGACCACAAAGAATTAGAAGCTAATAC
TGTGGTTCCTGGAAGTCTTGAATTCGAAACGATCGACAATAGCGAGCCGGATGAAGTACATGATATTTCCGATGGAAG
ATTGCAAGAATTAGAGCATGCAGCGGAAGCTCAATCAACTACGTCTAATCACGGAGAAGCTGCAGATACCGAAGAAAA
TTATCATGACAGCGAGCCGAGTCAAGAAGAAATCGCTTCCGAGATTCCTCTCCCAGGCCCATCAGTTCAAGAAGGGCA
ATCTATCCTAGAGGAAGAGAAAAATCCTGCTATTAAACAACTTCCAGCCCAAAATGACATGGAACCCGAAAGCCATCAA
ATGTCTGATGATGTCTTTCCAGTCAATAATGAAGGTGTCAATAACAGCTTCCATGTTCCAGATGAAGATGAGCTAGAGT
TGACGGACGAGCCAAACTCTAGAGAAGTTCCAGTTTCGTTTGACACCAAGCACACAACAGAGAATATTGTTCCTTCCG
GAGTCACAGATAACTTAAAACTCAAGGATACCGAATCAATCTATTCCCAAGAAAATGAGCCAATGATCGCAACAGGGCA
CTACAGACAAGAGAGAGAAGAGTTTTCTGACCCGACAGCCACAGGTCAACATGTGGCTGCCGAGCAAGTAGAACCGG
AACAAGAGTTAGAAGCTAGACACTTTGTTCCCGAAACTACCCCAACTCACGAGACCCAGCTCAGTCAGCCAGAAACTT
CAGCGGAGCAAAGGTACACAGGTTATGGCTACGACTATGAAGAGCCTACTCTAAATACACAAACTTACTCCGACTCGG
AAGATGATATCGAGCCAATTCAGTCGGAACAAACGAGTTCTCGCTATGAATCAAGGGGCTCTTACCCCTACCAAGGAA
CCAGCTTTAGTAGATCTATACCACAACCAAGATATTCAAGCTATGAAGAGCCCCCTCACGATTCACGAACTTTCTTCAA
CGACCAAGATGACAACCAGTATTTGAGACCAATGCCTACATACTCTAGCTCAAGCTATTCTCAAGAATACCTCTCAGAG
TCCCATCCGACTCAAGAAATCCACTATAACGAGTCTGAGCCTCAACCGAATCAACCGAGAACGCCAACGGACCAAACA
ACCCATGAGGATACCATCCCACCCACTCCTCCAACAGCTTTAACTACGAAGATGTCTACAGAAACATTCCCTACATATG
ACGAGTCCCGATCGGTTTCCCAGGGTCTAAATCTTGGCTTACCGATAAGAGGAGCAGAACGAGTTGGAACAATTCGC
GAAAGTCCTGAGCCTACATATCCTTTATACAATGAGCCAATGCGATCTCCCGCACAATCACGACTACCAATCACGAGC
CAGAGATCATCGGATAGTATGCGTAGGAGCCATAGTCCTGAATTGAGAAAACAGAGCAGTTATTCTAGATATGCACAT
GATGAGCCTGGATTAGGAAAATCTTTGGGATCTTCACAAGGGTTCAATTTTGGTCTTTCACCGACGAAAATTCCAGGTT
CTATTGGAAGGTCCAGCAGGATACCTGAGGTCGGAAATGAGTATGGTTATTCAAAGACTACATATGAGGAGCCAGTGC
GTTCTTTAGGGACTTCGCAAGGATCTAGATTCAGTCTACAGAGTACGCATTCAGGTAGAGAGCCTTTTGAGGAAATTCC
AGAACCAGGTAATGGAAAGAGGAGTAGTAATGTGAAAAATCTGTTGAGTCGATTCGAAAGTGGTGAATCCTCATCTTCA
ACGCCTCCGCAACAAGAGCGTTTCAGTATCCCGACATATCAAGACCGTTTCGGCACTTCTCTTCCTCGACCTGCTGAT
AACAGATCGGTCGGGAAACAGCCTCAATACTTGCAAGAAAGCCAACTCGAAGCTGTGATGCCGCTTGATCATGGTAGA
TTTGATCTCATGAGTGAGGAAAGTAGTCCGGTGCAAACTCCTCTTGAAGAGAGGGAACTTCAGTTTGAGAGTGAAGGA
AGTAGCGCAGTGCAAACGCCTTTGGAAGGGGAATTTGATTTGGATGGGAGTACAGGTGGGAATGTAAATACAGGAGT
ACCGAAGAAGAGGAGAAGTAAGAGGGGGAAGAAGAAGGGTAATGGTGGGGGAGGTATTGGTCAGGCTTGAGGGGC
AGGAGAAGTAGGATCGAAAAGTTTGAGATGTGGTTAGGGTGGAAATGTGAGTCGGATGACTGATGGAGAATGAAGAA
TGATTGATGTTTGATGGTAATGAAAAAGTTGGATAAATATTGGGATTCGCATGAGTTTTTAATAATTTTTGGGGTTTGTTT
TTATAAGTAGCGGGTATGCAACTGGGCAGGAGTTTTGATATAATGCTCATAGAGATACTATTAATAGTCCAATTTATATT
TTCA
BC1G_14204
SEQ ID NO: 59
ATGGACATTCCTATGCGTGGCCAAAAGCCGAGCTTCAGCACACCCTTACCAGAAATCCACGTACAAGACTCACACCAC
CCCGATCGATATACCGATAGATACTCAGATCAACACAAATACCATTCTTCCAACTCTTCAAGGGCTGCGCCTGGACCAA
TGTCTATACCTCACGCGAGAGAGTCTCCTCCTCCTCCTCTACCACCACCTAAATACGTTCCCGATACAGATAACGGGG
GAGATCTTGGGTGGCATTTCGCAAATCAAAACCGGGAACCCGATTGGGCAAGAAATATCCCATCGGTTCCCGCCGGC
TCGAGTTTGTATGGGAGCTACAGTCGCAGTAGCATATCAGATGAGCGACCGGACATTGGACGTCGAGGAAGCTCCAA
CGCCACTATCACTGTTCATCCGTCGAAAGATGCGAGCAGCCATGCAATTGCACTGCCAAAAGACGAAGGCTATTCGAG
CCTTTCTGCTTCCAACGCAAGCATTGGGTCGACACAGTGA
BC1G_10316
SEQ ID NO: 60
GCTCATTGATTCTCCATCTTCTACGCTCCTACCTACCCCAAAAACTCTTTCAAACCCCCCCATAACGAGTTACAATGGA
CCCATATCAGAATCAAGGTTACGGCGGTAACCAGGGCTGGACTGGTGGTGCATGGAACCCTGCCCAACATGGGTACA
ATCCAAACAACAACTGGCCACCACAACCTCCACAGCCCCCACAGCAACTACTCCCTCCTCCTCCTCAGTACAATACGC
AAGTTGCTTCTTCTCTTTTCTGCTGCGAGAACTGCCAGCGTGTTGCTGCTCCAACTCAGCCAAGCGTTCATGCATATAC
CACTCGTTTGGCGTTTTTTACGGCACACATCTTGCATCCCACTGTGGCTTCCTACACCCAGGTACCTAACCGCAATCAA
CACCCGAATTGCTTTGCTAGTGATGTACCTCAATCTCAAACAATTGCCCCTACTGGGGGTCATGGGGGTCATGGGGGT
CATGGTCAAGGTACCAATGCCCAGCAGATTGCACAGCAAGTCATCCAGCAGCAAGGTGGCCAGCAACAGCATGGTTT
CATGCAACAAGCTCCAACCGGACCTGCTGCAGGTGCTGGTACTCATTACACTGCTGTTACTGGTAGCAGTCATCAATC
TGGCTTTAATCAGCAAGGAAACTACCAAGCTGGTGGTGGTTATGCTCAAAACAATGCTGCACAACAACATCCTCGCCC
AAATGGCCCTCCTAGCAACACCTCGATGGCTATAATCGGTCCTATTATGCATGCTGGCTCATCTTACAGCATCGATCCG
AACACCGCCATCCCTCTTCCACGATTTCCTCGTCCTACTTTCCAGCTAAATGTCAAGTTTCGTCTTGAACGCTTCCGTC
CAGATCCTCCACAGCAGCCTTTTCAGTATGGAATGCCAAATTATCAAGGCTTCAATGCCTACCAATACCCATCGTACAT
GAATCCCTATCCTAACACTGCCGTCTCCACCTCCACTGGTGGCCCTAAATCCAGGGACAACATGGAGCTTATATGGTA
CTACTGGCCAGTTCAGCTCGAGGTTCCTCTCTGGGCTAGAGGTCAGAATACTTTGACTTCCGCACCAGATATTGGTGC
TCAACTCATTCGAGAGGGCATGCAGATCATCAATGGAGAGCGTTGGGGCTTCATCCAGCACCAAGAGAATCCAGAGG
GCTTGTGGCACAAGCGACGATCTTACAAGATCCTCGAGTGTCCTGTTCATGGGATGTACTGGAAGGTCACTGTCTTCG
TTCGTCGTGGTTATTAGGGTATTTTAGAAGGCATTGGGTCAATTTTAAGCCTTGA
BC1G_05030
SEQ ID NO: 61
GAAAGAGTCAGCTTGTGTTGGCGCTTGTTTGGGCTTTGCGCAACATTGCCAGTGTTATACTTCTCATAGCAAATAGCGC
AGGTATCAGTTCTGTGAAACCCATCATTCCATAACACTACGGACTGCTTTCTTACTTCTCAAGATGGATATAGAGGCTA
CTAACAAGCCAGCTTCTCTACCCGCCGCTACGATGCCACCAAGTTTACAATATATACCTGCAGAAATTCGGAGAAAGAT
ATTTATATGTCTGTTGGTTAGTACTGAGCTAGGAGAGGCGTCTTCCATTGACCAACTTGAGGGATATGGAGCCGATGC
GAAATATGGCTTGAGCCCACAGATACTACTCGTCTGCCGCCTTTTCCATGAAGAAGGTATGGAGATTCTTTATGGCTTG
AACCAATTCATTATCGAATCACTACCGAGTATACGCATTAAAAGAATGGATGTACTTCATCCGTTCACCATATGCAGTCC
TTTGACTCGCTGGGACAACCAACCCACCACGGATCTCCCAACCCACTCCATTCAAAAGACTCTATTACACAGGAATCAA
GCTATTAAATTCGTCAGAAAATGGAGAATAATTTTAAGCGCCAGGCTCTATGAGCCCAGAAGTCGAGATGGACTTGTTG
AATTGTGCCGTTTACTGTGCGAGCTGCAGACACTTTCAGGAGGGTCATTACTGAGGGAGTTAGAAGTATGCATCATTC
CCAAGGGTGTCGAAGTCAAATATGGCTACATGAACATGAACGAAATGCGCGAAAGTCTTGTGCCACTGGAGCTGCTAC
GAAATATACCTATAGTGTCGATTCGAACAGCCAGCATTGATGAGATACCAGACTTTGCATATAGGCATAAGTGGCTTGA
TACACCACTCGTAACACCGTCAATGCTACCTACCGCATCCTATCGCCGCCTCCTCATCCACCTCATCCGTGGAAATTCA
GAAGTCGAATTGAGTACCAAGATGTTCACTTCTCTTTTGGAGTACACGCAAGCCTTTGAAAGAGATGCCCAATTCAAGA
ACGCGATGTCCTTGAGCTCCCAAGAGGTAGCCGCTTTGATGCCGAAGCTGCCTGCACTAAGCGAGAATCCGTTCCTC
AACAAAGAGTTTCACTCAAAAGAATTGGCTCACACTATCGAGACTGGTCTACAAAGAGCACGATATATGACCGAGATCG
AAAGTGGAGATATTACCAAGACCACCCAGTTCAAGGAAGAGCGATCTGTTATCCTGAAATACTTGGAACGTCAGTTCTG
CAGGATAAGCCACGCATCCCACGAGCTCATCGACTTTCTCAAATTACAAAAGAGAAAGTGGGGCGTTTTTGATCCTGC
TTGTACAAAAAAATACAACGGTTTTGATATGGCGATTTATACTGAGGCCATGGTTCTACTTGAGGACTACGCCGCGTCA
TTTATCCGAGAATTAGACGCATCAACGAAAAGAGCAGTGCGCGCGCAATTTGGTCTTTTTGAGCATCGCTACGAGTTAA
TGGCAAGGGAAGTCAAACTTCAAAAATGTAGGATAGCTTACAACAGAAGAGACCCCATCACGTTTAGAGCAAACTTCC
AAGAAGCGGTGAGCGATATGGAGTTGCAGTATCATACCATACTCACGACTAGATCTAAGCTATACGATTGGGACGCTG
GTAGCAGTATTCCCGATATCAATATCGCACCGTTGAGCTCATTCGAGGACTGGCAAATTAGATGGGAGATAGAGGAAC
CAGCAATCACCGCTATAACAGAGGTAGAAGCGCAAAGGATTCAACAAGATCTTCGCCGCCAGATTGCCCAGAAATGTT
TTCTTGCACAGGAGGCAGAAAACAAAGCTCCCGGGGACAACCAGGATTTGGATGCAGCGAATTGTGATGAGGCTCAT
GACCAGAGCGGGAGCACTACTGAAAAGGAACTCGAACTTGATATCGCCAATTGGGAGTCTCTACCATATCATGAAGAT
GACGAAGTCTCTAAGCTTATCTTACATCTGGATGAAGAACAGCCTCCACTACCATCTACTGTCGAAGCCCTCATGAATT
CTGACAATGATTCAGAAAATGATTTCTACGAAGAGCTTTTCAGAGATCGCCCGGAAGACGATAGCTTTTGTTTGGAATC
CGAAGACGACATTGAAGTCGGCGATGACTGTATCGATAGGGACAGGTCTACCCTTCACGACCTACCTTACCCCGGGG
ACTCTGGAGGTTCTCTATCACATGTGTTCCCGTGGATGACACTCTCTGAGCTATAATTGCCCAAGTCTTATCGAGGTTG
TTATATTTGACCAGAGTTATCTCCGATAATGCTTCTGTAGTCGTATCATCTAAGCCCTTGGTGGATTTATGGGATTATAT
CCGTTACCACTATGGTTGTAGTAGACCTTAACGGTCCTAGTTGTCCTAATTGATGAACTATGACTCTGTACACTGGATT
CTAGAGGATTTGATGAAGCTGATGGGTGCACCAGTGGGTGCATAGACTGGCGGGACACTTCTCAAATTTCAAACGTTT
TAACA
BC1G_00624
SEQ ID NO: 62
GGTATCGAGGGTCCAAAGTGTGGTCCGTCCGGGTGATGATTATTTTTTTGGCTCTGCCTCATATTAACACTTCCTGCTT
CTGTTCGAGCCCACCATTTGTCTTTCTCGAATTCCTTGCAAAGCATCTCTCTCATCCATCGAGCGATGTTCTGATAACCT
CTTGTGCCTCATTCATCAAGAGCGATATAAAAACGAGGGAGCAAGAAAAAGAGTTTGATGTTTGATACTTGAATTGAAT
ACCTACCAATCTACCTCCCTCCTCCCAAGCTTACATCTCGACTACGATATCATACCCGAAGTACATATATACCAACGGA
CCCATCCAATTTCTCCCTCAAATCTTGAAATTTTATCCTTCGAGCCGGTATCACACATATCCTTCCTAATCAAAAGATCG
ACAATATCAAAAATGTTTACGACGAGTATCTTAACGCTTTTGGCGATAACGACGAGTGTTTTGGTCCAGGCACATACGG
TGATTACATACCCGGGATGGAGAGGTGATAATTTGATTACGAATGAGACTTTTCCTTATGGAATGCAGTGGATGTATCC
TTGCGGCGGCATGCCTACTACCACCAACCGCACTCTCTGGCCCATCCACGGCGGCGCCATCTCCGTTCAACCCGGCT
GGTTTCAAGGTCACGCCACCGCCTTCTTCTACTTTAATCTCGGATTCGGCACCGATGGCCCCGACAATGGTCCCCAGA
ACATGTCTTTCCCCATGACCTCCGTCATGCAAATCGTCGGCCCTAGCAAAAATCCTTACCCGGGAACCTTCTGTTTGCC
TCAGGTGCCATTGCCCGCAAATACGACGGTTAATGTAGGAGATAATGCGACGATTCAGGTCGTGGAGACGGCGATTC
ATGGGGCTGCTTTGTATTCTTGCGTAGACATAACCTTCGCACTCCCCGAAGACGTCGCCGAAGTAAACACCTCGAACT
GCTTCAACTCCTCCGACATCTCCTTTGCAAACGTCTACACCATCAACGATGCCTCAGCCCCCGGAACTTCCTCCTCCG
CCTCCTCCTCCGCATCTCCTTCGCGCTCGCTCTGGGCTGCTAGTCTCGCGAGCGTGCTGGGCATCGCTATGTGGAGT
TTCTTGTAGGAGATGCGAGATGGAAAATGATCGGAGAGAAATTTGTAATTTCTGGGAGATTACAAACGAAAGATGGGG
AGGGGAGGGGAAGAGAAAAGATGAAAGATAATCAGAAGGAAATTCAAGGAAGCAGAAACAGGCAGCATTGTAGATAT
GATAAAATATGATATGATACCACGGGCAGATGATAGACGGACACATCAAGTGAGTGTCCCTGCCTCTATACCCAACAA
ATCGAGATCGAAATCTCAAACCATGGGAACTGGGAACCGGGAACCGGGAATTGAAGCAGAGCATTCAAGTACCCAAC
GAGGAGCTACTTTGCATGTATGTATGAGCACTCAGGCGTTTTATGGCGAGGATTGTGATTGGAAGGAATGATTTTTTTA
TTAATTTCATTTTAATTCTCGAGTTTCGAGTTTCGAGTTTCGATATTCAATTTCTATCTCAATACAATCCAATTCAATACAA
TCATATCCTTTACTGCGCA
BC1G_15490
SEQ ID NO: 63
GATTTACACGGGATGTGTTGCCCTTCTCCACGACGTCAACAGTTTTCTCGACAAGTAGACAGAAAATCATGACTGAGAT
CATCCCAATTCCTGAGCCCAAGGGCTGGCCCATTATCAATCATTTGGTAGGGGTCATTGATAACGAGAATCCGACTGA
GTCTTTCAAACATCTAGCAGAGCAGTTAGGGAGGATTTACAGGCTTCGTCTGATTAATATACCCATCACATTTGTTTCTA
GCTACAAATATATAAATGAGCTATGTAATGAGAAGAAGTTTCGGAAAGTCCCTGGAGGGATATTTAAGGAATTGCGAGA
TGCAGCCAACGATGGATTGATCACGGCATATCTTGATGAAGAGAATTGGGGTATCGCCCATCGAGTGCTCATGCCTGC
ATTTGGACCCTCTGCTGTTCACGGCATGTTCGATGATATGCATGATATTGCCGCCCAGCTCACCATGAAATGGGCCAG
GTTAGGCAAGTATGAATCATTTGTCCCAGCTGAGGACTTCACACGTCTCGCGATGGATACTCTGGCATTATGTTCCATG
GATTATAGATTCAACAGCTTTTACGGGCGCGAGACACATCCTTTCCTTGAGGCGATGGCTAGAACACTTCTAAGGTCG
CGTTATCGTGCTCGACGCTTAAATATTCCCATTGTTAAGTTTTTCTATCAACAAGAGACGAAGCAGTGGTATGAAGACAT
CGCACTCCTGCGGGAAGTTTCGGATAGCATCATACGTCATCGAATTAAACATCCCAGTCCTCGAAAGGATTTAGTCGC
TGCTATGTTAACGCACAAGGACCCAATGACAGGAAAGGTCATGACAGAAAAGAGCACGACTGACAACGCCTTGAGTTT
TCTTGTCGCTGGACACGAGACAACTGCGGGACTGCTCTCTTTTACACTGTACTATCTGCTCAAAGATCCTCGGGTCTA
CAATAAGGCTCGGGAGGATATCGATAATGTAGTTGGAGAAGGCCGCATTCGAGTAGAGCATCTTTCGAAATTACCCTA
CATCGAAGCAATACTCCGCGAGGTCCTCCGGCTGGAACCACCACTGCCGGTATTTTCGGTCCGTCCTTACGAAGATA
CCTTGGTCGATGGTCGCTTTCTCGTAAAGAAGGATGAAGGTTGCGTTCTCCTCCTCAAGCATGCTCATCGCGATAAGG
AAGTGTACGGTGAGGATGCGGATGAGTTCCGACCCGAACGTATGCTCGACGAACACTTCAACAAACTCCCACCCGGG
GCCTTCAAACCCTTTGGAAATGGACAAAGAGCATGTATTGGCCGAAACTTCGCTCTCCAAGAAGCAAACCTGATGCTC
GTCATGCTTCTCCAGAACTTTGACCTCGCTTTGGATGATCCATCATACGAACTGCAAATCAAACAGACCTTGACCATGA
AGCCCAAGAACTTTAAGATTCGGGCTAATTTACGAGATGGATTGACTCCGATTACACTGCAGCAGCGATTACTCTATGG
GACTTCGACTTTAACAGCAACTCAAGAAGCTCGCAAGGAATTGCGAAATGTTGCTGCAACGGCTCAATTCAAGCCCTT
GACAGTTCTCTATGGATCGAATGCCGGCACTTGTGCACAACTGGCACAACTTCTAGGATCACATGCTCGTTCCCACGG
TTTCAACGCCGTGACTATCGAAACTCTCGACGCCGCAGTGGAAAAAGTACCCAATGACCATCCTGTCATTTTCATCACC
ACATCCTACGAGGGTCAACCCACAGACAACGCCAAGCGATTTTTCTCTTGGCTAGAGACGTCCTCGGGAAAATTTCTT
GACGGTATCAGTTATGCCGTTTATGGTCTTGGACATCATGATTGGGTTTCCACGTTTCACAAAATTCCTAAGGCCCTGG
ACGCTCGATTGGAGCAAGCTGGTGGAGAGCGTCTGCTTCCACTCCAACTTGATGATGTTGGTGACTCTGATATTTTTTC
CGCCTTTGATACATGGGAGGAAGATGTGTTCTGGCCAACATTGGAGAAGCAGTATGGTGTTATCAACGCGAATCATGA
GAGTCATGATGTTGATGAACTTGATACTAAGCTAGTGAGCCTTCGAAAAACGACCTTGAGCTACTTTGTCTCCGAAGCC
CAAGTTGTCAGCTCCAAAATCTTGACTGCCCCTGGTGAGCCAGTCAAGAAACACCTCGAGATTAAGTTGCCAGCCAAC
ATGCCATATCAAGTCGGGGATTATCTTCTTACATTACCGAAAAATCCCCCTGAGACAGTCGAACGAGTGTTGAAGCATT
TTCAAATCTCTCGCGATACTCAGAACAATACATTTCCTAGGATTGAATCCTATACTCTCACCACCGTGGAATCAATCGAG
TCGTATGTAGAGCTGAGCCATCCCGCCTCGAAAAAGGCCATGGCAGTACTAGTTGACGCTACAAAGAACGAGCAAGT
CAAACAAAAGCTACAAGAGATGGCTATGGAACTGTACTCATCTGAGATTGAGAGCAAATACATTTCTGTTCTGGATTTG
CTCGAGGCGTTCCCTGGCATTGAATTATCATTAAATTCATTCTTGGCACTCCTTCCACCACTCAAACTTCGTCAATATTC
CATTTCGTCCTCTCCATTGTGGAAACCAAATCACGCCACCTTAACTTTTTCCCTCTTGGATGCGCCGTCACTGGCACAC
CAAGGACGACATCATGGTGTAGCAACTTCGTATCTCAACTCCTTGCAGAATGGAGATTCCGTCCGCGTTGCCGTCCGA
CCGTGTCACGATGCTTTCCGACCCCCACTTATCACGGAAGATACTCCTATTATCATGATCGGCGCCGGTTCCGGCCTT
GCACCCTTCCGCGGCTTTATTCAACAACGATCACTTCTCACTCTCAATGGCGCCAAACTCCCAAAAGCATATCTATTTC
AAGGCTGTCGGGAACCTGGAAACGATGATATCTATGCTGATGATTTATCAACGTGGGAGGATGAAGGGGTTGTCAAAA
TTCATCGTGCGTATAGTCGCACACCTGAGAAAGCGGGTGGATATAAGTATGTACAGGATGTGGTTCTGGGAGAGAGTA
TGAAGATTGTTGAGTTGTGGAAGGAGGGGGCGAAGTTGTATATTTGTGGGTCACATAAAATGGGGGAGACTGTCGCA
GAAGCGGTGCAGAAGATTCTTTCTGAGGCTGATCTTGTGGAGGGGGAGAATGTGAAGTGGTGGTGGGAGAAGATGA
GGAATGACAGGTATGCAGTTGATGTATTTGATTAGATTATCAGTCGGTATATCCCAAGATAATACTGCATGTAGGCTGG
GAAATTTTGATGAACA
BC1G_14979
SEQ ID NO: 64
GGGTAAGCAGCCCACATAATGAGCATCGTAAATAGACAAATAAATAATGCCGCATTCAAATGGCTCGCATTGCCGTCA
ACAGTAATGGAGACAACCCTCCAGATGCCAACTCTCTTCCTAACCCCCCACGCTTCAACGTCGAACTACCACCTATATC
GTGCTTCATTGAAGACAAAAATGGTAGCCCCACGAGAAAGTTTTTCACGACCCCAGATGAACTCACAAATCACTTGGA
GCGCACCACGCATCACAAGGAGAGGAAATTGTATGTTTTGGAAGGGTTGCCGATTGAATACGTACAGGTGTTAGGGTT
ACACTTCAACATAGATGTGGATATTTTTGATTCTCATGCGATGAGAAAGAGTGGGCAATTGAATAAGCTGGAATTTCCA
ACCAAAATAGGGAATGAGAAAAAAGTTCGAACTTTTGCTCTGGACCATCCTGAAATTACGACAAACATTACCCCGCCGC
CTGAAGCCAGTGGAGGAGTTGCTGGTGATTTCATGATACCGTGTAAAACGATAGACATATCAGATGAAAGCTGGAATG
GAATCAGTGTAAAATTATGTCACGTGACTTTGGTGTGCTTTCCCGGGGAAAATGGGAGTGAAACTTTACTATTGCTTCT
CGAAAACCAGTCGTGGGCGAGAAGAGGCGCCCAATTTCAAACTGCGGGTTACCACAGTATTCTTGCAAATGCCCTCAA
AAGTCTTCCAGAGGGAAAGCAGAAATGGAAACCATCCCGAAAACATGACCCGGCTTTGACTCTAGCAGACGAGATATT
CAATTCTATAGAATTGCCGGGTGGCATCCTGGCTTGGGATGACCTCACAGAGATACTTGCTGATATCGTACTCAGACA
ATGGAAATTTGCCTTGGGCGAGGTAATCGAACATGCATGTGCATCTAGATCGATTCCTTATCACGAAATTCATCAGGTA
TGTGATCTGATAGAATCTAATATCTGGACTTTGGATCGTACTGAGGCTCTCTGGGGCCCTCATTATGTTGTAAGAGTGG
AAGGGTTTAAAAGACTTTTAAAGAAAGCAAAGCGTTATGCACATTTATTTGTGTGGGGACAAATTGTGGAGGAGGGTCT
TGAGACAAAGGCCAAAAATGAGAGTGCGACTGACAATGAGGATGATGACGATACCAGCTCCAGTGCTTCTTCTAAGTC
GGGAGTGCATATTCGTGGAGGAGAGACCTTAGATTTGGAAACCCGCCAAAGCATCAATAGAGTGACCTACCTTGGCG
GTGTATTACTCCCGTTCTCCATAATCGCGGCAATATTTTCAATGGGTGGGAATTTTCAGCCTGGTGGAGATCAGTTTTT
CATATTTTGGGTCATCGCTATTCCAGTATGTATGCTTACAACGGTTTTAATATATGCGGATAGTATTCGGCGAATGACCT
TGGAGCAATTTGCTCAACAGTACGGGTCTGATGCAGTGACGGCAGAAGCTGATGATATGGTTACTTCATCAATTTCTG
GCAGTGAGATCATTTCATACAAAGTGGGTATTAAAGAACGTCTTAGGTCGCGTATCCCAGGTGTCTGGAATTCACGCA
GGGCTGGTTCTTCCTCCAGTGTTGGCTATACAGATAGCGATGACAATTCATCCTCTACAGACAGTACTCAGTTACCTCC
AGGTCTATCCATAGATGGCGATTTGTTAGTTCGCAGGAAAAGGAAAAAGGTGTCAAGATCATGGATTTGGCGATTTTG
GAGACGGAAACCTCTGGGTCGAAAATCAGATCCGGAGAATGTCTTGCCATCTCCTAGACATTCGGATCACAATGTATC
TTCACCTTCTGCACCTCCTCCGACTTCTCCACCATCCGCGTTTCACCCTATTCGATCTTCACCACAAATTACACCGGTG
AAGCCCATACTTGTTGGAAATGACCGTCCAGAGTCTCTTACTTCTGATAACTCTCCGACGGCCGGGCCAGCCCCGCCA
GAAACACCCCCAGCTAGTCCTCCGTTACCCGACCCTGACCTATCCATTCCTGACCAAATTATCCCTGAGCCAATAGTTC
TTGACCCAGGCTGGAATTTTGGGGGAACCCCTTCAAAGAAATCTAAAAAAGGCAAAAAGACAAGACAACACAGGATTG
GATACCTAAATGATGAATTCGATATCCCAACCCGTCCGAATCCAGCCACTTCTCCACCACATCCGTCTACACCAGACCC
CGCGGGGATACCACTACCTCCATTGGATTCGGATTCTGATGACTGGCGAGAGCGAGACAGTTCTGAGGGAATACATC
CTGAAAGATCTCCATCTCCAGGTCGTGCAGACTCGGATTATGCCACAGATCGTGAACGCCGTTCTTTGGAAAGACGAA
TGAGAGAAAATGACGACCGAGCACTGACCAGAAGAGGAAGTAGAGAATATCTAGGCATTGGAGATGAATATGAGCGC
ATTGTTGAGCGAGAAATCATTTATCGACGCCGGCGCCGATCCGAGCATTCTGTGAAGTCTGAGAGAAAACATGTAATA
GAAAAAACGACTGAAAAGCTTGTTGAAGAGCAGGAAAGAAAACATGCGACAGATGATATCGTGAAAGATGATGATGAT
GTTCCGGAAGACCGAGGAAGACAACGAAAACGATCTACAGTACGATGGGCACACCGTGGAACTTATTATGATTATCCA
AGGCGGCCAACACCCAACACTGATCCTACTGAGATACCATTGCCACCATCCCCAGAAGAACTATCAGAGGAAGAACG
AATTAGAATGAAACTAGAGAGAGAGAAACTAGAATACCTTGAGAAGTTGAAGCAAAAAGAACGACATAGGAGAATGGC
GGAGATGGAAGAGGAACACGCAAAAAAGCGAGCGGAAGAGGAATATGCAAGAAGAATAGCCGAAGAAGAATACAAGA
AAAAGGCGGCAGAAAGTAGAGCTGCCAAGGGAAAAGATCGAGCCTACTCCCCTGTGGAATCCGATAACAAGGGATTA
AAACCAGCGATAAAGTTCAAGGACGCTGTGGGAAGGAAATTCACGTTCCCATTCCATTTAGTGTCTACATGGGCTGGA
ATGGAAGAATTAGTGAAACAAGCCTTCCTTCATGTCGATGTCATTGGGCCTCACGTCAATGAGGGTCACTACGATCTC
CTTGGCCCCACAGGCGAAATCATCCTCCCTCAAGTATGGGAATCAGTTATTGAGCCTGGTTGGTTAATAACTATGCACA
TGTGGCCAATGCCGGAGCCGCGAAGGCAAGCACCCGCTCCTATGCCTCCTAAACCAGGGCATCCCGGTAACTTTCCA
CCTCCTCCTCCTCCACCTGGATTCACAGCACCCCAGCCCGGCGGCCTAATTAGTGGGCCTACTCCGAGAATGAAGAA
ATCTACGCAGACTGGAGCTTGGGACTGGGTGGAAGGAGCACGTCACTCGAAATCTCGCAAGAAACAAAAGTCGGCAC
CGATACGACTTGGGCCTCCTCTACCGCCTTCATTTCCTAGGCCCCCTCCGCCGCCACCGGCATCTGGAAGACGAGAA
TCTGATACAGTCGTCATAATAGAGGATCTGCCGCCAAAAGTTCACAGAAGACAAACGGGTATGAGCGACAGACATAGA
CACGGAGCAAGCGGCGGTGGCATAATTGGAGGAGCAGCAAAGCCTAATGAGGAGTTGGGGTGGGTAAGAGCCCTGG
GAACCATTGTTGGTGTGAAGCCGGGGATACAGGTGAAAAAACGCAGTGGTGGAAGTAGTTCATCGTCGAGTGTTTGAT
GGGTCGTTGATGAGATGACTGACTGCTCGTAAATTTGAGAAGCTAAGGTATCAATGGTTGAATGTGTGCCTGCA
BC1G_12936
SEQ ID NO: 65
GAAGTATTAATCTCCAACTTTCAGACCATGTGAGGCTTCACGGAACAACACCTTCGGGTACAAGATTAATACAATGGCA
GCCACAGCTTTATCAGCGTTATTCTCTTTGGAGGGGCAAACCGCACTCGTTACTGGTGGTACTCGAGGCATTGGACAA
GCTGTTTGCTTAGCACTTGCTGAAGCAGGAGCAGATTTGATCTTGATACAGCGTAGTCGTGAGAATCTCGAGACTCAG
AAAGCCGTCGAGGCTCTGGGAAGGAAAGCTCCTATATACACCGCGGACCTGGCATCGCAGGAAGAGGTCGCCGGCA
TCACATCTACTATCCTGAAAGATGGACACTCGATACACATCTTGGTAAATTGTGCTGGGATTCAAAGGCGCCATCCGAG
CCACGAGTTTCCGGATAAAGACTGGAATGAGGTGATCCAAGTCAACCTCAATACTGTCTTTACCCTCTGTCGCGATGTT
GGCGCACACATGTTGAAGCTCGAACCATCTGCTATTACTGGCCGAAGAGGTAGCATCATCAATTTTGCTAGTCTTCTTA
CCTTTCAAGGTGGTCTTACTGTTCCAGCATATTCCGCATCGAAAGGCGCGGTGGGACAGCTTACCAAAGCTTTATCGA
ACGAATGGGCATCGAAAGGAATTAATGTCAATGCGATTGCTCCGGGGTATATTGAGACGGAGATGAATACCGCCTTGT
TGGCCAACCCAGAACGATTGAGGAGTATTAGTGAAAGAATACCGGCGGGTCGATGGGGTTCCCCAGATGATTTCAAG
GCGAGTGTTGTTTTCTTGGCAAGCAAGGGAAGTGCATATATCTCTGGAGATATTCTCACGGTAGATGGTGGCTGGATG
GGTAGATAAACACTTGTCAGGTTAAAATAATACATTTCTAATTCTAATTCGACGCTCTTTGACTTTCTGCCGATTTCCTCA
ATTCTCACGGTCATCCAAATATTCAGACTCTCCCA
BC1G_04424
SEQ ID NO: 66
GTAACAATCAACAAATTTCATCAACCACCAACCCACCACATCCATTCTACAGGTTTGGGGGATTTCTATATCACGTACC
GAGACCCCTGGACGCGTCTTGAGCCATATCTGCTTTTCTGCTTGGTCAAGGCCCTTTGACAACAAGTACATATAACAAT
GGTTCTCTTCAAGAGGAAACCAGTGCAATATGCACCCAAGCCACATGTCGAAAATGAAGACACAGAGGTCTGGGTAAT
TCCTGCTACTGGAGAGTATTTCTTAGAGTATGAACAATACTTAAGCCGAATGGATTTCTATAGACAGCATAAATTCATTT
GCCAGATTTCAGGTCATTCTCAGTTAACATTCTTCGACGCACTCAAGAGTGAGTTGGCAGGCGCACAAGAAGTCGAAG
AGGCATTCCCGAATCCATTGAAGCAACCAGTTCTAAGACGTGTACAATTCTCAACTATTTCCCGAATCGATACCTTGGT
GGACATTATTTTCGAAGAGTTCAGATCCGATTATTTCCCCGGCGAGGTTGTTACAGTTCATGTGATTACGGGCGATCGA
CTTACTGGTACCGTAAGAGAAAAAACGCACTTCGGAAGCAAAGTTCTGCCAGATGGCTCACTAAGCGCACCTTTCTCG
AGATATTTCGTTAGTCTGGATGGCCGACCAAATGAAGAGGCAGTGGTGGATGACCAGCATATTACTCGTGATCGCAAG
ATATTCACAAAGCAAGTTCTGCGATCTTTTATTAAGAAAACCGTTACAAGAGAGGCATGGACCGGCGCGCCTTGGCTG
GTGAAGCACGACGTGGCCGCCATTTACAATATCGATACCAGGATTCCTCCACATCTTCGATATGAGAGTAAAGCTGCA
GAAAGAAAACAAAATCAATCTCAGAAAAAATCGGGAGGGACTGATTTTGATAATATGATTGGTAGCTTTCATGGAGGAA
ATGGACCACAAGCTAGACTCCCGGAGTTGAAGCCAGCACCCAAAAGCCATAAAAGCAAGCAGCAACAATCCCAACTA
GCAAAGGGTAAGCAGCAGCCATTTTTAGAGCAAGCTCCTTTAAATTTCATCCCTGCACATTTCCCTCCCCATCATTTCTA
CCCCCAACCCCACCCCAACTACAATCCACCACAAATTCCATACAATTCTCACCCTCCTCATCCTCCTCAACCCCACCCC
AATTACAATCCCCCTCCTCAAATTCCATTCAATCCTCATCCTCAAACTCCTCCCTTCATGTCTCACACCTTTCAAGTCAAT
GGACAATCACAACAAGCGGGACCCCACTTCCAGAATTTTCACAATTCTAGCTTTGCGCTTGCGCCTCTTGCATCGCTTC
CTCCGGCTCCTCCTCCACCGCCTCCTATCAAATACCCAATTGAGGATTTGGAAGTTCCTCCCCGAGTTGATGGACCGA
AACGACCCGATATCAAATACTTTTCGCAAGATAATCCAATGATGGTGGGAAAACCAAAGGCCGAGGGTAATGGCATTC
ACATGTCATCGATTGGACAGTTACTGGAGACCTGGGACACTTTGAATGTTTACTGTCAAATCTTCAAGTTGGACTCATT
CACTTTTGATGACTTTGTCGAAGCCTTACAATTTACATCTGAAGATGTAGACTGCGAACTGTTCGTCGAAATTCATTGCG
CTGTTTTGAAAATCTTGGTTAATTCTGAAGCCGATGATGGAGAGATGCAAATTCGGTTACGAGAAATAGAGGAGTCAGA
TGACGAAGAAGAGTCCGATGACGAGGCTAGCGTTGCACCATCACCTACACCAGAGCCAGAGCCAAAACCCAAAGGGC
GCGCTACCAGAAGTAGTCTCGCAAAAGCCGAGGCAGAAGCTTTACAAAAAGCCGCCGAACAACCTCCCGAAGAGCCC
GCTGGACCAGTCAACACTCATCGCGCAGCCGAGATGGAAGATAGTCTTGAGTGGGCCCAGAAGCTAAGAAAACGTGA
TTTCAAGAATGGTGGCTGGGAAGCTATTATGGTCGGCCTTTTGTATCAACTTTCGAAATACGAGAGATACTTTGCCGCC
TGTGAATCACTCCTTGTTGAACTCGCCCCCCTCGATTCGGAGCCAACGCAGGAAACCGCTCGCCTACAGTACGCTAAA
CTTGACGTTAACCTTCGTATCAAGGCACTGCAAATTATTTGCATGCTTACGATGGAGACTAAAGCAATTCGTGGTTACA
TGGAAGAGAGTAGTGAACACATGACGGAGCTCCGAAAGGAAAAAATAAAGTACCAGCGTGATAAGAAGGATGCTCAT
GATGCTCTCAAAAAGCTCAATGAAACGCGCAAAGCACTCGAACCACCACCCGAGCCAAGTCCAGCGCCAGCTACAGA
GAAGCCTGCAGAGAAAGAAGCTTCAGCCAGCGTCAACGGAGATGTGACTATGGTCGACGCCGAGGATGAAGTTCAG
GACTCTCATGGTGATGAAATTATGGACTCAGATGGAGAGGCTCCCCCAACTCGATCATTACGCCGCGGATTAGATCGA
GCAGCAGAACGAAAGCGTAAGCGTGAGGCCGAGCAGGAGAAGAAAGCAAAAGCAGAAGCTGAGCCTAAGGCCCCCA
AACAATCTAAGGCCCTCACGAAAGTTCTCAAAGACATCCAAAAATTGCATGATGAGATCAAGCATTGCGAGGAAGAGAT
TGCCATTCTCGATAATGACCTCCGAGAGGCTGATTGCCCTCGCACTCGTGTACTTGGCAAGGATCGATTCTGGAATCG
CTATTATTGGTTTGAGCGCAATGGTATGCCATATAGTGGTCTTCCTACCAGCTCTACTGCTGAGGCTGGATATGCCAAC
GGATGTATCTGGATTCAAGGACCGGATGATCTTGAGCGCGAAGGTTATATTGAGATGCGACCTGAGTGGCAAGATGA
GTATCGATATAAATTCAACCTGACTGTGCCGGAAAGAAAGGTTATGGAGGAAGGAAATACTCATGTATTCAATTCTCGT
GAATGGGGATACTATGATGATCCTGAGTCAGTCGAAGGCCTGCTTAATTGGCTTGACGCCCGTGGAAACAACGAGTTG
AAACTTCGAAAAGAACTCCAACTTTACAAGGACAAGATCATCACTCACATGGAAAAGCGCAAGGAGTATCTCAACCCTA
GTGATGAAAAGAGTATCGATTCTAGTCACAAGCGAATGTCCACTCGTGGAAAACAACAACCTCATGTTGATCATACAGC
TCATCGATGCCTATCCTGGCACAACAATACGGCAATTGAAGAATTAGGTCACTTGCATTCCGATCCACCACGAAATCGT
AAGCAAACTAAGAAGGCGGCTCCTATTTTACCACCGGCAATTGAAGAAGAGAGACAAACTAGGAGCGAAGCGGCTAA
GAGACAGAGAAAGCGTTAAGTTTTCGGTGTTTTACAGCTTTGAGAATGATAGATCACGAGCGCTCGCAAAATTTACTGG
TGCGTTTTGTTCATGGCTATTTCATATAGAAAATCTTGAACGCGCATGGAGTTCATTGGTTCTATGTATTTGAATTTGGC
CTTGGGAGGAGTTTATGGGTTTATGGGCTTCAAAAACACATTTGAAGTTGGGAAATAAGGAAATCACAAAAGTCATGGG
AGTGCGTGCATATATGGTATTTTACAAAATGGATTGGTTTGTATTTAGACGGTCTGTGGTGAGGGAAAGCATTGCTTGC
GTTGCATTTGGATGGTGTTGGCTGGATTGTGTTTTGATGGTTAGTTAGCACTGAGAGGGAGCACTGAAGAGAGGAGAG
ACTGGAGATCTGTTTGTATGGAATGTTATTTGCTTCATGAGGGAGCGAGCGAAGAGAGCAGTAGTATAGTGAGTGATG
CGAATACCCAAAATACATATCAAATT
BC1G_14463
SEQ ID NO: 67
GGAACTGTGGGCTTATTCGAGGTCTGCCTCTCTTGCAATTTTCTCTCTTCTCTTTATAACTTTTTGATCTAAATTTTCACA
TCAGCTCTATTCAAACTACATAATTCTCAGGCCACGTGCTACTCTTCATAACTATTATATCCTATTGGGGGGCGCTGGT
CGTCACACTAGTCAAGGTATATTAGTCTTCTTTCTAAAATCTTGATACTATAAGCCTGTCGCCTCACTTTCCACAATGCA
ACAACAACCACATAGTATCACCAGAATCAGGATCCAATAAACTTAGCTCCCTTATCCTTTTCGGCTTCCAGTTACCCTTA
TACTTCATCACTTCATATCTACATCACTGACGCTTTCATCTTTCAACAATCTTCTGAAGAATTTGATGTCGAAAATGGAGC
TTGACGATACATGGGATCCTGATCCCTTGCCAAGTGGTAGTTCTAGGAACCAATCTCAGCCTCGATTCAAGAGAGAAA
CATCTCATCACTCTAAGGCACAACCGGACCCGCAGCATCAATACTACGAACAACCAAAAACATCTCATTCACAACTCAG
AGGTCTGATCGCGCCCATGAAGCTTTATCAAGACTTTTCAGACGATGGAAGCTCATCTGATGAATATCCTGTCGTCTTG
CAACAACCACAGATTAATAATAAAAGGGTGACAAGTCCCGCTCAACCTGCGAAGGACAGACGGAAGCGACATCAGAG
TGAACACCCAAATCGAATTGAACGTGGCCGCACAACAAACGTAGAGGAGGTTATATATGATCACATCTCAGCGATCCC
GCGGTCTCGCAATGAATCCGTTGCCCGCAATGACGCTCGATATAAGAGTGTTGCAAATGATGTTTTCGAAGAGTATGA
AAGTTTCAAAAACACCTCAGCAGTTAGCAGAACATCGGTCGCCCGTAGTCATTCGCTTGCAAGAGACTTGTATGAGGA
CCAAGGTTATGTTACAATGAAAGATTACAACCGGCAGTTCGACAAAGAGCCAAGTGTCTTTTCACCTAACAATGCTCAA
ACTAAGAGGCGCATGAGGGAGGAGTCAACCTACGGATCTATGTCATCTGGTACAGATGCTCATAGAACAGCTGGCCG
AAGTCGTCAAGAAAGTTCAAGCCAATCGCGAACTAGTCGGTGCACCCAAGAAAAAAAAACGTCATAGTTATTCTCGT
GCACAAAGTCTAGCCCCAAGAATCTCAAACGACAATAGCGATGTTCAATATCTGGGCACTGAAAATGGTATGTACAGT
GTCAGAATTCAAAAGCAGGGAAAGAAGCCCCAACTTCGCTCGCCATTATGGCCAAGCTTTGAATCTGCTGTACCCAAA
CCTTACTCTGCTAACAGATTGAAAGGGAGAATTGATAAATCTGCCTCGATGAAGCCACTCCCACATATGCCAAAGAATC
AACCAGTTAGAATCAGATCAGTTGCGTCTGATCGCATACAGAACTATTCAAGTCAAGCCCGAACGGTTGATTATGGTCT
CATTGATGACGACGATGTTTATGACACACCATTGGAAAATGATCTTCGCCGCAGATCTAAGTCTCAAGTGAGAGCTCAT
AATGCTCCCATGAACTTCATAAATGCTCTACCAAAGTCTAGTGTATTTCGAAGGAAAAACTCCGAAGTCGCAGAACAGG
TTCATCAGACTCCATCCAGAGACTCAAATAGATCTAACAATCCGGGCGTCACTATTGATCTCGTTACTCCAGAAAGTAC
TGTTTATGCCCGCAGTGCAATGCCTTTTATACCTCAGCACTGGACTCCAACAAGGAGAGGCCCAATGAAAGTATCGGC
TCCAATGGAGATCTCTGAGCAGGATGGTCTTGGCACTAAAACTGGACAACAACCTGGTCAAAATACTCATCAGCACCA
AGTCATTAAATCTAGTCCTAATAATGGACAACAAACTGAAGAAAACATACGACAACGACAAGCAGCCGAGAAGATCATC
CGACAAGAACTCAATGCAGATAATGAGGCTTTGCAAGCGGAGCTTTTCGGAGAAGTTATTGGTGAAACTGAGGAAGAA
ATGAGAGAGCGTGAAGAAGCTAAACGTTTGGAAGCTCAAAGAGTGCGGGAACAAAAAGAGAAGCAAGATCTCATTGAT
GCTGAGAGGAAGCGAAAGAAGAATGAAGCAAGAGCCAAGAAAGAGAACGAGAGGAAAGCGGCTGAGCAGGCCGAGA
AGGAGAAAGAAGCAGCAGCAAAAAAAGCCAAACGTGATGCCGAACGCCATCATCAATCATTGAAGGAGCAACAGAAT
GCAGACGAGAGACGTAAGGCGGCAAACAAGTTACTACAAGAGAAGAAAGAAAGAGATTTGGCTGCATCCAAGGTCAT
CGAGGAAAATGTCCAAGCTGCAGAAAAAGAAAGAAAAGAGAATGAAGCTAAGTTTGAGCGAATGAAACGACAATTGGA
AAAACTTGAGGCGCAAGTTAAAGCAAAATCGATTGCGGAATTGAAGCCTGCGAGAAAGTCTACGGCTTTGGACGGTAT
CTCGAACAGAGTCAACTCTCAGCCTCCTCAAGTCAGGCTTTCAACAAGCATGGAAATTGACGATGAAAGTTCATTGCC
CACTACACAGACCCAAATAACACCTGTAAACGGTACTGATACTTCACATACAGCAAATACTTCATCTACTCAAGCCACA
CCTTCAATAATCACCGAAGTCGAGGATGAAGATTCACTGTTCGTTTCAGACAATCGAAAGACAGTTGTGGAAGCCACTC
CAGAACAGCAAATTTCGAATGATCTTCAAAATTTCACTGGGAGCTTTAGTAGTGACTCGACAATTGTTCAGTCCATAGA
GCATGATCGACCTCCTACTAGTATAACTGAGATCTTTGCCAAGACAATTCACAATCCAAGTGGTGACAAGACTCTCGAA
GATAGGGACGCGGAGCGAGAAGCCATTCGAAAAAAAAGAGCAAACGAGAATGCAGCTGCCAAGCAAAAACGAGCAAA
TTCCATACCCGCAGAGCCAAACCCCGAAATATTTGCTCAAAAGGTTGCTCCACGGGAAGTTTCTAAAGCACCATCGAA
AAGCACGCCAAAGAAAAAACGTATCCAGCCGCTAACAAAGGCATTAGGAGATTCCATATTCAGTGTTAAATTACAGCCT
CTAGCCGGACATGAGCCCGAAGGATACGTTCCTCGTGAACAGTCAGAAGGTTTTCAGAATTTCACTGAGAACTCTTCC
ACAGACCTTACAGTCTTGAAACCCCGCCCACTTCCATTGACTTTACCTCCCCCTCTTCCTCCACCAGTAGCATTTACTA
CTACTTCAATTAGACCAGAAACTCGTCTGATTTCACAAGCAGAGCGAGAGGAAATTGAAGCTAATCGCCAAAGAGTCC
AGGCTGCGGCACAGGCTCGGAAGGAAAATTCGAACAGGGCAAGATTGGAGGGGAGAAAAGCTGCATCTGCGAAGAA
GAGAACAGTTGAGTATCGCAAGAGGAAAGAGAAAGAACTCATCGAAGAGGCTCATAAAGAGGGTAGGATATTAGGTAA
TTCTGAGCTGGAAGCTAGACTTGACAAGTTGATGGAGAAGCGAGAGCGTGAGCAAAAACGAAAGAAAAATCGTGCGG
GAGAAAAGGCTTCATTTAACGAACATGAACATGAACCTCTTTCTAGAATAAATATACTTAACCATTCTAGCATGCCCGCG
GCGCAAATCTCATCCTCCGATACTGCCAGTGATTCTAATCAAATTGAAGAAGATGATGATCCTCCGGCTCTAACTCTGA
AAGAGCATAAGATTAAAACGGCCGAAATTATGAAAGAACGGGCTCAATTGCATGCAGCTCAGCGTGCCCAACCACAAC
CGAAGAAGAAACTGGAACCAATTTTTGACTCGGACGAGTCTGAGGAGTCTGTAGAAGATCCGATGGACGAAGAGACTA
CGGAAATGTACATAGAGCACGCTCGAAAAAACAACACCGAGGCTAAAGAAGATGTCGAAAAGAGTGATGTGGTTCAAT
TAGAAACTCGGACTGAGGAAGACATTGCTTTCGAGAAAGAGATAGAAGATTTTCTTGAAGAAGATCCAAATTTCGAAGG
AGAGGCTCAAGAAGCAACCACTACACTCAACCCCGATGAACATAGTGCTCAGATCGTCCTACCAATGCCCAATATGAC
AAGATACTTTGAGGGACAATCCGCTCCACGGTCTTCCAGTAATCTAGAGACCCAATCAACGTTACTTGCAGGACCGAT
TCAAATGGCCAAAAAAATACCTCCCAAACCTCAGCAGCCCGCATCATATGAAATGGTCAATTTATATATGGTCATGACG
CAAGTGACACTTCACGAATGTGAAGACGAAGCAATTCTCAAAAAGAAGTTCCTTGATATTGAAAAGGCCAACAAGTACG
CACAGATGCTTGTCAACGAACACAGAAATAAAATGTTCAGACAACGGGAAATTCTGGAAAGATGGGATTCAGACCGTA
TGTATCATGGCCAAATCATTCACGACAAACAGAAGACTACCAAGATTTTTGTTGAATTTAAGCCAATGAACACCGAAGAT
ATTGACAAATATGATCCAACACTGGTACGACCGATGTTTGCTACTCAATACTACATGGTTCGATTTGAGAAAGTCGTTG
AAGAAATTGACCCCAAAACCCAGAAAGTCTGTATGAAAAACCATACTATTGGATTTGCAGACTCGGGCAAGCTATACAC
GGTATTAGAAATGGCAAATCATGCTGCTTCCGAATACCTCCTCAAGGAAATCAAACCCAAGGAAGAAGTTGAGGAGCA
TCATACTACTTACGAACAAATTCTCCTCCCGGAAGTGAGAGCAGGAAGAGATGATGCCAACCAAACAGATCAAATGTTC
AATTGCGAGTTTACTTGCGAAGGAGCTCCCTGGGTAGATTTCAAATCGTTCGAAGTTGGCGTGGAAATGTATAAGACT
GAGGGCCCGGTCAACTGAAAAGGAAAGTGATGAATGTGCTTGCCTCGTCATCTTCTATCATCAATACAAATTGTTTACT
GAAACCATCACTGCTCTGTTTCTTACAACACCACTCTTATTTTCATCAAACGACACTTCTTGGCCGCCAAGTTTGCACAT
TTTCAGATAATTACACCATATCCATTTCAGCATCACATACATTCACTATAAATAATATCGACGGTTTCAACAACACCTCCA
CACTTTGCATCACCCCCGAAATGCCATCATATTTCATTCATGCTTCCCACCAAAATCAGCATAGCATTATTATTCTAGTG
TATCAAACTCAACATCAAATCAATCATCATGAAAATCGCAATCGCTCAATCCTCCACAAATTTTCATCGCCACAAAAACA
AATAATACAGTCAGAAAAGAAAGTGCAGAAGTCAGTTCAGCCATTAGACGTTCAAGGGTAGTAATGACACGAACAACTC
TTGGGGGACTCATCGATGAGTTTATTTCTTGCTGTTTATTAATAGGAAGGGCGTGGGATTTAGGTATTTTATTTTACTTT
ATCTGCTTTTTATTACCTTTTACTTTACTCCGGTATTTGTGGTGACAGGTTCCGTAAGCTTTTCAGAGGAAGGGGGGCG
GTAGTGGGATCGAATAGGGAGAGAAAGGGGTGAGGCCATAGGCGGGTGGAGAAAAGGGGTGAGTTTGTGCTGAGCT
AAGCTGAGCACACGTACTGGGAAAAAGCTACGTGACAGGAGGAAGATTCTCGGAGAGTAGGGAACAAAACATTTTCTT
TTGTTGTCGTTGTTTCAATGAAAATTATTGATACTA
BC1G_10235
SEQ ID NO: 68
GACTTTTCTGTCTGTTCTGAATGAATGAAGGAAGAAGCCCTCGCGGATTACGACCCTTTCTCCCATTCTCCCATCCATA
CACATTAAAATTAACCATCCCATCCATCCCATCCATCCCACCCATCCCTTGTGAACTCTTTTTCCATTTGCTTTTGCTTTG
GTGGAAATAATTAGGATCAGACAGGCAGACTGGCACACAGGCACACAGGCACACAGCCAGCCAGCCAGCCAGCCAG
AGCGCGACCACAGGCTGAGATTAAGGAGATAATTTACTATTCATTTTGCAAATATTGGCCAATATCGGCGCAACTTTAT
ATCGTTTGAACCCTTGGATGGATGGATGTATCTTAGTAAAGTGTCGAATGATTATTGCTTGCGAAGTGCTCTTTTCCCC
GTTGGTCAACAGAAGCGTGGGAGCTCTGCTATATTTGCTTCTTGAGGGTTTGTTCACGGCGCAAATCCTGCACGAAAA
AGGAAATCTTTGGAAAGCTGATGTCTTGCTCTACAGTCCCGTTACCCATGGCTTAATGACGATACGATCATCTTTTCGA
GATACCCTCTGCGAATGCGACCTTAGACATTCACGAATCGAAGCGGCCGATTTTTAAAGGACCTGTACACATCGATCA
TCCAACAATAATTTACATCAAATACAATGGCTGATGATGGGCCACCACCTCCTCCTCCCCCTCATGGCACTCCGCCAAA
ATCATCCGGTCTGCCGCCGGGGAATTATGACATTTTTATCATTCCACCGCATGCGTCAGGTTCAGGATTTCTCTATTTA
CCGTCACTGCAACCAAATGTCAATAGTTTCGTAGCGGGGTTTGCCTCAGCGCTTGTGCTTGTCGCACTAACTTTCATAT
TAAAACCATTCATGGATACCATGAAAGGAGGTGGAGGGCCAGCAACCTTGATTCTTATGGTTGCAATTGGGTTGGGAG
CTTGGGCACTAGGGCGGATGCAATCGAACGGTGAGACCAGGCCCGGACCAAGTCAAGGATCGGGTGCACCTCCGCA
TGGTGGATCATATTCAGGTGCCAATGATAACACATACTCCAATGGATCGACTTCAAGTGGTGGGCCACGAACTTCAGG
AACTGGATTTTCACCTGGATCCACATCAGAGGGGGCTGGGGGTCCTCCACCTAATCCGCAGGCCGGATCTGGCGCAA
GAAAAAGATCAAGTGAAGGTTGTGAAGAAACTCCTCCTCCTTCGCCTGATGCCGGTCCAGAGATGCCGGGCGCAACA
CCCAGGTACAGTCCTGGCACAACTCCTGGCGCAAACGATGACGCTCGATCGAAAGAAAATGCTTCGAGGACGGCGTG
GGAAGAGGCTCGAGAAAGGACGAGAAGGAAGGAAGAGGAGAGAAGGAGGGTAGAGGCCGAGAAGAAGCGAAAGGA
GGATTTGGAAAAGAGGTTGAGAGAGTTGCGAGCAAAGGAAGCTCTTGAGCGAGCTGCCCGCGAGAAAAAACAAAGG
GACGAACGCGAAGCTAGGGAACAAAAGGAAAGAGAGGAACGAGAAGCCAAGGAACGAAAGGAAGCAGAGGAACGAG
AAGCCAAGGAACGAAAGGAAGCAGAGGAACGGGAAGCCAAGGAACGAAGAGATAGGGAAGAGCTGGAAGCTCGGG
AGAAGAGAGAACGAGCAGCGCGATGGAAGGAAAGAGAGGAACGTGAAAGGTTGGCAAAATTGGAGAGAGAAGATCA
ACAGGCTCGAGAGAGAAAGGCAAAGGAGGACCGCGAAACTCGAGAACGAATCAAAGCAGAAACAGCGCGAATCAGG
GCAGAAGCAAGAGCAAACTACGATAGGAGACTTAAAGAAGAATTGGCTAAGAGGGAAGCTCTAAGGAAAGAAGAAGA
AGCCAGGAGGGAAGTTTTAAGGAAGGAAGAGGAAGCCAGGAGGGAAGTTTTAAGGAAGGAAGAGGAGGCCATTAAG
AGAGAGCAAGAAAAGTTACGACTAGAAGCTATTGCTAGAGTAGAAGCCGACAAGAAAGCCAGAGCAGACAAAGAAAG
GGCAGAGGCGGAGGCAAAAGCAAAGGCGGAAAAGGCAGAGGCGGAGGCAAAAGCAAAGGCGGAAAAGGCAAGAGC
TGCTGCGAAAGCATGGGCAGATGCTAAAGCCGCGGCAGCAGCAAAACGTGAGGCCAAAGCCAGAGAAGAGCGCGAG
AAGGAAGTAGCGGCGCAAATACGTGAAGTCAAACTTAAGGAGGAGCGCGAGAAAGCAGCCGAAGTAGCAGCTCAAAT
CAGGGAGCTCAAACTCCAGCAAGAGCGTGAAAGGGCAGCCGAGGTAGAAGCGCAAATAAGAGAAGTCAAACTCCGG
GAAGAACGTGAAAAGGCAGCCCTAGCCGCACTCGCAGCGGAACGGAGAAAACCGAATACTTATTCGAATGCTGGAGT
GGGGGAGAGAATAAGCCCGTGGCCAAATGGAAAACCGCCCACAGCAACACCCGCTCCCCCCACTGCCAGCTCGATA
CCCCGACCTCAAGCACAATCCACCGCATCCAAGAAACCCCCGGTCTCAACTGCAAGAACGTATGCAGGTACCGACAA
GGATTCCCAGTCCCACTCACCTTATGCACAATCGCCAAGGCCAACACGAAAAAAGTCACTCAGTTCCTTGTATTCCGAA
TCATCATACGCGGCCTCACAATCGACAAGTAGAACTACCCCACCTCCTTCGACACGAGGAGCATATAGCACCAAGGAT
CCGGACAAGATTGTTATCAAAGGTGTATTCGCATTCAATAACGCATTCCACAAAACCCCCACATCTCAACTTCTATCTG
GTGTCGGTTCTGTTACCGACGGACTAATATTAAGAATCACAACAGAGGGTCTCTTCATTGATGATGATGTACGAGGCGT
CGCTCAACGAGAGTGGGATGTCAAAGCATGGACAATGAAACTCGTAGAGGTATGGTGCCCATCTTTCAGACAAGCATC
GCGTGTTCCTCCCGCTACCACAGCGTTTAAAAATCCCGTTCGACGCCTTTGGGGTCTCGATAAAGAATTGGCAGCAAG
TGAAGAAGAAAAAGATACTCTTCTAGTTAGTATGCTGCAACTCTGTCGGGATAATTGTCGCGCTCGTGCCATTTCTAGT
TCTTCCACTGGGCATTCTGCTAGTGGTTCTGTCTATTCTGCCAGCTCTTATGCTTCATCTGATACTAGATCGTCTGTTTC
ATCTGATTATGCTGATTCCATTGGGTCGTCTAATTCTCCTTATGGTGAGAAATCAAAGAGAACCACTAACCATAATGGC
CAGACTGGTGAGAGTAGAACAGCCGGTCTGCATATTTTGAGGGCGAGCATTAGGGATCAAGAAGGCAAAAAGTATGT
CTTTGTGGTTCAAGAAGGTGAGGCTTGGAAGGTAGCACTAGGATTGCAGAGGTTGAGGAGGGGAACTCAGGTGAGAA
GTTTGGGTGTTAGTGGCATGAGTCCGAATGATGCAAAGGCTACACTGGATAACTTGGGATGGTTTTGAGAGTTGGGG
GTGATGGGAAGATTTCAGAATCTCTGGAATACGCCATGGAATGTGGAGTTTGGAACGCGGAATCGTATCCCTCGGCG
AAAAGGGATGCGAGGCGAATCATGAGTCCCGAAAGTCAAATCTAGCATTTACAACACAACGGAAGCATCAGCGATGGA
GTTTTTTTTTTTTTTTTTTTTTGTCTTTTTGTTTAAGTTTTTGTGTTTGATACTACAGTATTTTCACTCATCTCAAGGAGTTTA
TGTGTTTGTTTGCGCACGGGAGCTGTCGAGTTTTAGTTGGAACTTTCTTGTGGGAATTTAGAATGGAATTGGGTATCAG
TACCTCTTCAATTTTCTGAGGTGTTTGGTTAGAGAGCGTATTGTATGTATCTTGAATACCCGGTTCTGTGCTAAAGTTTG
TGGTTTGAAGTATGTTTGTGTGGAATGTTTGGTAATGAAATGGGATGGGGAGAGGGGGA
BC1G_12627
SEQ ID NO: 69
ACTCGTGCGTCTACTGCCACTGCCACTGCTGCTACTTTGCTATTCAACTTCGCCTCGCCTTTCAATTAAGAATTGTCAC
TTCGTCGCATCTGAGGCCGGAATGCTAATATCTTCTCGTCATCTTTGAAGCCAATCTCACTCGTTATCCCGTCCAATTC
AGTCGATATATTAAGAGCCTTTGAAGTTCCGATCCAAGAAACCTTTCGTCTATCCATATCGCAAGAGTTCACTTCTTCAC
AATGAAGTTCACCCCAGTTTCTGTTGCGCTTCTCAGCGTGGCCGGCGTTGCGATTGCGCAACCCCACAACCATCAACA
CCGTCATCCAGTTCGAGCAAACAAGGTCGCACGCGACAATGCTGTTGTCTCTGTGACAGAGGTTATGCCAGGTCCAG
TCGAGACAGTCTACATGCTTAACGGAAAGGATATCTCTTTGGCCGAAGTACAAGATGGTTTGAAATCTGGAAAATACGT
TTTGGTGGGAGACGCTGTCGAAGACGCCCCTTCTGCTACTAACTGGTACACTGCACCCGTATCTGTTGCACCCACAAC
ATCTGCCGCTACAACCTCTTCCGCAGCTACCTCCACCAGTTCGATCGTCAAGGCTGCTGCAGAGTTCATTGAGGTCTC
CTCGTCTTCCACCAAAGCTGCGTACACTTGGAAATCAAGCGCTGCATCAAGCGCTGCATCATCCACTTCAGAATCAAG
CTCGGTCGCCTCTGTCTCCTCTACCAGTTCTGCTGCTGCTTCTTCCTCCTCCGCCAGCAGCTCCACTTCCGCCGCAGC
CAGCAGCTCTACTTCCTCCAGCAGCGCCGGCAATTGGGCCGACTTCCCAAGTGGCACAATCCCTTGTTCCACTTTCCC
ATCTGAGTATGGCCCAATCGCTGTCGATTACCTTGGTTTAGATGGCTGGATCGGTATCCAAAGCACCCCTGGCTACAC
CACTTCTGCTTCCTCGATCGTTACCATTAACACACTAACCAGCGGTGGATGTGTGAAAGGCGCTTTCTGCTCGTATGCA
TGCCCAGCGGGATACCAGAAATCTCAATGGCCTAGCGCACAAGGAAGCACTGGTGAATCCATCGGCGGTCTTTACTG
TAACTCCAAGGGAATGCTCGAGTTGTCCCGAACTACCACCAAGCAACTTTGCACTGCTGGATCTGGATCCGTCAAGGT
TGAAAACAAGCTCAGCAGCATTGTTTCTGTTTGCCGTACTGATTACCCTGGTCTCGAGGCTGAAACGGTTCCATTGTCA
ACCTCCCCTGGCCAAACCTATGACTTGACTTGCCCAGATGCCAGTAACTACTACTCATGGGAAGGACTTCCAACTTCC
GCACAATACTACATCAACCCACAAGGAGCTTCTACCTCTGAAGCTTGCGTATGGGGTGAAGCAGGTAAAAACCTTGGT
AACTGGGCTCCTGTCAATGCTGGTGTCGGCAAAGATGCCTCTGGTAACACTTGGTTGTCAATCATCCCTAACACCCCA
ACCAACACATATGGTACCTTGGACTTCACCATCACTATCGAAGGTGATGTCTCCGGAAAATGCTCGTACTCATCTGGAA
CATACTACAACAATGGTGTTGAGTCCTCAACAGGTTGCACCGTCTCTGTTCTCGCAGGCGGAACCGCTACATACGTCT
TCTCATCATAGGCGCTTGAGTCTCGATTTTCCCTTTTACAAAATTTCCGGTGCACATATTGTTGTTTTCTTTCCGCGCGC
ATATCCACAATTGCGGCTTATGATCGTTGTAGTCACTTTTTTTTTTTTCCTTTACACGCCCTCAAGTTATTCTAAGTCTCG
GATGTTCGAACTCACGCTCGACTTGCAACGTTCAAACAAATTTGTCAATAAGATACCCCCTCCATCCGATCTCTGAATG
TACTTCGTGTGGTAACTTTTCCTTTGTAATAAATGTCGCTAATGTTTTTACATTATTGAAGTGGAAGATATCTGGACGTTG
GAATACTACGTTCCAGATGGTTGTTGTAAGCATGAATGGATTTCTTGAGGGGGTTGGGGCTGTTGGTAGAAAAAAAGG
TTGTGTTCTCGGCAGATGAATGTTCATATGGCGAACGGGAAAGCTCTCTTTCCTTGAAGCGATCACCTTGGTTAACTCT
TCTATGTATTCGTTACTCATTTTGAAGGAGACGTGCTCCTGGTACAGAGTGCCCCTCTATCCCTACGGCCTTTTTATCA
ATTTGCCGCAGGCACTCTTGCATATGTTTTCACACTGGCTACAAATGTTTGGAAGGAGCGCGCACACGAAACAAAAATT
ACCACCATGTCTCTTTTCTGAGGAGATTTGGTAGAGAGCTATAACACCTGTTGTATGTGGATGTGAATGGAAAATTTGA
CGGCAGAGGCTGCAGAATATGGTGCATGTATCAATGTAAAGTAGTCTAGTCGGCACAACACAGACAGGGAAAGGGAG
ATCAGTTACACTCTACTTATTCTACCTTTTCAAGAAGATGTTGAGAAATTTTTGAGAACAGAAAATTCCAAAAAAACAAAA
ACAAAAAAACAAGTAAATGGAGCATTCAGATGAAGTGTGTGGCCTTTTTCGTGTATACAGATTAAAATCTCTTTTCGTAT
CTTATAATTTCTTCATTTTTCTTTCCTGACGATGTTCACATACAACTAACTGTCTTTCTGAATCTGTGAATATGAATA
BC1G_09656
SEQ ID NO: 70
GTCCTTTTGTTTCTTCATTCTTTCATTTCAAAATGTATTTTTCTTCTCATTCTCTCATTGCTTCCGTGCTCTTGGTCTCTGC
CGTTCAAGCATACCCAGGAGTTCAAGCAGATCTTGTTGTTGATATACTAGCTACAGCGACATCTGCAATTGTTTTAGAG
ACCCCTCCACCTTCGGAAGGGCTTCTTGACAATGTAGGGTTGTTCAAATTCTTCGCAAGAGCCGCGAAGAAGACAACA
GCAAAAACCACTGCTAAAACCACTGCTAAAACAACAGAGGCTGCACCGACAACCCAGAAAACTACAGCTCCAGCAACA
ACGCAAAAAACTACAGCCGTGGTGACTACACCCACAACTACCTCGGTGAAAACCACTGAAACACCTACTACCACTTCA
ATCAAGACTACTTCCATCCCGACTACGTCATCTATATCCACGAAACCTACGTCTACGTCTACTTCAACGAGTTCGACTT
CGGTTGTAGCACCAAGTAGTACGAGTACTATCTCCAAATCCTTGATTTCAAGCACCAGCTCAATTCCTACCTCGGTGGC
TTCAATTCAGACATCTCAAGTCTCATCTTCCACTGTGTCTCCGATCTCTAGCTCGTCAACATCTAGCTCTTTGGTATCCA
GTAAAAGTTCTACTTCTGTAGCTACGTCTTCTCAAATATCAACTTCTAAAACTGGTTCATTGTCCAGTGTTAGTGGAGTC
TCCGGATCCATTGTCAGCACTGGCTCTTTATCATCCCCTACTGTCTCTACTTCGGCTGGTGGGTCTGTTTCTTCTGGAA
TCAATTCAAAGACTAGTGAATCTCTCACCAGTACTGGATCAGCATCAACAAGAACCGGTTCCATAACGAGCACTGCTTC
CGCTTCAGCGAGTGGATCCCTTTCATCTGGAACAGGTTCTATCACCAGTGGATCTCTCACCAGCACTGGGCCAGTATC
ATCAGGAATCAGTTCGAGCTCGATCTCAGGGAGTGGAACTATAACTTCCTCCTCCCGCATCTCCTCCTCCAGCGGTTC
CATCTCTTGTTCCGTCTCCAACACCGTAACAGACATAACCTACTTTGTTTCACCCGCCACCAACACCCTTGGTTCCGTA
ACAAAACTTTCCACCATCTCCTCCACCGCCGTCAGAACCATCGGATGTTCTCTCAGCGCCAAAACCGCCACATCCACC
GTCTCCTCCTCCGCATCTATCAGTAAAATCGTCATTCCAACCGGCTATGGAGATCCCATCATGAGCGCCGAAGCCAAA
AATGCCGCTTTCTACAAAGCCGGCGTGGCGGGATACTCAAGCCAGCTGAGCGTTTACAGCGCAGCCTCGACGAGAAC
AAGCGGGATGACCACAATGGCTTCTGCGACGGGGAGTGCGTCGGGCGTGCAAAGCGGTTCGGGTTCATCTAGTGCT
TTGAGTGCCCCGAGTAGTCTTGCAAGTGGCACGACGAAGGAAAGTGTAAGTAGTGTTGCTACCACGGATGTTTCGAGT
ACTACTAGTGCGCCGGCTACTTCTGAGACGGCTTCCGCCACGGGGTTTGTAGGGGAGATCTCTTCGCTTCTTAATATC
TTTTAAGGGGGAGGTGTGGATATATGAGGGGGCTGGATATTAGCATGGGAATAGATTCA
BC1G_07658
SEQ ID NO: 71
GGAATTGATTCATGTATGGGTCATCACCCTTTCCAAATCAAAATACCCTTGCGAGCAACAAATATATTACCAGTTACCGC
CTTGCATACTTCTTTTGTTCATTCAAAATCATCCACAAACAGATTTGATCCAATCCGATCCAAGCTTTATGACGGGCATA
AGCGTTGGATCATGTTTCTAGCCCTTTGGTGAATGCTCCCTTGACTGCCTCCAAAAGCAAAATCTGCTTGTTCGATTCG
TGGATGACTGGGATATCTAGTTTCTTGTACACAGATTGAATCTCCACAACTAACCAGTTCATCTAATGGCACAGTGCTA
GGTCCCATTCCCCAACTTTTGTATAAGTATCTTTCTCTTGGCCAGTTTGACTTCGAATTCTTCATCGTTCAAGCAAACGT
TTCTTTCTTTACCCATCACATTCATTTACACAGTCCTCGGTGACTATCTACATTCATTACTTCATTGATTGAAGCTTATCA
ACAACTTTTCAAATCCAACGCTCATTTTTTCCACCTCACGAAAAACTTCCAAACACTTTTTCCATCAAAATCATCAATCTC
AAGATTTTATCATCAAAAATGTCTTTCTCCAAGATCGCCGTTGTGGCTGGTGCCGCTTTTATCTCTGGTGTTGCTGCTCA
CGGACGTGTCCAAGGTATCACTGCTGATGGTGTTTGGTACGAGGGTTACAACCCAGCTTTCCAATACGAGCAAGTTGC
ACCAGTCGTTGCTGGATGGTCCGACCCAACTGATCAATCGAACGGTTTCATTGCACCAGATGCTTATGGTACATCCGA
CATCATCTGCCACTTGGCCGCTACCAATGCTCAAGGATACGTTAATGTCACTGCCGGAAGTGAGGTTAACTTGCAATG
GACCACCTGGCCCGATTCGCATCACGGTCCAGTCATCGACTACCTTGCTGCCTGTACTGGAGGTGATTGCACAACTGT
TGACAAGACCACCCTCGGATTCTTCAAGATCGATGGTGTAGGACTTATCGATGATTCCACCGTCCCAGGTACATGGGC
ATCTGATCAGCTCATCGCCAACAACAACTCCTGGTCTGTTACCATCCCAGAGTCCTTGGCACCAGGTGGTTACGTTCT
CCGCCACGAGATCATCGCACTCCACTCCGCTGAGCAAGCCGATGGAGCTCAAAACTACCCACAATGTATTAACCTTTG
GGTTTCCGGCTCTGGATCTGCTGTTCCAGCTAGCGCAGATACCACTCTCGGTACGGCTCTTTACACCGAGACTGAAGC
CGGTGTCAACGTCAACATCTACGCTTCCATTGCTTCATACGATGTCCCAGGTCCTACTCAATGGGCTTCCGCTACTGCT
TCCGTTGCTCAAGGTACTTCCGGAGCAGTTGCCACCGGAGCCGCCGTCGTTTCTTCAGCTGCTTCTTCAGCCGCCGC
CGTAGCTACCTCAAGCGCCGCTTCATCGGCCGCTGTTGTCGCCTCTTCCTCCGCTCAAACCAGCGCACAAGTTGCCG
CCGTCAGTTCCGCTGCTCCAGTAGCCTCCTCCTCAGCTGTTGCCTCCAGCTCCGTTGCTAGCGTTGCTTCATCAGTTG
TTGCCAGTTCCGCTGCATCAGTTGTTACCTCAGCCCCAGCTGTCACCTCGGCACCTTCAAACGTTGTCACTGATATGAT
CACCGACTACGTCACTGTTACTGACGTCGTAACTGTCACCGTTACCGCTGCATAAATTCTGAACCTCTTTGGTTTAAAA
TCAGCACCTCCTTTTGACTAAAAATCTTTTTGATGATATTTTGATGGTTTATTTTTGGATCTGATTCGGGCTATCGGGCAT
AGCTTGGATGGAAAATTTATGAGCCGCATGATGAGTTGGATAGGCTTCATGTCACTTTCTTGTATATATTATGTCCTGTA
TAAACAGAATTGAACATTTTTCGA
BC1G_02429
SEQ ID NO: 72
GCTTCAAAAAAAGTCGCGTCTCTGCCAAAAAGTTATAAGTTATAAGCTTATTGTAAGCTTTAACTTCCTTTCTCTCCAAG
AGCATTAAGCATTAAATTGCGCTCCTTCTTGATTTGCTACTACTCATCATCGAGAGTCTTTCTTTTCCCTTTCAATTTTAT
TCCCCTCAGGACCTTGGAACGAATTGAAACCGGTCACAATGTCGCTCTTCGGGAACACGAATCAAAACAAGCCGTCGC
TCTTTGGTGCACCGCAGACCACAGGAGCGTCTACAGGTGCTAGCACGGGAGGTCTTTTTGGTGGATTGGGAACGACT
GCGACTAGCCAGGCTCCATCAACGGGAGGAATGTTCGGTGGAATGGGTGCTACAAGCCAACCCCAATCGACTGGCG
GTCTTTTTGGAGCAACTACAAGCCAACCTCAATCAACCGGAGGCCTTTTTGGAGGAACGACTACAAGCCAACCTCAAT
CAACCGGAGGCCTTTTTGGCGGAACAACTACAAGCCAACCTCAATCGACTGGCGGTCTTTTTGGAGCAGCCAAACCTC
AACAACAATCAGGGACAGGATCCGGTGGTTTATTTGGAGGACTTGGAGCAACTCCAGCAGCAACCCAACCACAACAAA
CAGGCGGTCTTTTTGGTGCGACTACACAACCCCAAACTACAAACAACACAACTGGAGGTCTCTTTGGTAATTCTTTGGC
ACAACCACAACAGCAGCCGCAACAAAGTACTGGTGGGCTTTTTGGAAACACAACTACACAACCCAACCCTTCAGGATC
AATGTTCGGTCCTACTCCACAAATCCAGCCTCTCTCGCAATCTCGACAACAAAATGGAACCAGCGGTGCCTATTTTGAT
GCTATATTGGAGAAGAGTCGTAAGAGGGCACACGATGAGGATTCCTTGGGCTTACAATTAGGTTTGGGGGATATTCGA
CAGCGCATGAAGAGGCTGGCTCCTAGTACCCAAGATGGCTCTGTCGATGGAAGAGCTCATTACCTATTGGCAGCTTCT
GGCGTGGACCCAGGCGCTGCGCTCAGAGATTTGAATCTATTCACCGCTGCCACAGGAAGACTTGATAGGACAGCACC
TGTAGAAGCACCCATTGATGCGGATGTCGAAGCATACCTTACACGTCTGGAAACCCAAACCACAATGAGCATGATATC
TGAAGGGTTGGCACGATCCGTTCGAGATTTCGATGATTTCCTCGAGGAGAATGTTGCTATGGAATGGAGTGCACAGCG
CAAGAGAATATATGAACATTTTGGAATTAAGCCCAGAAGAGAACAAACAACAGGGCCATCAGTGAGCTTTGCAGCTAC
AGCTACAGAACCTATGGGCGGTTTTGGTCGATCAAGACGCGGCAAAGGACTCGCTCCTGGAGCATCTAAAGGGCCTG
GAATCCCGCGGGCTAGCGTTTTTGGAAAATCAAGCATGCAGAGATCTGTTATAGGAGCTATTACTCCAGGAGGAACCG
CAAACCGCACACTTTTTACTGATATAGAGAAAGCAGATACGAATGGGTCAGCACCAGGTCCAAGTGACCGATTCATTC
GCGAGAAGCAGGCTCGATATATCGAGAAAGTCCAGAACCTAAATGGTGCTAGACTAAAGAACCTTCACTACCCAATTG
CGAACGAATTCTCAGCTGTTGTAGCCCAAGGTAGCGAACAGCACTCTGCAGATGTTTACAGGGCATACAGATGCTTGA
TGGAAATCGTTGGTGAAGATCCTGACCCGGACAGACTACAACTCCCTGGCGCGGTCAAACAGAGACAGTTTGCAGCC
GCATACCTGGATGACAATACAAACTCAGCTCAAGCGGCCGATTTGAAAAAGCGGATACTCAGTGGATCACTTCGATTT
CTTGAAAAGGAGTTTTTCGAGAATGTAGAAACTATTGTTGCCAAAAACCCCAGGGAAGCACTTGTGGGTGGTAAGCCT
AGTCCTCTCACAAAGATCCAGGGTTATGTTCGTCTACGCTCAGCTCGTAAAGACCTTGCTACAGACATCTCCGCTCTAC
AAATTGTTAATGACGATTACGTCTGGGCAGTAGTCTTTTATCTTCTGAGATCTGGCCACGTTGAGGAAGCCAATGCTTA
TGTCCAAGAGAACAGGGAAGCATTCCGGGTAATTGACCGCAGCTTCATGTTTTACATCGCAGAATATGCCAATAGCCC
AGACAGAAAATTAGGACATGACCTTCAAAATCGCATTCAAAGCGAATACAGTCAGCGAAATCGAATTTCCCCTGAGGGT
TCTATAGATCCTTTCAGAATGGCATGCTACAAGATAATTGGTCGCTGCGAACTCCACGTTCGCGCTCTGGATCAAAACA
TTGTCCAAAACCAGGATGACTTTGTCTGGATACAGTTTGTCCTTGCGCGCGAAGCCAACCGAGTCGATGAAATTGCCA
GCGATGCATATGGACTCGCAAATGTACAAAAGACATTCAAAGATATTGGCGCCCGGATGTTTTCCAAGGGAAATGAAA
ATAGTGGACCATTTAGTGTGTACTTTGTGCTGTTGGTACTTTCAGGCCTATTCGAAGACGCAATCGACCTTCTTTATCG
CCATAGTATTTCTGATTGTGTTCATTTCGCCACGGCACTTGACTTTTACGGCCTGCTTCGAGTCTCAGATCCAGATGTT
GCAGAGGGTGGATTCTTAAGTTACACAATAAGACAACAACCTCAGATAGCATTTGGATTAATGATGGGATTTTACACTG
CAGAATTTAGAGCTGCAAATGTCAGCGCTGCCGTGGATTATCTCACCTTGATCTGCCTTAATAGTGACCTCAAAGGCG
ATGCTGGCTCAAAACAAGTCGCATTGTGCCACGAAGCTCTCCAAGAGCTGATTTTGGAAAGCAGAGAATTTGCTTTGTT
GCTTGGAGATATCAGACAAGACGGAAAGCGCCTAAAGGGAGTTATCGAAGAACGCCTGGAACTCATCAATCTCAGCA
GCGCTGATGATTTCATGAGAACAGTGACGATACAGGCAGGAAGTGTCGCGGATGACAATGGGCGAACCACTGATGCA
GTCCTACTTTATCATTTAGCAGAAGAGTATGACAACGTCGTTACTATCCTTAACAGAGCCCTTAGCGAAGCTATTGCCG
TGCCTGTAGGCCATAGCCCGTTGCGATTACAACCACTCAAGCCAAGGCCTGGAGACAAATCCGGAAGAGAGGCCCAT
ACCAGTCTCAGTCTTACCTCAATTGATGATCCTTTCGAATTGGCTACCATCATGACGAAGCTCTACTCAAATAATCGCAT
GTATCTCAACAAGATCAAGCAAGAAAACCGCGCAGCTTGTGAGGCTTTGTTAAATATCTGCCGTGCTAAGGAATTTGTT
GAAAATAGACAATGGGCTGAAGCATTAGATGTTGTGCAGAATCTTGACATTCTTCCCTTGAGCGCCGAGGGCAACCCA
AGTGCAGTACGAAGTTATGCCACCAAATTTTCATCACTCTCCCAAGAGGTCGCAAACACTATCCCTAGTCTTTTGACAT
GGACAGTCTTGTGTTGCAACAACCAAAGAACTTCCCTCATGAATGCCCAATACGGAGGTAATGAGGGTACCAGACGAC
TGATGATTAATCAATTGAGACAACAAAACATGGACTTAACGACTTATACCAGTCAATTAAGATACAGATTCCCTGCGTCT
CTTCATGAAGCTCTTGCGAGGGCTCAATCGGAGTAAGGGATGAACATATGACATGAGCTTATGAGCTTGAATGTATATT
AGAACAGCACAGTGGGAAGAGATTAAAAGGGCATTTTGAGTTTTTATCTGGACGGAACGAAATGAAAACATTGGGGGT
CTGTCTACTACTTTTGTAGTTGATTTTTACAGTTTCTCATGAACAAGTGCATAGATGAAGAATGTATTGTGTTGTCTATTA
GAAGATTAATTATGAGTGGTTAATGAATACAGAATATCGAGATCTCGCTTCCA
BC1G_09103
SEQ ID NO: 73
GCAATCAATCATCTAATCGCGACGACAACTTTCAACAATTACCATATTTCAACAATCATTTGGAATCTTCTGCGATATAC
ATTGAGGAATAATAACGACCACAGTCTCCGGCTCATGATCGCAAGTAAATCTCAAGATGGCTGATCAACCACCAGCAA
TGCAGCATGAGGACTCCATCAGTTCGCAAGATCCTCATTTACATGGCGACAAAGGAAAGACGAAGAGTAGACGGCCA
GCAAATACGGCATTTAGACAACAAAGATTGAAGGCATGGCAACCGATCTTAACACCAAAAACCGTACTCCCATTATTCT
TCGCCATCGGAATCATTTTCGCGCCAATTGGTGGAGGGTTGTTATATGCTAGTAGTGTGGTCCAAGAAATTGTACTCGA
TTATTCGAAATGCCACACAGATGCGCCAATCTGCACGGACTACCTCGATACAGGCTCCCTGATGCCCGATGACAATGT
TGAAATGTTTTTCAAAACACCTCACGTATATGATGGAACTCCTCCGCAATGGTGCAGACAAGATATCAACCAAACATAC
TACAACGGCAGTGTTGCGCATGCTACTGTTCCCGCTGTACAATGCCGGCTCACATTCCCAATCAAATCCGAAATGGAG
CCTCCTGTTTTATTCTATTATAAGCTCACCAACTTCTACCAAAATCATCGACGATATGCTAAGTCCTTCGATTCCGATCA
GCTTTCCGGCAAAGCCGTTACCGCAAGTACCATACATTCTGGTGATTGTACGCCACTCACGACTGTAAATGATAATGGT
GTCGACAAGCCATATTATCCTTGTGGTCTAGCACCAAACTCTGTGTTCAACGATACATTTTCAAGTCCATTCCTACAAAA
TGTCGCAAACAGTACTTCAGGTGGCGTAGTCTATCCTATGAAGAACAACTCGGATGTATCATGGAGTAGTGATAGAGA
GCTATATGGTCAAACAAAGTACAACTGGTCGGACGTCATTGTTCCTCCAAATTGGGTTGAGAGATATCCAAACAATTAT
AGTGACGATTATCATCCCGATCTCGAGAACGATCAAGCATTCCAAGTTTGGATGAGACTGGCTGGTTTGCCAACATTTA
GTAAACTGTTTCAGAGAAATGACGACGATACTATGACGACTGGACAATATCAAGTCAACATCACACATCTTTTCAATGTT
ACCGAATATGGCGGTACTAAATCAATCGTTCTTTCAACCCGTACCGTTATGGGTGGTAAGAATCCTTTCCTAGGTATCG
CCTATATCGTTGTTGGAGGTTTATGTATCCTACTCGGTGCACTTTTCACCGTCACTCATCTTATAAAACCAAGAAAATTG
GGCGATCACACATATTTGAGTTGGAATAACGACAACCCTACAACGGCGACTACCAGTGGACGTGAAATGGGTGCGAG
CATGGGATAGACGCTGGATCGATATCGAATCAAAAAAGGGGACGTGTAAAATAGTGATGGATGATGAGATATGAGGCA
GGGTTGTTGTATTCGAACATTTTCTTCTACGTTACCAATGGGCAATATGGCGTCTAGGTATTATGAGCTTTTGATCTGTG
CTGCTTTTGAAAAGCATTCTGCGATGCGAGGAAAAGTGGGTGGAGGGAATCTTTGGCTGGACTGGGGAATCAATGGG
TGCTATGAATATTTTGTGCTCTTATTTTTTTGAATTAGAAAGAAACTTATAACTTTGAAATATACCACAGATGAAACTTGTA
AAGGCGAATGGACTTCTGGTGTTCTCGAATAGCCAAACATA
BC1G_02638
SEQ ID NO: 74
GGATGCATTTCAAGATTGGGATTCCATTCCATCTTCTAGGCAACTATTACGTCGACCCACCATATTTCCGGCTTTTTGAT
GAGCAAGGTTATGTTTCCCGGTAAGAATATATCATTGCCGTCATGGCACCTCCAGCGAAGAGACGGAAGCGTAGTGC
CATTGAATCCTCTCCCCATTCCTCTGAGAACGAGGATAATCAATCAATTCAGGTGAACAAGTTCAAAGGTCGATTGAGC
AGTTTGGCACATTCTCCTCCACCAAGATCGAGCTCTTCTGAGCCTGCCCCAAGGTCTATGTCGCAGTCCAGTAATTCTA
CGAGATCCTCTTCTTTTTTGAAACCTCCAGCAAAAGCGGCCATTCATCCTCACAATGCTGCCCCGGTCTACTTACCAAA
CCACCGTAAGAAGTCCACTACAAAGAGTCCCAGCACAAGTCCAGAGAAACCAAGAAGTAAAGGAAGAGTTGAGGAAA
AGCGGCAGAATGCAGATATTCATACGTTGTTTGCAAGACAATCACAGAGGCAGCAAGCACAAACGGAAGGCGAGACG
ATACCCAAACAAAGAATCAAGGTTCTTAATTCGAGAGATATTCAGCAGGAGACCGATTTAATAGACGATTTAATATCAGA
TGATGACGATGTGGGAGAGGGTCAAGCGCAAGCAATTAGCATTGTTGGGCAGGCCGCCAAACGGGGACTTGGAAAG
AACGTATTCATAAATTCAGGTACAAACACACCCAGCGCCAGTCAAAGATTTGTAAGACCGTCTCAGGCTTCTACAATAG
AACATATGGTCGAGGAAGAGGATATACGACCTTGGGCTGAACGCTTTGGGCCAAATAATCTGGAAGAGCTTGGGGTT
CACAAGAAGAAAGTAATGGATGTTCGAACCTGGCTTGATAATGTTATAGGAGGGCGGATGAGACAACGGTTATTGATC
TTAAAGGGTGCTGCCGGAACCGGAAAGACGACAACAGTGCAGCTATTAGCGAAAGATATGGGGTGTGATGTTCTAGA
ATGGAGGAACCCTGTTGGATCAATCGATTCCTCAGACGGCTTTCAGTCAATGGCTGCACAATTTGAGGATTTCATGGG
GCGGGGTGGAAAGTTTGGTCAACTAGATTTATTTTCCGACGATCATGGAGATATTCCAGCAGAAGCAGAAGTAAAACC
GTTGGATCAAAGGAAGCAAATTATACTAGTCGAAGAATTTCCAAACACTTTCACGCGTTCTTCAAGTGCCTTGCAATCAT
TTCGATCTGCGATACTTCAATACCTTGCATCTAATACTCCTCTTCTTTCAATGTCACACAATCCTCACTTTAAAAGTGATC
CCATCACTCCTGTGGTAATGATTGTATCAGAAACATTGCTCACAACGACATCAGCGTCTGCAGACAGCTTCACTGCTCA
TCGTCTTCTTGGGCCAGAGATTCTTCAGCACCCGGGAGTAGGAGTGATAGAATTCAATTCTATTGCCCCGACCATATT
GGCAAAAGCTCTCGAGACTGTAGTACAAAAAGAGTCGAGAAAATCAGGCAGGAGAAAGACACCAGGACCCCAGGTAT
TGAAAAAGCTTGGGGAGGTGGGCGATATTAGAAGTGCAATTGGCTCTTTGGAGTTTATGTGTCTAAGAGGGGATGTCG
ATGACTGGGGAGGCAAAGTTGTTTTCGGCAAGGGAAAGAAAACAAGCAAAGATACATCTTTGACAAAAATGGAAGAGG
AATCGCTGGAGCTGATCACTCGCCGCGAAGCTAGCTTGGGAATCTTCCATGCCGTTGGGAAGGTTGTTTACAACAAGC
GCGAAGGAAAGGTATCAGGCGATGTGGAATCTTTGCCACACTTTATATCTCATCAATCACGTCCTAAGAAATCTGAAGT
AGGCATAAACGAGCTTATCGACGAGACTGGCACCGACACACCAACCTTCATAGCTGCCCTTCATGAAAATTACATCCTT
TCATGTGAAGCACCACCCTCTTCCTTCGAATTCTCATCTCTTGATCACGTCAATGGCTGCATCGATGCCCTCTCTGACA
GTGACCTCCTCTGTCCCTCTTGGGACGGTTCCATCCAATCCTCCGGCTTCGGTGGTGGCATAACAGGAACCGGAGGC
GACATTCTCCGCCAAGACGAAATGTCCTTTCAAATTGCCGTCCGCGGTATCCTTTTCTCACTCCCTCACCCCGTATCTC
GTAAAGCACCTGCAGCAGCGGGGTTCAGAACTGGCAAAACAGGCGATGCGCATAAAATGTTCTATCCCACCAGTCTC
AAACTCTGGCGCATGAAAGAGGAAATGGAAAGTACACTAGATCTCTGGGTTACACGATTAATAAAAGGAGAAATTGATC
CCACGAGTACGCATGCGTCAAGTATTAAATCTGGCGCTGCAGTATTCGCTCGTCCTAAAGCTGGCACAGTCGAAAGCT
GGAAAGTGAAAATCGCCGCACCATTGCCCTCGCAATCAAAATCCAAATCCAGCCTCAACACTCCAAAAGAAGAAGACA
GCCCACCCCTCCTCACCCTCGGCGTCTCCGCTCGTACAGAAATGCTCCTCGAGCGTCTCCCCTACATGATCCAAATCT
CCAAATCCAAATCATCCCACCAATCGCGCAACCCATTTTCTTCCTCCTCCTCCTCCTCCTCTTCCACTTCCGCCATCAC
GAACTTCCAAAACAACCCCCTTCTCGCCTCCCTCTCTAAAATAACAACCTTCACTGGCATCGGTCCCGCGCAAACCTC
CGACGACCCCGCCTCCCTTTCCGATGACGAATCTCCCAATCCCAATACTGAAAATTGGGCCACCGATAAACCAAACGG
TAATGGTATGGATACACCTCGGAAGAAGAAGCAAGGCGGGAATATGGGGGTTTTTATGAAGAAGGGAATTGGTAATCA
GAGAGCAATGCCCATGCAGCAGTTGGAGCAGAAATTTGTTTTGAGCGATGATGATATTGAGGATGATTGATTGATGATT
GGAATCTGGATTGGGAGTGGGGCCTCAAACGCTTGATGAATATGGGGGTTTTGGGTGATATGCTTGAGGTGTTCGTG
GATGAAAGGCATGTGTTTTTTATGATCCGGGATGAGATGGTTTGGTATTTACTTCTTTGTATTGTATTTTGAAAATCAAAA
TTAACATCGAGTTTCACCGCGTTTCAATTCTTTTGCGCGTTGTCATTCTACAAAATATCAAACTACTTATTTCTATACACA
BC1G_02869
SEQ ID NO: 75
GAAGCTCAGAAATTCATCTCACAATATTAATATGCCCTTAAATCGGTAACAATGAAGACGGAATTTAAGTTCTCCAATCT
CTTAGGGACTGTTTACAGCCAAGGAAACCTTCTCTTCAGTCCAGATGGATCATGTCTATTTTCTCCAGTAGGGAACAGA
GTCACAGTTTTTGATTTAGTAAATAATAAGTCACATACACTTCCATTCGCACATCGAAAGAATATAGCACGGTTGGGACT
TGCGCCGCGAGGAAACTTATTGCTTTCAGTCGATGAAGATGGCCGCGCGATATTGACCAATGTACCGAGAAGGATTGT
CCTTCACCACTTTTCTTTCAAATCAGCTGTATCCGCCATATCGTTTTCGCCATCTGGGCGCCATTTCGCTGTGGGAGTT
GGACGAATGATCGAAGTATGGCATACACCCTCAACACCGGATACAAATTCAGAAGGGGAGTTAGAGTTTGCGCCATTT
GTTAGACACAGAGTATATACCGGTCACTATGATACTGTTCAAAGCATCGAATGGTCGAGTGATTCTCGTTTTTTCCTTAG
TGCAGCAAAAGATTTGACAGCCCGGATATGGAGCTTGGATCCAGAAGAAACCTTTATACCTACTACATTGGCGGGCCA
CAGAGAAGGTGTTATGGGCGCATGGTTTTCGAAAGATCAGGAGACTATTTACACTTGTAGTAAGGACGGAGCAGTATT
TCAATGGGCGTATATACGGAACCCCAATGCTCCTGAGCCAGAGGATGAGGATGAGGATATGGAAAATCCGGACGACG
ACTCGCACATGCAATGGAGAATTACGGAGCGACATTACTTCCTACAGAACAACGCTAAGGTCAATTGTGTTGCATACCA
TGCCGAAACGAATCTTTTGGTTGCAGGATTCTCGAATGGTGTATTTGGACTCTACGAAATGCCAGAATTCAACATGATC
CATACCTTGAGTATCTCACAAAACGATATTGACTTCGTCACAATTAACAAGTCTGGAGAATGGCTCGCATTTGGAGCCT
CAAAGCTGGGGCAACTCTTAGTTTGGGAATGGCAATCAGAATCATATATCTTGAAGCAACAAGGCCATTTCGATTCAAT
GAATTCCTTGGTTTACTCCCCAGACGGACAAAAGATTATCACCACTGCTGACGACGGAAAGATAAAAGTTTGGGATGT
GAATACTGGTTTCTGTATAGTCACTTTCACAGAACATACCAGTGGAGTCACGGCTTGTGAATTTGCCAAGAGAGGAAAT
GTTCTTTTCACATCAAGTCTTGATGGGTCGATAAGAGCATGGGATTTGATAAGATATCGAAATTTCCGTACTTTTACAGC
GCCCACTAGACTTTCATTCTCATCCTTAGCAGTTGATCCCAGTGGCGAAGTCGTTTGCGCGGGATCTTTAGATTCTTTC
GATATCCATATTTGGTCGGTACAGACTGGTCAATTACTAGATAGATTATCAGGTCACGAGGGACCTGTATCATCACTAG
CTTTTGCGCCAAATGGAGGTGTAGTAGTAAGTGGAAGTTGGGATCATACAGTTAGAATTTGGTCTATTTTTGACCGTAC
ACAAACGAGCGAACCGCTTCAACTTCAAGCGGATGTATTAGATGTCGCATTCCGTCCCGATTCACTACAGCTTGCTGT
CTCAACACTAGATGGACAGTTGACATTCTGGTCCGTTTCAGAAGCTGAACAACAGTCAGGTGTTGATGGCCGAAGAGA
CGTTTCAGGTGGTCGAAAAATAACCGACCGAAGAACCGCCGCTAATGCTGCGGGCAACAAAAGTTTCGGGTCCCTTA
GATATAGCGCAGACGGATCCTGTGTTCTTGCAGGTGGTAACAGTAAATACATATGTTTGTATTCTGTAGACTCCCTCGT
CTTACTGAAGCGATTTACCGTCAGTGTCAACTTATCCCTATCCGGAACGCAAGAGTTCCTCAACAGCAAACTTTTGACC
GAAGGTGGACCAGCCGGTCTTATCGATGAGCAAGGTGAAGCCTCTGACCTCGAAGACCGCATCGATCGATCTCTCCC
CGGATCAACCCGCGGTGGAGATCCTTCCGTCCGCAAAAGACTCCCCGAAGTACGCGTTGCCGGCGTGGCTTTCTCTC
CCACAGGAAGATCCTTCTGCGCAGCCTCAACAGAAGGACTCCTCATCTACAGTCTCGACACTATGCCCCTCTTCGACC
CCATCGATCTCGATCTCGCCGTCACCCCCTCCTCCACTCTCCACGTCCTCAACATCGAAAAAGATTACCTCAAAGCTCT
CGTCATGGCATTCCGTCTCAACGAAGCTCCGCTCCTCCGTCAAGTCTTCGAAGGTATCCCACACCCCAACATCGCGCT
CGTAGTCGCTGAATTACCAGTCGTTTACATTCCTCGTCTGCTGCGTTTTGTAGCCATGCAAACGGAGGAATCCCCTCAT
CTGGAATTTTGCTTACTCTGGGTCCAAGCGATACTCGTTTCCCATGGTCAATGGGTTGGCGAAAATAGAATTCTAGTGG
ACTCAGAACTAAGAATTGTGGGGAGAGCAGTGGGCAGGATTAGAGACGATTTGAGAAGGCTGGCGGATGAAAATGTT
TACATGATTGATTATCTACTTAATCAACCATTAGAAAAGGGAATCGAGGGTACAGATGCAGGGGAGAAGGATGTAGTG
GTCAAAGATGTGGATATTAATGATGATGATGATGAGGCGGAATGGATTGGTCTAGATTAGGTTGTATCATATTATATGG
AAGGAAAAAAAATTTAAGCTGGTTTTTGTACTCATTTTTGAAAACTTGGTTGTGTGTATTATTATTGTTGTTCTCGTTGTT
GTTGTCGCCTCCCAATTTTGGAAGATCTTGTATATTCGTTGATCAATTATCAGGATGCATACTCTGTCTGCAAATCAACA
TCAGTCTCGCCAAATTCTCTTTTGCATAAATATTTACATTCCCATCACAATCTTCACCCCTATCTCTATTCGATGCAGATC
CTTCTCTTCTAGAATAAAAGGTCACTCACTATTAAAATATCATCAGCCGCTTTTTCTCATCGCTCACA
BC1G_09169
SEQ ID NO: 76
GAATTCGAGTGTGATCAGTGCGAGAGTGCCGGCACAATGCAGGTGGGTGGGTGGTACGGAAGACGAAAAAGACACG
GCCCGAGGTGAGGCTCATCACGACGCCAACAATTCCATACTGTTGTGAACCTCCAATAGATGTCTGGGCGTTGCGGT
ATCCATACGTCCAACTTGCATCTGCGTACGAAGGAATCACATATGCATGAACATGAACATGAACATGAAGTGGCAAGAT
GGTTGGATCGGGTCAATCAATGGCGCGCATCTATTGACTGTTGCTTGATACAACCGAAAGCCGACATTCTTTAGCGTA
AGGGCTACCAAGGTCTGTGCATTGATGGGTACCTCTGGCCAGTCTCGAGCCAGTCCTCCGCATTGCGAATCCTCGCT
GTGTCAAGTCGTTCATATGTAGACATCCGATGTTAACGTGGACTTGCTGTCGATTGACACAAATATATAAACACCTTGG
ATCATGTGTCGTTCTATCGCCACGCATTTATATCGAGGGGATGTTATTTCCACATCCAAGCTTTGCGGCAGAAAAGAAG
TGCTCCTGGCGCACCGAGTCAAGCGTCAGCAGAGTAAGCAGAGTCAGCAAGCAATGGATTATTCAATGGGAGTCTCG
TGCGACCTTATCGGCTGCCAACTTATGCACGTCTTTTCTTCCGAGCAAATGGTTCGACAGGAGCCTTCCTTTTTGCGGA
GGCGACAGCGAATGGCATTTGGGCGCAGTGTCTGCCTATCTGGTAAGCTGATGAAGACGGAGAGTGCAAGGCTGGA
GAGTGATGGTGATTTAAGCATCCCATCGCCATGGTGATTTGACGTAAGAGATCGTTGCTTTCGTTTGATTATCGTTGGT
CTTTTTTTCTTGCCTTTTCACTTTCGCAGACAATCATCAATCATCAAAGGTATCATGTCTTCTACGGCATCTTCAAGCGAT
TCCGATAACAGTAGAAGACGACGCCGACAGGGTCCAAGACCCTCACCACCACCTCCTCCTCCGCCGTTTCAAGGGAA
CAATAAGAAATCAAAGAAGAGGAACAAATACGTAGCCCCTCAAGATACGATCGATAAACTTTGGTCTCGATTCTCGGTA
TCAAAATTTAGTAAAGCTACAAAAGTTTTACCAAATGCAGCACCTTTTGCGAAGGGCACATCTGCAAAGACCGTTATTGT
TCCTCCACCTGGTCCGCAGAACCAGCTCGTTTCCGAAGACTTTGAAAGAGCGGTTCAAGAATGCAGAGCCAAAGTCAA
GAAACTTGTTAAAGAATGTAGGCGCGTTAATATGCGGTTTCGCGACGCCAGCTTTGATATAGACTGGGACTTGAAATG
GGAGAAAGGAAATTGTCTAAATACACTTGATGAAATAAGATTTGAAGTTTGCAAACAGGCTCTTCTCAATCCTACATCCT
CCGGGCCGAAGGCCGTCAAGAGAGTTCACGAAATATTCGATAAGCCAACATTCTTAGGAGATAAAATTTCTCCTTCGG
ATGTCAAACAAGGAAGTCTTGGGGATTGTTGGTTGATGGCTAGTTTGACAGCATTGGCAAATACAGACGACGGAATTC
AAAGAATATGTGTTGAATGGGACACAAAAATTGGGATATATGGTTTTGTGTTCCATCGTGATGGTGAATGGATCATTTC
GATCATCGATGACAAGCTCTATCTAAAATCGCCAGATTGGGATTCACCCTCGGTCCACAGGCATCTACTCGAGCAAAC
TGACCGAGAGGATGTTGAAAAGGATTATCGAAAAACGTATCAAACCGGATCTCAGTCATTATTCTTCGCTCAATGTAAA
GATCCAAATCAAACATGGCTTCCTCTTCTCGAAAAGGCTTACGCTAAAGCACACGGGGATTTCTTTTCTTTGAGTGGAG
GATGGATAGGGGAGGGTCTTGAAGATTTGACAGGAGGCGTAACTACGGAACTTCTTACTTCGGATATTCTTGATACCG
ATGAATTTTGGCATAATGAAATTCTCAAGGTCAATAAAGAATTCCTTTTTGGTTGCTCTACTGGTCTTCTCGATTACGGTT
ATGGCAATAGAGATGGAATATCTGAAGGCCATGCATACGTTATTATGGAGGCTAGAGAGTTATCTACTGGCGAACGTC
TCCTAAAATTACGGAATCCGTGGGGAAAGATCAAAAAAGGTAATTGGGAAGGTCCATGGTCAGATGGAAGCAAGGAAT
TCACCCCTGAAGCTCAGATAGAGCTCAACCACAAATTTGGAAACGATAGTGTTTTCTGGATTTCATATCAGGATTTACTA
CGCAAATATCAACATTTCGATCGCACTCGGTTGTTCATGGACAGTCCTGATTGGAGATTGACCCAAGACTGGGTCAGT
GTAGAGGTGCCATGGAGATCCGAGTTTGAACAGAAGTTCACCATAACGCTTAAGAAGGAATCACCCATAGTTTTGGTT
ATGAGTCAACTCGACGACAGGTACTTTATTGGTCTACATGGTCAATACAACTTCAGATTGCAGTTTCGGGTTCATGAGA
TTAATTCACCCGATGAAGAAGATTATATCGTCCGAAGCCATGGGAATTATCTTATGAGGCGAAGTGTGGTTGCTGAATT
GAAAAGTCTCTCCGCCGGAACATATACAGTATATATGATGGTCATAGCAGAAAGGGATAAGGATCGACAGAGTGTTGA
AGATGTCGTTAAAGATGAATTGAGTCAAAGGGAAGATAATGAAAAATTAGCTAAAGTTGGTCTAGCTTACGATCTGGCT
CACCAGAAAGGATTGTCTCATATGGAGTTAAGAATTAAATCCAGAAAGGCTCTAGATAAAGCAAAGGCCCGAGAATCC
AGGATTGCTAAACGTAAAGTCCTTTGGGAGAAAAGACACATTGCGCGGGAGATACTAAGGAAGCAAAAGAAGAAGAAT
TATGAGAAACGTGAAGGTAAAGCAGCAAAAGATACTGAGTGGGCAAAGGAACAAGAAGAACGTGAGCTAAAGGATCA
AGGTGTTCAAACGGAAGATATTCCAGAAGTTCAAGTCGAGAAACAAGACAAGTCAATGCAAACCGAAGATCTCAATGA
GGAGTCAATGAACACTACAGTTGATACACAACCCACAAATGAAAGGGACAAAGCAGTACAGACAGAAGGCTTTACACC
ATCTTCTAATGAGTCCCAGACAACTCCCGTAACTCCAAAGAGTAATGGTTCATCTCCACGTTCACCGTATACGATGATC
TCGAGATCCGGATCTAATCGCCGCAAATCACTACCTCCACCTCCAAGCTTTGTTAATCTTCGTAGAAATCCGAGTCGTC
CACCAAATCATGGTCGAGGGCCTCCTCCTCCTTCTTCGAAACCAGGTCTATATGTTACTTCGGAGGGGGAGTCAAGTG
CAAGTCCTCTTTCGGATTATGATATGTATAGTGACGATGATCCGACTCTTAAGCCACGAAATCAGTCAACCGAGCCGAA
ACGCCCAAAGGAAAGGGAGGCTGGTGAAGATGAGCCAGAACCATGGAATGCGGTTTGTATCGTTGGCTTCAGGGTTT
ACAGTAAGGATGAAGGACTAGTGCTTACTGTTTGCGAGGAGGGTATGGAGGAAGTGATTGAGTTGAAAGAGGATAGT
GAAGCTGGTACTGATGGTGATGTGGAAGATGCTGAAGATGAAGATTGCCATGAGAAGAAAGGAGGAAATGGGGAAGA
TTTGAAATTAAAAGATACTGCAGCAGGAAACGACTCAACACTTTCAGATGTCGCAATCAAAATTGAGCCTGACAAAGAT
TTGAATGTCGCTATCTCCAATTCACCTTACGAGATTACTGGAACCTCTTCGTCAGTCAACAATGGCCTTGAAGAAATTC
CTACCGAGAAGCAATCCCAAGAAGCCACCAAAATTTTGGAAATAGAGACAAACGGCGACGCTCAGCAGAAGTCGGCT
CTTGGGATCTCGGAGGGTGCTACAGATGATATCGTGAAGGAATCAGATTCTCAATCCGGCATTGCAACATCAAGCGCT
TCTTCGAACTGCACTTAAAGCTCACACTGATTTTTGTTCAGGTAACATTCAGTGTACAATTCATTCTTCAGATCAGTGCA
CAATGAAAACAATTTCTCGTTTTTGGAAGCCCCATTTTGATCTTTCAAGCGATTCAGGCAGTCTAGGCGGTCTATGCGA
GCTTCTCGGTTTTATCTTCAGCAAAATCTTCGAACCCGCATGTAGTTCTAGTAATTCTAGTGATTACATTCTCATGACTA
ATGAAATTTTTCGTAATATCTGTAGGTAGATACAATGATGTTAGTATTATTCCCATCAATGAATATATTCAGACTACTCAA
TCAACACAATTTTCATTGGCCCTTTCTCA
BC1G_07037
SEQ ID NO: 77
GATCAACAATATCCATGAACGATATCCATGGAGAAGAGAAGAAAAGAACCTTGCCTCCACCACCACCACCTCCACTCTT
CACATTGACTCCTCTTGAGTCTTGAGAGTCGAGACATGCGAGACATGGTCGGATAGACATTAAGCGAAACACCGATGG
CGAAAAATTTGATTTTCACAAGCAAAAAACTAGTAAAAGTAGAGGGAAAGCCCAGACAAAATCCGAATTCGATCCGACC
CTTTATCTTGAAAATCCTATGCAGAGTAATAGTTATTCCTATCTTACTAACAAATTCCATCTTCCTATAAGTTAACTATCTG
ACTCTCCCTCCTTCTTGATTACTACCAACGAGACATCACACATCATCCTTTTGTTTTGTTTCTGCGATACAAGTACAATA
GATCAATACATCAACACATCCCTACGATATCTTCTTACCCGTTCGAAGCTTCAAAAAAAGGGTCCAAATCTCCAACAAG
CACACGACCAAAGGCACACGATCAAAATGAAGGTCTTTTCTAGCGACTGCAAATTCGATTATTCGTGGGAAGAGGTTT
CGACTGCAAACTGGAGAAAGTACTGTCCATGGAATCATAAATCTACTCACGTTATCGCCGTCGATACATTATCCCGACA
TGTAGATGCTGACACCGGAATTCTACGCACCGAACGTTTAATTACCTGCCAACAATCTGCTCCAAAATGGTTACAATCA
CTCATGGGCGGCAAAGATACATCCCACGTCTTCGAAACCTCATATGTCGATCCGATTACCAAGAAAGTCACAATGACAT
CTACCAATCTCACATTTTCCAACATCATCAATGTGCAAGAAACAGTTGTCTACCAACCCTTATCGGCAAACACAACACAA
TTTGTCCAGGCGGCACAGATTACTGCATTATGTGGTGGATGGCAAAAAGTGAAGAATGCAGTTGAAGACGCGACAGTT
ACTGCGTTTTCGGAAAATGCACGCAAAGGAAAGGAGGGATTCGAAGCAGTTTTGGCGATGAGCAGGAGGGTATTCAG
TGAGGAGAAAATGAGACAACAACAAGCGGCTACCGTTACTGCATAAAGTTCGAAATTTCAAAGGCGTTTTGAAGAGGG
GTTTCCGTGAAGATATTCCGGTTCGGTCCGAGATATACATGATGAGATTCATATCATTTGAATCTCCTCACATCACGACT
GAAACGATTCCTCCCTTGTCCTTTTTCTTCACTTCACTTCAACCATCTCCTCACTTCATTTCGGCATTTACGAGTTTCACA
TCATTTTAGGAGTTTGGGGATTTTTTATTACAAGTTCCGGTATACAAAAAAGTCCACTTTCGGAGTTCTAGAAGGCGAAA
TTCTCGGTTGCGAATTCTATTTTAAGCGCGGCGTTAAAAAAGGATAAATGGGATATTTGGGTTAGGTTGGGTTTTGCTT
CAAAAAGACGATTGTCTTTTGTTGTCTTTGAATGGAAAAGTTATGATATTCAAAGAAACTTTCATCCTCAACGCTGATGT
GGGTTATTGTTACGATACAGATACCCCTTTTTTCCTTCTTTCTTTTTTTGCGGTGCTTTTTTTTTTTTCTTCTTTGAAGGGG
GAGATAAAAATAGATGGATAGATGGGTTGATTTTATAGATGAGGCTGAATAGGGAGATGATGTAGATAGAGTGAGCGA
GTCAGTGGGTGAGAGACTTGAAGAAAATAAATATTAGATTTTACTTTATA
BC1G_10614
SEQ ID NO: 78
GATTAGCCTGGATATTTTGGAGTTGAATGCTTGGAGAAACTTGGACCCAAAATTTGACCCCTCCTTCTATCGACTTTTC
CAATCACAAATTCACAAATATAAACCATTTCATTGCCAGCTATCGATTTTGTATGTTTAGAAATACAATCAAAATGGCAGA
AACAGCAGCAAAAAGACTCAAGACCTCTCCCGTTACCATCGGTACTCATAATGGCCATTTTCACGCAGATGAAGCCTT
GGCTGTTTACATGCTTCGCCTTCTTCCTACTTATCAATCTTCAGAGCTCATTCGAACTCGGGATCCCAAACTTCTAGAG
ACTTGCCATACCGTGGTTGATGTGGGAGGTGAATACAACGACGAAACTAAGAGATATGATCACCATCAACGTACTTTC
GATACCACATTCCCAAATCGTCCTACCAAGCTCTCTTCTGCGGGGTTAGTGTATATGCACTACGGCAAGGCGATTATC
GCACAACATCTAGGTGTCGCCGAAGATGCGGAAGAAGTTGCCGTTATCTGGAGAAAGATTTACGAAAGCTTTATTGAA
GCACTTGATGCTCACGATAACGGTATTTCAGTCTACGACCCAAAGGCCATTTCCGCCGCAGGCTTGGAGAAGAAGTTC
AGCGACGGAGGTTTCTCATTAGGGGCTATGGTATCCAGATTGAACCCAAACTGGAATGACCCCACTCCATCTGATCCT
GTCGAGGCTCAAAAGGCAGAAGATGAGAAATTCTTGGTAGCCAGCACTAGAATGGGTGAAGAATTCTCAAGAGATTTG
GATTACTATACAAAATCGTGGTTACCAGCACGATCAATTGTCCAACAAGCATATGCCAAACGCCTACAATACGACTCGA
AGGGAAGAATCTTGGTGTTCGACGGTCAATCTGTTCCATGGAAAGATCATCTCTACACACTGGAAGATCAAGAGAACA
GCGAGAACAAAGTACTCTACGTTCTCTACCCTGAAAGCCCACGTCCAGATGCGAAATGGAGAATCCAATGTGTACCAG
TCACCAAAGACTCTTTCCAAAGCAGAAAGCCATTGCCTGAGGCATGGAGAGGTTTCAGAGATGAGGAATTATCTCAAA
TTACTGGTATTCCAGGAGGAGTATTCGTTCATGCAGCGGGATTCATTGGAGGAAACAAGACTTTCGATGGGGCAAGTA
AGATGGCAGCAACAGCGGTTGATTTGTGATATCCACTAAAGTCATGAAAAACATTATTATGAGGCGTTGTTCGGTATCA
AAAGCCAAAAGGTTAGATAGGTTCAAGAAATATAAAACCCAAATCGATGTGTTCATACACATCGGAATCTCAAAGACA
It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.