Controlling fungal pathogens using RNAi-based strategy

The present invention relates to pathogen-resistant plants. In one aspect, plants comprising a heterologous expression cassette are provided, wherein the expression cassette comprises a polynucleotide that inhibits expression of a fungal pathogen gene and wherein the plant has increased resistance to a fungal pathogen or multiple pathogens compared to a control plant lacking the expression cassette. In another aspect, contacting a plant or a plant part with double stranded RNAs or small RNAs that inhibit expression of a fungal target gene or genes from multiple pathogens, wherein the plant has increased resistance to a pathogen or multiple pathogens compared to control plants that has not been contacted with the RNAs. Methods of making and cultivating pathogen-resistant plants are also provided.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a U.S. National Stage Application of PCT/US2018/054412, International Filing Date Oct. 4, 2018 and which claims benefit of priority to U.S. Provisional Patent Application No. 62/573,546, filed Oct. 17, 2017, which is incorporated by reference for all purposes.

STATEMENT AS TO RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT

This invention was made with Government support under National Institutes of Health Grant No. R01 GM093008-07 and National Science Foundation award number 1557812. The government has certain rights in this invention.

SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Mar. 25, 2020, is named 081906-1180048_SL.txt and is 373,832 bytes in size.

BACKGROUND OF THE INVENTION

Pathogens and pests cause diseases on humans, animals and plants, posing serious threats to global health and crop production. Animal and plant hosts have also evolved various immune mechanisms to fight against infection. It has been long known that proteins and metabolites, such as effectors from the pathogens and pests (Cui, H. T. et al., Annual Review of Plant Biology, Vol 66 66, 487-511, doi:10.1146/annurev-arplant-050213-040012 (2015); Stuart, J., Curr Opin Insect Sci 9, 56-61, doi: 10.1016/j.cois.2015.02.010 (2015)), or antimicrobial molecules from the hosts (Lehrer, R. I. and Ganz, T., Current opinion in immunology 11, 23-27 (1999); Hegedus, N. and Marx, F., Fungal Biol Rev 26, 132-145, doi:10.1016/j.fbr.2012.07.002 (2013)), move from pathogens/pests to hosts and vice versa to manipulate cellular processes and protein functions in the interacting organism. Recently, it has been established that mobile small RNAs (s R N A s) can induce gene silencing in interacting organisms, a phenomenon called cross-kingdom RNAi or cross-organism RNAi (Weiberg, A. et al., Current opinion in biotechnology 32, 207-215, doi:10.1016/j.copbio.2014.12.025 (2015); Wang, M. et al., Curr Opin Plant Biol 38, 133-141, doi:10.1016/j.pbi.2017.05.003 (2017); Buck, A. H. et al., Nature communications 5, 5488, doi:10.1038/ncomms6488 (2014)). But how do these mobile sRNAs travel across the boundaries between organisms? Within the bodies of animal organisms, sRNAs are transported between cells and systemically by a variety of mechanisms, including extracellular vesicles (EVs), specific transmembrane proteins, high-density lipoprotein complexes, gap junctions, and other transport mechanisms (Mittelbrunn, M. and Sanchez-Madrid, F., Nature reviews. Molecular cell biology 13, 328-335, doi:10.1038/nrm3335 (2012)). In most animal circulation systems and body fluids, a class of extracellular vesicles called exosomes play an important role in sRNA trafficking and host immunity. For example, mammalian cells, such as B-cells, T-cells, or dendritic cells secrete sRNA-containing exosomes and transport sRNAs into recipient cells to modulate immunity (Robbins, P. D. and Morelli, A. E., Nature reviews. Immunology 14, 195-208, doi:10.1038/nri3622 (2014)). Within a plant, sRNAs travel systemically through vasculature or move from cell to cell likely through cytoplasmic channels called plasmodesmata (Molnar, A. et al., Science 328, 872-875, doi:10.1126/science.1187959 (2010)). Much less is known about the sRNA trafficking pathways between interacting organisms. A case in point is the gastrointestinal nematode Heligmosomoides polygyrus that secretes exosomes to transport miRNAs into mammalian cells to suppress host immunity (Buck, A. H. et al., Nature communications 5, 5488, doi:10.1038/ncomms6488 (2014)). In contrast, the mechanism by which sRNAs are transported from hosts to interacting pathogens and pests is unclear.

In the case of plants interacting with their pathogens and pests, it has been observed in many pathosystems that sRNAs derived from transgenes can successfully move from plant cells and silence virulence genes of their invaders to inhibit infection. This so-called host-induced gene silencing has become an effective method for crop protection (Wang, M. et al., Curr Opin Plant Biol 38, 133-141, doi:10.1016/j.pbi.2017.05.003 (2017); Nunes, C. C. and Dean, R. A., Molecular Plant Pathology 13, 519-529, doi:10.1111/j.1364-3703.2011.00766.x (2012)). However, studies of cross-kingdom trafficking of plant endogenous sRNAs are still limited, and have mostly concerned abundant microRNAs (miRNAs) (Zhang, T. et al., Nature plants 2, 16153, doi:10.1038/nplants.2016.153 (2016); Zhu, K. et al., PLoS Genet 13, e1006946, doi:10.1371/journal.pgen.1006946 (2017)). This is likely attributable to the challenges associated with separating and purifying pathogen cells from infected tissues.

BRIEF SUMMARY OF THE INVENTION

The present application provides for plants (or a plant cell, seed, flower, leaf, fruit, or other plant part from such plants or processed food or food ingredient from such plants) comprising a heterologous expression cassette, the expression cassette comprising a promoter operably linked to a polynucleotide that inhibits fungal expression of one or more target genes as listed in Table 1 or Table 2, wherein the plant has increased resistance to a fungal pathogen compared to a control plant lacking the expression cassette.

In some embodiments, the plant comprises two, three, four or more heterologous expression cassettes, wherein each expression cassette comprises a polynucleotide inhibits fungal expression of a distinct fungal target gene. In some embodiments, the plant comprises one or more heterologous expression cassettes for expressing two, three, four or more polynucleotides that inhibit fungal expression of distinct fungal target gene (e.g., two or more fungal target genes from a species of fungal pathogen).

In some embodiments, the polynucleotide comprises an antisense nucleic acid or inhibitory RNA (RNAi) that targets one or more target genes of Table 1 or Table 2 (including any sequences set forth herein) or a fragment thereof (e.g., a sequence of at least 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500 or more contiguous nucleotides of a target gene of Table 1 or Table 2). In some embodiments, the polynucleotide comprises a nucleic acid having a sequence that is identical or complementary to at least 15, 20, 25, 30, 35, 40 or more contiguous nucleotides of a target gene of Table 1 or Table 2. In some embodiments, the polynucleotide comprises a double-stranded nucleic acid having a sequence that is identical or substantially similar (at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical) to any of a target gene of Table 1 or Table 2 or a fragment thereof (e.g., at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 450, or at least 500 contiguous nucleotides thereof). In some embodiments, the polynucleotide comprises an inverted repeat of a fragment (e.g., at least 15, 20, 25, 30, 35, 40 or more contiguous nucleotides) of any of a target gene of Table 1 or Table 2, and further comprises a spacer region separating the inverted repeat nucleotide sequences. In some embodiments, the polynucleotide comprises a sequence that is identical or substantially identical (e.g., at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical) to one or more target genes of Table 1 or Table 2, or a fragment thereof, or a complement thereof.

The present application also provides for plants (or a plant cell, seed, flower, leaf, fruit, or other plant part from such plants or processed food or food ingredient from such plants) comprising a heterologous expression cassette, the expression cassette comprising a promoter operably linked to a polynucleotide that inhibits fungal expression of one or more target genes of Table 1 or Table 2, wherein the plant has increased resistance to a fungal pathogen compared to a control plant lacking the expression cassette.

In some embodiments, the pathogen is Botrytis. In some embodiments, the pathogen is Botrytis spp. In some embodiments, the pathogen is B. cinerea. In some embodiments, the pathogen is Verticillium spp. In some embodiments, the pathogen is V. dahilae. In some embodiments, the pathogen is Sclerotinia spp. In some embodiments, the pathogen is S. sclerotiorum. In some embodiments, the pathogen is Phytophthora spp.

In some embodiments, the promoter is an inducible promoter. In some embodiments, the promoter is pathogen inducible. In some embodiments, the promoter is stress-inducible. In some embodiments, the promoter is a constitutive promoter.

In another aspect, the present invention provides for expression cassettes comprising: a promoter operably linked to a polynucleotide that inhibits expression of one or more target genes of Table 1 or Table 2. In some embodiments, the promoter is heterologous to the polynucleotide. Isolated nucleic acids comprising said expression cassettes are also provided.

In still another aspect, the present invention provides for expression vectors comprising an expression cassette as described herein.

In another aspect, methods of making a pathogen-resistant plant are provided. In some embodiments, the method comprises:

    • introducing the nucleic acid comprising an expression cassette as described herein into a plurality of plants; and
    • selecting a plant comprising the expression cassette.

In some embodiments, the method of making a pathogen-resistant plant comprises: contacting a plant or a plant part with a dsRNA or sRNA duplexes that inhibits fungal expression of one or more target genes of Table 1 or Table 2, wherein the plant has increased resistance to a fungal pathogen compared to a control plant or a plant part that has not been contacted with the RNAs. In some embodiments, the RNAs further comprise a second dsRNA or sRNA duplexes that inhibits fungal expression of a second target gene of Table 1 or Table 2. In some embodiments, the method further comprises contacting the plant with a second or more dsRNAs or sRNA duplexes that inhibits expression of orthologous genes of the targets of Table 1 or Table 2 from another pathogen or multiple other pathogens. In some embodiments, the dsRNA or sRNA are contained within liposomes.

In some embodiments, the method of making a pathogen-resistant plant comprises: contacting a plant or a plant part with a construct comprising a promoter operably linked to a polynucleotide that inhibits fungal expression of a target gene of Table 1 or Table 2, wherein the plant has increased resistance to a fungal pathogen compared to a control plant that has not been contacted with the construct. In some embodiments, the construct further comprises a second polypeptide that inhibits fungal expression of a second target gene of Table 1 or Table 2. In some embodiments, the method further comprises contacting the plant with a second construct comprising a second promoter operably linked to a second polynucleotide that inhibits a second target gene which is a second target gene of Table 1 or Table 2 or an ortholog thereof from another pathogen or multiple other pathogens. In some embodiments, the dsRNA or sRNA are contained within liposomes.

In yet another aspect, methods of cultivating a plurality of pathogen-resistant plants are provided.

In another aspect, synthetic liposome comprising dsRNA or sRNA duplexes that target one or more target genes of Table 1 or 2 from one or more pathogens is provided.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A-1D: Plant endogenous sRNAs are exported into fungal cells via extracellular vesicles (EVs). FIG. 1A, Microscopic images of purified fungal protoplasts isolated from B. cinerea-infected Arabidopsis using the sequential protoplast purification method. Scale bars, 20 μm. FIG. 1B, TAS1c-siR483, TAS2-siR453, IGN-siR1 and miRNA166 were detected by sRNA RT-PCR in B. cinerea protoplast (BcCol) purified from B. cinerea-infected Arabidopsis. For the control of BcCol (Ctrl), cultured B. cinerea mixed with uninfected leaves was subjected to the same procedure. FIG. 1C, TAS1c-siR483, TAS2-siR453, IGN-siR1 and miRNA166 were detected in EVs isolated from mock-treated and B. cinerea-infected Arabidopsis. FIG. 1D, sRNAs were detected in the EVs following micrococcal nuclease treatment in the presence or absence of 1% Triton-X-100. In FIGS. 1B and 1C, TAS1c-siR585 and TAS2-siR710 were used as controls for TAS1c-siR483 and TAS2-siR453, respectively; IGN-siR107 was used as a control for IGN-siR1; miRNA822 was used as a control for miRNA166. In b-d, Actin genes of B. cinerea and Arabidopsis were used as controls. The ‘total’ lane indicates total RNA extracts from whole leaves.

FIGS. 2A-2F: Tetraspanin-associated exosome-like vesicles (ELVs) were involved in plant endogenous sRNA transport. FIG. 2A, Expression levels of TET8 and TET9 were induced by B. cinerea infection. TET7 and PDF1.2 were used as controls. The Arabidopsis ubiquitin 5 (UBQ5) was used as an internal control. The asterisks indicate the significant difference (two-tail t-test, P<0.01). Error bars indicate the SD of three technical repeats. Similar results were obtained from at least three biological replicates. FIG. 2B, B. cinerea induces accumulation of TET8-associated vesicles at the sites of infection. Arabidopsis leaves expressing TET8-GFP under its native promoter, were stained for 30 minutes with FM4-64 to show extracellular membrane structures, and the plasma membrane of plant and fungal cells. Scale bars, 10 μm. FIG. 2C, Numerous TET8-GFP-associated ELVs that isolated from the apoplastic fluid of TET8-GFP transgenic plants were observed by confocal microscope. Scale bars, 10 μm. FIG. 2D, GFP-labeled TET8 protein was accumulated in the EV fraction. The ‘total’ lanes indicate whole leaf protein extracts. RuBisCo blot was used as a control. FIG. 2E, TET8-GFP-labelled ELVs were taken up by B. cinerea cells. 1% Triton-X-100 treatment eliminated TET8-GFP signals outside of the fungal cells, but did not eliminate the signals inside the fungal cells. Scale bars, 10 μm. FIG. 2F, Plant endogenous sRNAs were detected in B. cinerea cells 2 hours post incubation with ELVs followed by 1% Triton-X-100 treatment. Actin of B. cinerea and Arabidopsis were used as controls.

FIGS. 3A-3E: TET8 and TET9 interact with each other and regulate sRNA secretion and host immunity. FIG. 3A, TET8-CFP with TET9-YFP were co-localized in vesicles that accumulated at the site of fungal infection. Scale bars, 10 μm. FIGS. 3B and 3C, TET8 was co-immunoprecipitated (Co-IP) with TET9. Total proteins (input) were immunoprecipitated with Anti-FLAG M2 affinity gel. FLAG- or GFP-tagged proteins were detected by Western blot using anti-FLAG and anti-GFP antibodies, respectively. FIG. 3D, The tet8 mutant and the amiRNA-TET9/tet8 lines (tet8/9) were more susceptible to B. cinerea than the wild type plants. Relative lesion sizes were measured at 2 dpi using imageJ. Error bars indicate the SD of more than 10 leaves. The asterisks indicate significant difference (two-tail t-test, P<0.01). FIG. 3E, Expression of TAS1c-siR483, TAS2-siR453, IGN-siR1 and miRNA166 was decreased in the purified B. cinerea protoplast (BcCol) isolated from B. cinerea-infected tet8 and tet8 amiRNA-TET9 lines (tet8/9) as compared with that from the wild-type plants. For the control of BcCol (Ctrl), cultured B. cinerea mixed with uninfected leaves was subjected to the same procedure. The B. cinerea-derived sRNA Bc-siR3 0.1, Arabidopsis Actin gene, and B. cinerea Actin gene were used as controls.

FIGS. 4A-4C: Transferred plant endogenous sRNAs suppress B. cinerea virulence genes and reduce fungal pathogenicity. FIG. 4A, The dcl2/3/4 triple mutant exhibited enhanced disease susceptibility to B. cinerea as compared with the wild type plants. Relative lesion sizes were measured at 2 dpi using imageJ. FIG. 4B, Relative expression of B. cinerea target genes of TAS1c-siR483 and TAS2-siR453 was de-repressed in B. cinerea collected from the dcl2/3/4 triple mutant compared with those from wild-type plants. The Actin gene of B. cinerea was used as the internal control. FIG. 4C, Mutant strains of B. cinerea with deletions in TAS1c-siR483 and TAS2-siR453 targets displayed significantly reduced virulence on Arabidopsis leaves. Relative lesion sizes were measured at 3 dpi using imageJ. Fungal biomass was measured by quantitative PCR. In FIGS. 4B and 4C, error bars indicate the SD of three technical repeats of quantitative PCR. Similar results were obtained from at least three biological replicates. In pathogen assays a and c, error bars indicate the SD of over 10 leaves. The asterisks indicate significant difference (two-tail t-test, P<0.01).

FIGS. 5A and 5B: Spraying dsRNAs or sRNA duplexes that targeting fungal genes of the vesicle trafficking pathways on plants efficiently inhibits fungal virulence and growth of B. cinerea (FIG. 5A). Quantification is shown in FIG. 5B.

FIGS. 6A and 6B: (FIG. 6A) Fungal pathogens Sclerotinia sclerotiorum is capable of taking up external RNAs from the environment. (FIG. 6B) SIGS of DCL1/2 or fungal vesicle trafficking genes of S. sclerotiorum inhibit fungal virulence on plants.

FIGS. 7A and 7B: Representations of the plant and fungal cell walls. Plant cell walls (FIG. 7A), mainly composed of cellulose, hemicellulose, pectin, and proteins, can be digested by cellulose and macerozyme. Fungal cell walls (FIG. 7B), mainly compose of chitin, glucans, and proteins, can be digested by lysing enzyme from Trichoderma harzianum.

FIGS. 8A-8C: The structures and the topology of plant tetraspanins TET8 and TET9 are similar to that of human CD63. Images were made by online tool Protter (http://molbiol-tools.ca/Protein_secondary_structure.htm). Conserved cysteines, the plant GCCK/RP motif (SEQ ID NO: 79) and animal CCG motif in EC2 (large extracellular domain) were marked. In plant, a conserved cysteine in EC1 (small extracellular domain) also marked. Potential palmitoylation sites in the transmembrane domains are indicated with red zigzag lines.

FIG. 9: Characterization of the tet8 tet9 knock-down lines. TET9 transcript levels were measured in the 4-week-old tet8 mutant expressing a TET9 artificial miRNA construct and control plants (wild-type [WT], and the tet8 mutant). Quantitative RT-PCR measurements were normalized to Arabidopsis Actin mRNA levels. The asterisks indicate significant difference (two-tail t-test, P<0.01). Lines with strong suppression of TET9 expression were selected for the experiments presented in this study.

FIG. 10: Gene Ontology (GO) enrichment analysis of B. cinerea target genes.

FIGS. 11A and 11B: The expression of B. cinerea target genes of TAS1c-siR483, TAS2-siR453 and IGN-siR1 was analyzed by quantitative RT-PCR. FIG. 11A, The expression of B. cinerea target genes of TAS1c-siR483, TAS2-siR453 and IGN-siR1 was reduced in B. cinerea isolated from infected Arabidopsis leaves as compared with that from grown on the medium. FIG. 11B, Relative expression of the B. cinerea target gene of IGN-siR1 was de-repressed in B. cinerea collected from the dcl2/3/4 triple mutant compared to it from wild-type plants. In FIGS. 11A and 11B, the Actin gene of B. cinerea was used as the internal control. Error bars indicate the SD of three technical replicates. Similar results were obtained from at least three biological replicates. The asterisks indicate significant difference (two-tail t-test, P<0.01).

FIGS. 12A and 12B: The deletion mutant strains of B. cinerea vps51Δ, dcnt1Δ and sac1Δ were generated by homologous recombination. FIG. 12A, Expression levels of each gene in corresponding mutant lines were measured by RT-PCR. The Actin gene of B. cinerea was used as the internal control. FIG. 12B, Bc-vps51Δ and Bc-dcnt1Δ0 mutants showed significantly reduced growth rate after 4 days on medium; however, the Bc-sac1Δ mutant did not show any growth defects when compared with wild-type strains.

FIGS. 13A-13C: At-sRNA overexpression plants exhibited decreased disease susceptibility to B. cinerea as compared with wild type. FIG. 13A, Expression of TAS1c-siR483 and TAS2-siR453 in transgenic overexpression Arabidopsis lines was examined by Northern blot analysis. U6 used as a loading control. Lines with high tasiRNA expression were selected for further experiments. FIG. 13B, Pathogen assays of TAS1c-siR483ox and TAS2-siR453 ox plants. Relative lesion sizes were measured at 3 dpi using imageJ. Error bars indicate the SD of over 10 leaves. FIG. 13C, Bc-VPS51 and Bc-DCTN1 were suppressed in infected TAS1c-siR483ox plants compared to the wild type; Bc-SAC1 was suppressed in infected TAS2-siR453ox plants compared to the wild type, as measured by quantitative RT-PCR. The Actin gene of B. cinerea was used as the internal control. Error bars indicate the SD of three technical replicates. Similar results were obtained from at least three biological replicates. In FIGS. 13B and 13C, the asterisks indicate significant difference (two-tail t-test, P<0.01).

FIGS. 14A and 14B: Plants transfer transgene-derived sRNAs into fungal cells by EVs as well. FIG. 14A, Transgene-derived Bc-DCL1-sRNAs and Bc-DCL2-sRNAs were detected by sRNA RT-PCR in purified B. cinerea protoplasts (BcCol) from B. cinerea-infected Bc-DCL1/2-RNAi plants but not in the mock-treated plants mixed with B. cinerea mycelium before protoplast formation. FIG. 14B, Transgene-derived Bc-DCL1-sRNAs and Bc-DCL2-sRNAs were detected in EVs from B. cinerea-infected Arabidopsis Bc-DCL1/2-RNAi plants. At-siR1003 and Actin genes of B. cinerea and Arabidopsis were used as controls. The ‘total’ lane indicates total RNA extracts from whole leaves.

FIG. 15: Images show that many fungi can take up naked RNAs from the environment, which makes for example spray-induced gene silencing possible to control these fungal pathogens.

FIGS. 16A-16C: Images show the potato late blight oomycete pathogen, which caused Irish famine in 1800—P. infestans—can also take up naked RNAs from the environment. Different cell types have different uptake efficiency.

FIGS. 17A-17E: Treatment with extracellular vesicles isolated from Arabidopsis efficiently suppressed grey mould disease symptoms caused by B. cinerea.

FIG. 18: Images show that liposomes containing fluorescein-labelled Bc-DCL1/2-dsRNAs were taken up efficiently by B. cinerea cells.

FIG. 19: Images show that externally applied liposomes carrying Bc-DCL1/2-dsRNAs remain effective on plants for two weeks to inhibit pathogen virulence on flower petals.

FIG. 20: Images show liposome-protected dsRNAs that target trafficking pathway genes VPS51, DCTN1, and SAC1 were effective for up to 15 days.

FIGS. 21A and 21B: Images show that Phytophthora infestans cysts take up both naked dsRNAs and liposome-protected dsRNAs. Scale bars, 10 μm.

FIG. 22: A schematic drawing shows cationic liposome delivery systems for siRNA delivery (thin-film hydration) (Podesta and Kostarelos, Methods Enzymol. 464:343-54, 2009).

FIGS. 23A and 23B: Schematic drawings and images show sRNA liposome preparation by extrusion method.

DEFINITIONS

The term “pathogen-resistant” or “pathogen resistance” refers to an increase in the ability of a plant to prevent or resist pathogen infection or pathogen-induced symptoms. Pathogen resistance can be increased resistance relative to a particular pathogen species or genus (e.g., Botrytis), increased resistance to multiple pathogens, or increased resistance to all pathogens (e.g., systemic acquired resistance). In some embodiments, resistance of a plant to a pathogen is “increased” when one or more symptoms of pathogen infection are reduced relative to a control (e.g., a plant in which a polynucleotide that inhibits expression of a fungal pathogen target gene is not expressed).

“Pathogens” include, but are not limited to, viruses, bacteria, nematodes, fungi, oomycetes or insects (see, e.g., Agrios, Plant Pathology (Academic Press, San Diego, Calif. (1988)). In some embodiments, the pathogen is a fungal pathogen. In some embodiments, the pathogen is Botrytis. In some embodiments, the pathogen is Verticillium. In some embodiments, the pathogen is Sclerotinia. In some embodiments, the pathogen is an oomycete pathogen.

The term “nucleic acid” or “polynucleotide” refers to a single or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5′ to the 3′ end. Nucleic acids may also include modified nucleotides that permit correct read through by a polymerase and do not significantly alter expression of a polypeptide encoded by that nucleic acid.

The phrase “nucleic acid encoding” or “polynucleotide encoding” refers to a nucleic acid which directs the expression of a specific protein or peptide. The nucleic acid sequences include both the DNA strand sequence that is transcribed into RNA and the RNA sequence that is translated into protein. The nucleic acid sequences include both the full length nucleic acid sequences as well as non-full length sequences derived from the full length sequences. It should be further understood that the sequence includes the degenerate codons of the native sequence or sequences which may be introduced to provide codon preference in a specific host cell.

Two nucleic acid sequences or polypeptides are said to be “identical” if the sequence of nucleotides or amino acid residues, respectively, in the two sequences is the same when aligned for maximum correspondence as described below. “Percentage of sequence identity” is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity. When percentage of sequence identity is used in reference to proteins or peptides, it is recognized that residue positions that are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. Where sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated according to, e.g., the algorithm of Meyers & Miller, Computer Applic. Biol. Sci. 4:11-17 (1988) e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif., USA).

The term “substantial identity” or “substantially identical,” as used in the context of polynucleotide or polypeptide sequences, refers to a sequence that has at least 60% sequence identity to a reference sequence. Alternatively, percent identity can be any integer from 60% to 100%. Exemplary embodiments include at least: 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%, as compared to a reference sequence using the programs described herein; preferably BLAST using standard parameters, as described below. One of skill will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning and the like.

For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A “comparison window,” as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman Add. APL. Math. 2:482 (1981), by the homology alignment algorithm of Needleman and Wunsch J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson and Lipman Proc. Natl. Acad. Sci. (U.S.A.) 85: 2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis.), or by manual alignment and visual inspection.

Algorithms that are suitable for determining percent sequence identity and sequence similarity are the BLAST and BLAST 2.0 algorithms, which are described in Altschul et al. (1990) J Mol. Biol. 215: 403-410 and Altschul et al. (1977) Nucleic Acids Res. 25: 3389-3402, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (NCBI) web site. The algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al, supra). These initial neighborhood word hits acts as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a word size (W) of 28, an expectation (E) of 10, M=1, N=−2, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a word size (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89:10915 (1989)).

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90:5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.01, more preferably less than about 10−5, and most preferably less than about 10−20.

The term “complementary to” is used herein to mean that a polynucleotide sequence is complementary to all or a portion of a reference polynucleotide sequence. In some embodiments, a polynucleotide sequence is complementary to at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, at least 75, at least 100, at least 125, at least 150, at least 175, at least 200, or more contiguous nucleotides of a reference polynucleotide sequence. In some embodiments, a polynucleotide sequence is “substantially complementary” to a reference polynucleotide sequence if at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% of the polynucleotide sequence is complementary to the reference polynucleotide sequence.

A polynucleotide sequence is “heterologous” to an organism or a second polynucleotide sequence if it originates from a foreign species, or, if from the same species, is modified from its original form. For example, when a promoter is said to be operably linked to a heterologous coding sequence, it means that the coding sequence is derived from one species whereas the promoter sequence is derived another, different species; or, if both are derived from the same species, the coding sequence is not naturally associated with the promoter (e.g., is a genetically engineered coding sequence, e.g., from a different gene in the same species, or an allele from a different ecotype or variety).

An “expression cassette” refers to a nucleic acid construct, which when introduced into a host cell, results in transcription and/or translation of a RNA or polypeptide, respectively. Antisense constructs or sense constructs that are not or cannot be translated are expressly included by this definition. One of skill will recognize that the inserted polynucleotide sequence need not be identical, but may be only substantially similar to a sequence of the gene from which it was derived.

The term “promoter,” as used herein, refers to a polynucleotide sequence capable of driving transcription of a coding sequence in a cell. Thus, promoters used in the polynucleotide constructs of the invention include cis-acting transcriptional control elements and regulatory sequences that are involved in regulating or modulating the timing and/or rate of transcription of a gene. For example, a promoter can be a cis-acting transcriptional control element, including an enhancer, a promoter, a transcription terminator, an origin of replication, a chromosomal integration sequence, 5′ and 3′ untranslated regions, or an intronic sequence, which are involved in transcriptional regulation. These cis-acting sequences typically interact with proteins or other biomolecules to carry out (turn on/off, regulate, modulate, etc.) gene transcription. A “plant promoter” is a promoter capable of initiating transcription in plant cells. A “constitutive promoter” is one that is capable of initiating transcription in nearly all tissue types, whereas a “tissue-specific promoter” initiates transcription only in one or a few particular tissue types. An “inducible promoter” is one that initiates transcription only under particular environmental conditions or developmental conditions.

The term “plant” includes whole plants, shoot vegetative organs and/or structures (e.g., leaves, stems and tubers), roots, flowers and floral organs (e.g., bracts, sepals, petals, stamens, carpels, anthers), ovules (including egg and central cells), seed (including zygote, embryo, endosperm, and seed coat), fruit (e.g., the mature ovary), seedlings, plant tissue (e.g., vascular tissue, ground tissue, and the like), cells (e.g., guard cells, egg cells, trichomes and the like), and progeny of same. The class of plants that can be used in the method of the invention is generally as broad as the class of higher and lower plants amenable to transformation techniques, including angiosperms (monocotyledonous and dicotyledonous plants), gymnosperms, ferns, and multicellular algae. It includes plants of a variety of ploidy levels, including aneuploid, polyploid, diploid, haploid, and hemizygous.

Detailed Description of the Invention I. Introduction

A number of fungal virulence genes have been discovered. Moreover, it has been found that targeting (reducing) expression of these target genes in fungi will reduce their virulence and thus allow for control of them on plants. In some cases, dsRNAs, sRNA duplexes, sRNAs, antisense molecules or other polynucleotides targeting one or more of these target genes can be contacted to fungal pathogens, thereby reducing the fungal virulence.

Thus, one aspect of the present invention relates to controlling the diseases caused by aggressive fungal and oomycete pathogens by silencing one or more of the target genes of Table 1 or Table 2. In some embodiments, silencing is achieved by generating transgenic plants that express antisense constructs, double stranded RNA, RNA hairpin structures, or RNA duplexes (e.g., RNAi) that target one or more of the target genes of Table 1 or Table 2. In some embodiments, silencing is achieved by contacting (e.g., spraying) plants with sRNA duplexes or double stranded RNAs that target one or more of the target genes of Table 1 or Table 2. In some embodiments, silencing is achieved by contacting (e.g., spraying) plants with sRNA duplexes or double stranded RNAs that target one or more of the target genes from different pathogens.

II. Target Genes of Table 1 or Table 2

In one aspect, methods of inhibiting or silencing expression of one or more of the target genes of Table 1 or Table 2 in fungi are provided. In some embodiments, the method comprises expressing in a plant an expression cassette comprising a promoter operably linked to a polynucleotide that inhibits expression one or more of the target genes of Table 1 or Table 2. In some embodiments, the method comprises contacting the plant with sRNA duplexes or double stranded RNAs that inhibit one or more of the target genes of Table 1 or Table 2. In some embodiments, the polynucleotide comprises an antisense nucleic acid that is complementary to one or more of the target genes of Table 1 or Table 2 or a fragment thereof. In some embodiments, the polynucleotide comprises sRNA duplexes or dsRNAs that target one or more of the target genes of Table 1 or Table 2 or a fragment thereof (optionally from different pathogens). In some embodiments, the polynucleotide sequence comprises an inverted repeat of a sequence targeting one or more of the target genes of Table 1 or Table 2, optionally with a spacer present between the inverted repeat sequences. In some embodiments, the promoter is an inducible promoter. In some embodiments, the promoter is a constitutively active promoter.

In yet another aspect, expression cassettes comprising a promoter operably linked to a polynucleotide that inhibits expression in a pathogen of one or more of the target genes of Table 1 or Table 2, or isolated nucleic acids comprising said expression cassettes, are provided. In some embodiments, the expression cassette comprises a promoter operably linked to a polynucleotide comprising an antisense nucleic acid that is complementary to one or more of the target genes of Table 1 or Table 2 or a fragment thereof. In some embodiments, the expression cassette comprises a promoter operably linked to a polynucleotide comprising a double stranded nucleic acid that targets one or more of the target genes of Table 1 or Table 2 or a fragment thereof. In some embodiments, a plant in which the expression cassette is introduced has increased resistance to the pathogen compared to a control plant lacking the expression cassette.

TABLE 1 Botrytis cinerea target genes that are involved in vesicle trafficking Gene Target gene Aligned Homolog in name ID Gene description Targeted by At_siRNA score Sclerotinia DTCN BC1G_10508 Dynactin protein TAS1c-siR483 (tasiRNA) 4.25 SS1G_04144 VPS51 BC1G_10728 VPS51 family TAS1c-srR483 (tasiRNA) 3.5 SS1G_09028 protein SAC1 BC1G_08464 Polyphosphoinositide TAS2-siR453 (tasiRNA) 3.5 SS1G_10257 phosphatase VPS52 BC1G_09781 Vps52/Sac2 family MIR159A (MicroRNA) 4.5 SS1G_01875 protein Rgd1p BC1G_15133 GTPase activating MIR396A (MicroRNA) 4 SS1G_03990 protein UFD1 BC1G_10526 Endoplasmic S10018 (IGN) 4.5 SS1G_04151 reticulum-associated Ubiquitin fusion degradation protein UFD1 Integral BC1G_03606 Hypothetical protein S10140 (IGN) 4.5 None similar to integral membrane protein Sec31p BC1G_03372 WH2 motif protein S1353733 (ORF) 3 SS1G_06679 Gyp5p BC1G_04258 GTPase-activating S1353733 (ORF) 4 SS1G_10712 protein Pan1p BC1G_09414 Cytoskeleton S1353733 (ORF) 3 SS1G_05987 regulatory protein Srv2p BC1G_14507 Adenylyl cyclase- S1353733 (ORF) 3 SS1G_13327 associated protein

TABLE 2 Botrytis cinerea genes targeted by host sRNAs Target gene Target gene Putative function GO_biological Targeted sRNA Aligned alignment ID of target gene process by sRNA type score sRNA 3′-5′ BC1G_10728 Conserved vesicle TAS1c- tasiRNA 3.5 :||x|x|x|||||||||||x hypothetical VPS51 transport siR483 protein BC1G_10508 Predicted dynactin vesicle TAS1c- tasiRNA 4.25 ||||||x:||||||||:|||xx protein transport siR483 BC1G_08464 Polyphosphoinositide vesicle TAS2- tasiRNA 3.5 :|||||||x||||||x||||| phosphatase transport siR453 BC1G_15133 Hypothetical vesicle MIR396A miRNA 4 |:|||:||x|||||||||x|| protein similar to transport GTPase activating protein BC1G_09781 Hypothetical vesicle MIR159A miRNA 4.5 ||||x||||:|||||x||||: protein similar to transport Vps52/Sac2 family protein BC1G_05327 Pyruvate metabolic IGN-siR1 IGN 4.5 x|x|x||||||||||x|||: carboxylase process BC1G_15423 Predicted FAD metabolic TAS1c- tasiRNA 3.75 |||x:||||||||||||:||: binding protein process siR602 BC1G_09454 Retinol metabolic MIR157A miRNA 2.5 x|||||||x|||||||||||: dehydrogenase 12 process BC1G_15945 Hypothetical regulation of MIR396A miRNA 4 |:|x|:||||||||||||x|| protein similar to transcription GAL4-like transcription factor BC1G_14887 Histone-lysine N- regulation of MIR396A miRNA 3 :|x||:|||||:||||||||| methyltransferase transcription BC1G_07589 Histone-lysine N- regulation of MIR396A miRNA 4.5 x||||||:|||x|||||:| methyltransferase transcription BC1G_05475 Hypothetical biosynthetic MIR159B miRNA 4.5 ||x||||:||||||x||||:| protein similar to process microcystin synthetase BC1G_07401 Botrytis cinerea biosynthetic S10044 TE 4.5 ||x|:|||||||:||||||x| (B05.10) process glutaminyl-tRNA synthetase BC1G_09015 Dual specificity signal MIR158A miRNA 3.5 |x||||x|:||||||||||: protein kinase transduction POM1 BC1G_03832 R3H domain of cell cycle MIR159A miRNA 4 ||||xx|x||||||||||||| encore-like and DIP1-like protein BC1G_09907 Predicted cell wall MIR168 miRNA 4.5 x||x|x||:|||||||||||x membrane protein biogenesis involved in the export of O-antigen and teichoic acid BC1G_02544 Hypothetical unknown MIR166A miRNA 4.5 |||x||x|||||||||||x|: protein similar to B230380D07Rik protein BC1G_11528 Predicted protein unknown MIR159B miRNA 3.5 ||x||||::|||||||:|||| BC1G_11528 Predicted protein unknown MIR159A miRNA 4.5 x|x||||::|||||||:|||| BC1G_04218 Predicted protein unknown MIR396A miRNA 4.25 ||||x:|||||||||x||||| BC1G_00860 Domain of unknown MIR158A miRNA 4.5 |||x|||x|||||||||x|: unknown function (DUF4211) protein BC1G_04811 redicted protein unknown S10086 IGN 3 ||||x|||||||||:|:||| BC1G_05162 Predicted protein unknown S10131 ORF 4.5 x|x|||x|:||||||:||||| BC1G_06835 Predicted protein unknown S10131 ORF 3 |:|x|||x||||||||||||: BC1G_10526 Endoplasmic vesicle S10018 IGN 4.5 x|:||||x||||||x||||| reticulum- transport associatedUbiquitin fusion degradation protein UFD1 BC1G_03606 Hypothetical vesicle S10140 IGN 4.5 |x|:|||||||||:|:|||x protein similar to transport integral membrane protein BC1G_04443 Ketol-acid metabolic S10052 IGN 4 x|x||x|||:|||||||| reductoisomerase process BC1G_12479 Isopenicillin N metabolic S10117 IGN 4 |||xx||x|||||||||| synthase and related process dioxygenases BC1G_06676 Fatty-acid amide metabolic MIR8167 miRNA 4.5 |:|||:|:|||:|x||||||| hydrolase 1 process BC1G_12472 Serine threonine- regulation of S10131 ORF 4.5 ||||:|x||||||x|:||||| protein phosphatase transcription dullard protein BC1G_02471 RNA polymerase regulation of S10071 IGN 4 x|||||||||||||||||x||x III transcription BC1G_03511 Hypothetical biosynthetic S10083 Anti-ORF 3.5 x|:||x||x|||||||||||| protein similar to process peptide synthetase BC1G_03981 Hypothetical regulation of MIR8167 miRNA 4.5 |||:||x|||||||||x||:| protein similar to transport sulfate/anion exchanger BC1G_14507 70-kDa adenylyl vesicle S1353733 ORF 3 x||x||x|||||||||||||| cyclase-associated transport protein BC1G_09414 Protein similar to vesicle S1353733 ORF 3 x||x||x|||||||||||||| actin cytoskeleton- transport regulatory complex protein PAN1 BC1G_04258 GTPase-activating vesicle S1353733 ORF 4 x|||||x|||||||||||x|| protein GYPS transport BC1G_03372 Hypothetical WH2 vesicle S1353733 ORF 3 x||x|||||||||||||||:| motif protein transport BC1G_14667 Predicted protein unknown MIR396B miRNA 4.5 ::|x|||x||||||||||||x BC1G_14204 Predicted protein unknown S1353733 ORF 3.5 |:|xx||x||||||||||:||| BC1G_10316 Predicted protein unknown S1353733 ORF 4.5 x|:||||:||||x|||||||: BC1G_05030 Predicted protein unknown S1353733 ORF 4.25 x:||||||||||||x|||||| BC1G_00624 Predicted protein unknown S1353733 ORF 4 x||x||||||||||||||:|x BC1G_15490 Bifunctional P- metabolic MIR396A miRNA 4.5 |x|:||:|:||||||||x||| 450/NADPH-P450 process * reductase BC1G_14979 Hypothetical metabolic S1353733 ORF 3 x||x||x|||||||||||||| protein similar to process mitochondrial ATP synthase B BC1G_14979 Hypothetical metabolic MIR396B miRNA 4 |||||||||:||||||||:| protein similar to process mitochondrial ATP synthase B BC1G_12936 2-deoxy-D- metabolic MIR396A miRNA 4 |||x|||x||||||||x|||| gluconate 3- process * dehydrogenase BC1G_04424 Hypothetical regulation of S1353733 ORF 3 x||x|||x||||||||||||| protein similar to transcription ITC1 BC1G_14463 Hypothetical mitotic cell S1353733 ORF 4 x||x||x||||:||||||||| protein similar to cycle Usolp BC1G_10235 Hypothetical mitotic cell S1353733 ORF 4 ||||x||x|||||||||||x|| protein similar to cycle Smc4p BC1G_12627 Hypothetical cell wall S1353733 ORF 4.25 ||:||:x|:|||||||||:|| protein similar to biogenesis cell wall synthesis protein BC1G_09656 Hypothetical cell wall S1353733 ORF 4.5 x||x|||:||||||||||:|x protein similar to biogenesis HKR1 BC1G_07658 Hypothetical RNA catabolic S1353733 ORF 4.5 |::|:||||||:||||||:|: protein similar to process endoglucanase IV BC1G_02429 Ribonuclease HI RNA catabolic S1353733 ORF 4 x|||:|||:||:|||||:||| large subunit process BC1G_09103 Botrytis cinerea cell cycle S1092315 TE 4.5 ||x||||||:||:|||||||x| (B05.10) hypothetical protein similar to cell division cycle mutant BC1G_02638 Cell cycle cell cycle S1353733 ORF 4.5 x||x||x|||||||:|||||: checkpoint protein RAD17 BC1G_02869 Guanine cell S1353733 ORF 4 |||||:|x||x||||||||||: nucleotide-binding proliferation protein G(I)/G(S)/G(T) subunit beta-1 BC1G_09169 Hypothetical cell S1353733 ORF 4 x||x||x|||||||||||:|| protein similar to proliferation calpain 2 catalytic subunit BC1G_07037 Hypothetical tRNA S519888 ORF 4.5 :|x|||||||||:|||||x|| protein similar to processing Msf1p BC1G_10614 Hypothetical cell surface MIR396A miRNA 4.5 :||x|x|x||||||||||||x protein similar to receptor * GAMM1 protein signaling pathway

In some embodiments, the pathogen gene to be targeted or silenced is from a viral, bacterial, fungal, nematode, oomycete, or insect pathogen. In some embodiments, the target gene is from a fungal pathogen. Examples of plant fungal pathogens include, but are not limited to, Botyritis, Verticillium, Magnaporthe, Sclerotinia, Puccinia, Fusarium, Mycosphaerella, Blumeria, and Melampsora. See, e.g., Dean et al., Mol Plant Pathol 13:804 (2012). In some embodiments, the pathogen is Botyritis. In some embodiments, the pathogen is Botyritis cinera. In some embodiments, the pathogen is Verticillium. In some embodiments, the pathogen is V. dahilae. In some embodiments, the pathogen is Sclerotinia.

In some embodiments, one or more of the target genes of Table 1 or Table 2 is targeted, silenced, or inhibited in order to increase resistance to the pathogen in a plant by expressing in the plant, or contacting to the plant, a polynucleotide that inhibits expression of the pathogen target gene(s) or that is complementary to the target gene(s) or a fragment thereof. In some embodiments, the polynucleotide comprises an antisense nucleic acid that is complementary to one or more of the target genes of Table 1 or Table 2 or a fragment thereof. In some embodiments, the polynucleotide comprises a double stranded nucleic acid (e.g., RNA) that targets one or more of the target genes of Table 1 or Table 2, or its promoter, or a fragment thereof. In some embodiments, the polynucleotide comprises a double-stranded nucleic acid having a sequence that is identical or substantially similar (at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical) to one or more of the target genes of Table 1 or Table 2 or a fragment thereof. In some embodiments, a “fragment” of a target gene of Table 1 or Table 2 or promoter thereof comprises a sequence of at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500 or more contiguous nucleotides of the target gene of Table 1 or Table 2 or promoter (e.g., comprises at least (e.g., at least 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500 or more contiguous nucleotides of one of the sequences provided herein). In some embodiments, the double stranded nucleic acid is a sRNA duplex or a double stranded RNA.

Host-Induced Gene Silencing

In some embodiments, the methods of inhibiting or silencing expression in a fungal pathogen of one or more of the target genes of Table 1 or Table 2 (e.g., RNAs comprising any of SEQ ID NOS: 1-78) utilizes a host-induced gene silencing (HIGS) mechanism for producing in a host plant inhibitory RNA that subsequently moves into the pathogen to inhibit expression of a pathogen gene or region. In some embodiments, HIGS is used to produce in a plant inhibitory RNAs (e.g., sRNAs or double stranded RNA) that target one or more of the target genes of Table 1 or Table 2. In some embodiments, wherein a pathogen has more than one target gene as shown in Table 1 or 2, RIGS is used to produce inhibitory RNAs (e.g., sRNAs) that target two or more of the target genes of the pathogen. In some embodiments, HIGS is used to produce inhibitory RNAs (e.g., sRNAs) against gene targets of multiple pathogens.

The use of HIGS for silencing expression of pathogen genes in plants is described, e.g., in Nowara et al. (Plant Cell (2010) 22:3130-3141); Nunes et al. (Mol Plant Pathol (2012) 13:519-529); and Govindarajulu et al. (Plant Biotechnology Journal (2014) 1-9). Pathogen sRNAs are described, for example, in US 2015/0203865, incorporated by reference herein.

Gene expression may also be suppressed by means of RNA interference (RNAi) (and indeed co-suppression can be considered a type of RNAi), which uses a dsRNA having a sequence identical or similar to the sequence of the target gene. RNAi is the phenomenon in which when a dsRNA having a sequence identical or similar to that of the target gene is introduced into a cell, the expressions of both the inserted exogenous gene and target endogenous gene are suppressed. The dsRNA may be formed from two separate complementary RNAs or may be a single RNA with internally complementary sequences that form a dsRNA or hairpin RNA. Although complete details of the mechanism of RNAi are still unknown, it is considered that the introduced dsRNA is initially cleaved into small fragments, which then serve as indexes of the target gene in some manner, thereby degrading the target gene. RNAi is also known to be effective in plants (see, e.g., Chuang, C. F. & Meyerowitz, E. M., Proc. Natl. Acad. Sci. USA 97: 4985 (2000); Waterhouse et al., Proc. Natl. Acad. Sci. USA 95:13959-13964 (1998); Tabara et al. Science 282:430-431 (1998); Matthew, Comp Funct. Genom. 5: 240-244 (2004); Lu, et al., Nucleic Acids Research 32(21):e171 (2004)). For example, to achieve suppression of expression of one or more of the target genes of Table 1 or Table 2 using RNAi, a gene fragment (e.g., from a target gene) in an inverted repeat orientation with a spacer could be expressed in plants to generate dsRNA having the sequence of an mRNA encoded by one or more of the target genes of Table 1 or Table 2 (e.g., RNAs comprising any of SEQ ID NOS: 1-78), or a substantially similar sequence thereof (including those engineered not to translate the protein) or fragment thereof, is introduced into a plant or other organism of interest. The resulting plants/organisms can then be screened for a phenotype associated with the target protein and/or by monitoring steady-state RNA levels for transcripts encoding the protein from the pathogens. Although the genes used for RNAi need not be completely identical to the target gene, they may be at least 70%, 80%, 90%, 95% or more identical to the target gene sequence. See, e.g., U.S., Patent Publication No. 2004/0029283 for an example of a non-identical siRNA sequence used to suppress gene expression. The constructs encoding an RNA molecule with a stem-loop structure that is unrelated to the target gene and that is positioned distally to a sequence specific for the gene of interest may also be used to inhibit target gene expression. See, e.g., U.S. Patent Publication No. 2003/0221211. Gene silencing in plants by the expression of sRNA duplexes is also described, e.g., in Lu et al., Nucleic Acids Res. 32(21):e171 (2004).

The RNAi polynucleotides can encompass the full-length target RNA or may correspond to a fragment of the target RNA. In some cases, the fragment will have fewer than 100, 200, 300, 400, 500 600, 700, 800, 900 or 1,000 nucleotides corresponding to the target sequence. In addition, in some embodiments, these fragments are at least, e.g., 10, 15, 20, 50, 100, 150, 200, or more nucleotides in length. In some cases, fragments for use in RNAi will be at least substantially similar to coding sequences for regions of a target protein that do not occur in other proteins in the organism or may be selected to have as little similarity to other organism transcripts as possible, e.g., selected by comparison to sequences in analyzing publicly-available sequence databases.

Expression vectors that continually express siRNA in transiently- and stably-transfected cells have been engineered to express hairpin RNAs or double stranded RNAs, which get processed in vivo into siRNAs molecules capable of carrying out gene-specific silencing (Brummelkamp et al., Science 296:550-553 (2002), and Paddison, et al., Genes & Dev. 16:948-958 (2002)). Post-transcriptional gene silencing by dsRNA is discussed in further detail by Hammond et al., Nature Rev Gen 2: 110-119 (2001), Hamilton et al., Science, 286:950-2. 1999, Fire et al., Nature 391: 806-811 (1998) and Timmons and Fire, Nature 395: 854 (1998).

Yet another way to suppress expression of a gene in a plant is by recombinant expression of a microRNA that suppresses the target gene. Artificial microRNAs are single-stranded RNAs (e.g., between 18-25 mers, generally 21 mers), that are not normally found in plants and that are processed from endogenous miRNA precursors. Their sequences are designed according to the determinants of plant miRNA target selection, such that the artificial microRNA specifically silences its intended target gene(s) and are generally described in Schwab et al, The Plant Cell 18:1121-1133 (2006) as well as the internet-based methods of designing such microRNAs as described therein. See also, US Patent Publication No. 2008/0313773.

Spray-Induced Gene Silencing

To avoid generating transgenic plants, another way to suppress expression of a gene in a plant is by application of pathogen gene—targeting dsRNAs, sRNA duplexes or sRNAs to a surface of a plant or part of a plant (e.g., onto a leaf, flower, fruit, or vegetable). For example the dsRNA or sRNA duplexes can be sprayed or otherwise contacted (e.g., by brushing, dipping, etc.) onto the plant surface. Methods of applying dsRNA and sRNA duplex onto external plant parts are described, for example, in Wang et al, Nature Plants, 19; 2:16151 (2016). WO 2013/02560 and in Gan et al., Plant Cell Reports 29:1261-1268 (2010).

In some embodiments, double stranded RNAs, sRNA duplexes or sRNAs can be applied as naked RNAs in an aqueous (e.g., water) solution. In some embodiments, such treatments can be effective up to 8 days or more (see, e.g., Wang et al, Nature Plants, 19; 2:16151 (2016); Koch A, et al., PLoS Pathog. 2016 Oct. 13; 12(10)).

In some embodiments, pathogen gene—targeting dsRNAs or sRNA duplexes can be applied in cationic liposomes, or other artificial lipid nanoparticles that can protect RNA molecules and enhance the pathogen uptake efficiency. For example, some eukaryotic pathogens, such as Botrytis cinerea, can efficiently take up lipid membrane vesicles within 1-2 hours (See, e.g., FIG. 2E).

An exemplary method of forming cationic liposomes comprising dsRNA or sRNA duplexes follows: In some embodiments, the first step is the formation of complexes of a lipid film. This can be achieved for example, by mixing DOTAP, cholesterol, and DSPE-PEG2000 (2:1:0.1). Then, the lipid film can be hydrated using a solution of RNA (e.g., in dextrose or sucrose (w/v)) prepared using RNase-free dH2O, and finally by sonication or extrusion (pass them through membranes that contain pores of a defined size) for size reduction that lead to the formation of PEG-lipid vesicles with embedded dsRNAs or sRNA duplexes. Once loaded on lipid vesicles, the RNAs will not leak out, and can be contacted to plants for long term protection.

In some embodiments, pathogen gene—targeting dsRNAs or sRNAs can be synthesized in planta and extracted from the plant for subsequent use on a target plant. As a non-limiting example, constructs for producing one or more dsRNA or sRNA sequences of interest can be transiently introduced into a plant (e.g., N. benthamiana), for example by infiltration with Agrobacterium. The dsRNA or sRNA sequences are produced by the plant and then RNA is extracted from one or more tissues of the plant in order to extract the dsRNA or sRNA sequences of interest.

Antisense and Sense Technology

In some embodiments, antisense technology is used to silence or inactive one or more of the target genes of Table 1 or Table 2 in a fungal pathogen. The antisense nucleic acid sequence transformed into plants will be substantially identical to at least a fragment of the gene to be silenced. In some embodiments, the antisense nucleic acid sequence that is transformed into plants is identical or substantially identical to one or more of the target genes of Table 1 or Table 2 in the pathogen to be blocked. In some embodiments, the antisense polynucleotide sequence is complementary to the one or more of the target genes of Table 1 or Table 2 (e.g., RNAs comprising any of SEQ ID NOS: 1-78) of the pathogen to be blocked. However, the sequence does not have to be perfectly identical to inhibit expression. Thus, in some embodiments, an antisense polynucleotide sequence that is substantially complementary (e.g., at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 95% complementary) to one or more of the target genes of Table 1 or Table 2 to be blocked can be used (e.g., in an expression cassette under the control of a heterologous promoter, which is then transformed into plants such that the antisense nucleic acid is produced).

In some embodiments, an antisense or sense nucleic acid molecule comprising or complementary to only a fragment of one or more of the target genes of Table 1 or Table 2 (e.g., RNAs comprising any of SEQ ID NOS: 1-78) can be useful for producing a plant in which pathogen gene expression is silenced. For example, a sequence of about 15, 20, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 nucleotides can be used.

Catalytic RNA molecules or ribozymes can also be used to inhibit expression of a one or more of the target genes of Table 1 or Table 2 (e.g., RNAs comprising any of SEQ ID NOS: 1-78) of a pathogen. It is possible to design ribozymes that specifically pair with virtually any target RNA and cleave the phosphodiester backbone at a specific location, thereby functionally inactivating the target RNA. In carrying out this cleavage, the ribozyme is not itself altered, and is thus capable of recycling and cleaving other molecules, making it a true enzyme. The inclusion of ribozyme sequences within antisense RNAs confers RNA-cleaving activity upon them, thereby increasing the activity of the constructs.

A number of classes of ribozymes have been identified. One class of ribozymes is derived from a number of small circular RNAs that are capable of self-cleavage and replication in plants. The RNAs replicate either alone (viroid RNAs) or with a helper virus (satellite RNAs). Examples include RNAs from avocado sunblotch viroid and the satellite RNAs from tobacco ringspot virus, lucerne transient streak virus, velvet tobacco mottle virus, solanum nodiflorum mottle virus and subterranean clover mottle virus. The design and use of target RNA-specific ribozymes is described in Haseloff et al. Nature, 334:585-591 (1988).

Another method of suppression is sense suppression (also known as co-suppression). Introduction of expression cassettes in which a nucleic acid is configured in the sense orientation with respect to the promoter has been shown to be an effective means by which to block the transcription of target genes. Generally, where inhibition of expression is desired, some transcription of the introduced sequence occurs. The effect may occur where the introduced sequence contains no coding sequence per se, but only intron or untranslated sequences homologous to sequences present in the primary transcript of the endogenous sequence. The introduced sequence generally will be substantially identical to the sequence intended to be repressed. This minimal identity will typically be greater than about 65% to the target gene sequence (e.g., one or more of the target genes of Table 1 or Table 2), but a higher identity can exert a more effective repression of expression of the endogenous sequences. In some embodiments, sequences with substantially greater identity are used, e.g., at least about 80%, at least about 95%, or 100% identity are used. As with antisense regulation, the effect can be designed and tested so as to not significantly affect expression of other proteins within a similar family of genes exhibiting homology or substantial homology.

For sense suppression, the introduced sequence in the expression cassette, needing less than absolute identity, also need not be full length, relative to either the primary transcription product or fully processed mRNA. This may be preferred to avoid concurrent production of some plants that are overexpressers. A higher identity in a shorter than full length sequence compensates for a longer, less identical sequence. Furthermore, the introduced sequence need not have the same intron or exon pattern, and identity of non-coding segments will be equally effective. In some embodiments, a sequence of the size ranges noted above for antisense regulation is used, e.g., at least about 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 350, 400, 450, 500 or more nucleotides.

III. Methods of Making Plants Having Increased Pathogen Resistance

In another aspect, methods of making plants having increased pathogen resistance are provided. In some embodiments, the method comprises:

    • introducing into a plant a heterologous expression cassette comprising a promoter operably linked to a polynucleotide that inhibits fungal expression of one or more of the target genes of Table 1 or Table 2; and
    • selecting a plant comprising the expression cassette.

In some embodiments, the method further comprises introducing into the plant a second heterologous expression cassette comprising a second promoter operably linked to a second polynucleotide that inhibits fungal expression of a second target gene of Table 1 or Table 2; and selecting a plant comprising the second expression cassette.

In some embodiments, a plant into which the expression cassette(s) has been introduced has increased pathogen resistance relative to a control plant lacking the expression cassette(s). In some embodiments, a plant into which the expression cassette has been introduced has enhanced resistance to a fungal pathogen (e.g., Botyritis or Verticillium or Sclerotinia) relative to a control plant lacking the expression cassette.

In some embodiments, the promoter is heterologous to the polynucleotide. In some embodiments, the polynucleotide encoding the sRNA-resistant target is operably linked to an inducible promoter. In some embodiments, the promoter is pathogen inducible (e.g., a Botrytis or Verticillium or Sclerotinia inducible promoter). In some embodiments, the promoter is stress inducible (e.g., an abiotic stress inducible promoter).

In some embodiments, the method comprises:

    • contacting a plurality of plants with a construct comprising a promoter operably linked to a polynucleotide that inhibits fungal expression of a target gene of Table 1 or Table 2, wherein the plant has increased resistance to a pathogen compared to a control plant that has not been contacted with the construct.

In some embodiments, the method further comprises selecting a plant having increased pathogen resistance.

In some embodiments, the method comprises:

    • contacting a plant or a part of a plant with a dsRNA, sRNA duplexes, or sRNAs that targets a target gene of Table 1 or Table 2, wherein the plant or part of the plant has increased resistance to the pathogen compared to a control plant that has not been contacted with the dsRNAs, sRNAs or sRNA duplexes.

In some embodiments, the method comprises contacting the plant or the part of the plant with two, three, four, five, or more dsRNAs or sRNA duplexes (e.g., siRNAs) or sRNAs for targeting two, three, four, five, or more target gene of Table 1 or Table 2 from one, two, three or more different pathogens.

In some embodiments, the dsRNA or sRNA duplex (e.g., siRNA) or sRNA is sprayed or brushed onto the plant or part of the plant (e.g., onto a leaf, a fruit, or a vegetable).

Liposomes and Cationic Liposome Delivery Systems

Liposomes can be used to deliver dsRNAs or sRNA duplexes (e.g., siRNAs) or sRNAs that target one or more target gene of Table 1 or Table 2, or alternatively, one or more (e.g., two or more) fungal pathogen dicer-like (DCL) transcripts. The dsRNAs or sRNA duplexes or sRNAs can be packaged into liposomes and subsequently sprayed or otherwise contacted to plants in an amount sufficient to inhibit infection or pathogenesis by a fungal pathogen. Exemplary fungal DCL genes are described for example in U.S. patent application Ser. No. 14/809,063, which is incorporated by reference. Exemplary DCLs include those from Botrytis or Verticillium, as described for example in U.S. patent application Ser. No. 14/809,063.

Liposomes are vesicles comprised of concentrically ordered lipid bilayers that typically encapsulate an aqueous phase. Liposomes form when lipids, molecules having a polar head group attached to one or more long chain aliphatic tails, such as phospholipids, are exposed to water. Upon encountering such media, the lipids aggregate to form a structure in which only the polar head groups are exposed to the external media to form an external shell inside which the aliphatic tails are sequestered. A variety of liposome structures can be formed using one or more lipids. Examples of liposome structures include, e.g., small unilamellar vesicles (SUVs), large unilamellar vesicles (LUVs), and multilamellar vesicles (MLVs).

Cationic liposomes have a liposomal structure with one or more cationic groups that give a net positive charge. Three methods of siRNA delivery using cationic liposome delivery systems are shown in FIG. 22. Method 1 includes the following steps (see, e.g., Pandi et al., Int J Pharm. 550(1-2):240-250, 2018; Muralidharan et al., J Nanobiotechnology. 14(1):47, 2016; Taruttis et al., Nanoscale. 6(22):13451-6, 2014; and Zou et al., Cancer Gene Ther. 7(5):683-96, 2000): (1) DOTAP and cholesterol (2:1) are dissolved in chloroform:methanol (4:1 v/v) and the organic solvent is evaporated under pressure for 30 min at 40° C. using a rotoevaporator. The resulting thin lipid film is flushed with a stream of N2 to remove any trace of the organic solvent. (2) The lipid film is hydrated in H2O by rapid pipetting to produce large, multilamellar liposomes (MLVs). The MLVs are reduced to small, by extrusion through a 0.4 μm Anotop 10 filter (Whatman, UK). The liposome solution is then incubated at room temperature for a minimum 30 min to allow stabilization. (3) Liposomes and siRNA are diluted separately into 50% final volume. The siRNA is added to the liposome by rapid pipetting to prevent localized high siRNA:liposome concentrations. This is mixed thoroughly by pipetting and brief vortexing. The mixture is then incubated at room temperature for 20 min to allow complexation to occur.

Method 2 includes the following steps (see, e.g., Khatri et al., J Control Release. 182:45-57, 2014; and Amadio et al., Pharmacol Res. 111:713-720, 2016): (1) PEGylated liposomes are prepared using the same protocol in Method 1. Briefly, DSPE-PEG2000 (5 mol %) is dissolved in the organic solvent with DOTAP and cholesterol. The PEGylated liposome is hydrated, reduced in size, and measured in the same way in Method 1. (2) Liposomes and siRNA are diluted separately into 50% final volume. The siRNA is added to the liposome by rapid pipetting to prevent localized high siRNA:liposome concentrations. This is mixed thoroughly by pipetting and brief vortexing. The mixture is then incubated at room temperature for 20 min to allow complexation to occur.

Method 3 includes the following steps (see, e.g., Kedmi et al., Biomaterials. 31(26):6867-75, 2010; Mendez et al., Biomaterials. 35(35):9554-61, 2014; and Tagami et al., J Control Release. 151(2):149-54, 2011): (1) DOTAP, cholesterol, and DSPE-PEG2000 (2:1:0.1) are dissolved in chloroform:methanol (4:1, v/v). The organic solvent is evaporated under pressure at 40° C. for 30 min and the lipid film is flushed with N2 to remove residual solvent. (2) The lipid film is hydrated using a solution of siRNA in RNase-free dH2O. The amount of siRNA used to hydrate the film is calculated from the charge ratio. (3) Size reduction is performed by extrusion through a 0.4 μm Anotop 10 filter (Whatman, UK). The PEGylated liposome/siRNA solution is then incubated at room temperature for a minimum of 30 min to allow stabilization. The complex should be maintained in a sterile environment for subsequent gene silencing experiments.

IV. Polynucleotides and Recombinant Expression Vectors

The isolation of polynucleotides of the invention may be accomplished by a number of techniques. For instance, oligonucleotide probes based on the sequences disclosed here can be used to identify the desired polynucleotide in a cDNA or genomic DNA library from a desired plant species. To construct genomic libraries, large segments of genomic DNA are generated by random fragmentation, e.g. using restriction endonucleases, and are ligated with vector DNA to form concatemers that can be packaged into the appropriate vector. Alternatively, cDNA libraries from plants or plant parts (e.g., flowers) may be constructed.

The cDNA or genomic library can then be screened using a probe based upon a sequence disclosed here. Probes may be used to hybridize with genomic DNA or cDNA sequences to isolate homologous genes in the same or different plant species. Alternatively, antibodies raised against a polypeptide can be used to screen an mRNA expression library.

Alternatively, the nucleic acids of interest can be amplified from nucleic acid samples using amplification techniques. For instance, polymerase chain reaction (PCR) technology to amplify the sequences of the genes directly from mRNA, from cDNA, from genomic libraries or cDNA libraries. PCR and other in vitro amplification methods may also be useful, for example, to clone nucleic acid sequences that code for proteins to be expressed, to make nucleic acids to use as probes for detecting the presence of the desired mRNA in samples, for nucleic acid sequencing, or for other purposes. For a general overview of PCR see PCR Protocols: A Guide to Methods and Applications. (Innis, M, Gelfand, D., Sninsky, J. and White, T., eds.), Academic Press, San Diego (1990).

Polynucleotides can also be synthesized by well-known techniques as described in the technical literature. See, e.g., Carruthers et al., Cold Spring Harbor Symp. Quant. Biol. 47:411-418 (1982), and Adams et al., J. Am. Chem. Soc. 105:661 (1983). Double stranded DNA fragments may then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence.

Once a polynucleotide sequence that inhibits expression of target gene of Table 1 or Table 2 or a fragment thereof, is obtained, it can be used to prepare an expression cassette for expression in a plant. In some embodiments, expression of the polynucleotide is directed by a heterologous promoter.

Any of a number of means well known in the art can be used to drive expression of the polynucleotide sequence of interest in plants. Any organ can be targeted, such as shoot vegetative organs/structures (e.g. leaves, stems and tubers), roots, flowers and floral organs/structures (e.g. bracts, sepals, petals, stamens, carpels, anthers and ovules), seed (including embryo, endosperm, and seed coat) and fruit. Alternatively, expression can be conditioned to only occur under certain conditions (e.g., using an inducible promoter).

For example, a plant promoter fragment may be employed to direct expression of the polynucleotide sequence of interest in all tissues of a regenerated plant. Such promoters are referred to herein as “constitutive” promoters and are active under most environmental conditions and states of development or cell differentiation. Examples of constitutive promoters include the cauliflower mosaic virus (CaMV) 35S transcription initiation region, the 1′- or 2′-promoter derived from T-DNA of Agrobacterium tumafaciens, and other transcription initiation regions from various plant genes known to those of skill.

Alternatively, the plant promoter may direct expression of the polynucleotide sequence of interest in a specific tissue (tissue-specific promoters) or may be otherwise under more precise environmental control (inducible promoters). Examples of tissue-specific promoters under developmental control include promoters that initiate transcription only in certain tissues, such as leaves or guard cells (including but not limited to those described in WO/2005/085449; U.S. Pat. No. 6,653,535; Li et al., Sci China C Life Sci. 2005 April; 48(2):181-6; Husebye, et al., Plant Physiol, April 2002, Vol. 128, pp. 1180-1188; and Plesch, et al., Gene, Volume 249, Number 1, 16 May 2000, pp. 83-89(7)). Examples of environmental conditions that may affect transcription by inducible promoters include the presence of a pathogen, anaerobic conditions, elevated temperature, or the presence of light.

In some embodiments, the promoter is a constitutive promoter. In some embodiments, the promoter is an inducible promoter. In some embodiments, the promoter is stress inducible (e.g., inducible by abiotic stress). In some embodiments, the promoter is pathogen inducible. In some embodiments, the promoter is induced upon infection by Botyrtis. Non-limiting examples of pathogen inducible promoters include Botyritis-Induced Kinase 1 (BIK1) and the plant defensing gene PDF1.2. See, e.g., Penninckx et al., Plant Cell 10:2103-2113 (1998); see also Veronese et al., Plant Cell 18:257-273 (2006).

In some embodiments, a polyadenylation region at the 3′-end of the coding region can be included. The polyadenylation region can be derived from a NH3 gene, from a variety of other plant genes, or from T-DNA.

The vector comprising the sequences will typically comprise a marker gene that confers a selectable phenotype on plant cells. For example, the marker may encode biocide resistance, particularly antibiotic resistance, such as resistance to kanamycin, G418, bleomycin, hygromycin, or herbicide resistance, such as resistance to chlorosulfuron or Basta.

V. Production of Transgenic Plants

As detailed herein, embodiments of the present invention provide for transgenic plants comprising recombinant expression cassettes for expressing a polynucleotide sequence as described herein. In some embodiments, a transgenic plant is generated that contains a complete or partial sequence of a polynucleotide that is derived from a species other than the species of the transgenic plant. It should be recognized that transgenic plants encompass the plant or plant cell in which the expression cassette is introduced as well as progeny of such plants or plant cells that contain the expression cassette, including the progeny that have the expression cassette stably integrated in a chromosome.

In some embodiments, the transgenic plants comprising recombinant expression cassettes for expressing a polynucleotide sequence as described herein have increased or enhanced pathogen resistance compared to a plant lacking the recombinant expression cassette, wherein the transgenic plants comprising recombinant expression cassettes for expressing the polynucleotide sequence have about the same growth as a plant lacking the recombinant expression cassette. Methods for determining increased pathogen resistance are described, e.g., in Section VI below.

A recombinant expression vector as described herein may be introduced into the genome of the desired plant host by a variety of conventional techniques. For example, the DNA construct may be introduced directly into the genomic DNA of the plant cell using techniques such as electroporation and microinjection of plant cell protoplasts, or the DNA construct can be introduced directly to plant tissue using ballistic methods, such as DNA particle bombardment. Alternatively, the DNA construct may be combined with suitable T-DNA flanking regions and introduced into a conventional Agrobacterium tumefaciens host vector. The virulence functions of the Agrobacterium tumefaciens host will direct the insertion of the construct and adjacent marker into the plant cell DNA when the cell is infected by the bacteria. While transient expression of the polynucleotide sequence of interest is encompassed by the invention, generally expression of construction of the invention will be from insertion of expression cassettes into the plant genome, e.g., such that at least some plant offspring also contain the integrated expression cassette.

Microinjection techniques are also useful for this purpose. These techniques are well known in the art and thoroughly described in the literature. The introduction of DNA constructs using polyethylene glycol precipitation is described in Paszkowski et al. EMBO J. 3:2717-2722 (1984). Electroporation techniques are described in Fromm et al. Proc. Natl. Acad. Sci. USA 82:5824 (1985). Ballistic transformation techniques are described in Klein et al. Nature 327:70-73 (1987).

Agrobacterium tumefaciens-mediated transformation techniques, including disarming and use of binary vectors, are well described in the scientific literature. See, for example, Horsch et al. Science 233:496-498 (1984), and Fraley et al. Proc. Natl. Acad. Sci. USA 80:4803 (1983).

Transformed plant cells derived by any of the above transformation techniques can be cultured to regenerate a whole plant that possesses the transformed genotype and thus the desired phenotype such as enhanced pathogen resistance. Such regeneration techniques rely on manipulation of certain phytohormones in a tissue culture growth medium, typically relying on a biocide and/or herbicide marker which has been introduced together with the desired nucleotide sequences. Plant regeneration from cultured protoplasts is described in Evans et al., Protoplasts Isolation and Culture, Handbook of Plant Cell Culture, pp. 124-176, MacMillilan Publishing Company, New York, 1983; and Binding, Regeneration of Plants, Plant Protoplasts, pp. 21-73, CRC Press, Boca Raton, 1985. Regeneration can also be obtained from plant callus, explants, organs, or parts thereof. Such regeneration techniques are described generally in Klee et al. Ann. Rev. of Plant Phys. 38:467-486 (1987).

After the expression cassette is stably incorporated in transgenic plants and confirmed to be operable, it can be introduced into other plants by sexual crossing. Any of a number of standard breeding techniques can be used, depending upon the species to be crossed.

The expression cassettes and constructs (e.g., antisense and siRNAs) as described herein can be used to confer increased or enhanced pathogen resistance on essentially any plant. Thus, the invention has use over a broad range of plants, including species from the genera Asparagus, Atropa, Avena, Brassica, Citrus, Citrullus, Capsicum, Cucumis, Cucurbita, Daucus, Fragaria, Glycine, Gossypium, Helianthus, Heterocallis, Hordeum, Hyoscyamus, Lactuca, Linum, Lolium, Lycopersicon, Malus, Manihot, Majorana, Medicago, Nicotiana, Oryza, Panieum, Pannesetum, Persea, Pisum, Pyrus, Prunus, Raphanus, Secale, Senecio, Sinapis, Solanum, Sorghum, Trigonella, Triticum, Vitis, Vigna, and Zea. In some embodiments, the plant is a tomato plant. In some embodiments, the plant is a vining plant, e.g., a species from the genus Vitis. In some embodiments, the plant is an ornamental plant. In some embodiments, the plant is a vegetable- or fruit-producing plant. In some embodiments, the plant is a monocot. In some embodiments, the plant is a dicot.

VI. Selecting for Plants with Increased Pathogen Resistance

Plants (or parts of plants) with increased pathogen resistance can be selected in many ways. One of ordinary skill in the art will recognize that the following methods are but a few of the possibilities. One method of selecting plants or parts of plants (e.g., fruits and vegetables) with increased pathogen resistance is to determine resistance of a plant to a specific plant pathogen. Possible pathogens include, but are not limited to, viruses, bacteria, nematodes, fungi or insects (see, e.g., Agrios, Plant Pathology (Academic Press, San Diego, Calif.) (1988)). One of skill in the art will recognize that resistance responses of plants vary depending on many factors, including what pathogen, compound, or plant is used. Generally, increased resistance is measured by the reduction or elimination of disease symptoms (e.g., reduction in the number or size of lesions or reduction in the amount of fungal biomass on the plant or a part of the plant) when compared to a control plant. In some embodiments, resistance is increased when the number or sizes of lesions or amount of fungal biomass on the plant or on a part of the plant is decreased by at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or more relative to a control (e.g., relative to a plant in which a heterologous polynucleotide has not been expressed).

Increased pathogen resistance can also be determined by measuring the increased expression of a gene operably linked a defense related promoter. Measurement of such expression can be measured by quantifying the accumulation of RNA or subsequent protein product (e.g., using northern or western blot techniques, respectively (see, e.g., Sambrook et al. and Ausubel et al.).

VII. Examples Example 1

To identify plant host endogenous mobile sRNAs and to investigate how host sRNAs get into interacting fungal cells, we used an Arabidopsis—B. cinerea interaction system that displays bidirectional sRNA trafficking and RNAi (Weiberg, A. et al. Fungal sRNAs suppress plant immunity by hijacking host RNA interference pathways. (Science 342, 118-123, doi:10.1126/science.1239705 (2013); Wang, M. et al., Nature plants 2, 16151, doi:10.1038/nplants.2016.151 (2016)). Because the cell wall compositions of plants and fungi are different (Cosgrove, D. J., Nature Reviews. Molecular cell biology 6, 850-861, doi:10.1038/nrm1746 (2005); Bowman, S. M. and Free, S. J., Bioessays 28, 799-808, doi:10.1002/bies.20441 (2006)) (FIGS. 7A and 7B), we developed an efficient sequential protoplast purification method to isolate pure fungal cells from infected tissues (FIG. 1A). Weprofiled sRNAs isolated from the purified B. cinerea protoplasts, and identified nearly 80 Arabidopsis host sRNAs in both biological replicates by using 10 normalized reads per million of total reads (RPM) as a cutoff (Supplementary Table 1). To validate the deep sequencing results and to test whether host sRNAs are transported into fungal cells by a selective or concentration-dependent process (more abundant sRNAs are more likely to be transported into fungal cells), we performed sRNA profiling on total RNAs for comparative analysis. We found that although the more abundant sRNAs were more likely to be transported (Supplementary Table 2), there is clear selection in transferred sRNAs. Among the transferred Arabidopsis sRNAs, five were lowly abundant (<10 RPM) in the total sRNA libraries (Supplementary Table 3). Only 29 were present in the hundred most abundant sRNAs in the total sRNA libraries, 16 of which were miRNAs (Supplementary Table 2). miR166, miR159, and miR157 were among the most abundant sRNAs in both B. cinerea protoplast sRNA libraries and total sRNA libraries. Most strikingly, of the two trans-acting small interfering RNAs (tasiRNAs) generated from the same TAS2 mRNA precursor, only TAS2-siR453 was present in the B. cinerea protoplast libraries, although TAS2-siR710 had 30 times higher reads than TAS2-siR453 in the total sRNA libraries. Similarly, TAS1c-siR483, but not TAS1c-siR585, was highly enriched in the B. cinerea protoplast sRNA libraries, although both of them are generated from the same TAS1c mRNA precursor and belong to the top 20 most abundant sRNAs in the total sRNA libraries (Supplementary Table 2 and 3). Furthermore, Arabidopsis sRNAs that derived from an intergenic region, such as IGN-siR1 but not IGN-siR107, were highly enriched in the B. cinerea cells, although IGN-siR107 occurred at higher level in the total sRNA libraries (Supplementary Table 2 and 3). These deep sequencing results were validated by sRNA RT-PCR analysis of two additional biological replicates (FIG. 1B). These results suggest that host endogenous sRNAs are selectively delivered into fungal cells and that it is not simply the most abundant sRNAs that diffuse into the fungal cell.

Extracellular vesicles (EVs) are implicated in sRNA communications between cells and systemic transport in animal systems (Colombo, M. et al., Annu Rev Cell Dev Biol 30, 255-289, doi:10.1146/annurev-cellbio-101512-122326 (2014)). To test whether EV secretion is the mechanism by which plant hosts transfer sRNAs into B. cinerea cells, we profiled sRNAs of EVs isolated from the apoplastic fluids of Arabidopsis leaves using filtration and differential ultra-centrifugation methods. In both of the biological replicates analyzed, TAS2-siR453 and TAS1c-siR483 were accumulated to much higher levels in EVs than either TAS2-siR710 or TAS1c-siR585 (Supplementary Table 2 and 4), consistent with the results obtained from the B. cinerea protoplast samples. miRNAs, such as miR166, that were abundant in both total and B. cinerea protoplast samples were also abundant in the EVs. In contrast, sRNAs, such as miR822, that were abundant in total sRNA populations but below detection levels in the B. cinerea protoplast samples were accumulated to a very low level in EVs (Supplementary Table 2). Furthermore, the sRNAs that derived from intergenic region, such as IGN-siR1, accumulated at a much higher level in EVs than IGN-siR107 (Supplementary Table 2 and 4) indicating a correlation between EVs and B. cinerea protoplast samples. These deep sequencing results were validated by sRNA RT-PCR analysis of two additional biological replicates (FIG. 1C). Among the Arabidopsis sRNAs that transferred into B. cinerea protoplasts, 36 were present in the EV libraries, but 12 sRNAs were not (Supplementary Table 4). These latter sRNAs may utilize an EV-independent pathway to move into fungal cells, or they are still EV-dependent, but just under the level of detection in the EV fraction. To confirm that these sRNAs are indeed inside the EVs instead of simply bound to the surface, we performed nuclease protection assays. TAS1c-siR483 and TAS2-siR453, IGN-siR1 as well as miRNA166 were protected from nuclease digestion unless Triton-X-100 was added to rupture the EV membrane (FIG. 1D). These findings support that plant cells utilize secreted EVs to transfer sRNAs into fungal cells and that secretion is likely mediated by the selective inclusion of sRNAs into EVs.

Animal EVs are classified into different categories, such as exosomes, shedding microvesicles and apoptotic bodies based on their specific protein markers and origins (Mathivanan, S. et al., J Proteomics 73, 1907-1920, doi:10.1016/j.jprot.2010.06.006 (2010)), whereas plant EVs have not been well defined. Because exosomes have been shown to play an important role in transferring miRNAs between animal cells within an organism (Colombo, M. et al., Annu Rev Cell Dev Biol 30, 255-289, doi:10.1146/annurev-cellbio-101512-122326 (2014)) or even between interacting organisms from nematode parasites to mammalian host cells (Buck, A. H. et al., Nature communications 5, 5488, doi: 10.1038/ncomms6488 (2014)), we hypothesize that plants may also employ exosome-like vesicles (ELVs) to transfer sRNAs. Tetraspanins, such as CD63, CD81 and CD9, are small membrane proteins that serve as specific exosome markers in mammalian cells (Mathivanan, S. et al., J Proteomics 73, 1907-1920, doi:10.1016/j.jprot.2010.06.006 (2010)). Arabidopsis has 17 TETRASPANIN (TET)-like genes (Boavida, L. C. et al., Plant Physiol 163, 696-712,doi:10.1104/pp.113.216598 (2013)), but expression analysis reveals that only two closely related tetraspanin genes, TET8 and TET9 (Boavida, L. C. et al., Plant Physiol 163, 696-712,doi:10.1104/pp.113.216598 (2013); Wang, F. et al., Plant Physiol 169, 2200-2214, doi:10.1104/pp.15.01310 (2015)) are highly induced by B. cinerea infection (Ferrari, S. et al., Plant Physiol 144, 367-379, doi:10.1104/pp.107.095596 (2007)) (FIG. 2A), suggesting their potential function in defense responses. The structure and topology of TET8 and TET9 are most similar to the exosome marker CD63 in animals (Boavida, L. C. et al., Plant Physiol 163, 696-712, doi:10.1104/pp.113.216598 (2013)) (FIGS. 8A-8C).

Because TET8 is expressed at a much higher level than TET9 in the leaves and at fungal infection sites (Ferrari, S. et al., Plant Physiol 144, 367-379, doi:10.1104/pp.107.095596 (2007)), we mainly focused on TET8 for subsequent analysis. Short staining by lipophilic dye FM4-64 allows visualization of membrane structures, such as fungal cell membranes and EVs that occur outside of plant cell (Nielsen, M. E. et al., Proc Natl Acad Sci USA 109, 11443-11448, doi:10.1073/pnas.1117596109 (2012)). In transgenic plants expressing TET8-GFP under its native promoter, there was an accumulation of TET8-GFP at the fungal infection sites that were coincident with FM4-64 staining patterns (FIG. 2B). These observations suggest that TET8 is involved in host responses to fungal infection, and that TET8-associated membrane structures/vesicles are likely to be secreted.

To confirm that TET8-associated vesicles are secreted, we isolated the extracellular apoplastic vesicles from transgenic plants expressing TET8-GFP. Numerous TET8-GFP-labeled fluorescent EVs were observed (FIG. 2C). Consistent with this result, an immunoblot for GFP revealed the presence of TET8-GFP exclusively in the ELVs derived from TET8-GFP plants (FIG. 2D). Thus, TET8 serves as a good marker for plant ELVs.

To test whether plant ELVs can be taken up by fungal cells, we isolated EVs from apoplast fluids containing TET8-GFP labeled ELVs and incubated them with B. cinerea cells in vitro. GFP signals were clearly observed in the fungal cells within 2 hours (FIG. 2E). After treatment with 1% Triton-X-100, a procedural step that ruptures all EVs but not fungal cells, the GFP signal still maintained in the fungal cells (FIG. 2E), indicating that B. cinerea cells are capable of taking up plant secreted ELVs. Consistent with the occurrence of ELV uptake by the fungal pathogen, TAS1c-siR483, TAS2-siR453, and miRNA166 were detected inside fungal cells (FIG. 2F). These results support the conclusion that TET8-associated host ELVs are important for host sRNA transfer to fungal cells.

Tetraspanin proteins often interact with each other and form specific membrane microdomains that are essential for their cellular functions (Andreu, Z. and Yanez-Mo, M., Frontiers in immunology 5, 442, doi:10.3389/fimmu.2014.00442 (2014)). As TET9 is the only other Arabidopsis tetraspanin gene that is induced by B. cinerea infection (Ferrari, S. et al., Plant Physiol 144, 367-379, doi:10.1104/pp.107.095596 (2007)) (FIG. 2A), we examined whether TET8 and TET9 interact with each other and function together in response to fungal attack. Indeed, TET8-CFP protein was co-localized with TET9-YFP at the fungal infection sites (FIG. 3A). Interaction of TET8 with TET9 was further confirmed by reciprocal co-immunoprecipitation (Co-IP) in vivo (FIGS. 3B and 3C). To obtain insight into the physiological role of TET8 and TET9, we challenged the loss-of-function mutants with B. cinerea. The tet8 single mutant displayed enhanced susceptibility to fungal infection as compared with the wild type (FIG. 3D). Enhanced susceptible phenotype was potentiated in the double mutant when TET9 was knocked down in the tet8 mutant background (FIG. 3D and FIG. 9). Furthermore, levels of transferred host sRNAs to fungal cells were reduced in tet8, and the tet8tet9 double mutant, even though the total cellular level of these sRNAs was unchanged (FIG. 3E). These results suggest that TET8 and TET9-associated ELVs are important for host sRNA transfer into fungal cells, and contribute to plant immune responses against fungal infection.

To determine whether transferred host sRNAs contribute to host immunity and are functional in the fungal cells, we first performed infection assay on the Arabidopsis siRNA biogenesis triple mutant dcl2/3/4 that showed markedly reduced tasiRNA and heterochromatic siRNA production (Henderson, I. R. et al., Nat Genet 38, 721-725, doi:10.1038/ng1804 (2006); Gasciolli, V. et al., Curr Biol 15, 1494-1500, doi:10.1016/j.cub.2005.07.024 (2005)). Enhanced susceptibility to B. cinerea was observed in the triple mutant as compared with the wild type (FIG. 4A), suggesting that these transferred host tasiRNAs and heterochromatic siRNAs are likely to suppress fungal virulence by target fungal essential genes. We found that at least seventeen of the transferred Arabidopsis sRNAs have predicted target genes in B. cinerea (Supplementary Table 1 and 5). Gene ontology enrichment analysis of these fungal targets revealed a strong bias towards vesicle transport pathways (9 out of 45 genes) (FIG. 10), suggesting that vesicle trafficking is important for fungal virulence. We performed functional analysis on TAS1c-siR483 and TAS2-siR453 and the most abundant siRNA from intergenic region IGN-siR1 in the B. cinerea protoplast sRNA libraries, because they showed clear selective transport into fungal cells (FIGS. 1B and 1C). TAS1c-siR483 and TAS2-siR453 target two B. cinerea genes (BC1G_10728 and BC1G_10508) and one gene (BC1T 08464) respectively, all of which are involved in vesicle transport pathways. BC1G_10728 encodes a vacuolar protein sorting 51 (Bc-Vps51), which is the homolog of the Golgi-associated retrograde protein (GARP)/Vps51 in yeast and the Vps51 subunit in mammals (Bonifacino, J. S. and Hierro, A., Trends Cell Biol 21, 159-167, doi:10.1016/itcb.2010.11.003 (2011); Luo, L. et al., Mol Biol Cell 22, 2564-2578, doi:10.1091/mbc.E10-06-0493 (2011); Liu, Y. et al., PLoS Pathog 7, e1002305, doi:10.1371/journal.ppat.1002305 (2011)). VPS 51 plays a key role in the virulence of Candida albicans, a human fungal pathogen (Liu, Y. et al., PLoS Pathog 7, e1002305, doi:10.1371/journal.ppat.1002305 (2011)). BC1G_10508 encodes the large subunit of the dynactin (DCTN) complex Bc-DCTN1, which is the homolog of Nip 100p in yeast and p150glued in mammals (Steinmetz, M. O. and Akhmanova, A., Trends Biochem Sci 33, 535-545, doi:10.1016/j.tibs.2008.08.006 (2008)). DCTN binds to kinesin II and dynein and coordinates vesicle trafficking (Dell, K. R., The Journal of cell biology 160, 291-293, doi:10.1083/jcb.200301040 (2003); Schroer, T. A., Annu Rev Cell Dev Biol 20, 759-779, doi:10.1146/annurev.cellbio.20.012103.094623 (2004)). BC1T 08464 encodes a suppressor of actin (SAC1)-like phosphoinositide phosphatase that plays an important role in secretory membrane trafficking (Foti, M. et al., Mol Biol Cell 12, 2396-2411(2001); Guo, S. et al., J Biol Chem 274, 12990-12995 (1999)). IGN-siR1 targets BC1G_05327, which encodes pyruvate carboxylase (Bc-PC) that catalyzes the formation of oxaloacetate (OAA), an important intermediate in the tricarboxylic acid cycle (Plassard, C. and Fransson, P., Fungal Biol Rev 23, 30-39, doi:10.1016/j.fbr.2009.08.002 (2009)). OAA is an important precursor of organic acids in fungi, such as oxalate (Plassard, C. and Fransson, P., Fungal Biol Rev 23, 30-39, doi:10.1016/j.fbr.2009.08.002 (2009)), and causes wilting symptoms in infected plants (vanKan, J. A. L., Trends in Plant Science 11, 247-253, doi:10.1016/j.tplants.2006.03.005 (2006)). Indeed, these predicted target genes were indeed down-regulated after infection (FIG. 11A). Relative expression of these predicted B. cinerea target genes was clearly elevated in B. cinerea collected from the infection sites of the dcl2/3/4 triple mutant that has largely reduced levels of tasiRNAs and siRNAs (FIG. 4B and FIG. 11B), supporting specific silencing of fungal genes by transferred plant sRNAs.

To determine the role of these target genes in vesicle trafficking pathways is important for B. cinerea pathogenicity, we attempted to generate mutant strains that deleted these target genes using homologous recombination. We generated vps51Δ,dctn1Δ and sac1Δ mutant strains (FIG. 12A). The vps51Δ and dctn1Δ mutant strains showed reduced virulence on Arabidopsis (FIG. 4C) and reduced growth on media (FIG. 12B). The sac1.4 mutant strain showed reduced virulence on Arabidopsis (FIG. 4C) but no obvious reduced in growth on media (FIG. 12B). Thus, functional study of transferred host sRNAs led to the identification of an important virulence pathway that is essential for fungal infection—the fungal trafficking pathway.

To further confirm the positive effect of the transferred host sRNAs on host plant immunity, we generated transgenic Arabidopsis lines that overexpress TAS1c-siR483 or TAS2-siR453 (FIG. 13A). Both overexpression lines displayed reduced susceptibility to B. cinerea (FIG. 13B). Consistent with the pathogen assay results, reduced expression of fungal target genes was observed in B. cinerea-infected overexpression lines (FIG. 13C). These findings strongly support that these transferred host sRNAs contribute to host immunity.

In this study, we report that plant ELVs play an essential role in cross-kingdom sRNA trafficking between plant host Arabidopsis and interacting fungal pathogen B. cinerea. Arabidopsis has evolved an ELV-mediated sRNA export pathway to deliver its endogenous sRNAs into B. cinerea cells to silence fungal genes involved in vesicle trafficking and reduce fungal virulence. Although such cross-kingdom sRNA trafficking mechanism has not enabled Arabidopsis to fully overcome B. cinerea infection, it has made Arabidopsis one of B. cinerea's least favorite hosts, as many other plants are more susceptible to B. cinerea than Arabidopsis. Functional studies of host mobile sRNAs will help identify novel virulence pathways and genes in the interacting pathogens and pests. Furthermore, since transgene-derived Bc-DCL-targeting sRNAs were detected in EV fractions isolated from transgenic Arabidopsis expressing the Bc-DCL RNAi construct (Wang, M. et al., Nature plants 2, 16151, doi:10.1038/nplants.2016.151 (2016)) (FIGS. 14A and 14B), it appears that transgene-derived sRNAs are delivered by ELV-mediated trafficking pathways as well. The discovery of exosome-mediated cross-kingdom sRNA trafficking mechanisms involved in plant immunity may be useful in developing effective strategies for the delivery of membrane protected RNA with the goal of enhancing the control of pre- and post-harvest diseases in crop species.

Methods and Materials

Plant materials used in this study include the Arabidopsis thaliana ecotype Col-0 and Nicotiana benthamiana. Arabidopsis mutants tet8 (Salk_136039), dcl2-ldcl3-ldcl4-2 (dcl2/3/4) and TET8pro::TET8-GFP lines were described previously (Boavida, L. C. et al., Plant Physiol 163, 696-712, doi:10.1104/pp.113.216598 (2013); Henderson, I. R. et al., Nat Genet 38, 721-725, doi:10.1038/ng1804 (2006)). For a detailed description of transgenic lines, see Methods online.

Isolate Pure Fungal Cells from Infected Plant Leaves.

B. cinerea protoplasts were purified from infected Arabidopsis leaves using a method that takes advantage of the differences between plant and fungi cell wall components (Cosgrove, D. J., Nature reviews. Molecular cell biology 6, 850-861, doi:10.1038/nrm1746 (2005); Bowman, S. M. and Free, S. J., Bioessays 28, 799-808, doi:10.1002/bies.20441 (2006)). A detailed protocol was included in the Methods online.

Extracellular Vesicles Isolation.

Plant extracellular vesicles were isolated from apoplastic fluids and purified by differential ultracentrifugation (Rutter, B. and Innes, R. W., Plant Physiol, doi:10.1104/pp.16.01253 (2016)). For a detailed description, see Methods.

Illumina HiSeq Data Analysis of sRNA Libraries.

The sequences were mapped to Arabidopsis (TAIR10) or B. cinerea B05.10 genomes and only the reads that matched perfectly to each genome will be used for further analysis. Details of sRNA cloning and illumina HiSeq data analysis are provided in Methods.

Materials. Plant materials used in this study include the Arabidopsis thaliana ecotype Col-0 and Nicotiana benthamiana. Arabidopsis mutants tet8 (Salk_136039), dcl2-ldcl3-ldcl4-2 (dcl2/3/4) and TET8pro::TET8-GFP lines were described previously (Boavida, L. C. et al., Plant Physiol, 163, 696-712, doi:10.1104/pp.113.216598 (2013); Henderson, I. R. et al., Nat Genet, 38, 721-725, doi:10.1038/ng1804 (2006)). CFP or YFP-tagged TET8 and TET9 constructs were generated in pEarleyGate binary vectors. To generate the construct for the sRNA overexpression lines, the sRNA precursor was cloned using a miR319 backbone (Schwab, R. et al., Plant Cell, 18, 1121-1133, doi:10.1105/tpc.105.039834 (2006)) into a pEarleyGate destination vector using LR clonase II (Invitrogen). Arabidopsis plants were transformed using floral dip method with Agrobacterium tumefaciens strain GV3101 carrying the cloned vectors. B. cinerea used was strain B05.10. For generating B. cinerea target gene knockout mutants, we used a homologous recombination-based method to knock out B. cinerea genes described previously (Levis, C., Fortini, D. & Brygoo, Y., Current genetics, 32, 157-162 (1997)). All primers are listed in Supplementary Table 6.

Fungal Pathogen Assays.

The B. cinerea spores were diluted in 1% sabouraud maltose broth buffer to a final concentration of 105 spores/ml for drop inoculation of four-week-old Arabidopsis (Wang, M. et al., Nature plants 2, 16151, doi: 10.1038/nplants.2016.151 (2016)). The lesion sizes of B. cinerea-infected plant materials were calculated using ImageJ software. The relative fungal DNA content (fungal biomass) was quantified as described previously (Wang, M. et al., Nature plants 2, 16151, doi:10.1038/nplants.2016.151 (2016)).

Isolate Pure Fungal Cells from Infected Plant Leaves.

B. cinerea protoplasts were purified from infected Arabidopsis leaves using a method that takes the advantage of the differences between plant and fungi cell wall components (Cosgrove, D. J., Nature reviews. Molecular cell biology, 6, 850-861, doi:10.1038/nrm1746 (2005); Bowman, S. M. & Free, S. J., Bioessays, 28, 799-808, doi:10.1002/bies.20441 (2006)). After rinsing with sterilized water to remove ungerminated spores, the leaves were homogenized for 1 minute in isolation buffer (0.02 M MOPS buffer pH 7.2, 0.2 M sucrose) using a blender. The homogenate was centrifuged (1,500 g, 10 minutes) and the pellets were resuspended in 1% Triton X-100 then washed 3 times with isolation buffer to remove plant contents. The pellets were then processed for plant cell wall digestion as described previously (Yoo, S. D., Cho, Y. H. & Sheen, J., Nature protocols, 2, 1565-1572, doi:10.1038/nprot.2007.199 (2007)), followed by resuspension in 1% Triton X-100 and washing in isolation buffer 5 times to remove plant contents. The fungal protoplasts were isolated by incubation for 2-3 hours in lysing enzyme solution (2% lysing enzyme from Trichoderma harzianum (Sigma) in 0.6 M KCl, 50 mM CaCl2). The fungal protoplasts were filtered through a 40 μm nylon mesh, and gently overlaid with a 30% sucrose solution to form a distinct interface with the fungal tissue suspension and centrifuged at 4° C. for 10 minutes at 5,000 rpm. The fungal protoplasts were collected from the interface of the sucrose layer and the tissue suspension layer. The sucrose was removed from the purified protoplast solution by diluting five- to ten-fold with SM buffer (1.2 M-sorbitol and 0.02 M-MES, pH 6.0) and centrifuging (5,000 rpm for 5 minutes) in an angle head rotor. The pellet was resuspended in Trizol Reagent (Invitrogen) for RNA extraction.

Extracellular Vesicle Isolation.

Plant extracellular vesicles were isolated from apoplastic fluids and purified by differential ultracentrifugation (Rutter, B. & Innes, R. W., Plant Physiol, doi:10.1104/pp.16.01253 (2016)). The apoplastic fluids were extracted from Arabidopsis leaves by vacuum infiltration with infiltration buffer (20 mM MES, 2 mM CaCl2), 0.1 M NaCl, pH 6.0), then with low spinning at 900 g to collect the infiltrate. Before purification of vesicles, cellular debris was removed by spinning at 2,000 g for 30 minutes and filtering the apoplastic fluids through a 0.45 μm filter and then spun at 10,000 g for 30 minutes. After the large cell debris and large vesicles were removed by successive centrifugations at increasing speeds, the pellet from 100,000 g has been known as the exosomes (Thery, C. et al., Current protocols in cell biology/editorial board, Juan S. Bonifacino . . . [et al.] Chapter 3, Unit 3 22, doi:10.1002/0471143030.cb0322s30 (2006)). Thus, the final supernatant was spun at 100,000 g for 1 hour and the pelleted material is washed with filtered infiltration buffer at 100,000 g for 1 hour to collect extracellular vesicles.

sRNA Cloning and Illumina HiSeq Data Analysis.

The sRNA libraries were made using Illumina TruSeq® Small RNA Sample Prep Kits and sequenced on an Illumina HiSeq system. The sequence datasets of sRNA libraries (PRJNA407577) were deposited in the NCBI database. The sRNA sequencing reads were preprocessed with the procedure of quality control and adapter trimming by using fastxtoolkit (http://hannonlab.cshl.edu/fastx_toolkit/index.html). The sequences were mapped to Arabidopsis (TAIR10) or B. cinerea B05.10 genomes and only the reads that matched perfectly to each genome were used for further analysis. After removal of tRNA-, rRNA-, snoRNA-, and snRNA-mapped reads, the read numbers of sRNA in each library were normalized by the total number of sRNA reads, resulting in reads per million (RPM). The sRNAs selected for analysis were detected in both biological repeats. For purified B. cinerea cell libraries, using 10 normalized reads per million (RPM) sRNA reads as a cutoff, and the sRNAs selected for analysis had 10 times higher read numbers than the control libraries. For total Arabidopsis sRNA libraries, using 10 normalized RPM sRNA reads as a cutoff. For Arabidopsis extracellular vesicles libraries, using 40 normalized RPM sRNA reads as a cutoff. The B. cinerea target gene prediction for Arabidopsis sRNAs was performed as previously described (Weiberg, A. et al., Science, 342, 118-123, doi:10.1126/science.1239705 (2013)). The sRNAs list is given in Supplementary Table 1-5.

sRNA and Gene Expression Analyses.

RNA was extracted using the Trizol method. Purified RNA was treated with DNase I and first strand cDNA was synthesized from the Superscript III kit (Invitrogen, Carlsbad, Calif.). sRNA RT-PCR was performed as previously described (Weiberg, A. et al., Science, 342, 118-123, doi:10.1126/science.1239705 (2013)). Quantitative PCR was performed with the CFX384 real-time PCR detection system (Bio-Rad) using the SYBR Green mix (Bio-Rad) (Primers are described in Supplementary Table 6). When determining if the sRNAs were protected inside the vesicles, EVs received 10 U micrococcal nuclease (Thermo Fisher) treatments with or without Triton-X-100. For Triton-X-100 treatment, vesicles were incubated with 1% Triton-X-100 on ice for 30 minutes before the nuclease treatments. Nuclease treatment was carried out at 37° C. for 15 minutes followed by RNA isolation. Expression of sRNAs uptake by B. cinerea cells were determined by ligation-based sRNA RT-PCR, which was described previously (Wang, M. et al., RNA biology, 1-8, doi:10.1080/15476286.2017.1291112 (2017)). All primer sequences are listed in Supplementary Table 6.

Confocal Microscopy Analyses.

Following the protocol of visualization of membranes and extracellular vesicles in plants (Nielsen, M. E. et al., Proc Natl Acad Sci USA, 109, 11443-11448, doi:10.1073/pnas.1117596109 (2012)), leaves with or without B. cinerea infection were syringe infiltrated with 10 μM FM4-64 30 minutes before examination. Samples were examined using a 40× water immersion or dip-in lens mounted on a Leica TCS SP5 confocal microscope (Leica Microsystems). For visualization of ELV-associated GFP-fluorescence in ultracentrifuge fractions, suspended pellets were examined using a 40× water immersion or dip-in lens mounted on a Leica TCS SP5 confocal microscope. For visualization of ELV uptake, purified ELVs were mixed with germinated B. cinerea at 37° C. for 2 hours following confocal analyses. For Triton-X-100 treatment, the incubated fungal cells were washed with 1% Triton-X-100 for 15 minutes to remove nonspecific associations. Samples were examined on a 40× water immersion or dip-in lens mounted on a Leica TCS SP5 confocal microscope.

Supplementary Table 1

This file contains a list of Arabidopsis endogenous sRNAs that present in the sRNA libraries of purified B. cinerea protoplasts from the infected tissue. The normalized reads of these sRNAs in the EVs and total sRNA libraries are compared.

Supplementary Table 2

This table contains the list of top 100 Arabidopsis sRNAs that present in the total sRNA libraries. The normalized reads of these sRNAs in the B. cinerea protoplast and EVs sRNA libraries are compared.

Supplementary Table 3

This table contains the list of sRNA in purified B. cinerea protoplast sRNA libraries that not present in top 100 total sRNA libraries. The normalized reads of these sRNAs in the B. cinerea protoplast and EVs sRNA libraries are compared.

Supplementary Table 4

This file contains a list of Arabidopsis sRNAs that present in EVs. The normalized reads of these sRNAs in the B. cinerea protoplast and total sRNA libraries are compared.

Supplementary Table 5

This table contains the list of B. cinerea genes targeted by Arabidopsis endogenous sRNAs that are present in the sRNA libraries of purified B. cinerea protoplasts.

Supplementary Table 6

This table contains the list of primers used in this study.

SUPPLEMENTARY TABLE 1 The list of Arabidopsis endogenous sRNAs that are present in the sRNA libraries of purified B. Cinerea protoplasts from the infected tissue The normalized reads of these small RNAs in the EV and total sRNA libraries are compared. Normalized read counts are given in reads per million (RPM) in purified B. Cinerea protoplast sRNA libraries (BC), EVs sRNA libraries (EVs), and total sRNA libraries (TOTAL) respectively. RPT, Repeat; BCF, below the cut off. Num- ber of tar- sRNA get Normalized read counts of BC SEQ se- gene Con- Con- Normalized read counts of EVs Normalized read counts of TOTAL sRNA sRNA ID quence sRNA in B05_RP B05_RP trol trol B05_RP B05_RP MOCK_RP MOCK_RP B05_RP B05_RP MOCK_RP MOCK_RP ID type NO: 5′-3′ length BC T1 T2 RPT1 RPT2 T1 T2 T1 T2 T1 T2 T1 T2 MIR miRNA 80 TCGGAC 21  1 2415.44 35891.69 59.59 169.58 71636.21 20786.48 16380.72 9618.88 16129.57 16838.16 36093.26 30198.15 166A CAGGCT TCATTC CCC MIR miRNA 81 TTGACA 21  1  782.00   157.24 BCF BCF  6941.03  1249.49   939.99  321.31 13949.47 11099.11 18196.99 19707.76 157A GAAGAT AGAGAG CAC IGN- IGN 82 GTCGAA 22  1  433.46   355.19 BCF BCF   105.33    74.19    40.49   56.52   136.68   133.25    84.62    81.67 siR1 CTCAGT AACGCG GGCT MIR miRNA 83 TTTGGA 21  2  305.19   151.75 BCF BCF  7688.04   130.81   871.93   21.03  8098.22  6334.70  9457.97 13016.50 159B TTGAAG GGAGCT CTT MIR miRNA 84 TTTGGA 21  3  302.10   613.36 BCF BCF  8165.26   123.00   942.56   24.44 19855.85 13861.61 31216.26 23555.57 159A TTGAAG GGAGCT CTA MIR miRNA 85 TCGCTT 21  1  290.60   197.77 10.85  17.75  5522.36 15253.57   944.21  318.94  9532.05 14836.25  7841.71  7457.34 168A GGTGCA GGTCGG GAA MIR miRNA 86 TTCCAC 21  5  255.21   176.77 BCF BCF  1976.09  2100.71   308.56  450.90 17322.33 16887.83  9892.52 14254.15 396A AGCTTT CTTGAA CTG MIR miRNA 87 TCCCAA 20  2  236.63   528.20 BCF BCF  2044.96  7085.01   381.76 1184.60 20391.65 14562.15 18382.09 17208.83 158A ATGTAG ACAAAG CA TAS1 tasi 88 TCCAAT 22  1  232.21   498.31 BCF BCF 27673.80  1940.62  5574.65  890.84 13779.67  9137.97 11358.65 14444.95 c-si RNA GTCTTT R483 TCTAGT TCGT TAS1 tasi 89 TTCTAA 21  1  156.13   131.88 BCF BCF  3060.15  1905.48   479.98  558.42  8724.58  6840.09  9787.78 11121.49 c-si RNA GTTCAA R602 CATATC GAC S135 ORF 90 GGTGGA 21 19  128.27    65.63 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF 3533 GGAGGG CGGC S519 ORF 91 AGTTAA 21  1  113.67    33.82 BCF BCF BCF BCF BCF BCF    54.71    67.83    33.05    35.76 888 TTGAAC GTTCGG CGT MIR miRNA 92 GTTCAA 21  3   76.96    13.07 BCF BCF   506.38  1036.69   167.20  152.77  3850.59  3879.47  2787.25  3357.24 396 TAAAGC A* TGTGGG AAG MIR miRNA 93 TTCCAC 21  4   26.10    16.91 BCF BCF   650.60   105.43   143.83   40.21   250.71   153.27   249.45   272.07 396B AGCTTT CTTGAA CTT S272 TE 94 CGGGTT 21  1   19.02    16.74 BCF BCF   139.36   283.09   124.35  128.92    24.32    28.73    30.41    23.75 4436 TGGCAG GACGTT ACT S109 TE 95 GAAGTC 22  1   14.15    13.25 BCF BCF BCF BCF BCF BCF    83.64   196.45   259.14   203.99 2315 CTCGTG TTGCAT TCCT TAS tasi 96 CGTAAA 21  1   13.27    23.01 BCF BCF    40.51   113.24 BCF BCF    48.21    44.29    67.28    46.71 2-si RNA AAAAGT R453 TGTAAC TCT S466 IGN 97 TCCGCT 22  0  297.68   347.00 BCF BCF  4164.86  1173.35   528.16  258.73   484.86   747.43   623.62   418.41 8053 GTAGCA CTTCAG GCTA MIR miRNA 98 TCGGAC 21  0  243.27  6209.88 BCF BCF  8720.25   866.84  2016.08  441.94  2152.01  1879.23  4357.68  4284.16 165A CAGGCT TCATCC CCC S180 IGN 99 TGGTGG 22  0  191.08   107.47 BCF BCF   165.28   191.33 BCF BCF   306.89   325.99   309.09   266.80 4551 AACACT GGCTCG GCCC MIR miRNA 100 TTAGAT 22  0  159.67   108.78 BCF BCF  2766.45  1882.05   409.87  299.09  3045.43  2092.35  2905.66  2255.49 403 TCACGC ACAAAC TCGT MIR miRNA 101 TTGAAA 21  0  126.50   259.13 BCF BCF  6187.95  1761.00   975.20  571.82 26180.86 26166.46 38715.83 32807.12 161 GTGACT ACATCG GGG S117 ORF 102 GAGTTA 22  0  113.67    33.82 BCF BCF BCF BCF BCF BCF    59.95    77.84    37.17    37.47 8334 ATTGAA CGTTCG GCGT S373 ORF 103 AAACCG 24  0  108.81    30.25 BCF BCF   760.38   175.71   260.02  134.48   768.90   964.45  1220.20  1000.81 61 CAACCG GATCTT AAAGGC S466 IGN 104 TCCGCT 20  0   83.60    47.94 BCF BCF   908.24  1993.33   138.48  349.08  1508.04  1548.23  1255.46  1086.45 7987 GTAGCA CACAGG CC MIR miRNA 105 GGGTTG 21  0   64.58    28.50 BCF BCF   123.96  2493.13    52.61  252.37  1904.86  2112.37  2282.19  2880.78 398B ATATGA GAACAC ACG MIR miRNA 106 TTGACA 21 0   60.60   243.88 BCF BCF   747.01   679.41   160.10   70.20  1280.18   889.76  1473.62  1477.01 156D GAAGAG AGTGAG CAC TAS tasi 107 AGAATA 21 0   52.63    21.09 BCF BCF   454.53   103.47 BCF BCF  1239.51   794.13   903.03  1012.56 3-si RNA GAATCT R392 GTAAAA CGA TAS1 tasi 108 AACTAG 21 0   50.42    52.73 BCF BCF  1332.38  1509.15   661.39  946.23   860.72   655.13  1030.40  1181.58 C-si RNA AAAAGA R539 CATTGG ACA TAS1 tasi 109 GAACTA 21 0   50.42    52.73 BCF BCF  1313.75  1507.20   660.36  946.23   854.43   652.91  1025.11  1178.15 c-si RNA GAAAAG R541 ACATTG GAC S158 IGN 110 AAGCAC 24 0   32.73    14.73 BCF BCF   326.92   134.71 BCF BCF   260.14   266.32   309.24   357.97 710 ATGTGT AGAGTC GAGCCT S373 IGN 111 AGAACA 24 0   30.96    26.76 BCF BCF   193.23    60.52 BCF BCF   341.90   312.83   345.67   379.08 543 GAGACC GTTGGA AGAAAA MIR miRNA 112 AAGCTC 21 0   29.63    95.09 BCF BCF   299.78    66.38 BCF BCF   770.58   654.95  1014.09  1003.72 390A AGGAGG GATAGC GCC S262 IGN 113 CGAGAA 24 0   28.75    21.62 BCF BCF BCF BCF BCF BCF   875.81  3484.17  1130.00   921.25 2267 TGATGA ACCAAT TAGATG MIR miRNA 114 GATCAT 21 0   27.42    29.81 BCF BCF   342.72  6319.70   114.49  412.02  2224.96  2093.65  4748.01  2986.47 167 GTTCGC A* AGTTTC ACC S342 IGN 115 AAACAG 24 0   25.65    21.88 BCF BCF BCF BCF BCF BCF   582.34   421.99   525.48   434.89 70 GACCTA ACAACC S470 IGN 116 AGGATG 24 0   24.77    23.45 BCF BCF   466.27    70.28 BCF BCF  1492.32  1099.55   953.57  1083.81 808 AAAGGT TTGACT AGAACT S289 ORF 117 CTGCAC 23 0   24.33    14.99 BCF BCF   375.53    93.71 BCF BCF BCF BCF BCF BCF 8187 GGGCTT GGCTCA TCCCA S164 IGN 118 AAGCTG 24 0   23.88    13.68 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF 118 TGGTTA ACTGAA AAAGCT S539 IGN 119 ATAAGA 24 0   21.67    18.74 BCF BCF BCF BCF BCF BCF    63.31    46.15    80.95    73.49 660 GACGGA ACACTG GATATG S149 Anti 120 TAAACA 26 0   20.79    10.02 BCF BCF BCF BCF BCF BCF    18.66    19.83    21.74    32.59 0475 ORF AACTGT ACTTTA TGAGAG CC S619 TE 121 ATCTAA 24 0   15.04    26.41 BCF BCF BCF BCF BCF BCF    28.09    31.32    70.37    61.62 170 ACCCGT CAATTC TAGGAT S842 ORF 122 CATGGG 30 0   14.60    80.89 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF 617 CATCGA CACCTT GCGGCT AGGAAC S161 IGN 123 AAGCGA 24 0   13.71    20.05 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF 025 AGGACC CAGCAG GGAAGC MIR miRNA 124 TTGAAG 24 0   13.27    67.55 BCF BCF  4095.45   416.19   465.90   70.27  1843.99  1476.88   742.27   657.09 163 AGGACT TGGAAC TTCGAT S100 ORF 125 CTGCAC 24 0   12.83    17.87 BCF BCF  1176.01   183.52 BCF BCF    25.36    38.55    23.65    26.13 7073 GGTCTT GGCTCA ACCCGC S640 Anti 126 ATGAGA 24 0   11.50    12.81 BCF BCF   130.04    54.67 BCF BCF   151.14   152.15   211.84   197.26 613 ORF GATTCG GACTAT CCAGCC S111 IGN 127 AACGAA 24 0   11.06    13.34 BCF BCF   389.30    44.90 BCF BCF   175.88   149.93   445.27   419.59 989 CCGACC GTCAGA CATGGA

SUPPLEMENTARY TABLE 2 The list of top 100 Arabidopsis sRNAs that present in the total sRNA libraries The normalized reads of these small RNAs in the Bc protoplast and EV sRNA libraries are compared here. Normalized read counts are given in reads per million (RPM) in total sRNA libraries (TOTAL), Purified B. Cinerea sRNA libraries (BC) and EVs sRNA libraries (EVs) respectively. Num- ber of sRNA tar- Normalized read counts of BC SEQ se- get Con- Con- gene Normalized read counts of TOTAL trol trol Normalized read counts of EVs sRNA sRNA ID quence sRNA in B05_RP B05_RP MOCK_RP MOCK_RP B05_RP B05_RP RP RP B05_RP B05_RP MOCK_RP MOCK_RP ID type NO: 5′-3′ length BC T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 MIR miRNA 128 TTGAAA 21 0 26180.86 26166.46 38715.83 32807.12  126.50   259.13 BCF BCF  6187.95   1761.00   975.20   571.82 161 GTGACT ACATCG GGG MIR miRNA 129 TCCCAA 20 2 20391.65 14562.15 18383.09 17208.83  236.63   528.20 BCF BCF  2044.96   7085.01   381.76  1184.60 158A ATGTAG ACAAAG CA MIR miRNA 130 TTTGGA 21 3 19855.85 13861.61 31216.26 23555.57  302.10   613.36 BCF BCF  8165.26    123.00 BCF BCF 159A TTGAAG GGAGCT CTA MIR miRNA 131 TTCCAC 21 5 17322.33 16887.83  9892.52 14254.15  255.21   176.77 BCF BCF  1976.09   2100.71   308.56   450.90 396A AGCTTT CTTGAA CTG MIR miRNA 132 TCGGAC 21 1 16129.57  16833.16 36093.26 30198.15 2415.44  35891.69 59.59 169.58 71636.21  20786.48 16380.72  9618.88 166A CAGGCT TCATTC CCC MIR miRNA 133 TTGACA 21 1 13949.47 11099.11 18196.99 19707.76  782.00   157.24 BCF BCF  6941.03   1249.49   939.99   321.31 157A GAAGAT AGAGAG CAC TAS1 tasi 134 TCCAAT 22 1 13779.67  9137.97 11358.65 14444.95  232.21   498.31 BCF BCF 27673.80   1940.62  5574.65   890.84 c-si RNA GTCTTT R483 TCTAGT TCGT MIR miRNA 135 TCGCTT 21 1  9532.05 14836.25  7841.71  7457.34  290.60   197.77 10.85  17.75  5522.36  15253.57   944.21   318.94 168A GGTGCA GGTCGG GAA TAS1 tasi 136 TTCTAA 21 1  8724.58  6840.09  9787.78 11121.49  156.13   131.88 BCF BCF  3060.15   1905.48   479.98   558.42 c-si RNA GTTCAA R602 CATATC GAC MIR miRNA 137 TTTGGA 21 2  8098.22  6334.70  9457.97 13016.50  305.19   151.75 BCF BCF  7688.04    130.81 BCF BCF 159B TTGAAG GGAGCT CTT S702 TE 138 ATTATG 24 0  6026.92  5603.58  4017.89  4953.26 BCF BCF BCF BCF   821.55     44.90 BCF BCF 284 GACCGT CCAACT TGGCCC MIR miRNA 139 GTTCAA 21 3  3850.59  3879.47  2787.25  3357.24   76.96    13.07 BCF BCF   506.38   1036.69   167.20   152.77 396 TAAAGC A* TGTGGG AAG TAS1 tasi 140 CTTAGA 21 0  3328.00  3481.02  4680.58  4292.48 BCF BCF BCF BCF  1368.44    507.61   370.54   243.78 c-si RNA ATACGC R581 TATGTT GGA MIR miRNA 141 TTAGAT 22 0  3045.43  2092.35  2905.66  2255.49  159.67   108.78 BCF BCF  2766.45   1882.05   409.87   299.09 403 TCACGC ACAAAC TCGT TAS1 tasi 142 AGAATA 24 0  2930.55  3161.70  4144.23  3788.31 BCF BCF BCF BCF   781.04    144.47   191.70    54.95 c-si RNA CGCTAT R585 GTTGGA CTGAGA MIR miRNA 143 TGAAGC 21 2  2600.39  1982.82  2671.64  3152.59 BCF BCF BCF BCF  5139.95 123777.84  1392.37 10493.13 167A TGCCAG CATGAT CTA MIR miRNA 144 GATCAT 21 0  2224.96  2093.65  4748.01  2986.47   27.42    29.81 BCF BCF   342.72   6319.70   114.49   412.02 167 GTTCGC A* AGTTTC ACC MIR miRNA 145 TCGGAC 21 0  2152.01  1879.23  4357.68  4284.16  243.27  6209.88 BCF BCF  8720.25    866.84  2016.08   441.94 165A CAGGCT TCATCC CCC S300 ORF 146 AACGGA 21 0  1973.41  2863.87  2596.27  3497.37 BCF BCF BCF BCF BCF BCF BCF BCF 747 TTATGT AAGAGA GGT MIR miRNA 147 GGGTTG 21 0  1904.86  2112.37  2282.19  2880.78   64.58    28.50 BCF BCF   123.96   2493.13    52.61   252.37 398B ATATGA GAACAC ACG MIR miRNA 148 TTGAAG 24 0  1843.99  1476.88   742.27   657.09   13.27    67.55 BCF BCF  4095.45    416.19   465.90    70.27 163 AGGACT TGGAAC TTCGAT S625 ORF 149 AATGGA 21 1  1700.06  2023.60  2450.54  3388.91 BCF BCF BCF BCF BCF BCF BCF BCF 977 TTATGT AAGAGA GGT S251 IGN 150 AACATG 24 0  1654.15  2689.29   978.98  1384.91 BCF BCF BCF BCF BCF BCF BCF BCF 821 CGGATT TGCTTT GGCGCC S466 IGN 151 TCCGCT 24 0  1623.75  1686.48  1394.73  1193.19 BCF BCF BCF BCF 10318.78   3359.96   850.64   565.68 7991 GTAGCA CACAGG CCAATT S466 IGN 152 TCCGCT 20 0  1508.04  1548.23  1255.46  1086.45   83.60    47.94 BCF BCF   908.24   1993.33   138.48   349.08 7987 GTAGCA CACAGG CC S470 IGN 153 AGGATG 24 0  1492.32  1099.55   953.57  1083.81   24.77    23.45 BCF BCF   466.27     70.28 BCF BCF 808 AAAGGT TTGACT AGAACT S916 IGN 154 AAACGA 24 0  1441.59  1346.78  1536.49  1382.27 BCF BCF BCF BCF BCF BCF BCF BCF 11 GAACGT AGACAG AACAGA S331 IGN 155 AACTGT 30 0  1430.90  1768.40  1567.64  1469.49 BCF BCF BCF BCF BCF BCF BCF BCF 775 GACGAT AGCAAG TGCCGT CTGAGC miR miRNA 156 CGATCC 21 0  1350.82   932.76  1766.55  1263.78 BCF BCF BCF BCF   757.14    933.21   101.93    57.69 NA8 CCGGCA 175 ACGGCG CCA S161 IGN 157 AAGCGC 24 0  1342.02  1631.07  1241.65  1047.13 BCF BCF BCF BCF   229.29    138.62 BCF BCF 570 GGAAAG AACAGT AGATGC MIR miRNA 158 TTGACA 21 0  1280.18   889.76  1473.62  1477.01   60.60 2  43.88 BCF BCF   747.01    679.41   160.10    70.20 156D GAAGAG AGTGAG CAC S326 IGN 159 GAGAAT 23 1  1249.36  4768.49  2127.64  1384.12   26.10    77.40 BCF BCF BCF BCF BCF BCF 0548 GATGAA CCAATT AGATG TAS tasi 160 AGAATA 21 0  1239.51   794.13   903.03  1012.56   52.63    21.09 BCF BCF   454.53    103.47 BCF BCF 3- RNA GAATCT siR GTAAAA 392 CGA TAS1 tasi 161 TAGCAA 21 1  1129.46   923.86   825.61  1359.84 BCF BCF BCF BCF   310.71    302.61    91.63    53.61 C-si RNA CTGTTC R196 TTTAGA CGA TAS tasi 162 ACACGA 21 0  1093.61  1062.86   462.31   949.75 BCF BCF BCF BCF BCF BCF BCF BCF 2-si RNA TGTTCA R710 ATAGAT TTA S981 IGN 163 AACAGC 24 0   981.88  1123.46  1141.17   958.85 BCF BCF BCF BCF   665.58     82.00 BCF BCF 62 ATCGTC CATCAT TGAAGA S164 IGN 164 ATAGCG 24 0   981.67  1011.89   607.31   727.42 BCF BCF BCF BCF BCF BCF BCF BCF 3241 GAAACT AATTTT GGCACC S132 ORF 165 AGGACA 24 0   955.26   818.78   710.88   863.32 BCF BCF BCF BCF BCF BCF BCF BCF 3429 TTAGGT TTATTG GATTGG TAS tasi 166 TTTTTA 21 0   930.52  1024.31   563.83   975.08 BCF BCF BCF BCF BCF BCF BCF BCF 2-si RNA CGGGGA R441 TAAGAC TGA S598 Anti 167 AATGAA 24 0   886.29   680.52   565.44   742.33 BCF BCF BCF BCF BCF BCF BCF BCF 359 ORF AAAGTT GGAAAA GTGCCT A262 IGN 168 CGAGAA 24 0   875.81  3484.17  1130.00   921.25   28.75    21.62 BCF BCF BCF BCF BCF BCF 2267 TGATGA ACCAAT TAGATG TAS1 tasi 169 AACTAG 21 0   860.72   655.13  1030.40  1181.58   50.42    52.73 BCF BCF  1332.38   1509.15   661.39   946.23 RNA AAAAGA CATTGG ACA S203 TE 170 ATTATG 24 0   806.64  1293.03   723.95   898.16 BCF BCF BCF BCF BCF BCF BCF BCF 0573 AACCGT CCAACT TGGCCC S337 IGN 171 GAGGGA 23 0   784.63  1156.08  1094.89   790.49 BCF BCF BCF BCF  1722.90   1048.40   321.53    99.38 1252 CGACGA TTTGTG ACACC MIR miRNA 172 AAGCTC 21 0   770.58   654.95  1014.09  1003.72   29.63    95.09 BCF BCF   299.78     66.38 BCF BCF 390A AGGAGG GATAGC GCC S373 ORF 173 AAACCG 24 0   768.90   964.45  1220.20  1000.81  108.81    30.25 BCF BCF   760.38    175.71   260.02   134.48 61 CAACCG GATCTT AAAGGC S382 IGN 174 GGGACG 21 0   729.07   984.65   857.64   701.69 BCF BCF BCF BCF  1142.80    942.98   153.51    98.49 0025 ACGATT TGTGAC ACC S376 IGN 175 GGATGG 21 0   715.66   957.96  1008.22   838.12 BCF BCF BCF BCF  2069.27    739.93   258.93    57.83 7705 TGAGGG ACGACG ATT S488 ORF 176 TGACGA 22 0   687.15   467.77   597.32   753.55 BCF BCF BCF BCF BCF BCF BCF BCF 4863 GAGAAC TTATTG GCCT S213 TE 177 ATTTAA 24 0   683.59   722.04   298.95   500.87 BCF BCF BCF BCF BCF BCF BCF BCF 5042 TTTGAT GGGTTG AGTTGT S578 TE 178 AATCCG 24 0   659.06   509.10   651.53   668.31 BCF BCF BCF BCF BCF BCF BCF BCF 997 GTAGAA CACTGA AATGGT S414 IGN 179 AAGCAG 24 0   614.41  1228.91   862.93   902.51 BCF BCF BCF BCF BCF BCF BCF BCF 602 TGGCGG ATCTAG GGAGGA S179 IGN 180 ATCGGA 24 0   594.08   272.25   251.94   455.87 BCF BCF BCF BCF BCF BCF BCF BCF 1055 CAGTAC AACTCT ACGTAC S125 IGN 181 AAAGAG 24 1   593.66   515.21   349.93   430.28 BCF BCF BCF BCF BCF BCF BCF BCF 711 GATTTA AGTAGA TAGTAC S390 IGN 182 GGTGAG 26 0   589.46   713.88   833.55   687.97 BCF BCF BCF BCF BCF BCF BCF BCF 5459 GGACGA CGATTT GTGACA CC S496 IGN 183 TGCAAG 21 0   588.00   462.95   428.53   587.29 BCF BCF BCF BCF BCF BCF BCF BCF 1031 GTTCAA GAACGG ATC S342 IGN 184 AAACAG 24 0   582.34   421.99   525.48   434.89   25.65    21.88 BCF BCF BCF BCF BCF BCF 70 GACCTT AATAGA ACAACC TAS tasi 185 AACGTT 21 0   569.97   516.51   668.57   760.67 BCF BCF BCF BCF   252.78     95.66 BCF BCF 3-si RNA TAGAAA R342 GAGATG GGG S629 IGN 186 AATGGG 22 0   568.50   432.37   392.24   405.21 BCF BCF BCF BCF BCF BCF BCF BCF 539 ATGGAG AAGAAA CTGG TAS tasi 187 ATAAGA 21 0   542.51   399.94   367.41   377.50 BCF BCF BCF BCF   177.44    164.00 BCF BCF 2-si RNA CTGAAA R461 CATATA TGT S976 IGN 188 ACTCGA 24 0   497.44   464.80   461.73   423.15 BCF BCF BCF BCF BCF BCF BCF BCF 189 GACTGT TTTGGA AACAAA S214 Anti 189 ATTTCA 24 0   498.70   437.56   298.51   382.51 BCF BCF BCF BCF BCF BCF BCF BCF 8545 ORF GGAGTA GAATTT TTCGCC S177 IGN 190 ATCCTA 24 0   497.44   464.80   461.73   423.15 BCF BCF BCF BCF BCF BCF BCF BCF 0669 TCGGCT GATTCG GTTAGA S348 IGN 191 GATGGT 20 1   495.55   704.25   453.79   295.82 BCF BCF BCF BCF   586.18    821.93 BCF BCF 7804 GAGGGA CGACGA TT S162 IGN 192 ATACTC 24 0   493.46   891.43   307.62   404.68 BCF BCF BCF BCF BCF BCF BCF BCF 2646 TAATGG ATGGAT TGTTGT S466 IGN 193 TCCGCT 22 0   488.86   744.43   623.62   418.41  297.68   347.00 BCF BCF  4164.86   1173.35   528.16   258.73 8053 GTAGCA CTTCAG GCTA S466 IGN 194 TCCGCT 22 0   488.86   747.43   623.62   418.41  297.68   347.00 BCF BCF  4164.86   1173.35   528.16   258.73 8053 GTAGCA CTTCAG GCTA S428 TE 195 TAAACA 24 0   479.41   424.77   423.09   361.53 BCF BCF BCF BCF BCF BCF BCF BCF 7096 TCTGAT CGTTTG ACTTGA MIR miRNA 196 ACGGTA 21 1   478.36   603.43   533.86   224.04 BCF BCF BCF BCF   222.81    179.61 BCF BCF 391 TCTCTC CTACGT AGC IGN- IGN 197 GGTTTA 24 0   462.85   430.15   453.94   406.92 BCF BCF BCF BCF BCF BCF BCF BCF siR GAATTG 107 GATTGT AACAGA S308 TE 198 GAACCG 24 0   453.21   503.91  1065.66  1032.22 BCF BCF BCF BCF BCF BCF BCF BCF 3589 ACCGTC AGACAT GGATGA S846 Anti 199 ACCGGA 24 0   448.60   414.58   371.23   333.30 BCF BCF BCF BCF BCF BCF BCF BCF 357 ORF ACTGCT TGAAAT AATGGA S209 IGN 200 ATTGAG 24 0   440.00   390.30   183.34   262.05 BCF BCF BCF BCF BCF BCF BCF BCF 3887 TAACAG GAGGAC TATGCC S323 IGN 201 GAGAAA 24 0   429.10   399.38   315.26   374.20 BCF BCF BCF BCF BCF BCF BCF BCF 8006 CTAAAG TCGGCG GACGAC S121 Anti 202 AGATGA 24 0   423.44   468.88   413.69   365.62 BCF BCF BCF BCF BCF BCF BCF BCF 8093 ORF TGGGCT TAGATG ATGGGC S148 IGN 203 GTTTTG 20 1   421.35   568.77   294.69   258.48 BCF BCF BCF BCF    45.37    439.27 BCF BCF 4048 GACAGG TATCGA CA S350 TE 204 AAACAT 23 0   421.35   407.72   361.98   263.36 BCF BCF BCF BCF   153.13    117.14 BCF BCF 60 CTGATC GTTTGA CTTGA S542 TE 205 TTGAGG 23 0   402.27   315.06   161.60   221.93 BCF BCF BCF BCF BCF BCF BCF BCF 1719 ATAATG TTGCAT AAATA S855 IGN 206 ACCGTG 23 0   398.92   277.44   231.52   229.85 BCF BCF BCF BCF BCF BCF BCF BCF 381 AGGCCA AACTTG GCATA S376 IGN 207 GGATGG 20 1   384.66   533.19   750.69   603.26 BCF BCF BCF BCF   275.47    259.66 BCF BCF 7704 TGAGGG ACGACG AT MIR miRNA 208 ATCATG 21 2   375.02   243.89   406.20   400.59 BCF BCF BCF BCF  2126.79   1710.01   409.99   150.67 292B CGATCT CTTTGG ATT S466 IGN 209 TCCGCT 20 1   368.73   513.73   341.56   269.96 BCF BCF BCF BCF BCF BCF BCF BCF 8051 GTAGCA CTTCAG GC MIR1 miRNA 210 TCAATG 20 3   355.31   207.57   324.08   322.21 BCF BCF BCF BCF BCF BCF BCF BCF 61* CATTGA AAGTGA CT S125 TE 211 AGCATA 24 0   345.88   447.01   214.04   287.25 BCF BCF BCF BCF BCF BCF BCF BCF 2933 TCATGA TGTGGT TGGTGT S501 IGN 212 TGGAAG 24 0   345.04   382.15   254.88   277.35 BCF BCF BCF BCF BCF BCF BCF BCF 2356 GATTAC GGGCCA TTGCCT S274 IGN 213 AACCGG 24 0   342.95   387.89   247.83   266.00 BCF BCF BCF BCF BCF BCF BCF BCF 111 ATGTAT GCAGAG ATGATC S130 TE 214 AGGAAA 24 0   342.74   288.56   257.82   250.70 BCF BCF BCF BCF BCF BCF BCF BCF 5579 TACTAT GCTGTA AAAAGG S949 ORF 215 ACTAAC 24 0   342.32   352.68   232.99   308.09 BCF BCF BCF BCF BCF BCF BCF BCF 704 TAAGGT ACTATG GATTGG S373 IGN 216 AGAACA 24 0   341.90   312.83   345.67   379.08   30.96    26.76 BCF BCF   193.23     60.52 BCF BCF 543 GAGACC GTTGGA AGAAAA S102 IGN 217 ACTTTC 21 0   338.54   442.38   614.36   372.09 BCF BCF BCF BCF BCF BCF BCF BCF 9881 TGGAGA CCAAAC CCT MIR8 miRNA 218 TGCGGG 21 3   335.19   297.45   498.89   578.19 BCF BCF BCF BCF BCF BCF BCF BCF 22A AAGCAT TTGCAC ATG S505 ORF 219 TGGATT 21 0   312.34   497.61   541.06   651.68 BCF BCF BCF BCF BCF BCF BCF BCF 1044 ATGTAA GAGAGG TGA MiR miRNA 220 TGATTG 21 1   312.13   261.13   181.28   272.73 BCF BCF BCF BCF BCF BCF BCF BCF 170 AGCCGT GTCAAT ATC S180 IGN 221 TGGTGG 22 0   306.89   325.99   309.09   266.80  191.08   107.47 BCF BCF   165.28    191.33 BCF BCF 4551 AACACT GGCTCG GCCC MIR miRNA 222 ACTCAT 21 1   306.89   289.85   295.87   292.79 BCF BCF BCF BCF    45.37     48.81 BCF BCF 5026 AAGATC GTGACA CGT S428 IGN 223 TAAACA 24 0   299.76   288.56   230.35   232.09 BCF BCF BCF BCF BCF BCF BCF BCF 7100 TCTGAT CGTTTG ATTTGA S115 IGN 224 AGAGAT 24 0   299.34   179.58   269.87   296.48 BCF BCF BCF BCF BCF BCF BCF BCF 3819 AAGAAA CGATAG TCGGTT S378 IGN 225 GGCCCA 26 0   298.72   336.00   151.02   144.35 BCF BCF BCF BCF BCF BCF BCF BCF 5664 CGGGTC GGATCT GTTGTG GC S559 IGN 226 AATATG 24 0   294.10   457.76   146.76   222.99 BCF BCF BCF BCF BCF BCF BCF BCF 726 TATGTG TTGGAA GGGTGT S266 IGN 227 CGCGGA 23 0   279.85   441.64   293.52     288.83 BCF BCF BCF BCF BCF BCF BCF BCF 9656 TAATAT GGGCTT GACCA

SUPPLEMENTARY TABLE 3 The list of sRNA in Purified B. Cinerea sRNA libraries (BC) that are not present in top 100 TOTAL libraries The normalized reads of these small RNAs in the Bc protoplast and EV sRNA libraries are compared here. Normalized read counts are given in reads per million (RPM) in total sRNA libraries (TOTAL), Purified B. Cinerea sRNA libraries (BC) and EVs sRNA libraries (EVs) respectively. RPT, Repeat; BCF, below the cut off. Number of Normalized read  Normalized read Normalized read SEQ sRNA target counts of TOTAL counts of BC counts of EVs sRNA sRNA ID sequence sRNA gene B05_ B05_ MOCK_ MOCK_ B05_ B05_ Control_ Control_ B05_ B05_ MOCK_ MOCK_ ID type NO: 5′-3′ length in BC RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 IGN- IGN 228 GTCGAACTCAGT 22  1 136.68 133.25  84.62  81.67 433.46 355.19 BCF BCF  105.33  74.19  40.49  56.52 siR1 AACGCGGGCT S1353733 ORF 229 GGTGGAGGAGGA 21 19 BCF BCF BCF BCF 128.27  65.63 BCF BCF BCF BCF BCF BCF GGCGGCGGC S1178334 ORF 230 GAGTTAATTGAA 22  0  59.95  77.84  37.17  37.47 113.67  33.82 BCF BCF BCF BCF BCF BCF CGTTCGGCGT S519888 ORF 231 AGTTAATTGAAC 21  1  54.71  67.83  33.05  35.76 113.67  33.82 BCF BCF BCF BCF BCF BCF GTTCGGCGT S158710 IGN 232 AAGCACATGTGT 24  0 260.14 266.32 309.24 357.97  32.73  14.73 BCF BCF  326.92 134.71 BCF BCF AGAGTCGAGCCT MIR396B miRNA 233 TTCCACAGCTTT 21  4 250.71 153.27 249.45 272.07  26.10  16.91 BCF BCF  650.60 105.43 143.83  40.21 CTTGAACTT S2898187 ORF 234 CTGCACGGGCTT 23  0 BCF BCF BCF BCF  24.33  14.99 BCF BCF  375.53  93.71 BCF BCF GGCTCATCCCA S164118 IGN 235 AAGCTGTGGTTA 24  0 BCF BCF BCF BCF  23.88  13.68 BCF BCF BCF BCF BCF BCF ACTGAAAAAGCT S539660 IGN 236 ATAAGAGACGGA 24  0  63.31  46.15  80.95  73.49  21.67  18.74 BCF BCF BCF BCF BCF BCF ACACTGGATATG S1490475 Anti_ 237 TAAACAAACTGT 26  0  18.66  19.83  21.74  32.59  20.79  10.02 BCF BCF BCF BCF BCF BCF ORF ACTTTATGAGAG CC S2724436 TE 238 CGGGTTTGGCAG 21  1  24.32  28.73  30.41  23.75  19.02  16.74 BCF BCF  139.36 283.09 124.35 128.92 GACGTTACT S619170 TE 239 ATCTAAACCCGT 24  0  28.09  31.32  70.37  61.62  15.04  26.41 BCF BCF BCF BCF BCF BCF CAATTCTAGGAT S842617 ORF 240 CATGGGCATCGA 30  0 BCF BCF BCF BCF  14.60  80.89 BCF BCF BCF BCF BCF BCF CACCTTGCGGCT AGGAAC S1092315 TE 241 GAAGTCCTCGTG 22  1  83.64 196.45 259.14 203.99  14.15  13.25 BCF BCF BCF BCF BCF BCF TTGCATTCCT S161025 IGN 242 AAGCGAAGGACC 24  0 BCF BCF BCF BCF  13.71  20.05 BCF BCF BCF BCF BCF BCF CAGCAGGGAAGC TAS2- tasiRNA 243 CGTAAAAAAAGT 21  1  48.21  44.29  67.28  46.71  13.27  23.01 BCF BCF   40.51 113.24 BCF BCF siR453 TGTAACTCT S1007073 ORF 244 CTGCACGGTCTT 24  0  25.36  38.55  23.65  26.13  12.83  17.87 BCF BCF 1176.01 183.52 BCF BCF GGCTCAACCCGC S640613 Anti_ 245 ATGAGAGATTCG 24  0 151.14 152.15 211.84 197.26  11.50  12.81 BCF BCF  130.04  54.67 BCF BCF ORF GACTATCCAGCC S111989 IGN 246 AACGAACCGACC 24  0 175.88 149.93 445.27 419.59  11.06  13.34 BCF BCF  389.30  44.90 BCF BCF GTCAGACATGGA

SUPPLEMENTARY TABLE 4 The list of At-sRNAs that present in EVs. The normalized reads of these small RNAs in the B. cinerea protoplast and total sRNA libraries are compared. Normalized read counts are given in reads per million (RPM) in EVs sRNA libraries (EVs), Purified B. Cinerea sRNA libraries (BC) and total sRNA libraries (TOTAL) respectively. RPT, Repeat; BCF, below the cut off. Number of Normalized read Normalized read Normalized read SEQ sRNA target counts of EVs counts of BC counts of TOTAL sRNA sRNA ID sequence sRNA gene B05_ B05_ MOCK_ MOCK_ B05_ B05_ Control_ Control_ B05_ B05_ MOCK_ MOCK_ ID type NO: 5′-3′ length in BC RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 RPT1 RPT2 MIR166A miRNA 247 TCGGAC 21 1 71636.21 20786.48 16380.72 9618.88 2415.44 35891.69 59.59 169.58 16129.57 16838.16 36093.26 30198.15 CAGGCT TCATTC CCC TAS1c- tasiRNA 248 TCCAAT 22 2 27673.80 1940.62 5574.65 890.84 232.21 498.31 BCF BCF 13779.67 9137.97 11358.65 14444.95 siR483 GTCTTT TCTAGT TCGT S4667991 IGN 249 TCCGCT 24 0 10318.78 3359.96 850.64 565.68 BCF BCF BCF BCF 1623.75 1686.48 1394.73 1193.19 GTAGCA CACAGG CCAATT MIR165A miRNA 250 TCGGAC 21 0 8720.25 866.84 2016.08 441.94 243.27 6209.88 BCF BCF 2152.01 1879.23 4357.68 4284.16 CAGGCT TCATCC CCC MIR159A miRNA 251 TTTGGA 21 3 8165.26 123.00 942.56 24.44 302.10 613.36 BCF BCF 19855.85 13861.61 31216.26 23555.57 TTGAAG GGAGCT CTA MIR159B miRNA 252 TTTGGA 21 2 7688.04 130.81 871.93 21.03 305.19 151.75 BCF BCF 8098.22 6334.70 9457.97 13016.50 TTGAAG GGAGCT CTT MIR157A miRNA 253 TTGACA 21 1 6941.03 1249.49 939.99 321.31 782.00 157.24 BCF BCF 13949.47 11099.11 18196.99 19707.76 GAAGAT AGAGAG CAC MIR161 miRNA 254 TTGAAA 21 0 6187.95 1761.00 975.20 571.82 126.50 259.13 BCF BCF 26180.86 26166.46 38715.83 32807.12 GTGACT ACATCG GGG MIR168A miRNA 255 TCGCTT 21 1 5522.36 15253.57 944.21 318.94 290.60 197.77 10.85 17.75 9532.05 14836.25 7841.71 7457.34 GGTGCA GGTCGG GAA MIR167A miRNA 256 TGAAGC 21 2 5139.95 123777.84 1392.37 10493.13 BCF BCF BCF BCF 2600.39 1982.82 2671.64 3152.59 TGCCAG CATGAT CTA S4667996 IGN 257 TCCGCT 29 0 4867.31 204.99 455.06 54.80 BCF BCF BCF BCF 29.35 36.69 BCF BCF GTAGCA CACAGG CCAATT TCACT S4668053 IGN 258 TCCGCT 22 0 4164.86 1173.35 528.16 258.73 297.68 347.00 BCF BCF 484.86 747.43 623.62 418.41 GTAGCA CTTCAG GCTA MIR163 miRNA 259 TTGAAG 24 0 4095.45 416.19 465.90 70.27 13.27 67.55 BCF BCF 1843.99 1476.88 742.27 657.09 AGGACT TGGAAC  TTCGAT TAS1c- tasiRNA 260 TTCTAA 21 1 3060.15 1905.48 479.98 558.42 156.13 131.88 BCF BCF 8724.58 6840.09 9787.78 11121.49 siR602 GTTCAA CATATC GAC MIR403 miRNA 261 TTAGAT 22 0 2766.45 1882.05 409.87 299.09 159.67 108.78 BCF BCF 3045.43 2092.35 2905.66 2255.49 TCACGC ACAAAC TCGT S2794789 IGN 262 CTACTG 27 0 2256.83 464.66 559.74 63.98 BCF BCF BCF BCF 37.73 76.36 45.98 13.59 CACGGT CTTGGC TCAACC CGC MIR393B miRNA 263 ATCATG 21 2 2126.79 1710.01 409.99 150.67 BCF BCF BCF BCF 375.02 243.89 406.20 400.59 CGATCT CTTTGG ATT MIR158A miRNA 264 TCCCAA 20 2 2044.96 7085.01 381.76 1184.60 236.63 528.20 BCF BCF 20391.65 14562.15 18382.09 17208.83 ATGTAG ACAAAG CA MIR396A miRNA 265 TTCCAC 21 5 1976.09 2100.71 308.56 450.90 255.21 176.77 BCF BCF 17322.33 16887.83 9892.52 14254.15 AGCTTT CTTGAA CTG TAS1c- tasiRNA 266 CTTAGA 21 0 1368.44 507.61 370.54 243.78 BCF BCF BCF BCF 3328.00 3481.02 4680.58 4292.48 siR581 ATACGC TATGTT GGA TAS1c- tasiRNA 267 AACTAG 21 0 1332.38 1509.15 661.39 946.23 50.42 52.73 BCF BCF 860.72 655.13 1030.40 1181.58 siR539 AAAAGA CATTGG ACA TAS1c- tasiRNA 268 GAACTA 21 0 1313.75 1507.20 660.36 946.23 50.42 52.73 BCF BCF 854.43 652.91 1025.11 1178.15 siR541 GAAAAG ACATTG GAC S1007073 ORF 269 CTGCAC 24 0 1176.01 183.52 BCF BCF 12.83 17.87 BCF BCF 25.36 38.55 23.65 26.13 GGTCTT GGCTCA ACCCGC S4667987 IGN 270 TCCGCT 20 0 908.24 1993.33 138.48 349.08 83.60 47.94 BCF BCF 1508.04 1548.23 1255.46 1086.45 GTAGCA CACAGG CC S702284 TE 271 ATTATG 24 0 821.55 44.90 BCF BCF BCF BCF BCF BCF 6026.92 5603.58 4017.89 4953.26 GACCGT CCAACT TGGCCC S2794744 Anti_ 272 CTACTG 25 0 805.75 111.28 BCF BCF BCF BCF BCF BCF 10.27 12.42 BCF BCF ORF CACGGG CCGGCT CAACCC G TAS1c- tasiRNA 273 AGAATA 24 0 781.04 144.47 191.70 54.95 BCF BCF BCF BCF 2930.55 3161.70 4144.23 3788.31 siR585 CGCTAT GTTGGA CTTAGA S37361 ORF 274 AAACCG 24 0 760.38 175.71 260.02 134.48 108.81 30.25 BCF BCF 768.90 964.45 1220.20 1000.81 CAACCG GATCTT AAAGGC miRNA8175 miRNA 275 CGATCC 21 0 757.14 933.21 101.93 57.69 BCF BCF BCF BCF 1350.82 932.76 1766.55 1263.78 CCGGCA ACGGCG CCA MIR156D miRNA 276 TTGACA 21 0 747.01 679.41 160.10 70.20 60.60 243.88 BCF BCF 1280.18 889.76 1473.62 1477.01 GAAGAG AGTGAG CAC S98162 IGN 277 AACAGC 24 0 665.58 82.00 BCF BCF BCF BCF BCF BCF 981.88 1123.46 1141.17 958.85 ATCGTC CATCAT TGAAGA MIR396B miRNA 278 TTCCAC 21 4 650.60 105.43 143.83 40.21 26.10 16.91 BCF BCF 250.71 153.27 249.45 272.07 AGCTTT CTTGAA CTT MIR396A* miRNA 279 GTTCAA 21 3 506.38 1036.69 167.20 152.77 76.96 13.07 BCF BCF 3850.59 3879.47 2787.25 3357.24 TAAAGC TGTGGG AAG S470808 IGN 280 AGGATG 24 0 466.27 70.28 BCF BCF 24.77 23.45 BCF BCF 1492.32 1099.55 953.57 1083.81 AAAGGT TTGACT AGAACT TAS3- tasiRNA 281 AGAATA 21 0 454.53 103.47 BCF BCF 52.63 21.09 BCF BCF 1239.51 794.13 903.03 1012.56 siR392 GAATCT GTAAAA CGA MIR841A miRNA 282 TTTCTA 21 1 418.47 119.09 BCF BCF BCF BCF BCF BCF 212.56 168.65 326.87 331.58 GTGGGT CGTATT CAC S2898195 IGN 283 CTGCAC 23 0 392.54 93.71 BCF BCF BCF BCF BCF BCF 11.74 18.90 BCF BCF GGTCTT GGCTCA ACCCG S111989 IGN 284 AACGAA 24 0 389.30 44.90 BCF BCF 11.06 13.34 BCF BCF 175.88 149.93 445.27 419.59 CCGACC GTCAGA CATGGA S2898187 ORF 285 CTGCAC 23 0 375.53 93.71 BCF BCF 24.33 14.99 BCF BCF BCF BCF BCF BCF GGGCTT GGCTCA TCCCA S4964170 IGN 286 TGCACG 24 0 371.48 898.07 260.94 148.69 BCF BCF BCF BCF BCF BCF BCF BCF GTCTTG GCTCAA CCCGCC S4403479 IGN 287 TACTGC 26 0 366.21 50.76 BCF BCF BCF BCF BCF BCF 22.01 17.24 29.53 24.15 ACGGTC TTGGCT CAACCC GC S2794780 ORF 288 CTACTG 26 0 342.72 111.28 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF CACGGG CTTGGC TCATCC CA MIR167A* miRNA 289 GATCAT 21 0 342.72 6319.70 114.49 412.02 27.42 29.81 BCF BCF 2224.96 2093.65 4748.01 2986.47 GTTCGC AGTTTC ACC S158710 IGN 290 AAGCAC 24 0 326.92 134.71 BCF BCF 32.73 14.73 BCF BCF 260.14 266.32 309.24 357.97 ATGTGT AGAGTC GAGCCT TAS1C- tasiRNA 291 TAGCAA 21 1 310.71 302.61 91.63 53.61 BCF BCF BCF BCF 1129.46 923.86 825.61 1359.84 siR196 CTGTTC TTTAGA CGA TAS2- tasiRNA 292 TTTGCA 21 0 305.45 327.99 45.30 76.87 BCF BCF BCF BCF 171.26 104.71 154.25 175.36 siR165 TATACT CGAATA CCT MIR390A miRNA 293 AAGCTC 21 0 299.78 66.38 BCF BCF 29.63 95.09 BCF BCF 770.58 654.95 1014.09 1003.72 AGGAGG GATAGC GCC MIR850A miRNA 294 AAGATC 22 0 271.82 158.14 BCF BCF BCF BCF BCF BCF 50.73 164.39 86.67 78.51 CGGACT ACAACA AAGC S995284 IGN 295 ACTGCA 25 0 261.70 46.86 BCF BCF BCF BCF BCF BCF BCF BCF 14.25 10.69 CGGTCT TGGCTC AACCCG C TAS3- tasiRNA 296 AACGTT 21 0 252.78 95.66 BCF BCF BCF BCF BCF BCF 569.97 516.51 668.57 760.67 siR342 TAGAAA GAGATG GGG S4435833 miRNA 297 TAGCCA 20 1 252.50 1182.35 58.76 58.72 BCF BCF BCF BCF 233.21 82.29 275.89 236.84 AGGATG ACTTGC CT S2794745 IGN 298 CTACTG 26 0 250.76 91.76 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF CACGGG CCGGCT CAACCC GC TAS1c- tasiRNA 299 AGAATA 21 1 245.09 64.43 46.84 27.18 BCF BCF BCF BCF 100.20 64.68 104.01 117.96 siR586 CGCTAT GTTGGA CTT S1452355 IGN 300 AGTAAC 27 0 232.53 199.14 90.83 52.21 BCF BCF BCF BCF BCF BCF BCF BCF GCGGGC TTGTGA TCCAAG TGG S161570 IGN 301 AAGCGC 24 0 229.29 138.62 BCF BCF BCF BCF BCF BCF 1342.02 1631.07 1241.65 1047.13 GGAAAG AACAGT AGATGC MIR391 miRNA 302 ACGGTA 21 1 222.81 179.61 BCF BCF BCF BCF BCF BCF 478.36 603.43 533.86 224.04 TCTCTC CTACGT AGC TAS1b- tasiRNA 303 AATGGG 21 1 221.59 101.52 BCF BCF BCF BCF BCF BCF 131.85 141.96 161.30 125.22 siR89 AGATGT CCGGAA TGA S373543 IGN 304 AGAACA 24 0 193.23 60.52 BCF BCF 30.96 26.76 BCF BCF 341.90 312.83 345.67 379.08 GAGACC GTTGGA AGAAAA S1153818 TE 305 AGAGAT 23 0 185.94 91.76 124.23 45.69 BCF BCF BCF BCF BCF BCF 10.28 11.35 AAGAAA CGATAG TCGGT TAS2- tasiRNA 306 ATAAGA 21 0 177.44 164.00 BCF BCF BCF BCF BCF BCF 542.51 399.94 367.41 377.50 siR461 CTGAAA CATATA TGT S4195153 TE 307 GTTCGA 24 0 176.62 60.52 BCF BCF BCF BCF BCF BCF 252.39 223.32 436.61 308.23 TCCCCG GCAACG GCGCCA S311972 TE 308 AACTAA 23 0 167.31 60.52 BCF BCF BCF BCF BCF BCF BCF BCF 14.84 13.19 ACCGGA ACAGTG TACCT S1804551 IGN 309 TGGTGG 22 0 165.28 191.33 BCF BCF 191.08 107.47 BCF BCF 306.89 325.99 309.09 266.80 AACACT GGCTCG GCCC MIR162B miRNA 310 TCGATA 21 1 161.64 228.42 BCF BCF BCF BCF BCF BCF 160.15 143.26 184.22 159.79 AACCTC TGCATC CAG S35060 TE 311 AAACAT 23 0 153.13 117.14 BCF BCF BCF BCF BCF BCF 421.35 407.72 361.98 263.36 CTGATC GTTTGA CTTGA S2907277 IGN 312 CTGGAA 23 0 139.76 165.95 115.08 60.13 BCF BCF BCF BCF BCF BCF 41.13 24.81 TACTTG AACTAC CATCT S2724436 TE 313 CGGGTT 21 1 139.36 283.09 124.35 128.92 19.02 16.74 BCF BCF 24.32 28.73 30.41 23.75 TGGCAG GACGTT ACT S366682 IGN 314 AAGACA 23 0 132.47 181.57 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF ATCAGC ACGGAC ATTGT S3849690 IGN 315 GGGGAC 25 0 130.04 183.52 49.88 101.82 BCF BCF BCF BCF BCF BCF BCF BCF ATTAAG ATGGTG GAACAC T S640613 Anti_ 316 ATGAGA 24 0 130.04 54.67 BCF BCF 11.50 12.81 BCF BCF 151.14 152.15 211.84 197.26 ORF GATTCG GACTAT CCAGCC S2806230 IGN 317 CTAGTT 23 0 128.82 306.52 172.05 129.29 BCF BCF BCF BCF BCF BCF BCF BCF CGTCGA TATGTT GAACT S4403442 Anti_ 318 TACTGC 25 0 124.77 44.90 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF ORF ACGGGC CGGCTC AACCCG C MIR398B miRNA 319 GGGTTG 21 0 123.96 2493.13 52.61 252.37 64.58 28.50 BCF BCF 1904.86 2112.37 2282.19 2880.78 ATATGA GAACAC ACG S1010856 IGN 320 ACTTAG 22 0 121.13 54.67 BCF BCF BCF BCF BCF BCF 43.39 43.18 51.71 52.12 AATACG CTATGT TGGA S5185716 IGN 321 TGTTCG 24 0 120.32 115.19 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF ATCCAC GCTCAC CGCACC S284031 IGN 322 AACGAA 27 0 118.70 62.47 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GGACCT ATGGGT GAAACG CTT S99841 IGN 323 AAACGT 21 0 118.29 74.19 BCF BCF BCF BCF BCF BCF 306.47 213.68 401.94 411.94 TTAGAA AGAGAT GGG S3849698 Anti_ 324 GGGGAC 25 0 114.64 171.81 45.41 89.60 BCF BCF BCF BCF BCF BCF BCF BCF ORF ATTAAG ATGGTG GGACAC T S3155730 Anti_ 325 GAATGA 23 0 114.24 224.52 BCF BCF BCF BCF BCF BCF 16.35 10.01 10.58 12.14 ORF CACATG TAAACA TCTGA S4099527 TE 326 GTGCTT 26 0 113.02 113.24 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF TGGCGA GAGTAG TACTAG GA S3371251 IGN 327 GAGGGA 22 0 108.57 64.43 BCF BCF BCF BCF BCF BCF 26.41 41.33 31.73 29.03 CGACGA TTTGTG ACAC IGN- IGN 328 GTCGAA 22 1 105.33 74.19 40.49 56.52 433.46 355.19 BCF BCF 136.68 133.25 84.62 81.67 siR1 CTCAGT AACGCG GGCT S4493439 IGN 329 TATCAA 21 3 103.30 48.81 BCF BCF BCF BCF BCF BCF 39.83 26.69 40.84 41.17 GATCCA TCTTAC TCT S4195144 IGN 330 GTTCGA 23 0 97.63 185.47 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF TCCACG CTCACC GCACC S639704 Anti_ 331 AATGTC 23 0 96.41 78.09 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF ORF TGTTGG TGCCAA GAGGG S4195152 TE 332 GTTCGA 23 0 94.79 42.95 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF TCCCCG GCAACG GCGCC S2646760 TE 333 CGATCC 20 1 93.17 285.04 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF CCGGCA ACGGCG CC S284030 IGN 334 AACGAA 26 0 91.96 91.76 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GGACCT ATGGGT GAAACG CT S3484554 IGN 335 GATGGG 29 0 90.34 82.00 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF ACGTTG GGTCGA TCTCAT TGGGC S1149208 TE 336 AGAGAG 23 0 87.10 72.24 71.61 54.43 BCF BCF BCF BCF 13.63 12.79 BCF BCF GACAGA AGAAAC TACCC S87743 TE 337 AAACCG 23 0 87.10 44.90 BCF BCF BCF BCF BCF BCF 15.51 31.88 12.78 14.25 GAACAG TGTACC TAACT S2898159 IGN 338 CTGCAC 23 0 86.29 91.76 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GGGCCG GCTCAA CCCGC S3582663 IGN 339 GCCCAC 25 0 84.26 201.09 BCF BCF BCF BCF BCF BCF 24.32 17.61 12.78 13.85 GGGTCG GATCTG TTGTGG C S3745708 IGN 340 GGAGGG 21 0 83.45 56.62 BCF BCF BCF BCF BCF BCF 34.38 38.92 44.95 27.05 TCGAAT CTTAGC GAC S484509 Anti_ 341 AAGTAA 23 0 83.05 146.42 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF ORF CGTCCT GCCAAA CCCGT S4002660 Anti_ 342 GTATCG 23 0 82.24 150.33 BCF BCF BCF BCF BCF BCF 48.84 52.26 73.01 49.61 ORF TTCCAA TTTTAT CGGAT S4433586 IGN 343 TAGCAA 23 0 80.62 101.52 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF CTGTTC TTTAGA CGACT S447310 ORF 344 AAGGAG 23 0 80.21 44.90 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GTGGAA ATGATG ATATT S3875595 Anti_ 345 GGGTTG 20 0 80.21 2288.13 40.84 163.65 BCF BCF BCF BCF 10.69 16.86 BCF BCF ORF ATATGA GAACAC AC S263266 IGN 346 AACCAT 23 0 78.18 48.81 BCF BCF BCF BCF BCF BCF 17.82 13.16 16.01 15.83 ATCTTT TGTCGG AAGAT S3649197 IGN 347 GCTCGT 22 0 76.56 165.95 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF TCCCAG CTGGAC CACC S3438612 IGN 348 GATATG 24 0 74.54 58.57 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF ATCGAT GTTCCT AAATTA S1280309 ORF 349 AGCGGT 23 0 74.13 117.14 BCF BCF BCF BCF BCF BCF 136.26 160.12 119.73 146.86 TGTTAG CGATTG GCACC S3548872 IGN 350 GCACGG 22 0 73.73 862.93 45.07 134.70 BCF BCF BCF BCF BCF BCF BCF BCF TCTTGG CTCAAC CCGC S3829653 IGN 351 GGGAGG 23 1 72.51 89.81 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GTGCTA TGCTTA AGGTC S3894000 ORF 352 GGTCAA 23 0 72.11 134.71 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GTCTGT TGAGAT GCACC S3648408 IGN 353 GCTCGG 20 1 66.44 273.33 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GTCTCA TGTCTT CT S4099310 TE 354 GTGCTT 26 0 66.44 74.19 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GGGCGA TAGTAG TACTAG GA S5147946 IGN 355 TGTCCG 22 1 64.01 76.14 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF TGCTGA TTGTCT TGCT S1499603 TE 356 AGTGCA 23 0 63.20 46.86 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF TTCGGG TCATAT GGTAC S3821314 ORF 357 GGGACG 20 0 61.58 138.62 BCF BCF BCF BCF BCF BCF 21.17 28.17 14.98 17.68 GGTTTG GCAGGA CG S1013425 ORF 358 ACTTAT 23 0 61.58 50.76 BCF BCF BCF BCF BCF BCF 16.14 16.31 17.78 15.04 TTACAA TGGCTG CCACT S3365114 ORF 359 GAGGCA 28 0 59.55 56.62 150.89 64.13 BCF BCF BCF BCF BCF BCF BCF BCF AGTTCT TTGACC CGTTAG GACT S3908870 Anti_ 360 GGTGCC 21 1 59.55 269.42 BCF BCF BCF BCF BCF BCF 50.31 56.53 55.09 46.18 ORF AAGAGG GAAAAG GGC S3347795 ORF 361 GAGGAC 21 0 58.74 370.94 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF TACGAT GTTGGT GAT S274029 ORF 362 AACCGG 23 0 58.74 142.52 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF ATCTTA AAGGCG TAAGA S1894035 TE 363 ATGCAC 23 0 58.33 41.00 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GTGAAA AAACGC GGACT S4964105 IGN 364 TGCACG 22 0 58.33 244.04 43.13 59.76 BCF BCF BCF BCF BCF BCF BCF BCF GGCCGG CTCAAC CCGC S276315 TE 365 AACCGT 23 0 57.93 68.33 BCF BCF BCF BCF BCF BCF 16.14 11.12 BCF BCF GACTGA TTTGTT TCATA S1896074 IGN 366 TTCGAT 23 0 57.12 50.76 BCF BCF BCF BCF BCF BCF 304.17 193.11 460.26 293.58 CCCCGG CAACGG CGCCA MIR848A miRNA 367 TGACAT 21 0 54.28 460.75 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GGGACT GCCTAA GCT S3849740 IGN 368 GGGGAC 25 0 53.47 105.43 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF ATTTAG ATGGTG GAACAC T S4261718 Anti_ 369 GTTTGG 22 0 52.66 76.14 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF ORF CAGGAC GTTACT TAAT S4964134 ORF 370 TGCACG 24 0 52.26 83.95 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GGCTTG GCTCAT CCCATC S4261719 Anti_ 371 GTTTGG 23 0 51.85 48.81 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF ORF CAGGAC GTTACT TAATA S2898158 IGN 372 CTGCAC 22 0 51.85 142.52 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GGGCCG GCTCAA CCCG S242686 IGN 373 AACAGC 23 0 51.85 70.28 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF ATCGTC CATCAT TGAAG S3369834 Anti_ 374 GAGGGA 22 0 50.64 76.14 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF ORF AAAGGG CTATTA AGCT S3948143 ORF 375 GTAAAC 22 0 50.64 156.19 57.66 76.94 BCF BCF BCF BCF 24.74 24.46 14.98 14.12 ATCTGA TCGTTT GACT S3144730 IGN 376 GAATAC 20 0 49.83 450.99 45.19 263.92 BCF BCF BCF BCF BCF BCF BCF BCF TTGAAC TACCAT CT MIR827A miRNA 377 TTAGAT 21 0 49.83 89.81 BCF BCF BCF BCF BCF BCF 62.47 105.45 49.07 35.63 GACCAT CAACAA ACT S3940632 ORF 378 GGTTTC 23 0 49.02 66.38 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GATCCC GACAAT GACCT S3398825 ORF 379 GAGTGA 22 0 49.02 113.24 59.71 48.43 BCF BCF BCF BCF BCF BCF 10.58 10.69 CGCTTG GGACGA AACT S1382018 IGN 380 AGGCTG 23 0 47.80 64.43 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF TGAACG GTAACC AAAAC S2312814 IGN 381 CACGGT 22 0 46.99 52.71 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF CTAAAA GTTATG GAGT S4766414 IGN 382 TCTAGT 23 0 46.99 64.43 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF TCGTCG ATATGT TGAAC S346019 TE 383 ACTCAT 21 1 45.37 48.81 BCF BCF BCF BCF BCF BCF 306.89 289.85 295.87 292.79 AAGATC GTGACA CGT S1484048 IGN 384 GTTTTG 20 1 45.37 439.27 BCF BCF BCF BCF BCF BCF 421.35 568.77 294.69 258.48 GACAGG TATCGA CA S3110547 IGN 385 GAAGAG 23 0 44.56 46.86 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GATAGT TGTTAC GCACT S1726881 IGN 386 ATCACC 23 1 44.16 42.95 BCF BCF BCF BCF BCF BCF BCF BCF 11.61 13.59 GTTGAG AGAAGT ACTGG S1346557 TE 387 AGGAGG 23 0 43.75 58.57 BCF BCF BCF BCF BCF BCF BCF BCF 24.09 17.29 TTCTGG CCGAAG CCCGT S2826446 IGN 388 CTCACG 23 0 43.35 50.76 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GTCTAA AAGTTA TGGAG S4491090 IGN 389 TATATG 21 0 43.35 50.76 BCF BCF BCF BCF BCF BCF 108.38 103.60 112.09 135.38 TTTCAG TCTTAT CCC S4046464 TE 390 GTCTAA 22 0 43.35 64.43 BCF BCF BCF BCF BCF BCF 55.34 89.33 40.40 30.88 TGATTG TGAAGT GCCT S4884864 ORF 391 TGACGA 23 0 43.35 52.71 BCF BCF BCF BCF BCF BCF BCF BCF 10.58 12.67 GAGAAC TTATTG GCCTT S2542718 TE 392 CCGGCC 22 0 42.13 50.76 BCF BCF BCF BCF BCF BCF BCF BCF 12.05 12.27 AACTGT ACATAT ACAT S3448137 IGN 393 GATCCA 23 0 41.73 44.90 BCF BCF BCF BCF BCF BCF BCF BCF 12.34 15.31 TGTAAG TCTTAG GCTGT S3696733 IGN 394 GGAAGG 23 0 41.32 89.81 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GTGCTT AGCCTA AGGTC S4004827 TE 395 GTATGA 23 0 40.92 54.67 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF TCGCAT CCGTTA GTATA S281438 TE 396 AACCTT 23 0 40.51 42.95 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF GAAGCA AACTGG ACAGG TAS2- tasiRNA 397 CGTAAA 21 1 40.51 113.24 BCF BCF 13.27 23.01 BCF BCF 48.21 44.29 67.28 46.71 siR453 AAAAGT TGTAAC TCT S283245 TE 398 AACGAA 23 0 40.11 41.00 BCF BCF BCF BCF BCF BCF BCF BCF BCF BCF CCGACC GTCAGA CATGG

Supplementary Table 5 The list of B.Cinerea genes targeted by Arabidopsis endogenous sRNAs that are present in the sRNA libraries of purified B.Cinerea protoplasts Target Targeted gene Target Putative function of target GO_biological by sRNA Aligned alignment gene ID gene process sRNA type score sRNA 3′-5′ BC1G_10728 Conserved hypothetical VPS51 vesicle TAS1c- tasiRNA 3.5 :||x|x|x|||||||||||||x protein transport siR483 BC1G_10508 Predicted dynactin protein vesicle TAS1c- tasiRNA 4.25 ||||||x:||||||||:|||xx transport siR483 BC1G_08464 Polyphosphoinositide vesicle TAS2- tasiRNA 3.5 :|||||||x||||||x||||| phosphatase transport siR453 BC1G_15133 Hypothetical protein similar to vesicle MIR396A miRNA 4 |:|||:||x|||||||||x|| GTPase activating protein transport BC1G_14507 70-kDa adenylyl cyclase- vesicle S1353733 ORF 3 x||x||x|||||||||||||| associated protein transport BC1G_09781 Hypothetical protein similar to vesicle MIR159A miRNA 4.5 ||||x||||:|||||x||||: Vps52/Sac2 family protein transport BC1G_09414 Hypothetical protein similar to vesicle S1353733 ORF 3 x||x||x|||||||||||||| actin cytoskeleton-regulatory transport complex protein PAN1 BC1G_04258 GTPase-activating protein vesicle S1353733 ORF 4 x|||||x|||||||||||x|| GYPS transport BC1G_03372 Hypothetical WH2 motif vesicle S1353733 ORF 3 x||x|||||||||||||||:| protein transport BC1G_02544 Hypothetical protein similar to unknown MIR166A miRNA 4.5 |||x||x|||||||||||x|: B230380D07Rik protein BC1G_14667 Predicted protein unknown MIR396B miRNA 4.5 ::|x|||x||||||||||||x BC1G_14204 Predicted protein unknown S1353733 ORF 3.5 |:|x||x||||||||||:||| BC1G_11528 Predicted protein unknown MIR159B miRNA 3.5 ||x||||::|||||||:|||| BC1G_11528 Predicted protein unknown MIR159A miRNA 4.5 x|x||||::|||||||:|||| BC1G_10316 Predicted protein unknown S1353733 ORF 4.5 x|:||||:||||x|||||||: BC1G_05030 Predicted protein unknown S1353733 ORF 4.25 x:||||||||||||x|||||| BC1G_04218 Predicted protein unknown MIR396A miRNA 4.25 ||||x:|||||||||x||||| BC1G_00860 Domain of unknown function unknown MIR158A miRNA 4.5 |||x|||x|||||||||x|: (DUF4211) protein BC1G_00624 Predicted protein unknown S1353733 ORF 4 x||x||||||||||||||:|x BC1G_05327 Pyruvate carboxylase metabolic IGN- IGN 4.5 x|x|x||||||||||||x|||: process siR1 BC1G_15490 Bifunctional P-450/NADPH- metabolic MIR396A* miRNA 4.5 |x|:||:|:||||||||x||| P450 reductase process BC1G_15423 Predicted FAD binding protein metabolic TAS1c- tasiRNA 3.75 |||x:||||||||||||:||: process siR602 BC1G_14979 Hypothetical protein similar to metabolic S1353733 ORF 3 x||x||x|||||||||||||| mitochondrial ATP synthase B process BC1G_14979 Hypothetical protein similar to metabolic MIR396B miRNA 4 |||||||||:|x|||||||:| mitochondrial ATP synthase B process BC1G_12936 2-deoxy-D-gluconate 3- metabolic MIR396A* miRNA 4 |||x|||x||||||||x|||| dehydrogenase process BC1G_09454 Retinol dehydrogenase 12 metabolic MIR157A miRNA 2.5 x|||||||x|||||||||||: process BC1G_15945 Hypothetical protein similar to regulation of MIR396A miRNA 4 |:|x|:||||||||||||x|| GAL4-like transcription factor transcription BC1G_14887 Histone-lysine N- regulation of MIR396A miRNA 3 :|x||:|||||:||||||||| methyltransferase transcription BC1G_14887 Histone-lysine N- regulation of MIR396B miRNA 3.5 x|x||:|||||:||||||||| methyltransferase transcription BC1G_07589 Histone-lysine N- regulation of MIR396A miRNA 4.5 x||||||:|||x|||||||:| methyltransferase transcription BC1G_07589 Histone-lysine N- regulation of MIR396B miRNA 4 :||||||:|||x||||||:| methyltransferase transcription BC1G_04424 Hypothetical protein similar to regulation of S1353733 ORF 3 x||x|||x||||||||||||| ITC1 transcription BC1G_14463 Hypothetical protein similar to mitotic cell S1353733 ORF 4 x||x||x||||:||||||||| Uso1p cycle BC1G_10235 Hypothetical protein similar to mitotic cell S1353733 ORF 4 |||x||x|||||||||||x|| Smc4p cycle BC1G_03832 R3H domain of encore-like and mitotic cell MIR159A miRNA 4 ||||xx|x||||||||||||| DIP1-like protein cycle BC1G_12627 Hypothetical protein similar to cell wall S1353733 ORF 4.25 ||:||:x|:|||||||||:|| cell wall synthesis protein biogenesis BC1G_09907 Predicted membrane protein cell wall MIR168A miRNA 4.5 x||x|x||:|||||||||||x involved in the export of O- biogenesis antigen and teichoic acid [Cell wall/membrane/envelope biogenesis BC1G_09656 Hypothetical protein similar to cell wall S1353733 ORF 4.5 x||x|||:||||||||||:|x HKR1 biogenesis BC1G_07658 Hypothetical protein similar to RNA S1353733 ORF 4.5 |::|:||||||:||||||:|: endoglucanase IV catabolic process BC1G_02429 Ribonuclease HI large subunit RNA S1353733 ORF 4 x|||:|||:||:|||||:||| catabolic process BC1T_09103 Botrytis cinerea (B05.10) cell cycle S1092315 TE 4.5 ||x||||||:||:|||||||x| hypothetical protein similar to cell division cycle mutant (1320 nt) BC1G_02638 Cell cycle checkpoint protein cell cycle S1353733 ORF 4.5 x||x||x|||||||:|||||: RAD17 BC1G_02869 Guanine nucleotide-binding cell S1353733 ORF 4 ||||:|x||x||||||||||: protein G(I)/G(S)/G(T) subunit proliferation beta-1 BC1G_09169 Hypothetical protein similar to cell S1353733 ORF 4 x||x||x|||||||||||:|| calpain 2 catalytic subunit proliferation BC1T_07401 Botrytis cinerea (B05.10) tRNA S2724436 TE 4.5 ||x|:|||||||:||||||x| glutaminyl-tRNA synthetase processing BC1G_07037 Hypothetical protein similar to tRNA S519888 ORF 4.5 :|x|||||||||:|||||x|| Msf1p processing BC1G_10614 Hypothetical protein similar to cell surface MIR396A* miRNA 4.5 :||x|x|x||||||||||||x GAMM1 protein receptor signaling pathway BC1G_05475 Hypothetical protein similar to biosynthetic MIR159B miRNA 4.5 ||x||||:||||||x||||:| microcystin synthetase process BC1G_09015 Dual specificity protein kinase signal MIR158A miRNA 3.5 |x||||x|:||||||||||: POM1 transduction

SUPPLEMENTARY TABLE 6 Primers used in this study SEQ Primer ID NO: sequence(5′-3′) description TAS1c- 399 GCGGCGGTCCAATGT sRNA Rev. siR483-F CTTTTC transcription TAS1c- 400 GTCGTATCCAGTGCA PCR siR483- GGGTCCGAGGTATTC RT GCACTGGATACGACA CGAAC TAS1c- 401 GCGGCGGAGAATACG siR585-F CTATGTTGG TAS1c- 402 GTCGTATCCAGTGCA siR585- GGGTCCGAGGTATTC RT GCACTGGATACGACT CTAAG TAS2- 403 GCGGCGGCGTAAAAA siR453-F AAGTTG TAS2- 404 GTCGTATCCAGTGCA siR453- GGGTCCGAGGTATTC RT GCACTGGATACGACA GAGTT TAS2- 405 GCGGCGGACACGATG siR710-F TTCAAT TAS2- 406 GTCGTATCCAGTGCA siR710- GGGTCCGAGGTATTC RT GCACTGGATACGACT AAATC IGN- 407 GCGGCGGGTCGAACT siR1-F CAGTAA IGN- 408 GTCGTATCCAGTGCA siR1-F- GGGTCCGAGGTATTC RT GCACTGGATACGACG CCCGC miRNA166- 409 GGCGGTCGGACCAGG F CTTC miRNA166- 410 GTCGTATCCAGTGCA RT GGGTCCGAGGTATTC GCACTGGATACGACG GGGAA miRNA822- 411 CTCGTATTGCGGGAA F GCATTT miRNA822- 412 GTCGTATCCAGTGCA RT GGGTCCGAGGTATTC GCACTGGATACGACC ATGTG Bc- 413 ACAATCCTATCTTTC DCL1-F GGAAGC Bc- 414 AGACTCTTCTTCTTG DCL1-RT AAGACAG Bc- 415 GATTGTGCAAAGTCT DCL2-F CAACA Bc- 416 ATTGGGTTTGACTAT DCL2-RT ATGTCTTA sRNA 417 GTGCAGGGTCCGAGG PCR T universal R lib-RT 418 GCCTTGGCACCCGAG reverse AATTCCA primer Bc-ITS F 419 TCGAATCTTTGAACG Biomass CACATTGCGC Bc-ITS R 420 TGGCAGAAGCACACC GAGAACCTG At- 421 CTTATCGGATTTCTC iASK1 TATGTTTGGC At- 422 GAGCTCCTGTTTATT iASK2 TAACTTGTACATACC Bc-actin 423 TGCTCCAGAAGCTTT qRT-PCR F GTTCCAA Gene Bc-actin 424 TCGGAGATACCTGGG Expression R TACATAG At-actin 425 CAGTGGTCGTACAAC F CGGTATT At-actin 426 GTCTCTTACAATTTC R CCGCTCT UBQ5 F 427 GGAAGAAGAAGACTT ACACC UBQ5 R 428 AGTCCACACTTACCA CAGTA Bc- 429 TTGGACTCTCACTTG Vps51-F TCTCATCA Bc- 430 ATCAGCCATAGCAGT Vps51-R CGATAAAC Bc- 431 GACGTTGTCATGGAG DCTN1- GGACT F Bc- 432 ACTTTCCTTTCCTGG DCTN1- GGCAG R Bc- 433 GCGGCATTGTAAATG SAC1-F ACTACTTC Bc- 434 CATCCTCCAATAAAT SAC1-R TCTTCACG Bc-PC-F 435 GATTTGGCTCAGATC AAGAAAGA Bc-PC-R 436 ACCTTACCCTTCTCC AACTCAAC TET8-F 437 CACAACGGGAACACA CACT TET8-R 438 TCCTGAAAGCACAGC AACCA TET9-F 439 GGTTGCTGCAAGCCC TCTAA TET9-R 440 CTTTTCCATGCGGCC TTGAG Bc- 441 ATCTGAGGTACCGGT B. cinerea SAC1- AGTGTTGATCCTGTG target gene 5′F-KpnI AGCTAAA knock out Bc- 442 ATCTGACTCGAGTAT constructs SAC1- CAGATTTTCCTTCAG 5′R-XhoI TGACTCC Bc- 443 ATCTGACTGCAGACG SAC1- ATCAAATCTAGTCCT 3′F-PstI TTTGAGG Bc- 444 ATCTGATCTAGAGGA SAC1- ATTTGTATGAGAGCG 3′R-XbaI AGTTTTC Bc- 445 ATCTGAGGTACCGAT DCTN1- CTTACAGAACAAGGA 5′F-KpnI ATGAGGA Bc- 446 ATCTGACTCGAGCAG DCTN1- GTGTGTATGGCGGCA 5′R-XhoI TGTT Bc- 447 ATCTGAGAATTCTCT DCTN1- CCAAGACAATAAGAG 3′F- CACAGTT EcoRI Bc- 448 ATCCCATCTAGAATA DCTN1- AAATGCTGCATTTGG 3′R-XbaI ATCA Bc- 449 ATCTGAGGTACCACC VPS51- AAACTCTGTAATTCC 5′F-KpnI CTCTCTT Bc- 450 ATCTGAGTCGACGTC VPS51- TATAACTCCCTCCGA 5′R-SalI CCAGT Bc- 451 ATCTGACTGCAGCGA VPS51- ATTCTACGAGATATC 3′F-PstI AGAGCAG Bc- 452 ATCTGATCTAGAACT VPS51- AAACAGCAGCAGAAA 3′R-XbaI AGATGAG TET8 F 453 CACCATGGCTCGTTG Subcellular TAGCAACAATC Localization TET8 R 454 AGGCTTATATCCGTA GGTAC TET9 F 455 CACCATGGTACGTTT TAGTAACAGTC TET9 R 456 AGAATTGTTGAAACC ATTGGAAC TAS1c- 457 gaTCCAATGTCTTTT sRNA over siR483 I CTAGTTCGTtctctc expression miR-s ttttgtattcc TAS1c- 458 gaACGAACTAGAAAA siR483 II GACATTGGAtcaaag miR-a agaatcaatga TAS1c- 459 gaACAAACTAGAAAA siR483 CACATTGGAtcacag III miR*s gtcgtgatatg TAS1c- 460 gaTCCAATGTGTTTT siR483 CTAGTTTGTtctaca IV tatatattcct miR*a TAS2- 461 gaCGTAAAAAAAGTT siR453 I GTAACTCTtctctct miR-s tttgtattcc TAS2- 462 gaAGAGTTACAACTT siR453 II TTTTTACGtcaaaga miR-a gaatcaatga TAS2- 463 gaAGCGTTACAACTT siR453 ATTTTACGtcacagg III miR*s tcgtgatatg TAS2- 464 gaCGTAAAATAAGTT siR453 GTAACGCTtctacat IV atatattcct miR*a miRNA- 465 gaTCTGTTACTAAAA TET9 I CGTACCACtctctct miR-s tttgtattcc miRNA- 466 gaGTGGTACGTTTTA TET9 II GTAACAGAtcaaaga miR-a gaatcaatga miRNA- 467 gaGTAGTACGTTTTA TET9 III CTAACAGTtcacagg miR*s tcgtgatatg miRNA- 468 gaACTGTTAGTAAAA TET9 IV CGTACTACtctacat miR*a atatattcct

Example 2—Naked RNA Uptake and Vesicle-Mediated RNA Uptake

Many fungi can take up naked RNAs from the environment, which makes the spray induced gene silencing possible to control these fungal pathogens (FIG. 15). Moreover, Phytophthora infestans, the potato late blight oomycete pathogen, which caused Irish famine in the 1800s, can also take up naked RNAs from the environment. As shown in FIGS. 16A and 16B, different cell types have different uptake efficiency.

Furthermore, treatment with extracellular vesicles isolated from Arabidopsis efficiently suppressed grey mould disease symptoms caused by B. cinerea. As shown in FIGS. 17A-17C, extracellular vesicles (EVs) extracted from the B. cinerea-infected Arabidopsis leaves were mixed with B. cinerea spores and dropped onto the tomato leaves (right side of the leaf). Non-treated spores used as control (left side of the leaf). EVs were quantified by the protein concentration of EVs. EVs of 5 ng/μl, 10 ng/μl, and 100 ng/μ1 had strong inhibition on grey mold disease symptoms, and the high concentration of EV treatment (100 ng/μl) can even suppress the disease lesion size (infected without EVs) on the other side of the leaves, suggesting that EVs can move long distance within the plant tissue.

To confirm that external EVs can traffick in the leaves, we dropped only the B. cinerea spores on the left side of Arabidopsis leaves, and only the 100 ng/μ1 EVs on the right side. We found that EVs (100 ng/μl) can clearly reduce the lesion size on the other side of the leaves (FIGS. 17D and 17E). These results support that EVs can travel within the plant tissue, which increase the capability of plant protection.

Example 3—Liposome-Mediated RNA Uptake

To investigate whether fungi can take up RNA-containing liposomes from the environment, we synthesized fluorescein—labelled Bc-DCL1/2-dsRNAs targeting Bc-DCL1/2 genes and encapsulated the RNAs into liposomes. The liposomes were mixed with B. cinerea cells and fluorescent RNAs were accumulated inside the B. cinerea cells within 3 h, suggesting that liposomes can efficiently deliver dsRNA into fungal cells. Fluorescence signals remained visible in the B. cinerea cells after triton X-100 wash and MNase treatment, confirming that the labeled RNAs were inside the fungal cells. Fluorescence signals was observed in B. cinerea protoplasts after MNase treatment. Liposome-fluorescein-labelled-dsRNAs was applied onto germinated B. cinerea spores and protoplasts were isolated after culturing for 3 h. The fluorescent signals were detected within fungal protoplasts after MNase enzyme treatment. As shown in FIG. 18, liposomes containing fluorescein-labelled Bc-DCL1/2-dsRNAs were taken up efficiently by B. cinerea cells.

Example 4—Liposome Stabilization of RNAs

dsRNA-containing liposomes were sprayed on the rose petals first and then challenged with B. cinerea at 0, 5, 8, and 15 days post liposome spray treatment. H2O, naked dsRNAs, and empty liposomes were used as controls. Pictures were taken 2 days after the fungal inoculation (dpi). We found that the liposome-dsRNAs remained effective for up to 15 days after RNA treatment whereas naked RNAs were effective up to 5 days. Thus, liposomes provide a longer protection than naked dsRNA against B. cinerea infection. Encapsulation of RNAs with liposomes protects and stabilizes RNAs and extends their effective period on plants than naked RNAs. FIG. 19 shows that liposomes containing double stranded RNAs and/or small RNAs were taken up efficiently by fungal cells. Externally applied liposomes carrying Bc-DCL1/2-dsRNAs remained effective on plants for two weeks to inhibit pathogen virulence on flower petals. FIG. 20 further shows liposome-protected dsRNAs that target trafficking pathway genes VPS51, DCTN1, and SAC1 were effective for up to 15 days.

Example 5—Liposome Stabilization of RNAs

Fluorescein-labeled PiDCL1 dsRNA were applied onto P. infestans cysts and fluorescent signals were detected in the P. infestans cells at 12 h post culturing in water. As shown in FIG. 21A, fluorescence signals remained visible in the P. infestans cells after MNase treatment. Further, fluorescein-labeled PiDCL1 dsRNA were packed into liposome and applied onto P. infestans cysts. The fluorescent signals were detected in the P. infestans cells at 12 h post culturing in water. As shown in FIG. 21B, fluorescence signals remained visible in the P. infestans cells after Triton treatment. This experiment shows that Phytophthora infestans cysts take up both naked dsRNAs and liposome-protected dsRNAs.

Example 6—Cationic Liposome Delivery Systems

Method 3 of the cationic liposome delivery system for siRNA delivery is used on HeLa cells. HeLa cells are transfected with siPlk1 using: DOTAP:Chol liposomes mixed with siRNA; DOTAP:Chol:DSPE-PEG2000 (5 mol %) liposomes mixed with siRNA; or DOTAP:Chol:DSPE-PEG2000 (5 mol %) liposomes hydrated with siRNA using the encapsulation protocol. Liposome/siRNA complexes are prepared at N/P 2:1, 4:1, and 6:1 with a final siRNA concentration of 50 nM. Cell viability is assessed by the MTT assay 48 h posttransfeccion (Zou et al., Cancer Gene Ther. 7(5):683-96, 2000).

Example 7—Extrusion Method to Prepare sRNA Liposomes

We made sRNA liposomes for encapsulation of siRNA using the lipid film hydration method (Podesta and Kostarelos, Methods Enzymol. 464:343-54, 2009). DOTAP, cholesterol, and DSPE-PEG2000 (2:1:0.1) were dissolved in chloroform: methanol (4:1, v/v). After mixing the lipids, the organic solvent was evaporated under hood for 120 min. The lipid film was hydrated using a solution of siRNA in RNase-free dH2O. The amount of siRNA used to hydrate the film was calculated from the charge ratio (N:P) (FIG. 23A). After hydration at 4° C. overnight, the crude liposome was extruded by Mini-Extruder (FIG. 23B). Extrusion of liposomes was performed using a Mini-Extruder (Avanti Polar Lipids, Alabaster, USA). Liposomes were extruded 11 times through a 0.4 μm polycarbonate membrane.

Informal Sequence Listing

Botrytis cinerea, Bc_DTCN, BC1G_10508 SEQ ID NO: 1 GCAGGGGTCGGATCAACATGTCTATAAACAAACATATGTACCGGCGTTGATCTCTCCTGCAGACTGCATTTGCACTTG CTTCCCTCTTCCTCCTCCCGTTTCCTGGTCTTCTTCTACAAGCTGCAGGCGAGAGAGATAACTTCTACGCACCTTCCAT ATCCCTCACCTCTTCTCTCCCCACAAGTTCGTTCATAATCCTTTCGTCCTGTTGTTTTGTCTAGCATTACCTTGCAATTCT TAACAACGGCCGATCGTGGACATCAATCAATAAAAAGGACGACAAATCATCTTATAATTATTATCCCAAACTTTCATTGC ACAAATTTGAATTGGATACTCATTTGGCTTTATTCGGAGCGATAAACGTAGAAATTAATCGTATAGGGGCTTTTATCAGA CAATCAAGAACGGTGATTGGCTCACAGCGGTGAATTGTGAGGGGTGGTAATACAGAAAACAAATAGTATAGGGAGTAT TTTTGGGTGGATTGTTACCAATGTCTACCACAAGAATCTCAACACCGAAAAGGTCCCCCAAAAAATCGACTTTTGTCAA AACTGGAATCTTGACCACCAAATCAACGCCCAATCTCAACGCCTCCTATAATTTGGCATTACTACAAGCTTCAGGAGCT ACACCCGTTCCTGCATATCCTTCCAATAACGGTCAAAGTTTTGCCCTAAATAATCCTAGGTCGCAACCGTCTCGACAAG TCTCACTCGCTTCCCTTACCTCGAATTCACTTGCGACAATCCCGGATGCAAGCAAGAGATACCCTCTTTCTACAGTCTT TGATGAGGATATGCCAACAGTAGGCAACATGCCGCCATACACACCTGCTCGAGTTGGCGGTGGACCGGAAGAACTAG AGGTTGGTGATATAGTCGATGTGCCAGGTAACATGTATGGTATCGTCAAATTTGTTGGCAGTGTGCAAGGCAAAAAGG GTGTATTTGCTGGGGTAGAATTAAGTGAAACGTTTGCTTCGAAAGGGAAAAACAATGGCGATGTCGAAGGAATTCAATA CTTTGACACAACCATCGATGGTGCTGGGATTTTTCTTCCAGTCAACAGGGCGAAGAGACGTAGCACCCCTTCGTCGCA TGATGAGTCATTTCCCCTTTCACCGGCGTCTCCATCGATGGGCAATAGGGCTGGGAGATTAGGATCTGAATTAAATGG TCAGCCAACACCTTTGTTACCAAAATTCGGTCAATCTGTTGGTCCAGGCAGAGCGGCAAACCCATATGTCCAAAAAACA CGTCCATCCATGGCTACACCTACCACCTCAAGACCGGAATCACCAGTTCGAAGAGCAGCCAATGCCAACCCATCATTA AATACACCTGCACAAAGAGTCCCATCTCGATATGCAAGCCCTGCGCAGGCAAACTTTGGACAGAGCGTTAGAGGAACA CAAGATTCTAGAGATCCAAGTAAGAAAGTTGGCTACACCCCCCGAAATGGCATGAAAACACCAATACCTCCACGAAGT GTTTCTGCACTTGGAACGGGGAATAGACCTGCACCAATGAACTCGATGAATTTCAGTGATGAAGAGACACCTCCTGCA GAGATTGCACGTACGGCAACAAACGGAAGCGTAGGCTCAGTCTCTTCTTTCAACGCGAAATTACGTCCAGCATCAAGA TCCGCATCGCGTACAACTTCCAGGGCTACCGACGACGAATTTGAGCGATTGAGAAGTTTGTTAGAAGATCGCGATAGG GAAATAAAAGAACAGGCTTCTATTATAGAAGACATGGAGAAAACTCTCAGTGAAGCACAATCGTTGATGGAGAACAATA ACGAGAACGCAAGTGGTAGACATAGTCAGGGAAGTGTGGATGACAAGGACGCAACACAGTTGAGAGCAATAATACGT GAAAAGAACGACAAAATCGCCATGCTGACTGCCGAGTTTGATCAGCATCGAGCTGATTTCAGAAGCACGATAGACACG CTCGAAATGGCCGGTGCGGAAACCGAGCGAGTGTACGACGAGCGCATGCGTGTTCTCGTAATGGAGCTCGATACAAT GCACGAGAATAGTCATGATGTAAAGCACGTTGCTGTACAACTGAAACAGCTAGAAGAGCTCGTTCAGGAGCTCGAGGA AGGTCTTGAAGATGCACGACGTGGTGAAGCCGAAGCTCGGGGAGAAGTTGAGTTCTTGCGTGGAGAGGTTGAAAGAA CTCGATCTGAACTCCGCCGCGAGCGAGAGAAGACTGCCGAAGCTCTTAGCAACGCAAATTCTCCTACGAGCGCAAGT GCGGAAACACATTCCAAAGAGATTGCTCAGAGAGATGACGAGATTCGTGGATTGAAAGCCATCATCCACTCGCTCAGC AGAGATGCCATACCTGATGGGAATTTCTCGGATCATGAGGCAACACCAAATATTCTACGACCTGGACTAAACCGAAGT CGAACAGAAAGTGCTTCGGTTTCTGAGGAGGAGCGCCGTACTCGGGAAAAGCTAGAGCGAGAAGTGAGTGAGCTTC GTGCTCTCGTCGAAAGCAAAGACAATAAAGAAGAACAAATGGAGCGCGAGTTGGAGGGATTGCGAAGAGGAAGTGTT AGCAATCCTACTACGCATCGTACTAGTGCCATGAGCAGCGGAACTGTGACTCAGGATAGGAATTCTCTCCAAGACAAT AAGAGCACAGTTGTAAGCTGGCGAGAACGTGGTGCCTCAGATGCTCGCCGCTACAATCTGGATTCAATGCCAGAGAA TGACAGCTACTCCTCTGCAGCTGAGGATTTCTGTGAATTATGCGAAACCTCAGGTCATGATGTTCTACATTGCCCGATG TTTGGCCCCAATGGTAACAGCAGCAATTCTAAGGATGAGTCACCTAAACAGCAACGAACAGGAAAAGACGTTGTCATG GAGGGACTTAAATTATCACCCAAACCTTCTCAAGAAGAATACAAACCGGCGCCGTTAGCGCCAGCTAAGAAGTCGCCT GATGCGTCGCCTATCAAGACTGTTCCCAACCTTATGGAACCAGGACCTGCCCCAGGAAAGGAAAGTGGAGTAATCAA CATGGATAAATGGTGCGGTGTATGTGAAAGAGATGGACATGACAGTATTGATTGTCCTTTTGAAGATGCTTTTTAGGAG ACTACTGCTTTCGATGTTTCAGGATAAGCAGTCACAACGACGACTTTTTTCATAGATTTTCTTTGTTAATCATAGGCAAG GCCGCATTGCATTGCAGGAGCGTAATCCGTCTGCGATATACCCTTTCGGTTCTCTGTTTGAAGTATGCTTTTCAAGCGA TAAGTTTAGAGGGGAAGATGATGTTTTTACGAGGATTGAATGAGATGGATGAATGCAGGCTAAATCGGGGAAGGGGG AGGGAAGACAAACATGAGTTGAACGGACGTAATGATCATGTAGTATACTTTGTCAAATTAATGATCCAAATGCA Sclerotinia sclerotiorum, Ss_DTCN, SS1G_04144 SEQ ID NO: 2 ATGTCGACTACAAGAATCTCAACTCCAAAAAGGTCTCCAAAAAAATCGACATTCACTAAAACAGGAATTCAAGTCACAAA ATCAACTCCCAATCTCGGTGCCTCCTACAATTTGGCTTTATTACAAGCTTCAGGAGCTTCACCGGTTCTTGCACATTTTT CCAATAACGGTCAGGGTTTTGGTCTAAACAATCCTAGGTCGAAGCCATCTCGACAAGTCTCACTCGCATCCCTTACCTC AAATTCACTGGCGGCAATACCGGATGCTAGTAAAAGATACCCTCTTTCAACCGTTTTTGATGAGGATATGCCACCAGCA GGCAACATGTATACACCTTCTCGAGTTGGTGGTGGGCCCGATGAGTTGGAGGTGGGTGACATAGTTGATGTTCCTGG TAACATGTATGGTACTGTCAGATTTGTCGGCAGTGTGCAAGGCAAGAAGGGGGTCTTTGCCGGAGTGGAATTGGATG AGATGTTTGCTTCCAAAGGGAAGAACAATGGTGATGTTGAAGGTCAATCAGTTGGCCCAGGTAGAATTCAAAAAACCC GACCATCGATAGCCACACCAACCACATCACGACCAGAGTCTCCAGTACGAAGAGCAGCCGCTGCTAGGACATCAATA AATGCACCCGGGCAGAGAGTCCCATCTCGATATGGAAGTCCTGCAGCGGCGAACTTTGGGCAGAACATTAGAGGAGT GCAAGATGCTAGAGACCCAAGCAAGAAAGTCGGTTACGCCCCAACAAATGGCATGAAGACACCAGTCCCTCCACGAA GTGTTTCGGCACTTGGCACAGGGAGTAGACCTGCAGCAATGAACCTCAGTGATGAAGATACACCTTCTGCTGGAATTA CACGGACGGCAACAAACGGGAGTGTGAGCTCAATCTCTTCCTTCAACGCAAAGTTACGACCTGCATCAAGATCCGCCT CGCGTGCGTCCCGAGCTACTGACGACGAGGTCGAGCGATTGAGAGGTCTACTGGAGGAGCGCGATCGGGAAATAAA AGCACAAGCTTCAATCATAGAAGACATGGAAAAGACTCTTAGTGAAGCTCAGTCACTGATGGAGGACAACAATGAGAA CGCGGGCGGTCATAGAGATAGCCGGGGAAGCATGGAGGACAAAGACGCAGCACAATTGAGAGCAATAATTCGTGAA AAGAATGAAAAAATCGCCATGCTGACTGCTGAGTTTGATCAGCATCGAGCTGATTTCAGAAGTACAATAGACACACTTG AGATGGCTGGTGCTGAAACCGAAAGAGTCTACGATGAGCGCATGAGTAATCTTGTAATGGAGCTCAGGACGATGCAT GAGAACAGTCATGATGTGAAGCATGTTGCTGTACAACTGAAACAGCTAGAAGAGCTTGTTCAGGAGCTTGAGGAAGGT CTTGAAGATGCGCGGCGTGGTGAAGCCGAGGCTCGCGGTGAGGTCGAGTTCTTGCGTGGAGAGGTTGAAAGAACTC GATCTGAGCTTCGTCGTGAGCGGGAGAAAACTGCTGAAGCTCTCAGTAACGCAAATCCTGCTACGGGTGTGGGTGCA GCAACACTTTCTAAAGAGATTGCACAAAGAGATGACGAGATCCGCGGTTTGAAAGCTATCATTCACTCGCTTAGCCGA GATGCCATACCTGATGGGAATTTCTCGGATCATGAAAAGACACCAAGTGTTACACGACCAGGGCTACATCGAAGCCGT ACGGAAAGCGCTTCAGCTTCAGAGGAGGAGCGTCTTAGCCGGGAGAAGTTGGAACGAGAAGTGAGCGAACTTCGTG CCGTCGTAGAAAGTAAAGACAGCAAGGAAGAAGAAATGGAGCGTGAGCTAGAGGGGCTACGAAGGGGAAGTGTCAG CAATTCTACTACGCAGCGTACTAGTGCCATTAGCAGTGGAACTGCAACCCAGGATAGAAACTCTGTCCGAGATTCCAA AGGCACAGTTGGAAGCTGGCGGGACCGCGAAGGAACATCGGATGTTCACCACCACAACTTGGAGTCAATGCCAGAG ATTGACGGTTACTCTTCAGCAGCGGAGGATTTCTGTGAATTGTGCGAGGCATCAGGTCATGATGTTCTACATTGCCCC ATGTTCGGTCCTAATGGTAATAGTGGCAACTCTAGAGAGGAGTCTCCTAAAGAGCAACGAACAGGAAAAGACGTTGTC ATGGAAGGACTCAAACTATCACCCAAACTAGCGCAAGAAGAATACGAACCAGCACCTTTAGCACCAGCCAAGAAGTCG TCTGATGACTCGCCTATTAAAACCATCCCTAACCTCATGGACCCAGGTGCTGCTCCAGGAAAAGCAAGTGGAGTCATC AATATGGACAAATGGTGCGGTGTATGTGAACGAGATGGACATGACAGCATTGACTGTCCGTTTGAAGATGCATTTTAG Botrytis cinerea, Bc_VPS51, BC1G_10728 SEQ ID NO: 3 GACACATGCGATATGCAAAGTCTAGAACCTCGAATACTGATTCGAAAAAGACTGGCAATTCCATAAATCTACAGTATATT TTAATCCGCAACTCATGAATGACTACATTTAATACGAATTACAAACATTCCCTAACGCCAAAATGGCAGCTACGATTCCC CTCTCCACTACAACATGCTTGACCTCCTCAGAAGCTTTCAAATATCCTCTTCCACAGATTCGTCAATTCCACCGCGATCT CACTACAGAGCTTGACGAGAAAAATGCACGTCTGCGGACACTGGTCGGAGGGAGTTATAGACAATTACTTGGAACCG CCGAGCAAATCTTACAGATGCGACAGGATATTAGTGGAGTAGAGGAAAAGTTAGGCAAAGTAGGAGAAGGATGTGGG AGAAATGTGTTGGTTGGAATGGTTGGCGGATTGGGAAAATTACAGGGAGAAATGAAGAATGGAAAGAAGGGCGAGGA AATGCGGGTTGTGGCTAAGATGAAGGTATTGGGTATGTGTGGGATTGTGGTTGGGAAGCTCTTGAGGAGACCAGGGC GAATGGATGGGGATGGTGGGAGAGGGAAGGAATTAGTAGTTGCTGCGAAAGTCTTAGTTTTGAGCCGATTGTTGGCG AAGAGCTTGGAGAATACTGGAGATAAGGAATTCGTTGAAGAAGCGAAGAAGAAGAGGTCGGCTTTGACGAAGCGATT GTTACGCGCAGTTGAAAAGACATTGGTTTCCGTCAAGGATGCTGAAGATAGAGACGATTTGGTACAGACACTTTGTGC ATACAGTCTAGCTACTAGTTCTGGCACCAAAGACGTCTTGCGACATTTCTTAAATGTTCGTGGTGAAGCAATGGCTTTA GCGTTTGACGATGAAGAGGAGTCGAACAAGCAGACCTCAGGTGTCCTACGCGCTTTGGAAATATATACGAGAACTTTA CTAGATGTACAGGCTCTAGTGCCAAGGAGGCTGAGCGAAGCGTTGGCTGTGCTGAAGACGAAACCTTTACTGAAAGA TGACAGCATTCGGGAAATGGAGGGATTGAGGTTGGATGTATGTGAGCGGTGGTTTGGCGATGAGATTATTTACTTCAC ACCTTATGTCCGGCATGATGATTTGGAAGGGTCATTGGCGGTTGAAACACTACGAGGTTGGGCGAAGAAAGCGTCAG AAGTGTTACTGGAAGGTTTTACGAAGACTCTTCAAGGGGGATTAGACTTTAAAGTAGTTGTTGAACTACGAACAAAGAT TCTGGAGGTGTGGGTTAGAGATGGAGGCAAAGCAAGGGGATTCGATCCCTCTATACTTCTAAATGGCTTACGAGACGT TATAAACAAACGACTCGTAGAGTTATTAGAAACTAGAGTTGGCAAACTTCATCTAGTGGGGACAGAGATAGAGTCCACA TTAGCAACATGGCAAGAAGGAATCACCGACATACATGCAAGTCTTTGGGACGAAGATATGATGGCAACCGAGCTCAGC AATGGTGGTAACATTTTCAAGCAAGACATACTTGCTCGCACGTTCGGACGGAACGATGCTGTTTCAAGAGTTGTTAACA GTTTTCACACTTGGAGACATCTCATCGAGGAAATTGGTACTTATATTGATGAACTGAAGAAACAAAGATGGGATGATGA TTTGGAAGATATGGAAGATGATGAAAGTCTCGAATCACGACAAAACCTTCTTAGCAAGGAAGATCCACAAATGCTACAA GATCATCTCGATTCAAGCTTAGAAAATTCGTTCCAGGAGTTACACGCAAAGATCACTTCACTGGTGGACCAGCAAAAAG ATAGTAAACATATCGGGAAAATATCGATATATATTCTCCGAATTCTACGAGATATCAGAGCAGAATTACCTAGTAACCCT GCACTACAAAAGTTTGGACTCTCACTTGTCTCATCACTGCACGAAAATCTCGCAGGTATGGTCTCAGAAAACGCCATCT TAGCCCTTGCAAAATCTCTCAAGAAGAAGAAGGTTGCGGGCAGAGCATTATGGGAGGGTACACCGGAACTTCCTGTTC AGCCCTCCCCAGCAACATTCAAATTTTTGAGAGGTTTATCGACTGCTATGGCTGATGCTGGAGCCGATCTATGGAGCC CTGTTGCCGTCAAAGTGTTGAAAGCGCGTCTGGACACCCAAGTTGAAGACCAATGGAGTAAGGCTCTAAAAGATG AGGAAGAGCCTAGCAATGGAATCTCTGGTTCTCCCACCAATGCTCCCGAAGCAGATGCCGAGGAAAAAGAAGGGGAC GCTTCTGCTCCTAATCCTGCTGCTGCTGTAGAAGTAGATGAAGAAAAACAAAAGGATTTACTAAAGCAATCACTGTTCG ATATATCTGTCTTGCAGCAAGCTTTAGAATCACAGTCAGACAATAAGGAGAACAAACTTAAGAACTTAGCGGATGAGGT GGGAGGAAAACTAGATCTCGAGGCGAGGGAAAGGAAACGTATGGTTAATGGCGCGGCGGAGTATTGGAAGAGGTGC AGTCTTTTGTTTGGACTTTTAGCGTAGATTCCAGATGGATGAATTAGTGAGAGGCTTATAATGAATTATATTACGAATAC TTTACTTTTGAGTATTCA Sclerotinia sclerotiorum, Ss_VPS51, SS1G_09028 SEQ ID NO: 4 ATGGCATCTACAACCCTCTCCACAACAACATGCTTCACTTCCTCGGAAGCATTTAAACATCCTCTCCCTCAAATCCGGC AATTCCACCGCGATCTCACCACCGAACTTGATGAGAAAAACGCACGTCTACGTACACTTGTCGGAGGTAGTTATAGAC AATTACTGGGAACCGCTGAACAAATCCTACAAATGCGCAAGGATATCCGTGAAGTGGAGGAAAAGTTGGGGGAAGTA GGGGAAGGATGTGGAAGAAATGTATTAGTTGGGATGGCTTCTGGATTAGGTAAATTACAGGGAGAAATGAAGAATGGG AAGAAAGGGGAGGAAATAAGGGGATTGGCTAGAATGAAGGGTTTGGGTATGTGTGGGATTGTGGTTGGGAAACTTTT GAGGAGGCAGGGAAGAGTGGATGGGGAGGGGAGAGGGAAAAGTTTAGTGATTGCTGCGAAAGTTTTGGTTTTGAGT CGGTTGTTGGCGAAGAGTTTGGAGGGTTGTGTGAATAGTGCGGATAGAGAATTTGTTGAGGAGGCAAAGAAGAAGAG GGTGGTTTTGACGAAACGATTGTTACGGGCGGTTGAGAAGACATTAGTCTCGACCAAGGATGGTGAAGATAGAGAAG ACCTGGTACAGGCTCTTTGCGCGTATAGTCTTGCTACTAGCTCTGGTGCGAAAGACGTTTTACGACATTTTCTAAATGT CCGAGGGGAAGCAATGGCATTAGCATTCGAAGACGAAGAGGAATCGAACCAGGAGACATCAGGTGTTTTGCGGGCAT TGGAAATATATACGAGGACTTTACTTGATGTACAAGCATTGGTACCGAGTAGACTTAGCCAAGCATTGGCTGCGCTGAA GACGAAACCTTTATTGAAAGATGAAAGTATTCGAGATTTGGAGGGATTGAGATTAGATGTATGTGAGCGGTGGTTTGGT GATGAAATTCTTTACTTTACACCTTATGTTCGACACGATGATTTGGAAGGATCATTAGCCGTTGAGACATTAAGAGGTTG GGCGAAGAAAGCATCAGAGGTACTACTGGAAGGATTCACAAAGACTCTTCAAGGTGGCTTGGACTTCAAGGTAGTAGT CGAATTACGGACAAAGATATTGGAGGTATGGATACGGGATGGAGGAAAGGCAAGAGGGTTTGATCCGTCTATACTTCG AGATGGACTGCGAGGTGTTGTTAACGAACGACTTGTAGAGTTATTGGAAACTCGAGTTGGCAAACTTCATCTAGTGGG AACAGAAATAGAATCCACATTGGCTACATGGGAGAAATGGATTACTGATCATCATGCTAGTCTATGGGATGAAGATATG ATGGCAACGGAACTCAGCAATGGAGGTAATATGTTCAAACAAGACATTCTTGCTCGTACCTTTGGACGTAATGATGCTG TTTCAAGAGTAGTCAACAGTTTTCAGACTTGGAGACATCTCATCAAGGAAATAGGTACTGTTATTGATGAATTGAAGAAA CAAAGATGGGATGATGATTTAGAAGATATCGAAGATGAAGAAAGTCTTGAGTCGCGACAAAATCTTCTTAGTAAGAAAG ATCCACAAATGTTGCAAGATCATCTTGATTCAAGCTTAGAAAAAGCTTTTCAGGAGTTACATACGAAAATCACGACACTT GTGGAGCAATACAAAGATAGCGAGCATATCGGAAAGATATCAATGTATATTTTACGAATTTTACGAGATATCCGAGCAG AGCTACCGACAAATCCATCACTACAACAATTCGGTCTTTCACTGATCCCATTACTACACGAGAGCCTTGCCAGCACAGT TTCTGAAAACCCTATCTCTTCTCTAGCAAAATCGCTCAAGAAAAAAAAAGTTGCAGGAAGAGCATTATGGGAAGGAACA CCGGAACTTCCAATTCAACCTTCACCTGCTACATTTAAATTTCTTCGTGCTTTATCAAATGCTATGGCTGATGCTGGAGC AGATCTTTGGAGTCCTATTGCTATTAAGACTTTGAAAGTACATCTCGATTCCCAAATTAATGAGAAATGGAGCATAGCCT TGTCAGAGAAGATGGCTAGTAATAAAACAACTACTTCTTCCAGCAATCCACCCGATACTGAAAAATCCGCGGAAACAGA AGAACCAAAAAATGAAGTTCAATCCCCGTTGGATAAAGAAGTAGAAGAAGAAAAAGAAAAAAATCTACTAAAACAATATT TATTCGATATCTTCGTCTTACAACAAGCTTTAGCGCTACAATCTATACAATTTGGGGATAAGGAAAAGGAAAAGGAAAAA GGGATTATGGGGATGAAAATCAAGAATTTGAGTGATGAGATTGAATTGGAATTGAAGCTTGAGATGCAGGAGAGGAAG AGGGTGGGGAATGGTGCGAGGGAGTATTGGAAGAGGACGGGGCTTTTGTTTGGGTTTTTGGTGTAG Botrytis cinerea, Bc_SAC1 BC1G_08464 SEQ ID NO: 5 GATCCACCCACATCCTTCCTCATATGACTTCGATGATAATTACATAGACACTGCCAGTATGCCTGGCCTCGTTCGCAAA CTCCTTATCTTTGCCGCCATCGATGGGTTGATTTTGCAACCAGCAGCGCCAAAAGGCCAACGCCCCGCCCCCGCAAC GAAGATCGCATACAAAGATAAGCATATCGGGCCAGTATTGAGTGATTTGCAGGATCTGGAGGGGTCGTCTGCGAAAA GTTTCGAGGCATTTGGTATTGTCGGTCTCTTGACGGTTTCCAAAAGCTCCTTCCTGATATCGATTACGAAAAGAGAGCA AGTCGCACAAATACAAGGGAAACCTATATATGTTATTACTGAAGTGGCTTTGACCCCATTAAGTTCCAAGAACGAAGCA GAGATCTCGATTGATAGTACGAAAGCGGGGTTATTGAAGAGTAATATCGAGGGGCAGCATGGCTTGGACGAGAGTGA TAGCGAGGATGATGTCGTTAGCGATGAAGTGGAGGACGATACAGCAGTAGAAGCACACAAAAGAACGAGTAGCGTAG CTGAAGATGTGATCTCGAAGAAGGGGGGATATGGAAGATTTGCTCAAAAATGGTTCTCGAAGAAAGGATGGGCCGTG GACCAGAAGAAGAACCTGGGGATGAGCGCTGAGCCGTATTCCACAGTGGAGCAAGCTTCCAAGGCCACCGATGTAC CAGCTACGATTTCAGGAGTCACTGAAGGAAAATCTGATATCTCAATTCCCGATAAGGGCAAGGAAATTGAGGACATTG AAACTCCTGAAAATATTAGCGACATTGCAGAGAGCATGCTGCCAAAATTACTACGAACATCGCAGATATTGTTTGGGGC CTCTCGGAGTTACTACTTTTCTTACGACCATGATATCACAAGAAGTTTGGCAAATAAGAGGAATACAAATTCTGAATTGC CATTGCACAAGGAAGTTGATCCACTCTTCTTCTGGAATCGGCATCTTACTTTACCATTTATTGATGCTGGCCAGTCTTCT CTTGCCTTGCCTCTTATGCAGGGCTTTGTAGGACAGCGTGCATTTTCAATGGATAGTAATCCACCAAACCCTGCTATAG GTTCAGACACTGGAAAGACTTCCGTGCAGATGAAGGATATTACAACAAGTAGTTCGGATGAGCAAATTTACACAGCAC GTGCTGGTACAGACAAGTCGTATCTATTGACGTTAATATCTAGAAGGTCAGTCAAACGTGCCGGGCTTAGATATTTACG CCGGGGTGTGGATGAGGACGGCAATACAGCCAATGGCGTGGAAACAGAGCAAATCTTATCGGATTCTGCTTGGGGCC CTTCGAGTAAGACATATTCGTTCGTTCAGATACGTGGCAGCATTCCCATATTCTTCTCCCAGTCACCTTACTCTTTTAAA CCTGTACCTCAAGTTCACCACTCTACCGAAACAAATTATGAAGCTTTCAAGAAGCATTTTGATAATATAAGTGATCGCTA CGGGGCCATTCAAGTGGCTTCCTTGGTGGAGAAGCATGGAAACGAGGCAATAGTCGGTGGAGAGTACGAGAAATTGA TGACTCTCCTTAATGTCTCCCGAGCTAGCGAGCTTAGGAAATCCATTGGGTTTGAATGGTTTGATTTCCATGCTATTTG CAAAGGTATGAAATTTGAGAATGTCAGCCTGCTCATGGAAATACTGGACAAGAAGCTTGACTCGTTTTCGCACACTGTT GAAACCGATGGGAAACTTGTATCGAAACAGAATGGCGTTTTAAGGACTAACTGTATGGATTGTCTGGATCGAACAAAC GTTGTTCAAAGTGCAGTGGCAAAGCGAGCACTTGAAATGCAGTTAAAGAATGAGGGACTAGATGTCACTCTACAAATT GATCAAACTCAACAATGGTTCAATACTTTGTGGGCCGACAATGGTGACGCCATTTCTAAGCAATACGCTTCTACAGCAG CATTGAAGGGAGACTTTACTCGTACTAGGAAGCGGGATTATAAGGGGGCCATCACAGATATGGGGCTTTCTATCTCCA GATTTTATAGCGGCATTGTAAATGACTACTTCAGTCAAGCTGCCATTGATTTCCTGCTTGGAAATGTGAGCTATCTTGTT TTTGAAGACTTCGAGGCAAACATGATGAGCGGTGATCCTGGCGTTTCGATGCAAAAAATGAGGCAACAAGCCATTGAT GTTTCTCAGAAACTCGTTGTTGCTGACGACCGTGAAGAATTTATTGGAGGATGGACATTTCTCACTCCGCAGGTACCCA ATACGATCAAATCTAGTCCTTTTGAGGAATCCGTCCTCCTATTGACAGATGCTGCATTGTATATGTGCAATTTTGATTGG AATATCGAGAAAGTATCATCTTTCGTGAGAGTGGACTTGAACCAGGTGAACGGCATCAAGTTTGGAACATACATCACGA GTACTTTGTCACAAGCCCAGGCAGATGAGAAGAGGAATGTGGGCTTTGTAATAACTTATAAGGCTGGTTCAAACGACA TTATTCGCGTGAACACGAGATCTATGGCTACGGAATTTCCTTCTTCGAAACTCTCTCTCGAAGACAAAACATCCACGCC CGCTTCTACATCTACCACCAACTCTGTCGTCGCCCCAATTGCCGCCGGGTTTGCAAACCTAATCTCAGGTTTACAAAAT CAAAGTATAGCGGAACCTAAAGATCTCGTGAAGGTTCTCGCATTCAAGGCTCTACCCTCCAGATCTGCGGTATCAGAT GAAGGAGTTAGTGAGGCCGAGCAAGTGAAGAGTGTCTGTGGAGAGATTAGAAGAATGGTTGAGATTGGAAGTATAAG AGAGGCTGGAGAGGAGAGAAAGGATATTGTAGAGGAGGGTACTATCATTAGTTTGGCCGAGGCCAAGAAAAGCACGG GACTATTCGATGTGCTGGGACATCAGGTGAAGAAACTGGTTTGGGCTTAATGAAAGTGTATCGATACTCGTGCTAGTA ATGCTTAGAGCAAAAGAAGCACTTCTTGAAGGATTTACGAATGGAATTGTGGAAGTTGGCAGGGAGGTTAGCGATCGT CAAGAACGGGTATGTGGAATTCAATTCCATATTGAAGCTGCGAAACTCATTAACTTCAATAGAAGTGGATGTGTAGATA GACCCGAGTATATGGTATTGGCCAGATAAGTAATTTTAATGGGGA Sclerotinia sclerotiorum, Ss_SAC1, SS1G_10257 SEQ ID NO: 6 ATGCCTGGCCTCGTTCGAAAGCTTCTTATCTTTGCCGCCATTGATGGCTTGATTCTGCAACCAACGGCGCAAAAAGGC CAGCGCCCCGCCCCCGCAACGAAGATCACGTATAAAGATAAGCATGTCGGACCAGCATCTTATGATTCTCACGATTAC GAGGGGCCGTCTGCCAAAGGCTTTGAAGCATTCGGGATTGTCGGTCTCTTGACGGTTTCTAAAAGCTCCTTCTTAATA TCGATTACGAAAAGGGAACAAGTCGCACAAATACAAGGAAAACCTATATATGTTATTACTGAAGTAGCTTTGACCCCTC TAGCTTCCAGGATAGAAGCAGAGAACTCGATCAACAAAACAAGAGCGGGATTGTTAAAGAGTAGTATTGAAGATCATG GATTGGACGACAGTGATAGTGAGGATGACGAAGTCAATGTTAGTGACGAAGTGGAGGACGATACAGCAATAGAAACA CATACAAGAACGAGCAGTGTGGCCGAAGATGTAATTTCGAAGAAGGGAGGGTATGGGAGATTCGCTCAAAAATGGTT CTCGAAGAAAGGATGGGCTGTGGACCAGAAGAGGAACCTGGGAATGAGCACTGAACCGTATGCTGCACGAGAGCAA GATGCCAGGTCTGCCGACGTAGCAGCTACCACTTCAAAGGATGCTGAAGTGGAACCTGAGGTTTTGATTTCCGATGAG GTCAGGGACATTGAAAATGTTGGAAAGTCTGACAAGGTTAAGAACGTTCAGGATATTGCTGAGAGCATGCTGCCAAAG TTACTGCGTACGACACAAATATTGTTTGGGACCTCCCGGAGTTACTATTTTTCTTACGATCATGATATCACAAGAAGTTT GGCCAATAAAAGGAACACAAACTCTGAATTGCCATTGCATAAGGAGTCGATCCACTCTTCTTCTGGAACCGACACCTTC TGTTACCATTTATTGATGCTGGGCAAGCTTCACTTGCCTTGCCTATTATGCAGGGCTTCGTAGGACAACGAGCATTTGT AATGGATAGCAATCCGCCAAAGCCTGTTGTAGGTTCGGACACTGAGAAGACCTCCATGGAACTGAATGAGATCACAAC AGATAGTTCGGATGAACAAATCTCCACAGCACGTGTTAGTGCAGATAAGCCATATCTATTGACATTAGTGTCTAGAAGA TCGGTTAAGCGTGCCGGGCTTAGATATCTTCGTCGAGGTGTGGATGAGGACGGCAATACCGCCAATGGTGTGGAGAC GGAGCAAATTTTAATCAGATTCTACTTGGGCTCCTTCAAGTAA Botrytis cinerea, Bc_VPS52, BC1G_09781 SEQ ID NO: 7 GATACAAAAGCTTTCGAAAGCCGCTTGAGTAAGTAAGAAGGCAATAAGAGAGGTCCTCGTCCGTGTCGAGATGTGATG CTTGAGTCATTTTCCTGGTATAGCTTCTGCAATCGAGTTCACACTCTACTACTTGATTCAGATTACACCAGGAGTAACAC CTCAAGTATTCCATATTAAATACAAACCTTTCCCATCTTAATCTATTGTTGGCGCATGGGGAGAGGAATTAATTGCTTTG CTTTTTGGCCATCAGGATGTGGTCATTAGATCGATTATCCGGACACACAACACCTTCTGCCTCTCCACCTCCCCCGTTA AATAGGATCCCAAATCTCCCTCGTCGTCCGAGTCATCTTGTGCCATCCCCAGTTGGTGGTAGACCTCCTTTCAACCCA AGATCGTCTTCCCTGTCGTTAATCTCCAATGACTCTAATTCATCGTTGCTATCATCACGGAGACCCAATGGTTCGAATCT CAAACAAGCAGTCACATCTCCGAATGTGCCAGATCCTTTGGAGGTTTTGGGAACACTACTGAATAATGGGGAAGAGAC AAAATTGCCATCAGCGAAAAGCCCGGGGGCGACAAATGGGACAGTTGCTCCCATTGAAGAGGAAGACGATGAAGGC GAATGGGATTTCGGAGGTTTAAGTCTGCAAGACATTGTAGCAGGAGAACCTCTCGATGTTGAGGATGAGCATGTGTAT AAATCTCAAACGCTGGAAGAATATGAGCGCGAGAAAGAGAAGTTTGAAGACCTCCATCGATCAATTCGCGCCTGCGAT GACGTTCTTAATTCAGTCGAGATAAACCTCACAAGCTTTCAAAACGACCTTGCTATGGTATCTGCGGAGATTGAAACTC TGCAAGCACGATCGACGGCTTTGAGTGTAAGGTTGGAAAATCGCAAAGTAGTAGAGAACGGACTTGGGCCTATAGTG GAGGAGATCAGTGTCTCTCCAGCTGTCGTTAAAAAAATTGTGGATGGAGCTATAGATGAAGCTTGGGTTCGAGCATTG GCGGAAGTTGAGAAACGATCAAAAGCAATGGATGCTAAATCGAAGGAGCAACGTACTATAAAGGGCGTGAACGATCTT AAGCCTTTACTGGAGAATCTAGTTTCCAAGGCATTGGAAAGAATCAGAGATTTCCTCGTTGCTCAAGTGAAAGCATTGC GATCGCCCAATATAAATGCACAGATCATTCAGCAACAGCACTTTCTTCGCTATAAGGATTTATATGCATTCTTGCATAGA CATCACCCAAAGTTGGCTGAGGAGCTTGGTCAAGCATATATGAATACAATGCGATGGTACTTCCTTAATCAGTTCACGA GGTATTTGAAGGCGTTGGAAAAGATCAAGCTTCATGTGTTGGACAGATACGATGTGCTCGGATCAGATGACGGGTCTC GTAAGGCCACTCTTCTTTCAGGATCCAAACAGACAGGTCCACCACACGACGCATTCAATCTAGGTCGACGAATCGACC TTCTCAAGACGCCAAACCAAACTGCACTTCCCTCTTTCTTAGCCGAAGAAGACAAACAAACCCACTATATGGAATTTCC TTTCCGTAACTTCAACCTCGCACTGATTGATAACGCTTCCGCCGAATACTCCTTTCTTACCTCTTTCTTCTCTCCCTCTC TAAGCTACGCTACCATTTCCCGACACTTCAACTACATCTTCGAACCCACTTTTTCCCTCGGCCAATCTCTCACCAAATCC CTCATCCACGAGTCCCATGATTGTCTCGGCCTCCTCCTATGTGTGCGCTTGAATCAACACTTTGCATTTTCCCTTCAAC GCCGCAAGATCCCCGCTGTAGATTCCTACATAAATGCAACATCCATGCTCCTCTGGCCACGCTTCCAACTCACAATGG ATATCCACTGCGAATCCGTCCGCACCCTAACATCCGCTCTCCCTACCCGCAAACCCTCAGCTTCGGAACAAGCTAAAC AATCTGCAGCTCCACACTTCATGACCCAACGTTTCGGTCAATTCCTACAGGGTATCTTAGAATTGAGTACGGAAGCGG GAGATGATGAACCTGTAGCGAGTAGTTTGGCAAGATTGAGAGGCGAGATGGAAGCATTTTTGACAAAGTGCGCGGGG GTTATGCCGGATAAGAGGAAGAAGGAACGATTTTTGTTTAATAATTATTCGTTGATTTTGACAATTGTAGGGGACGTAG AGGGTAAATTAGCCGGGGAACAAAGGGCGCATTTTGAGGAGCTGAAGAAAGCTTTTGGAGATGGTGTCTGATCCTTCA CTTCATTTTGATACTTAATTGGAAGTTTTTGAGCGTGTACACTTATCAAAGCGTATTATTTGATCATGTATTTTGTATTTGT GAAGAGAAACAAAGAACTTTTATTATGGTAGAAATAGAGCCGGAAATAATCTATGCTGTGGAAGAAACCA Sclerotinia sclerotiorum, Ss_VPS52, SS1G_01875 SEQ ID NO: 8 ATGTGGTCATTAGACCGATTATCTGGACATACAACACCTTCTGCTTCTCCACCTCCACCATTAAATAGGAACCCCAGTC TACCTCGTCGTCCGACTCATCTTGCGCCATTACCAGTCGGCGGTAGACCTCCATTTAATCCGAGATCCTCTTCCCTATC ATTAGTCTCCAATGACTCCAGTACATCCTTGCTACCATCGCGGAGACCCAACGGGTCGAACCCCAAACAAGCAGCTAC ACCACCCAATGTGCCAGATCCTTTAGAGGTTTTAGGAAGAATATTAAACAATGGAGAAGAGGCAAAATCACCACCTGC GAAGGGCTTGGGAGCCATAAATGGAACAGCCGCTCCCATAAGAGAGAAAGATGATGAAGGCGAATGGGACTTCGAAG GTTTAAGTCTACAAGATATCGTGGCAGAGGAACCTTCTGTCACTGAGGATGAGCATGTATATAAATCACAAACACTTGA AGAATATGAGCGTGATATGGATAAGTTTGAAGATCTCCACAGATCGATTCGCGCTTGCGATGATGTCCTAAATTCCGTC GAAATAAACCTCACCAGCTTTCAGAACGATCTTGCTATGGTTTCTGCGGAGATCGAAACTCTACAAGCACGATCAACG GCGTTGAGTGTACGGTTGGAAAATCGAAAGGTGGTAGAGAATGGACTTGGACCTATAGTGGAGGAGATCAGCGTCTC CCCAGCCGTCGTTAAGAAGATTGTGGATGGAGCTATAGATGAAGCTTGGGTTCGAGCATTGGCGGAAATCGAGAAGC GATCAAAGGCTATCGATGCAAAATCAAAGGAACAACAGAATATAAAGGGGGTTAATGATCTCAAGCCTCTATTGGAGAA TCTAGTGTCTAAGGCACTGGAAAGAATCCGAGATTTCCTCGTTGCTCAAGTGAAAGCTTTGCGATCCCCCAATATAAAT GCCCAGATTATTCAACAGCAGCACTTCCTACGTTACAAAGATCTCTATGCTTTCTTGCATAGACATCACCCAAAATTGG CCGAGGAACTTGGTCAAGCATATATGAATACGATGCGATGGTACTTTCTCAATCAATTTACACGGTACGCAAAAGCATT GGAAAAGATCAAGCTCCATGTGTTGGACAGACACGATGTTCTCGGGTCAGATGATGGATCTCGCAAGACCACGCTCCT CTCCGCGTCTAAACAAACAGGTCCACCACATGATGCATTCAATTTAAGTCGACGAATCGATCTTCTCAAAACCTCCAAC GAAATTGCACTGCCGTCCTTTCTAGCAGAAGAAGACAAACAAACTCATTACATGGAATTCCCCTTCCGGAATTTCAACC TCGCCCTAATCGACAACGCTTCCGCCGAATACTCCTTCCTAACCTCATTCTTCTCCCCGTCACTAACCTACGCAACCAT CTCTCGCTACTTCACCTATATCTTCGAACCCACCTTCTCCCTCGGCCAATCGATCACCAAATCCCTCGTCCATGAGTCA CACGATTGTCTTGGTCTCCTCCTGTGCGTGCGTCTTAACCAACATTTTGCATTTTCTCTCCAGCGCCGGAAAATCCCTG TCGTAGATTCATATATCAACGCAACATCCATGCTCCTCTGGCCGCGCTTCCAACTCACAATGGACACACACTGCGACT CGGTCCGCACCCTGACCTCGGCCCTCCCCACCCGAAAACCATCGGCTTCAGAACAAGCGAAACAATCCGCCGCCCC CCATTTCATGACTCAACGTTTCGGCCAATTTCTTCAGGGCATTTTGGAACTAAGCACGGAAGCTGGAGATGATGAACC CGTGGCGAGTAGTCTAGCGAGACTGAGAAGCGAGATGGAAGCGTTTTTGTCAAAGTGTGCGGCGATTATGCCGGATA AGAGAAAGAAGGAACGATTTTTGTATAATAATTATTCGTTGATATTGACCATTGTGGGGGATGTGGAGGGGAAATTGGC TGGGGAACAGAGGGCGCATTTTGAGGGATTAAAGAACGCTTTTGGGGAGGGCATTTAA Botrytis cinerea, Bc_Rgd1p, BC1G_15133 SEQ ID NO: 9 GAGTATTCTCGATTAGACAATTAGAATTCTCGAACAATAGAAGCCGGAGCTCGAGTTCCTCGATCTTTACCTACCTGAA GTCTCTCGATCAGAAGAGTGTCAAATTCCTATGATATCAATGATTATTGAGGATATATTTACAAAATCAAATCTCTTCAAT GAATCTCTATCTACCTAAGCAAGTCAATTATGATTGATTACAATTATCGTTGTTGCACGGAATCCAGTCGCATTTGGTCC CGGTCACTCGTAACAGCAACCACATCGGTATTTCGTAGATTCCCGAGTATTGCCTTTACATACCTAAGGAACTTTAAAT CCCCCCAACAACAGAATTGACGACAGAATTACTACCATTACAAGTGAAAACACTCCATGGTACCCAAATACAACAGTCT CATATAGCCATTTGATCGCAACTCGCATCTTTCATCTACAAAATGTCGTTTGGAGGGGACATCGGACTCGATACAACAT CGTCGTCCAATGCTGCTGGTAATGGCGGCAACCAGGGCGAGACAACTGGAAGACCTGCCACCCCTCAAGATGCAAC CGCAAAAGCAGTTCAAGATGTCACAAGCTCGGAGATTGGAATATCAACCTTGTTAACCCGACTGAAACAAAGTATTGCT TCCGCAAAGGAATTCGCACTTTTCCTCAAGAAACGGTCCATCATGGAAGAGGAACATTCGAACGGTTTAAAAAAGCTGT GTAAGGCAACCGGGGATAATATTCGCAGACCAGAGCATCGACACGGATCGTTTCTACAGTCATACGAAGAGGTCCTCA TTATACACGAGCGAATGGCCGAGAATGGGGCTCAATTTGGCGTGTCTCTACATCAGATGCATGAGGATCTTATCGAAA TGGCTTCGAACATAGAGAAGGGCAGAAAGCATTGGAAGAATACTGGGTTGGCAGCAGAACAACGTGCTGCTGATACC GAAGCTGCCATGAAGAAGTCGAAGGCGAAGTACGACTCTCTGGCAGACGAGTATGATAGAGCTCGCACTGGGGACA GGCAACCAGGAAAGATTTTTGGCCTCAAGGGCCCCAAATCGGCAGCGCAACATGAAGAGGACCTTCTTCGCAAAGTC CAGGCTGCCGATGCAGATTATGCGTCCAAGGTACAAGCTGCGCAAAGCCAACGAACCGAGCTCTGGTCAAAATCAAG ACCTGAGGCTGTGAAAGCTCTAGAAGATCTCATTCAAGAATGCGACTCTGCATTGACATTGCAGATGCAGAAGTTTGC ATCCTTTAACGAAAAGCTACTTTTGAGCAATGGCTTGAATATAAGCCCTATCAAAGGAAAAGAGCAAGGGACATTAAAT CGCAGTCTCCGTGAAGTTGTTCACGCAATTGATAATGTTAAAGACCTGAGCAACTACATCAGTAGCTTCTCTGGTAACA TGCAGTCCCGGATCACGGAAATCAAATATGAGCGTAATCCGGTTTTGCAACCCGCACAAAATACCGCTCAGCGACAAT CGGATCCCAACGCTCTCCAAGCTCGACAAGGACCCGTAATACCACCACAGCCATCTCACCAAGTTCATATGAGCCAAC CTTTTAATCAAAGCAGTCCCCCAACTCACCAGCGCGAAAGAAGCTTTAGCCATGGCCCATCTCTTTCGCAACACATCGT TGCACCTGTTGTATCGCCCACTAACCCAATATCCACCTCTCCCGACTTCAATACCTGGTCACCTCGTGCAGATGGCCC CCCCCAGATATCAACCTTGCCATTTCAGCCACAACCTCAAAACGAGACACCAATACAACAGACACCACAAAACCCTACA ACGCATGCACCAGTGTCCCATGGCCCATCCTCGGCACCACTATTCGGAGCGGGATCGGCTCCAGCTCCAGGCAACA GCACTCATCTAGCACCTTTGAAACCAGTGTTTGGACTCAGCCTCGAGGAACTCTTTGACAGAGATGGCTCTGCTGTTC CAATGATTGTCTACCAGTGTATTCAAGCAGTTGACCTCTTTGGGCTCGAGGTCGAAGGAATATACCGGCTATCTGGTA CCGCATCTCATATAATGAAGATCAAGGCAATGTTCGATAACGACGCATCTAAGGTGGACTTCCGTAACCCGGAAAGCT TCTTTCACGATGTCAATAGTGTGGCTGGTCTTCTCAAACAGTTCTTCCGCGAACTCCCAGACCCTTTATTGACTATCGA GCAATATCCTGCATTTATCGAGGCTGCAAAGCATGATGATGAAATAGTCCGTCGCGACTCTCTACATGCGATCATCAAT GGCCTTCCTGATCCCAATTACGCTACTCTTCGAGCCTTGACTTTACATTTAAATAGAGTACAGGAGAGTTCGGCATCTA ACAGGATGACTGCAAGCAACTTGGCCATAGTATTTGGCCCTACACTCATGGGTGCTAATTCAGGACCGAACATGTCAG ATGCTGGGTGGCAGGTTCGTGTCGTTGACACTATTTTGAAAAACACTTATCAGATATTTGACGACGACTGAGGCGAAG AAGATTGTCGATTGACTTGAAGAGTTCTTAACGAGATACCATAGCTGCTCATATTATGAACCTGCCTTTGGAACAGAAA CAAGGGCAGGGAATTCCTAGCATCAGACCTCTATTTGCCGACAAGACATTCTAAAGAAAGTACATGCCACTGTATTTCG AATACTATTATTGTAAGGCACGGGCCTGTTGACAAATATTTACGGTCTATCAAGCGAGTGTACGTCAGGGGGTGGTCT ACACCACGATCGATTTTGTAGGGTCATGTGCTCAGCTCTGATGCCAGTATTGGTGCAACTATTGAATCAAAAGGGTACC AAGGTTTCAATACTCGTTAATTTTGGATCACGAAAAGATCA Sclerotinia sclerotiorum, Ss_Rgd1p, SS1G_03990 SEQ ID NO: 10 ATGTCATTTGGAGGGGACACCGGACTTGATTCATCATCGTCGCCCAATATCGTCGGCAATGGCAACAATGGCGAGACA ATCGGAAGGCCTGCAACTCCTCAAGATGCAGCCACGAAAGCGGTTCACGATGTTACAAGCTCCGAGGTGATTGAGTC AACCAATTGGAATATCAACCTTGTTGAACCGGTTGAAACAGAGCATTGCTTCCGCAAAGGCAGTCCCCCCCGAACTTT CAACGTCTGCATAGATATGGAGCTGACTTCTTCGAAACAGGAGTTCGCACTTTTCCTCAAAAAAAGGTCCATAATGGAA GAGGAACATTCGAATGGATTAAAAAAGCTGTGTAAAGCAACTGGAGATAATATTCGCAAACCAGAGCATCGCCATGGT TCATTCCTGCAGTCATATGAAGAGATTCTTATTATACACGAGCGAATGGCCGAAAACGGGGCTCAATTTGGCGTGTCTC TACATCAGATGCATGAAGACCTTATTGAAATGGCTTCGAATATAGAGAAGGGTAGGAAGCACTGGAAAAATACTGGCTT GGCAGCAGAGCAGCGTGCTGCTGACACGGAAGCCGCCATGAGAAAGTCAAAGGCGAAATATGATAGCTTGGCGGAT GAGTACGACAGAGCTCGCACCGGAGATAGGCAACCGGGCAAGATATTTGGCCTCAAGGGACCTAAATCGGCAGCGC AACATGAAGAGGACCTTCTCCGTAAGGTTCAGGCTGCAGATGCAGATTATGCAGCGAAGGTACAAGCTGCACAAAGC CAGCGCTCTGAGCTCTGGTCAAAGTCAAGACCCGAGGCGGTGAAAGCGCTAGAAGATCTCATTCAGGAGTGTGACTC TGCATTGACATTACAAATGCAGAAATTTGCGTCCTTCAACGAAAAGTTACTTCTTAGCAATGGTTTGAACATAAGCCCTA TCAAAGCCAAAGAACAAGGCACCTCGAATCGTAGTCTGCGTGAAGCTGTTCATGCCATCGATAACGTTAAAGACCTGA GCAACTACATCAGTAGCTTTGCCGGTAAGGTACCATCACGGGTCACGGAAATAAGATACGAGCGTAACACGGTCTTGC AACCTGCAGCAAATATTGCCCAACGACAATCAGACCCCAACGCTCTCAACTCTCGACAAGGACCAGGAATATCATCTC AGCAACCTCATCAGGTGCATGTAAGCCAAACCTTTAACCAAGGCACTCCGCAAACACACCAGCACGAAAGAAGTTTTA GTCACGGCCCCTCTCTTTCGCAACACATCGTTCCAACTGTTGCATCGCCCACGGCGCCAACATCCACCTCCCCTGACT TCACCACCTGGTCACCTCGTACAGATGGGCCTCCTCAAATCTCAACATTGCCGTTTCAGCCACTGCCTCAGAACGAGA CAGTTTTGCAACAAACACCACCAAATCCTACGACTCATGCTCCAGCATCCCATGGACCACCTTCGGCACTATTATCTGG ACCAGGACCTCCGGCTTCAGGCAATAATACACATCTAGCGCCTTTGAAACCAGTATTTGGGCTTAGCCTCGAGGAGCT CTTTGAGAGAGATGGCTCTGCTGTTCCTATGATTGTCTATCAATGTATTCAAGCAGTTGACCTCTTTGGGCTCGAGGTT GAAGGGATATACCGACTATCTGACGCATCTAAGGTGGACTTTCGTAACCCTGAAAGCTTCTTCCACGACGTTAATAGTG TCGCTGGCCTTTTGAAGCAGTTTTTTCGAGAGCTCCCAGACCCTCTACTGACTAGTGAACAATACCCCGCATTCATCGA GGCCGCAAAGCATGATGATGAAACAGTCCGTCGCGACTCTCTTCATGCCATCATTAATGGCCTCCCCGATCCTAACTA TGCTACTTTGCGCGCCTTAACCTTACATTTAAATCGAGTGCAGGAAAGTTCGGCGTCTAACAGGATGACTGCAAGCAA CCTGGCTATTGTATTTGGACCTACTCTCATGGGAGCTAATTCTGGACCAAACATACAAGATGCTGGGTGGCAGGTTCG CGTCATTGACACCATTTTGAACAACACCTATCAGATATTTGATGACGACTGA Botrytis cinerea, Bc_Ufd1, BC1G_10526 SEQ ID NO: 11 GTTTCCAAGTACAGTACAGTACCACTTCAAGTACATAAACTCAGCGCTCTTCTTGAGATAAAAGGTTAAAGGGTTGCAA GATTTCTTTGATACATATCATTGGAAATAAAGTATTCCGGATTACATTAGAGGAAGCTCACTGTAACAGGTTTCTGCTTT GTTGTTCATGGACATGATGGCAGCAACTCCAGACATTTCTTTGACCTGGTCATCAGTCTATAAAGTCGCCCCAAAAGAC AACGTCTCGCTGCCCGGGGACAAGATACTACTACCTCAATCAGCGCTGGAACAACTACTATCGGCATCTACAGTTACG GTGAATTCTAACACTCGCCCCAGCAATGTTGCATTTGATCCATTCAATCCATATTCATTGGCAGCCGCTCGCATAGAAC AGTCGCAATGGAGAGATACCCAACAACAACTGCCCCATCCTCTCACCTTTAGGCTGGTCAACTCGAAGAACGGAAATG TAGTATATGCAGGAATTCGAGAGTTCTCGGCAGATGAAGGAGAAGTTGTCTTAAGCCCATTTTTGCTAGAGGCATTAG GGATCACTGCGCCCTTACGAAATCCAACACCACCAAGTTCAAAGGTTGAAAGCAGGAGAGGGTCGCCGGATACGCCT ATAGATCTTACAGATAACCCTGCAATCGATCTTACGGGTGACGAGATGATAGACCTTACAGACGAAACCGAAGAACCG GCGCAGATCACTGTACATGCGAAACAATTACCTAAAGGCACATACGTGAGGCTAAGGCCATTGGAGGCTGGTTATAAT CCCGAGGATTGGAAATCATTGCTCGAAAAACACATGCGAGAAAATTTCACAACTTTAACGAAAGGAGAAATATTGACGG TTCGAGGTTCAAAGTCGGAGGAATTCCGATTTCTGATTGATAAGTTTGCACCGGAAGGAGATGCAGTTTGCGTTGTTG ATACAGATCTAGAGGTCGATATTGAGGCTTTGAATGAAGAGCAGGCTCGGGAAACCTTGAAGCAAATCATGTCAAAGG CACAAAAAGCTCCAGGAACGGCTCAAGGGAGTTCAATTGGCGGAGAATTAGATCTTTGGAATGCTTTGCAGGGACAG GTCGCAGAAGGTGATTATGTCGACTATACTTTACCTTCATGGGATCGATCAAATGGTCTTGATATTGAGCTTTCACTTGA GGACGATGGTGATGGTGATGTGGAGATATTCATTAGTCCTCAATCAGCCCATCAAAGAGCAAAACCACGGGAGGATGA ACATGTTCTCGGAGATTTCTCAAGTGACAAAATCAAGAGAATAACCATACAACAATCAAATGTGGAATTAGACGGAGCT GATGCTATATTAATTTCTTTATACTGTCGAGGAACTGGAGCAGGCTCTGAGCCACCACATGGACCACGGAAGTATTCCA TTAGAGTAAAATCGCTTGAAAAGGGGGCAAGCAATGGGGCCCCAAGCAACCCAATCTCGCTCGAAGAAGATGCCGAA ATGCATGGATCTGATGAGGAGCAATGTAAAAATTGTCATCAATGGGTGCCAAAGCGGACAATGATGCTTCATGAGAAC TTTTGTCTCCGCAATAATATCTCATGCCCTCATTGCAATGGCGTCTTTCAGAAGAAATCTTCAGAATGGCTGAATCATTG GCATTGTCCTCATGATTCAGCCCATGGAAATTCCTCAGAAAGCAAAACTAAACACGACTCTATTTTTCACGAAGCTCGA CAATGTCCCAATTGCCCTTACGAAGCAACAAATATGAGGGATCTTGCCACTCACCGTACGTCTATTTGTCCTGGCAAGA TCATTCTATGTCAATTTTGCCATCTTGAAGTTCCTCAAGAGGGCGACCCCTTCGATCCGTCTCCAGAAAGTCTTATTTCC GGACTTACAGCACACGAGCTTGCAGATGGGGCTCGAACTACGGAATGTCACCTGTGCAGCAAAATTGTTCGACTTCG GGATATGACCACCCATCTTAAACATCACGAACTCGAAAAGAATAGCCGATTTAAACCAGCCATCTGTAGAAATGCAATC TGCGGTAGAACTCTGGAGGGCGTTGGTAAGAATGGGGAAGTGGGCGCTGGATCGAGAATGGGCCAAGGACCTGGTA ATGATTTGGGTCTTTGCAGTATCTGCTTCGGTCCACTATACGCTAGTATGCACGACCCATTAGGAAAAGCAATGAAACG CCGCGTGGAACGAAGGTATCTGAGCCAGATGATCACGGGATGCGGCAAGAAATGGTGTACAAACATCTATTGCAAGA CTGCAAGGGCGAAAGAAGCGAATGGGCCTCAGGCAATACTAGCGATGAAAGATGCCCTTCCTCTTATTCAGCCATTAG TAGCCCAAGTAGAGGATAAGACCGAACCGATGCATTTCTGTGTCGATGAAGGAAACCAGAAGAGAAGAAATCTGGCTG AAATGTTAGCTATGGAGCCTGGAGGTTGGGAATTGGAGTGGTGTGTTGCGGCTTGTGAAGCAGAAGGTGCAAATCTT GATAAGGCCAGGACATGGTTATCTAATTGGGCTCCCAAGAAAGCTTGATGTGGTTCAGATCTGGAAGATATTTTGGTAT GGATGAAAGGGATGGAGCATGGCGTGGTACCGATTGCATAAGTAAGGGAGTTCTGGTGGCTGATGACGATATGATAT GATATGATACCAATTTATAGACCCGATTTTGTTGTGCGTACATAAATATACATGGTTGGCGTCGCATTAGCTAGAGATAG ATCGAACAGATTAAGAATTTACTGCTAATACATAAACATATATACATTCTTCA Sclerotinia sclerotiorum, Ss_Ufd1, SS1G_04151 SEQ ID NO: 12 ATGGCGGCGACTCCAGATATCTCTTTGAAATGGTCATCAGTCTATAAAGTTGCCTCAAAAGACAGCATATCTCTGCCTG GTGATAAGATACTGTTACCGCAGTCTGCTCTGGAACAGCTATTAGCAGCATCTACGGTTACGGTCAATTCTAACAGCC GCCTAATGTCGCATTCGATCCATTTAATCCATATTCTTTAGCAGCAGCTCGCATAGAACAGTCGCAATGGAGAGA TACTCAACAGCAACTACCTCATCCTCTCACATTTAGGCTCGTCAATTCAAAGAATGGGAATGTGGTACATGCAGGAATC CGAGAGTTCTCTGCAGATGAGGGAGAAGTTGTCCTGAGCCCATTCTTGCTTGAGGCATTGGGAATCTCTGCGCCCAC ACGAAAATCTACGCCAAGTCCCAAAGTTGAGAGCGAGAGAGGATCCCCTAGTGCGCCTATAGACCTTACAGATAACCC TTCGATTGACCTTACACGCGATGAGACGATAGATCTTACAGATGAAATTGAAGAATCTGCGCAAATCACCGTACATGCG AAACAGCTATCTAAAGGTACATATGTGAGGTTAAGGCCGTTGGAAGCTGGGTATAATCCTGAGGACTGGAAATCGTTA CTAGAAAGACATTTGCGGGAAAATTTTACAACTTTAACAAATGGAGAAATATTAACGGTTCGAGGGTCAAAGTCAGAGG AATTTCGATTTTTGATTGACAAACTCGCGCCTGAAGGAGATGGGATTTGTGTTGTTGACACCGATTTAGAGGTCGATAT AGAAGCTTTGAATGAGGAACAAGCCCGAGAAACCTTGAAGCAAATCATGGCAAAGGCACAAAAAGCTCCAGGAACGG CCCAAGGAAGTTCTATCGGTGGAGAATTAGACCTATGGAAAGCTTCGCAAGGACAGATTGCTGAAGGAGATTACGTGG ATTATACTTTACCTTCATGGGATCGATCAAATGACCTTGAGATTGAGCTGTCGCTCGAGGATGATGGCGATGTGGAGAT TTTTATTAGCCCTCAATCAGCTCATCAAAGAGCAAAACCGCGAGAAGATGAGCATGTTTTTGGAGATTTCTCAGAAAAT AAAACCAAGAGGCTCGTCATACAACAATCAGACGTGGAATTAATAGGAGCTGATGCAATACTAATTTCCATATACTTCC GAGGGTCTGGAAGTGAGTCATCACAGGGGTTACGGAAATACTCTCTTAGAGTGAAATCGCTTGAGAAAGGGGCAAGC AATGGATCTTCAAGTAATCCAGTTTCGCCCGAAGAAGATACTGAAATGCATGGATCTGATGAGGAGCAATGTAAAAATT GCCATCAATGGGTACCGAAGCGGACAATGATGCTTCATGAAAACTTCTGTCTTCGTAATAATGTCTCATGTCCTCATTG TAACAACGTGTTTCAGAATCCCAAGAATGGCAGGATCATTGGCATTGTCCTTATGATTCTTCCTACGGAAATACA CCAGCAAGCAAAACCAAACACGATTCTGTATTTCACGAATCCCGCCAATGTCCCAATTGTCCCTATGAAGCAACAAATC TCAGAGATCTTGCTACCCATCGTACGTCTGTATGTCCCGGCAAGGTTATTCTTTGTCAATTCTGCCATCTCGAAGTCCC CCAAGAAGGCGACCCCTTCGATCCGTCCCCTGAAAGTCTCATATCTGGGCTCACAGCCCACGAGCTCGCTGATGGAG CTCGAACTACGGAATGTCACCTTTGCAGCAGGATCGTTCGACTTCGCGATATGTCCACGCATCTCAAGCACCACGAAC TTGAGAAGAACAATCGATTCAAACCAGACATCTGTAGGAATGTCAACTGTGGTAGAACTTTGGACGGTGTTGGTAAGAA CGGGGAAGTAGGAGCAGGTTCGAGGATGGGTCAAGGACCAGGTAATGATTTGGGTCTTTGTAGTATTTGCTTCGGCC CACTATACGCTAGTATGCACGACCCGTTAGGAAAGGCGATGAAGCGTCGTGTGGAACGAAGATACTTGAGCCAAATAA TTACGGGATGTGGCAAGAAATGGTGTACAAATCTCTATTGTAAGACTGCAAAGACTAAAGACGCCAATGGGCCCCAGG TGGCATTATCGGTAAAAGATGCACTTCCCCTCATTCAACCATTACTAGCCCAATTAGAGGATAAGACCGAACCAATGTA TTTCTGTGTGGATGAAGCAAATCAGAAGAGGAGAAATCTGGCGGAAATGTTGGCCATGGAACCAGGAGGTTGGGATC TAGAGTGGTGTGTTGCGGCTTGCGAAGCAGAAGGTCCAAATCTTGATAAAGTCAGGACATGGTTAAGTAATTGGGCTC CAAGAAAAGCATGA Botrytis cinerea, Bc_Integral, BC1G_03606 SEQ ID NO: 13 GGATCGCAACTAACTCTTCTGGAAGGTTCTTGTGGCAATATCAACCACATGGATCTTCAGTACCACCGCCGTCAAATTG GCTGTGCTTGGGTTATATATGCGAATCTTCACCACGCCCGTTTTCAAGCGATGGGCCGTCTCTTTGATGACCATAGAC GTTTGTTTCGGTATCACCTTCTTCGTCGTGTTTTTAACTCATTGCAACCCAGTCTCTCAAGAATGGAACCCTGTTCCACG GGGTTCATGCAGATCTCTAACATTGTCCGAGTTTTCCTCCATCGCTCTCAATCTGGCTCTCGACACGGCAATCATCATT CTCCCTATGCCATGGCTATACAAGCTTCAAATCGCATTAAATCACAAGCTTTTTGTGATGGTCATGTTCAGTTTCGGCTT TGCAACTATTGCCATCATGTGCTATCGTCTTGAATTGACAGCCCGAAGCCCTTCTGATCCCATGATTGCCATTGCAAGA GTCGGAGTGCTGAGCAATCTCGAGCTTTGGATTGGTATTATTGTTGCCTGCTTACCTACTATGAAACCTTTTGTTAGAG TATATCTCAGACCCAGCCTATCAAAGCTCTCCCAAAAACTTTATGGCAGCCCCACAGTGTCAACAAAAGACGAAAATCC ACAACTTCAGCTAAGGAACTTCGGGGGTTCCGGACCTTCACGCCCCCAAAAAAAACAGTAACTACACTGAACTTTCTG AAGCTCCATCTGTGCAGACAGATACTGACGAGTTGCATCTCGTTCCAAATGAATCATCCAATTTTGATGCAAATTGTGA ATCTAGCAACA Botrytis cinerea, Bc_Sec31p, BC1G_03372 SEQ ID NO: 14 GAAGCTTTAAAACATACGATTATTTGATCCTGTTTGAACACGTTTTCTTGAAATTTCAAGCTTGAATGAAACACAACACCA AGTCTATCGGCCAAAGGACCCCTTTGAGATTGCATTGAGCGTTGTCCCATCTCAAGATTTAACAACTGTTATTCACGAA ATCATGCCTCCACCACCACCACCTCCTCCTCCGCCGCCTCCTCCGCCTGGAGGAGCTCCAGGAGGTATGCCATCCAG ACCACCTGCGAAAGTTGCTGCAAATAGAGGCGCACTTTTGTCGGATATCACGAAGGGAAGAGCACTCAAGAAAGCTGT AACTAACGATCGATCGGCACCGGTAGTAGGCAAAGTATCTAATGGTTCTGGACCTGCGCCAATAGGAGGTGCTCCTC CAGTACCGGGAATGGCAAAACCTCCCGGTGGATTTGGCGCACCGCCAGTACCAGGAGGAAATAGAGCTCGAAGTGAT AGTAACCAAGGGAGCAATAATGCGGTTTCGGGGATGGAACAAGCTCCACAGTTAGGAGGAATATTCGCAGGCGGCAT GCCCAAGTTGAAGAAACGAGGTGGAGGAGTAGATACTGGCGCAAACCGCGACTCATCGACTGCATCGGAACCAGAAT TCTCTGCTCCCAGACCGCCAGGTATGGCTGCTCCCAGACCTCCAACAAATGCAGCTCCGCCTTTGCCATCAGTCCGG CCTCCTCCTCAACCTAGCGCTAGTACTCCCGCATTTGCGCCCTCGGTTGCAAATCTGAGAAAGACCGGCGGGCCATC TATTTCTCGTCCTGCATCCTCAACCTCTCTCAAGGGGCCACCACCCCCTATTGGCAAAAAACCTCCTCCACCCCCTGG AACTCGAAAGCCATCATCAGCGCTATCAACCCCACCACCACCACCGCCTCCAGCATTCGCCCCTCCACCTCCTTCTTC AGCACCTCCGCCACCTGTTGCACCTCCACCACCACCTTCCCCAGCTCCACGCCCTCCGAGTAACCCACCTCGATCAC ATGCACCACCGCCACCACCACCACCACCACCACCAACATCTCCACCTTCGACTAACGGAGGTAACCCAAGTCTTGCTA TACAAGCAACAATTCGTGCTGCTGGCCAAGCATCACCAATGGGTGCACCACCACCACCACCACCGCCTCCTCCTCCAT CTAATGGGCCTCCCTCTCTCTCGTCGCACAGAACGCCATCTCCGCCCGCGGCACCCCCAGCGGCACCCCCAGCGGC ACCAATATCAAGAAGTCAAAGTCAACAAGGAAGAACTCACACAATGGATTCCAGTTCTTATACCCTTTCATCAAACGGC AGTTTACCGCAAGCCTCTAGTTCTAGCAGAAGAATCATGATCAATGATCCTCGATGGAAATTTACAGATGAATCGGTAT TCCCAAAACCTCGAGATTTTATTGGTGGGCCCAAAAAATACCGGGCTGGTCGTGGAAGTAGTGTTCCGTTGGATCTGA GTGCTTACCATTAAGAATTTCGCTTACCAAAAAGAATATAACTCTTCGGATCGTATTCATGTGTTACCATTATGATTTAAG GCGTTATAGCGGGATATCATTTAGAATCCGGTAAGGCGGCATCAAGCTATCTGAATTGGGAGTTATACATCAGGACAC TAAAGATCGTCAAAAAATTTCCCCTGAATCGCGAGATGGAGATTGACGAGAGACATCAGCTCACTACCCAGGGTACCG AGGAGGAAATCGCAGCTATAAATATCACGGGTGATGGGCAAATTCCACAGTGGAACCTTAAAAGAATGAGTACGGAGA ATATTAAACTTTTGAGATTTATCTTTCTCTTCCTGTGATTTTAACCA Sclerotinia sclerotiorum, Bc_Sec31p, SS1G_06679 SEQ ID NO: 15 ATGCCTCCTCCACCTCCTCCACCACCTCCTCCTCCACCGGGATTTGGTGGTCCTCCTCCCCCTCCACCTCCTGGAGG AGCCCCAGGATCGATGCCATCAAGGCCACCTGCGAAGGTCGCTGCCAATAGAGGCGCACTTTTGTCAGATATCACAA AAGGAAGAACACTCAAAAAGGCTGTAACCAACGACAGATCGGCACCAATAGTAGGCAAAGTATCCGGTGGCTCTGGG CAAATGCCAATAGGAGGTGCTCCACCAGTACCTGGAATGGCAAAACCTCCTGGGGGTTTCGGCGCACCACCCGTACC TGGGGGAAACAGAGCTCGAAGTGACAGTGAACATGGGAACGGCGTGTCTGCAGGAATGGAACAACCTCCACAGTTAG GAGGAATTTTCGCAGGTGGCATGCCCAAGTTAAAGAAACGAGGCGGAGGAGTAGACACTGGCGCAAATCGAGATTCA TCATTCACATCAGAACCCGAATTTTCTGCGCCTAAACCACCAGGTATGGCAGCTCCTAGACCTCCAATAAATGCAGCTC CTCCGTTACCATCAGCCCGGCCTCCTCCTCAGCCCAGTCCTTCGGCACCTACATTCGCGCCATCGATTGCCAATTTGC GAAAAACTGCTGGGCCATCAATTTCTCGACCTGCTTCTTCAACTTCTCTCAAGGGACCACCACCTCCTATTGGCAAGAA ACCTCCTCCACCTCCTGGGACTCGAAAGCCATCAGCTTTATCAGCCCCACCACCGCCATCATCATTCGCACCTCCACC TCCTTCTTCGGCCCCTCCACCGCCTGCTGCACCGCCGCCACCACCTTCTCCAGCTCCGCGCCCTCCCAGTAACCCAC CTCGAGCACATGCGCCCCCTCCTCCACCAACGTCTCCACCTTCGGCTAATGGAGGTGGTCAGAGTCTTGCTATGCAA GCAGCAATTCGTGCTGCCGGTCAAGCATCACCAATGGGTGCACCCCCTCCACCGCCGCCACCCCCATCTAGTGGACC ACCCTCTATATCGTCACACAGAGCGCCATCTCCGCCTGCACCGCCAGCTGCACCAATATCAAGAAGTCAAAGTCAACA ACAAGGAAGAACTCACCCAATGGATTCTAGCTCATATACTCTATCGTCGAACGGTACCTTACCGAAAACCGCCAGCTCT GATAGGAGAGTTACAATCAACGATTCTAGATGGAAATTCACCGACGAATCAGTATTTCCCAAACCTCGGGAGTTTATTG GTGGACCCAAGAAATATCGGGCTGGCCGTGGGAGCAGTGTTCCGTTGGATCTTAGTGCTTTCCATTGA Botrytis cinerea, Bc_Gyp5p, BC1G_04258 SEQ ID NO: 16 GATATTGTACACGAGCCTCTTCCTGCATTGATTGATTGATTGCTCTTACACATATCCAGTTCATCTCCCACAAAATACCA AGCGGCCGCATTTGGATGCAACATACATACTCACTACCTTCCACTTCACCTACCTACCTACTGACTTAATATACCTTCTT GTCATCTTTGATGGCACTGAATAAAGTACCTTCCTATTAAAACTACCTCAACCAGTCCAGTCATTACTACCCACCTTACA TCTCGAGAAGCCTCCTTCCTCGATATACATTCTTCTCTTATATTAATGCAAAGATGTCGGAGCACGAACATCAAAAACAT CTTTCCGATTCTGAAGAAGATTCCATAATGGAAGAGAGAGAGGAGAAAAAGGGAAAAGACGAGATAGAGGAGAAAGA CAAAAAAGACGAGAAAGACGAGATAGAGGAGAAAGAGGAGAAAGAGGAGAAGGAGAAAGACAAAAAAGACGAGGAA GAGAGAGAGGAGAGAGAGGAGAGAGAAGAGAGAGAAGAGAGAGAGGATACAGTTGATCAGAGTTCTGATCATGAGA GTGACACCTTCGAGGATGCCAATGATGTTGAAGACATTGCAGACACTCTTACCTCCCCAGTTGAAAGGACAAGATCTTT AACGAAACGAAGATCATCATCCATTAAGAGCAATACACAAGACCTCAGTACCGATATCCCATCGGTCCCAACAGTACCA CTTCCAGAAACGAATGGCGAAACGAATGACGAACAAATAGAATCCGATAATCCACTACCTAAATCTCCCCTTTTAACAT CTCATCGCATGTCCACTACATCCCTACATAATGTGAATCTCGAAGACGGTGATGATTTTGGATCACCTCCACCACCTCC TCCCGTTTCGAAAGTAGCACCAGAAGATCAACCACCCGAATTACCTCCAAAGCCCAATACAATAATTCCAATGCAGGG CCTTTCTGGAGCCCTTCCAGATGTGCCATTCTCACCGCCCCCTCCTCCTCCTCCCGCTCCTCCCGCTCCTGCAAACCT CGCTGCGCCAGCACCTGTCACCAGAAAATTAACCAGCCCATTCTCATGGCTGTCGAGAAATACCTCGGCTCCAAAAGA GAACGTCAAGTCACCGCCATTACCTTCATCTCACGCAACCGAGCGTAGACATACCGCTTCTTCGATAGCGACCATTAG CAGCAATCCTGAAATGATGGTAAACAAATTGGAGGAGGGTAATGATACAGATGCCGCGAATGGAGTTAGACGACCTG GGAGGAATAGTTTACGGGACAGGTTTAAGCTCGTGAGAATGCGAGAAGAGGCTGGAATAACAGAATTGCCTGAAGAA AAGGATGAAGCAGGCAACACAGCATTTGGGGGTCTCATTAGGCAGAGTACAAGTCTTGGTTTGGGATTTACCGCCTCA AATGATGACAAAGACCCTTCTCCCGTATCTCCTGGTCCGCCTACGAGTCCCAACCCAATTAGTGTCAACCCTGCATTA GCCCCCGGTACGGCATCTGGAGTTTCTGCAGGCCCTTCTGCATTGGGTGAATCAGAAGCACCAGTCGATTGGGATTT GTGGCAAAATGTCGTCTGGGAAGGACCAGCTGCGGTAGCAAGAACAAGTGCAGAAGAGCTGAATCACGCTATTGCAA CTGGTATACCACATGCTATCAGAGGCGTGGTATGGCAAGTATTGGCGGAGAGTAAGAATGAAGAGCTCGAGGTTGTC TATCGGAATTTGGTCAATCGGGGCACAGACAAGGACAAGGACAGGATGAGTACATCTAGTGGGACACAAAGCAATGG ATCAATCAAGGAGATTGTGGTTTCATCAGCATCATCAATACATTCAGAGAAATCTACACCCGCTACGACAATCACCAAT GGAATGAGATCTCCTTCTCCCCCTAGTGAAAAGGATGTAGCCCAGTCTTTGGCTGAAAAGAAAAAGAAAGCTAAGGAG GATGCGGCGGCATTGACAAAACTCGAGAGAGCCATAAAGCGGGACTTGGGTGCTCGAACAAGTTATTCAAAATTCGCT GCAAGTGCTGGACTACAAGATGGATTATTCGGTTTATGCAAAGCATATGCTCTTTATGATGAAGGTGTTGGTTATGCAC AAGGCATGAATTTCTTAGTTATGCCTTTGCTTTTCAACATGCCCGAAGAAGAAGCATTCTGTCTATTAGTACGACTTATG AATCAGTATCACCTTCGAGATCTTTTTATTCAGGATATGCCAGGTCTACATAAACATCTTTATCAGTTTGAGAGATTATTA GAAGATTTTGAACCAGCATTGTATTGTCATCTCCATCGACGTCAGGTCACACCTCACTTATATGCTACGCAATGGTTCC TAACTCTTTTCGCCTATCGATTTCCATTACAGCTTGTGCTTCGAATTTACGATCTCATTTTAAGCGAGGGTCTCGAGGCT ATTCTCAAATTTGGAATTGTACTCATGCAAAAGAATGCAGCTCATCTACTCACCCTCCATGATATGGCTGCATTGACTAC GTTCCTGAAAGATCGACTTTTCGATGTTTACATTGATGCTTCACCTTCAGCAGGATCAATTCTAGAATCTGGTTTCTTTG GAAATTCAGGAGCGACTATCGATAAGGAAGTTTATCGAGCAGATCATATGATTCAAGATGCTTGTGCCGTCAAAATTAC ACCCAAAATGCTGGAAACTTACGCATTAGAATGGGAGGAAAAGACCAAGATAGAAAAGGATCGTGAAGCAGAATTAGA ACACTTGAAATCAACAAATGTCGCCCTTACACACAAAGTTCGACGTCTGGAAGAAAGAGTCGAATCTCACGATACGGA GCACGCAGCTTTGGCAACTGAACTTGTTCGGACTAAGGTCGAAAATCAAGAGATTCATGAAGAAACAGAAGTTCTTAAA GAACAAGTTAAAGAACTGAAAAAAGTAATTGATAAGCTACCGGAAGAAATTGAAGCGAAATTACAGAGTGAGATGGATA GATTGATGAAGAGAAATCAAGAAGTTCATGAAGAAAATCAAAAATTGGAGGATGAAATGAATGAAATGGAACAAAACTT GGTGGAAACAAAAATGAAATATGCTGAGATGAATGCGGCCCATGAAGCTCTAACTCGTAAATGGACGGATTTGAGAAA AGCTTTGGGTGATTAATATCGTTACTTTGAGATATCCTAAATTATTAAATACGACTTGTACAGTTCTTCTCAATTGATACC GATGCCTTTGAAGTTTTTGGGGGGTAGGGGAGAGAGGCGTAAATGCCTATATTGGGGAACGAAGGAACAATGCTCTC GTTTGGAAGCTTGCTGGATTTCTTGCTAGGTGGAGGGGATGATTGGGAATCAATCAGATTATACAGGTACTGCTGCAT TGGTACGCAAATGGTATAGGAATTGGCGTGGGTTGTAAAAGTACCGGAGAAATACTTTGGGTGCTTGCTTGTCTTGTTT CTCTCTCTTTTTTTTAGTCGTTTTAGCGAGTTGTGATGTTGGTAGGAAAGAAATTAAGAAATTATGGACGGGTAGGGGG AGTGGAGAGAGGAAGGGAGGGGGTGAAAGAGGGTGGGGGGAGGGGAAGAAATAAAAATTAAGAATAAATGATCA Sclerotinia sclerotiorum, Ss_Gyp5p, SS1G_10712 SEQ ID NO: 17 ATGTCTGATCACGAGCATCAACAGCATCATTCCGATGCAGAAAAAGATTCAATAATGGAAGAAACAGAGAAGAGGGTT GAGCAGAGTTCGGATCATGAGAGTGACATGTTCGAAGATGCCAACGATGTTGAAGACCTCACAGATACTCCTACTTCC CCAATTGAGAGAACTAGGTCTTTGACGAAACGAAGATCATCATCTATTAAGAGCAGTACACAAGATATCAGTAGCGATA TTCCATCGGTCCCAACAGTACCACTTCCAGAATCAAATGGCGAAACGAATGACGAACAATTAGAATCCGATATTCCACC ACCTAAATCCCCCCTTTTGACATCCCATCGCATGTCCGCTTCTTCCCTCCATAATGTAAATCTCGAAGACGGTGATGAT TTTGGTTCACCTCCACCACCTCCTCCACTTTCGAAAGTAGCACCAGAGGAAATGACACCTGATCAACCACCCGAATTAC CACCAAAACCCAGCATAATTACTCCAATGCAAGGTCTTTCTGGAATCCTTCCAGATGTGCCATTCTCACCGCCACCACC CCCTCCTCCTGCTCCCGCGCCTGCGAATCTTCCTGCGCCCGCACCCGTTACAAGAAAATTAACTAGTCCATTTTCATG GCTTTCAAGAAATACCTCGGCTCCAAAAGAGAACGTAAAATCGTCACCATTGCCCTCACCTCATGCGAATGAGCGAAG ACATACCGCTTCCTCGATAGCAACCGTCGGCAGCAGTTCAGAAATGATGCTAAATAAATTGGAGGAGGGCAATGAAAC AGATACCACGAATGGGGTCAGACGGCCTGGGAGGAATAGTCTGCGGGACAGATTTAAGCTCGTGAGAATGCGTGAG GAGGCCGGTATTACAGAGTTGCCTGAAGAACAGGACGAGGCAGGCAATATAGCATTTGGAGGACTCATTAGACAGAG TACAACTCTTGGTATGGGCTTTACAGGCTCTCACGACGACAAAGACCACTCACCCAACGGAGGTGTTCCACCTGCGAC TCATAACCCAGTCAGTGTCAATCCAGCATTGGCCCCAGGTACGGCGTCTGGGGTTTCTGCGGGCCCTTCTGCGATGG GTGATCCAGAAGCACCGGTCGACTGGGATTTGTGGCAGAATGTTGTGTACGAAGGGCCAGCCGCGGTAGCAAGGAC AAGTGCAGAAGAACTCAATCAAGCTATCGCAACTGGTATACCGCATGCTATCAGAGGTGTGGTATGGCAAGTTTTGGC AGAAAGTAAGAACGAAGAGCTCGAGGTTCTCTATAGAAGCTTGGTAAATCGAGGTACAGACAAGGACAAGGACAGGAT GAGTACATCTAGCGGAGTACAAAGCAATGGATCAATAAAGGAGACTGTGGTTTCATCGGCATCGTCGATACATTCCGA GAAATCTACCCCGGCAACTACTGTCACCAATGGAATGAGATCTCCCTCTCCGCCGAGCGAGAAAGATGTAGCATTGTC GTTAGCTGAGAAGAAAAAGAAAGCGAAGGAAGATGCAGCGGCTCTGACAAAACTCGAGAGAGCCATCAAGCGAGACT TGGGTGCTCGAACGAGTTATTCAAAATTTGCTGCAAGTGCTGGACTTCAAGATGGATTATTCGGTTTATGCAAGGCATA TGCTCTTTATGATGAAGGTGTTGGCTACGCGCAAGGCATGAACTTTTTAGTTATGCCTCTGCTGTTTAACATGCCTGAA GAAGAAGCATTCTGTCTATTAGTACGACTTATGAATCAGTATCACCTTAGAGATCTTTTTATTCAGGATATGCCAGGTCT TCATAAGCATCTTTATCAATTCGAGAGATTATTAGAAGATTTCGAACCGGCGTTGTATTGCCACCTCCATCGACGTCAA GTTACACCTCATTTATACGCAACACAATGGTTCCTTACTCTTTTCGCCTATCGTTTCCCATTACAACTTGTGCTTCGAATT TATGATCTCATTCTTAGCGAAGGTCTTGAGGCAATTCTTAAATTTGGCATCGTACTCATGCAAAAGAATGCGGCCCACC TTCTTACACTCACTGATATGGCTGCATTAACCACATTCCTTAAGGATCGACTTTTCGATGTTTATATTGATGCTTCTCCTT CAGCAGGATCAATACTGGAAAATGGTTTCTTCGGAAATTCTGGTGCGAGTATTGATAAAGAAGTTTATCGAGCGGATCA TATGATTCAAGATGCTTGTGCTGTCAAGATAACTCCAAAGATGTTAGAAACGTACGCATTAGAATGGGAAGAAAAAACC AAATTGGAGAAAGAACGAGAAGCAGAGTTAGAAAACTTAAATTGACGAATATCTCTCTCACACACAAAGTTCGACGTCT AGAAGAAAGAGTCGAATCTCATGATACCGAGCACGCGGCCTTGGCTACTGAGCTTGTTCGTACTAAAGTCGAAAATCA GGAAATTCATGAAGAGATCGAGACTTTGAGGGAACAAGTTAAGGAGTTAAAAAATGTGATTGAAAAGCAACCTGACGA AATCGAAGCAAAATTACAGAGTGAGATGGATCGATTAATGAAGAGAAATCAAGAAGTACATGAAGAAAATCAAAAACTC GAGGATGAAATGAATGAAATGGAACAAAATTTGGTGGAAACAAAGATGAAATACGCCGAGATTAATGCAGCTCATGAA GCTTTGAATCGGAAATGGACGGATTTGAGGAAAGCATTGGGCGATTAA Botrytis cinerea, Bc_Pan1p, BC1G_09414 SEQ ID NO: 18 GGCTTCAATTGACGTTGAAACATGAATGCTGAATGATGATACGATACACTTTACTTCAGCCCCTTTAACATTTTGTCGCA AAATCGGTGAAACTTGGGTTGTATGTATTTGTATATTAAAGATCGCTAAGCCCAGCCTCTATGGTAACAGATTACCTGA GCTTCGTCATTTCGACCCCCGGACCGTGATCTTCTACCAACCTCGAACCCATTCCTTCAAATAAATGTCACAAATCTAT CTTTCTTCATACCTATTTCTTTTTTGTTCATACTCATAATGTTTTCGGGTTCGAACTCGTACCTTGGTGGTAACACCGGC CGCCAACCACCACAGCAACCGCAACAACAATATGGTGGTTTCCAGCCAAACCAAGGTTTCCAACCACAGCAGACTGGT TTCCAGCCACAACAGACTGGTTTTCAACCTCAACCCACAGGATATGGTAATGCGGCTCCTTTACAACCCAATTTCACCG GTTATCCACTTCAACCACAGCCTACGGGATATTCTCAGCCCTCTCAAGCAGGCTTCCCTGGAGGCCAGCAGCAACAG CAGCAGTTCAACAATGCTCCTCAACAGCAGAACTTCCAAACGGGAGCTCCCCCAATCCCGCAGATTCCGCAGCAATTC CAGCAGCCTCAACAAACGCAACAGGCTCAACCACCTCCTGCACCTCCTGTGCAGCAACCGCAAGCGACCGGATTTGC TGCAATGGCAGATTCATTTAAACCTGCTGCTGCAGAGCCATCGAAGCCAAGAGGACGCAGAGCCTCCAAGGGGGGAG CAAAGATACCTAGTATACGACTTTCCTTCATTACAGCCCAAGATCAAGCAAAGTTCGAAACTCTTTTCAAATCCGCTGTT GGGGATGGGCAAACACTTTCTGGGGAGAAATCGAGGGATCTTTTACTACGCTCAAAACTAGACGGGAACTCACTGTC GCAAATATGGACGCTCGCAGACACTACAAGATCTGGACAGCTACATTTTCCCGAATTCGCATTGGCTATGTACCTCTGT AATCTCAAGCTAGTCGGCAAGCAGTTACCATCCGTGCTTCCCGATGTTATCAAAAATGAAGTTTCTAGCATGGTGGATA TCATAAACTTCGCTATAGATGATGATGCACCAGCGGCAACGAATGCGCCCAGTTTTGATGGTCGACAAAACACCGCGA CACCTCCGACTATCCAACAACCACAGCCAATGGCGTCTAATTCCGCCCTTCTCACTGCGCAAATGACAGGTTACCCTG GACAGCAGAATAACTTTTCGGGTGGATTTCAACCACAACAAACAGGCTTCCAGGGCCAAATGCAAACTGGCTTTTCTG GACAGCAAGGCGGATTGCAACCTCAGCCAACTGGATATAATCAGATGTCAAACCCTCAAGCAACGGGCTATAATGGAC CGCGCCCTCCAATGCCTCCTATGCCATCTAACTTCAGTTCTCATTTATCTCCGGCTCAGACGGGTATGCAAGGTGGAA TGATCGCGCCATTGAATAGCCAGCCTACAGGAGTCGATGGCCAATGGGGCTTGGTAAATGCGCCAGCCCCCAATATC GATCTATTACATTCCCGGATGATGCCGCAACAGGGTCGAGAACAAGGCAACTTCACCACGGCTGGTATAACAGGCAAT GCTGAAATTCCATGGGGAATTACGAAAGACGAGAAGACCAGATATGATTCCGTTTTCAAAGCTTGGGATGGGTTTGGT AAAGGATATATTAGCGGTGATGTCGCTATTGAAGTTTTTGGGCAGAGTGGTCTCCCGAAGCCTGACCTGGAGCGCGTA TGGACCTTAGCAGATCACGGCAACAAGGGAAAGCTCAACATGGATGAATTCGCGGTTGCCATGCATTTGATTTATCGA AAGCTTAATGGATATCCTCTACCAGCCCAACTACCTCCGGCGCTCATACCCCCTTCCACTCGTAACTTCAATGATTCGA TTGGGGCTGTCAAATCTTTACTTCATCAAGAATCTAATTTCCGCAAGAACTCTGGTGCTACCCTTTTGCCACAAAAGACT GGAGTGAGCTACCTCAAAAATCATTCTTTCCGTGGTGATGCTACCCCAGGTCGCACAGGCCGTAAAGACGCTACAGTA TACAAAAATAACGACGATGATGTTGGGTATAAATCTAGTGCTCGTCGCAGACTCGGGGCCTCTTCTCCACGACCTTCG TCTCCGGGATCAACAACTTCCAACGATGACCTTTCACTAGACCAGCTTAGAAAGAAAATCGCGGAGAGACAAGTGATA CTGGATGCAATTGATTTCAAGGCCGAAAATGCTGCAGATGAAGATGATGCTCTTGATCGTAAAGATCGTCGTGAAGCA GAGGATCTTTATCACCGCATTCGTCGTATTCAAGAGGATATCGATGCGCATCCAGACGCATCGTTGCGTAATGTTGATT CCGGCGCCGAGCGTCGTGCTTTGAAAAGACAGTTGCAGACATTGACAGATAAACTTCCAGATATTGCTTCGCGTGTCC GAAGAACGGAAAGAAGCATTGCTGATGCCAAGCTTGAACTATTCCGTCTAAAGGATGCCAAAGCTCACCCTGGAAGTG CCTCTAGCATTGTTGGAACTGGTCCTGGCGGCGCTATCACCGAATCAGATAGACTCAAAGCAAGAGCCAAGGCTATGA TGCAACAACGTTCTGCTGCTCTCACTGGTAAGAAGATTGAGGCGAGTAATGATGACTTGGATGCGCCAAAACGCCTCG AAGAAGAAAATCTCAAGATTCGAACTGAGAAGGAAAACAACGAGCGCATGGTTCAAGATGTTGAAGAGAGTGTCCGTG ACTTTTCACGAGGACTGGAGGATAGTCTCAAAGATGGTGGTGAGAGCTCGTCCAGTGAGCATGAGAAGAGACGTTGG GAGGATGGGCTAGGTGTTGAGGATGAAGTGAAGGACTTCATCTTCGATTTGCAAAGGAGCAGCAGGAGTGCCAGAGT TCGAACTGATGATCGCAGCAGAGAGACTCCTCGTACTGAAGCGTCTCATGCTAGCCCTGCTCCAGCAGCTCGTAGCG AAACTCCATCGTCACAGCCATCATCTACACCAACCCCTGCTGGAGGTTCATACTCACAATACAAGACTCCTGAAGATAG AGCAGCTTATATCAAGCAACAGGCCGAGAAGCGCATGGCTGAACGTCTAGCTGCTCTTGGTATCAAGGCACCATCTAA ATCTGGAGAAACAACACAACAGAGACTGGAACGTGAAAAGAATGAGCGTGCAGCCAAACTCAGACAAGCAGAAGAGG AAGATGCTAAACGTGAAGCTGAGAGGCAAGCTAGGATCGCTGAAGAGCAGGGTGCACCACCACCTGCCCCCGAGCA ACCAAAGGAAACCGCGAAAAAGCCACCTCCACCCCCTTCAAGGAAGGCCGCAAGAAGTGACGCTAGTGAGCGCAAG GCCGAAGAGGAGAGAATCATTAACGAGCAAAAGGCACAAATTATTGCCACAAATGAGCTAGAGGACGATGCTCAACGA CAAGAGGCCGAGCTTGCAAAGGAACGCGAGGCGGCTCAGGCTCGTGTCAAGGCCTTGGAAGACCAAATGAAGGCCG GGAAATTGAAGAAAGAAGAGGAGAAAAAGAAGAGAAAGGCTCTCCAAGCTGAGACCAAACAACAAGAAGCTCGTCTC GCAGCTCAACGCGCAGAGATTGAAGCCGCACAAGCACGTGAGCGAGAATTGCAACGTCAACTTGAAGCTATTGACGA TTCAGATTCATCTGATGATGACGAAGGTCCTGAGCAAGTTACCCCTCAAGCATCAACGCCCACTCAAGGAAGTCAAGA GCTTGAGCGCAAAGAACCTTCTCCACCACCTCCTCCACCTTCAATTCCAGTTGTTGTATCACCAGTCCCTGCTATTGCA ACAACAACTAGTCTTCCATCACCAACCCCACAAGTTACTAGCCCTGTTGTCAGCCCTCCAGTCGATACAGAGACCCGC AATCCTTTCTTGAAGAAAATGGCCCAATCCGGTGACGCATCTACCGCATCTACTGCATCTAACAATCCATTCCATCGTC TTCCTGCTCAAGAGCTTTCTACACCTGCACCAATTCAAGTTCAACCAACAGGTAACAGGCCATCTCGTGTTCGTCCAGA AGAAGATGATTGGGATGTCGTCGGATCTGACAAAGAGGATGATTCCTCTGACGATGAAGGACCAGGTGCAGGTGGTG CGCGTCATTTGGCATCGATCCTTTTCGGAACCATGGCACCTCCTCGCCCATTGTCATCCATGGGTAACGAAGCTACAT CTGCGCCTGAATCTCCTGCTGTAGCATCTCCACCAGCGGCAACCCCCCCACCTCCACCAGTACCTAACTTCAATGCAC CGCCACCTCCTCCAATGCCATCAGCCGGTGCGCCAGGTGGTCCTCCACCACCACCTCCTCCTCCACCAGGGATGGG TGCTCCACCTCCACCACCAATGCCACCAATGGGAGGCGCTCCTGCTCCACCAGCAGGTGTACGACCAGCTGGTCTCT TGGGTGAAATCCAGATGGGGCGATCGTTGAAAAAGACACAAACTAAAGACAAGAGTTCAGCTGCTGTTGCTGGAAGG GTTTTGGATTAAATACCTTTCAAATCATTGAGAAGAGACAAGATGAAATGGAGGTTTGTGGTTAGCGAGCCTAAGAACA TGGATTGTATTATAAATTACTTTTGGTTCATAGTATTGGGCAAGGGGGCTTAGGTGTGGAAGGTGCGAAACAGGAAAG ATAAGAGACGAGCATAATTTGTAGTCGAAGTAGCAATTTGAAAATATTCGTTCGTTTTGATAGTCATTTGATGCACTTAT CACCA Sclerotinia sclerotiorum, Ss_Pan1p, SS1G_05987 SEQ ID NO: 19 ATGTTTTCGGGTTCGAACTCGTATCTAGGTGGTAATAGTGGCCGGCAACCGCCACAACAACAACCACAGCAACAGCAA CAGTATGGCGGTTTTCAGCCAAATCAAGGTTTCCAACCACAACAGACTGGCTTCCAGCCACAACAGACTGGTTTCCAA CCTCAACCCACTGGGTACGGAAACGTCGCTCCTTTGCAACCCAATTTCACAGGTTATCCTCTTCAAGCACAACCTACA GGATATTCTCAGCCGCCTCAATCAGGGTTTCCCGGAGGCCAGCAGCAGTTCAACAATGCTCCTCAACAGCAGAGCTT CCAGACGGGAGCTCCGCCAATGCCGCAGATTCCACAACAATTCCAGCAGCAGCCTCAACAAATACAGCAAGCCCAGC CATCTCCAGCAGCTCCCGTGCAGCAACCGCAAGCCACGGGATTTGCAGCGATGGCAGATTCATTCAAATCTGCTTCA GAACCATCGAAGCCAAGAGGACGCAGAGCCTCTAAGGGTGGAGCAAAGATACCCAGTATAAGACTTTCGTTCATTACA GCCCAAGATCAAGCGAAGTTTGAAACCCTTTTCAAGTCCGCAGTCGGAGACGGCCAAACATTGTCTGGCGAGAAATC GAGGGATCTCTTACTGCGCTCAAAGTTAGATGGGAACTCATTGTCGCAAATATGGACGCTCGCAGACACTACAAGATC TGGACAATTACATTTCCCCGAGTTCGCATTGGCAATGTACCTTTGCAATCTTAAGCTCGTCGGCAAGTCACTACCCTCG GTACTTCCCGATCAGATCAAGAATGAAGTTTCTAGCATGGTAGATATCATAAATTTTGCTATAGAAGATGATGGGCCAG CAGGAACGAATGCGCCGAGTTTTGATAGTCGACAGAGTACTGCAACGCCTCCGACTATCCAGCAGCCACAGCCAATG CCGTCAAATTCTGCTTTACTCACTGCGCAAATGACTGGTTTCCCTGGACAGCAAAATAACTTCTCCGGTGGGTTTCAAT CGCAACCGACAGGTTTCCAGAGCTCAATGCAAACTGGCTTTCCTGGGCAGCAAGGAGGATTGCAGCCTCAGCCAACT GGATTCAGTCAGAATATGTCAAACCCTCAAGCAACGGGATATACTGGACCGCGCCCTCCAATGCCCCCTATGCCATCA AACTTCAGTTCCAATCTGTCTCCTGCTCAGACGGGTATGCAAGGCGGCATGATTGCTCCGCTGAATAGCCAACCTACA GGAGTCCCAGGTCAATGGGGATTGGTCAATGCGCCTGCAACTGGTTTGCCTAACATCGATCTACTACAATCTCGGATG ATGCCGCAGCAAGGCCGAGAACAAGGCAATTTTACTACAGCTGGCATAACAGGCAATGCCGTCATTCCATGGGCAGT TACAAAGGAAGAGAAGACTAGGTACGATTCCGTCTTCAAAGCTTGGGATGGATTTGGAAAAGGATTCATTGGTGGTGA TGTCGCTATCGAGGTCTTCGGGCAGAGTGGCCTTGAAAAGCCCGACTTGGAACGCATCTGGACCTTATCGGATCACG GCAACAAGGGAAAGCTTAACATGGATGAATTTGCGGTTGCCATGCATTTGATCTATCGAAAGCTTAATGGATATCCTCT ACCAGCTCAATTACCTCCCGAGCTTGTACCCCCCTCCACTCGTAACTTCAATGATTCAATTGGAGCCGTCAAATCGTTG CTTCATCAAGAATCAGATTTCCGAAAGAATTCTGGCGCGACACTTTTGCCCCAAAAGACTGGACTGAAGAAGAAAGTCA GAGAGAAGCAAGTGTTATTGGACGCGATTGATTTCAAGGACGAAAATGCTGCGGATGAAGACGATGCCCTTGATCGTA AGGATCGTCGTGAAGCAGAAGATTTGTATCGTCGCATTCGTCGTATCCAAGAGGACATTGATGCGCACCCAGACGCTT CATTGCGTAACGTTGACTCCGGCGCCGAGCGTCGTGCCATGAAGAGACAGTTGCAGACATTGACAGATAAACTTCCG GATATTGCGTCGCGTGTTCGACGAACAGAAAGAAGCATTGCCGATGCAAAGCTTGAACTCTTTCGTCTAAAGGATGCA AAAGCTCACCCTGGAAGTGCTTCCAGCATTGTTGGAACTGGTCCAGGTGGCGCGGTTACCGAATCAGATAGACTCAAA GCAAGAGCTAAGGCCATGATGCAACAACGCTCTGCTGCTCTCACTGGCAAGAAGATTGAGATAAGTAATGATGATTTG GATGCACCAAAACGCCTCGAGGAAGAAAACCTTAAGATCAGAACCGAGAAGGAAAATAATGAGCGAATGGTTCAAGAT GTCGAAGAAAGTGTCCGCGATTTTTCACGGGGTCTGGAGGATAGTCTCAAAGATGGTGGCGAGAGTTCATCTAGCGA GCATGAAAAAAGACGCTGGGAGGATGGGCTCGGTGTTGAAGATGAAGTCAAGGACTTCATCTTTGATTTGCAAAGGAG CAGTAGAAGTGCAAAAGTTAGGACTGACGATCGCAGTAGGGAGGCTCCCACTGAGACGTCTCGTGTTAGCTCCGCTC CAGCAGCTCGTAGTGAAACTCCATCGTCGCAGCCTTCATCTACACCAACCCCTTCTGCAGGTACATATTCACAATATAA GACAGCAGAAGATAGAGCAGCGTACATCAAGCAACAGGCAGAGCAGCGCATGGCTGAGCGTCTAGCTGCTCTTGGC ATTAGGGCACCTTCTAAACCTGGAGAGACAACACAACAGAGATTGGAGCGTGAGAAGAATGAGCGTGCTGCTAAACTC AAGCAAGCGGAAGAGGAAGATGCTAGACGTGAGGCCGAAAGGCAAGCTAGAATTGCTGAAGAGCAGGGAGTGGCCC CACATACACCGGATCAACCAAAAGAAATTACGAAAAAGCCACCTCCGCCGCCTTCGAGGAAGGCTGCAAGAAGCGAC GCTAGTGAACGTAAATTCGAAGAGGATAGAATCCTCAAGGAGCAAAAGTCACAAATTATTGCCACAAATGAGCTAGAG GACGATGCTCAACGACAAGAAAATGAGCTTGCAAAAGAGCGCGAGGCAGCTCAAGCTCGTGTGAAGGCATTGGAAGA GCAAATGAAGGCTGGGAAATTGAAGAAAGAAGAGGAAAAGAAGAAGAGAAAGGCTCTACAAGCCGAGACGAAGCAAC AAGAAGCTCGTCTTGCAGCTCAACGTGCGGAGATCGAAGCCGCCCAAGCACGTGAGCGGGAATTGCAACGTCAACTG GAAGCTATTGATGATTCAGACTCATCAGATGATGATGAAGGTCCAGAGCAAGTTACTCCTCAAGCGTCAACACCAACTC AGGGGAGCCAAGAATTTGAGCGCAAAGAAGCCTCTCCACCCCCTCCTCCTCCCTCAGTCCCAGTCATTGTATCACCC GTCCCTGCGGCAGCAACAACAACCAGCCTTCCCCCACCAACCCCACAAGTTACTAGCCCTGTTGTCAGCCCTCCAGC TGAAACAGAAACCCGCAATCCTTTCCTGAAGAAAATGGCTCAATCTGGTGATGCTTCTGCCGCATCTACTGCATCTAAC AACCCATTCCATCGTCTTCCTTCTCAAGAACTTCCCGCTCCTGCGCCAATTCAGGTTCAGCCAACAGGTAACAGACCAT CTCGTGTCCGTCCAGAAGAGGATGATTGGGACGTTGTTGGATCTGACAAGGAGGATGATTCCTCTGATGATGAAGGA CCTGGTGCAGGCGGCGCGCGTCACTTGGCATCGATTCTTTTTGGAACCATGGGACCTCCTCGTCCTTTGTCGGCTAT GGGCAACGAAGCTACATCCGCACCTCATTCGCCTGCTGCGGCATCTCCACCAGTGGCATCTCCACCACCTCCACCAC CCATGCCATCAGCCGGTGCACCAGGCGGTCCACCTCCACCACCTCCTCCTCCGCCACCAGGAATGGGTGCTCCACC TCCACCACCAATGCCTCCCATGGGAGGGGCTCCTGCGGCCCCACCTGCGGGTGGACGACCAGCTGGATTCTTGGGT GAAATCCAGATGGGGAAAGCTTTGAAGAAGACACAAACTAAGGACAAGAGTGCAGCTGCTACGGCTGGGCGAGTTTT GGATTAA Botrytis cinerea, Bc_Srv2p, BC1G_14507 SEQ ID NO: 20 GGGTGTGGGTGTAGATGAATTAAATGAAGAACATCAGCGTTCCAAGGTAATCCGTATCCATCATATCACATCACATCTC TTCACATCACTCCAATATTCTCTCTTCTATCCTCTCTCTCTCTCTCTCTCCCTCTCCCTCTCTGTCTTCCTCCCCCTCGC CGTCGTCGCTTCATTGTAGGAGACCTCTTTCTCGTCGCTCCATACCAGTCCCGCAAATCGATAGCTTCTTCCATTTGCC TGCTAATTACCATTCCATATTACATTATTTATATGCGTAATTAGCAACCTTTTGCCTCCTTCCCCTTGCATTAGCACCACG AAACATCGAGAACCAGACAGCTCCATTCCCTCAAACAACCTCCTATTCGATCGATCATTCCTTCTTCAACAAGACTTTG GAACAACTACTGCACTTCAATATGTCTCAACAACCTGAAGCTGTAAATAATATGCATAATTTGACTACGCTCATAAAACG ACTCGAAGCCGCAACCTCTCGTCTTGAAGATATAGCTTCCTCTACCATTCCACCACCTGCTTCATCATCCATCCCTCTA ATTTCTCCTCCGGCCGAAGCTGCGAAAACAAATGGCACAACTCCGCCGCCGCCAACGATCCAAACACCAGATATCAAA AAGATCATCGAGGATCCAATCCCAGGAGTAGTCTCAGAGTTCGATAATTTTATTCAGGGGGCGGTTAAGAAATATGTTA ACTTGAGTGATGAGATTGGAGGGGTTGTTGCGCAGCAGGCATCTAGTGTATTGAAGGCATATGTCGGACAACGAAGAT ATATTTTGATCACTACAAAGTCAAAGAAACCTGGCATGCAAGATGAACCATTCCAAAAGCTCATCAAACCTCTTCAGGAT TCATTTACTGCCGTTGATGATATCCGAAAGTCCAATCGTGCATCTCCATTCTTCAATCATCTCAGTGCTGTTTCTGAAAG TATTGGTGTACTTGCCTGGGTTACAATGGACAACAAACCATTTAAACATGTCGATGAATCATTGGGATCTGCTCAATATT ACGGAAACAGAGTATTGAAGGAATTTAAGGAGAAAGACCCAAAACAAGTCGAATGGATTCAAGCATTCTATCAAATCTT TAAAGATCTCAGCGAATATGCTAAGGATAACTTCCCAAACGGTATTCCATGGAATCCAAAGGGTGAAGATTTGGAAGTT GCGATTAAGGATGTAGATGAAAAGGCTCCAGCCCCTCCTGCTCCTCATCCAAAGGCTGCAACTGCTGGAGGTGCCGC ACCACCACCACCCCCTCCACCTCCTCCTCCACCAGTCTTCGATGACATTCCATCAAAGCCAGCACCAAACCAAGCAGA TTCAGGTGCTGGACTAGGAGCCGTTTTCTCTGAACTGAATAAAGGAGCAGACGTTACAAAAGGATTGCGCAAAGTGAA TGCTGATCAAATGACACATAAAAATCCTTCTTTGAGAGCAGGTGCTACAGTTCCCACCAGAAGTGATAGTCAATCCAGT ATTAATTCGAACCGAGGAAAGAGTCCTGCTCCTGGTAAAAAGCCCAAGCCAGAGAGTATGAGAACTAAGAAACCCCCT GTTAAAAAATTGGAGGGTAACAAGTGGTTTATTGAAAACTACGAAAACGAGTCTGAGCCAATCACAATTGAAGCATCTA TTTCACACTCGATCCTCATTTCCCGCTGCTCAAAAACCACTATTATCATTAAAGGAAAAGCAAACGCTATTTCTATTGAC AACTCCCCTCGTCTTGCCTTGGTAATTGATAGTCTCGTCTCATCGATTGATGTTATCAAAGCACCAAACTTCGCACTTCA AGTACTGGGCACATTGCCAACGATTATGATGGATCAAGTTGATGGTGCTCAAATTTACTTGGGGAAGGAGAGTTTGAA CACGGAAGTCTTCACGAGTAAATGTAGTAGTGTCAATGTGCTACTTCCAGATTTGGAGAGTGCAGACGGGGAAGGAGA TTACAAGGAGGTGCCGTTGCCCGAACAGTTGAGGACTTGGGTGGAGAATGGAAAGGTCAAGAGTGAGATTGTTGAAC ATGCTGGATAGATTGGTTGAGATGGATTGTGGAGTTTGGGGAGAGGCTCTGGCGAAAACTTGTTGGGGGTGAGGGGT AATGAGATGTGATGGAGAATCTGGGTAGATTTGATATTATAGAGATAGTTGAGTGAAGTTTTATATCATCGCATGTTAGT TGAAGTTTTCAGGCAGAGTAGAAGTCAAAGTTGAATTGTACATATCTATGTATATGTATATCCGAGGCTTGTCTCGCTTT GTTGTTTAGTAGATTTCAAACCGAAGATTTTCTACTCATCATATCGTGCCGTGTGTTTTATATTGGGCGATGTGTCGTTG TGCTTTTTCTCTCTCTATCTCTTTTACTTTCAGGGAAATAAATATA Sclerotinia sclerotiorum, Ss_Srv2p, SS1G_13327 SEQ ID NO: 21 ATGGCTACAAATAATATGCATAATTTGACGACGCTCATAAAACGACTCGAAGCCGCGACCTCACGCTTAGAAGATATAG CCTCATCAACTATTCCCCCTCCCAGTACTCCCAAAACAAATGGTACAACAAGCGTCGCATCTCCTACCGTACAAGCCG CTACTCCTACAGTTGTAGCCCCGACTATTCAAACCATTATCGAAGATCCAGTTCCTGAATCAATCAGCGAATTCGATGC TCTAATTCAGGGGCCTGTGAAGAAATATGTTAATCTTAGTGATGAGATTGGTGGGGTCGTTGCGGAACAGGCATCCGG TGTATTGAAAGCATTTGTCGGGCAGCGAAGATACATTTTAATTACCACGAAGTCGAAGAAACCCGCTATGCAAGATGAA CCATTCAAAAAACTCATCAAACCTACTCAAGATTCATTCTCTGCTGTTGACAAAATTCGAAAGTCTAATCGTGATTCACC GTATTTCATTAATCTCAGTGTTGTTTCGGAAAGTATTGGTGTACTTGCTTGGGTTACAATGGATAATAAACCATATAAAC ATGTTGATGAATCATTGGCATCGGCTCAATACTTTGGAAATAGATTATTGAAGGAATTCAAGGAGAAAGATCCCAAACA AGTTGAATGGCTTCAAGCATTTTATCAAATCTTCAAAGAACTTAGCGAATATGCTAAGAATAACTACCCAAATGGTATTC CGTGGAATCCGAAGGGAGCAGATTTAGAAGATGCTATCAACGAAGTAGATTCGAACGCTCCAGCCCCTCCTGCTCCTC ACCCAACAGCGACTAGTGGAGGAGCCGCGGCACCACCACCACCTCCTCCTCCTCCTCCTCCACCAGTTTTCGACGAC ATTCCAACAAAATCTGCACCAAAGCCAGGAGATGCAAGTGCTGGACTAGGAGCTGTTTTCTCTGAGTTGAATAAGGGA GCAGATGTTACGAAGGGATTGCGCAAAGTCAATGCTGAACAAATGACACATAAGAATCCATCTTTAAGAGCAGGTGCT ACTGTTCCTACTAGAAGTGATAGTCAATCTAGTATTAGTTCGAACCGTGGAAAGAGTCCTGCTCCTGGTAAGAAACCTA AGCCAGAGAGTATGAGAACTAAGAAACCTCCTGTTAAGAAGTTGGAGGGTAACAAGTGGTTTATTGAGAACTACGAAA ATGAATCATCGCCAATTGAAATCGAAGCTTCAATTTCGCATTCGATCCTCATTTCCCGTTGCTCAAAAACTACAATCATG ATTAAAGGAAAAGCAAACGCCATTTCCATTGATAATTCCCCTCGTCTTTCCCTAATTATCGAGAGTCTCGTTTCATCAAT TGATGTTATTAAAGCACAAAGTTTTGCGCTTCAGGTATTGGGGACATTGCCAACAATTATGATGGATCAGGTTGATGGT GCACAAATTTACCTTGGGAAGGAAAGTTTGAACACGGAAGTTTTCACGAGTAAATGTAGTAGTGTTAATGTACTATTAC CGGATCTGGAAAGTGAAGAGGGTGAGGGTGATTACAAGGAGGTGCCATTGCCGGAGCAATTGAGGACTTGGATTGAA GATGGGAAGGTTAGAAGTGAGATTGTGGAACATGCCGGTTAG BC1G_10728 SEQ ID NO: 22 GACACATGCGATATGCAAAGTCTAGAACCTCGAATACTGATTCGAAAAAGACTGGCAATTCCATAAATCTACAGTATATT TTAATCCGCAACTCATGAATGACTACATTTAATACGAATTACAAACATTCCCTAACGCCAAAATGGCAGCTACGATTCCC CTCTCCACTACAACATGCTTGACCTCCTCAGAAGCTTTCAAATATCCTCTTCCACAGATTCGTCAATTCCACCGCGATCT CACTACAGAGCTTGACGAGAAAAATGCACGTCTGCGGACACTGGTCGGAGGGAGTTATAGACAATTACTTGGAACCG CCGAGCAAATCTTACAGATGCGACAGGATATTAGTGGAGTAGAGGAAAAGTTAGGCAAAGTAGGAGAAGGATGTGGG AGAAATGTGTTGGTTGGAATGGTTGGCGGATTGGGAAAATTACAGGGAGAAATGAAGAATGGAAAGAAGGGCGAGGA AATGCGGGTTGTGGCTAAGATGAAGGTATTGGGTATGTGTGGGATTGTGGTTGGGAAGCTCTTGAGGAGACCAGGGC GAATGGATGGGGATGGTGGGAGAGGGAAGGAATTAGTAGTTGCTGCGAAAGTCTTAGTTTTGAGCCGATTGTTGGCG AAGAGCTTGGAGAATACTGGAGATAAGGAATTCGTTGAAGAAGCGAAGAAGAAGAGGTCGGCTTTGACGAAGCGATT GTTACGCGCAGTTGAAAAGACATTGGTTTCCGTCAAGGATGCTGAAGATAGAGACGATTTGGTACAGACACTTTGTGC ATACAGTCTAGCTACTAGTTCTGGCACCAAAGACGTCTTGCGACATTTCTTAAATGTTCGTGGTGAAGCAATGGCTTTA GCGTTTGACGATGAAGAGGAGTCGAACAAGCAGACCTCAGGTGTCCTACGCGCTTTGGAAATATATACGAGAACTTTA CTAGATGTACAGGCTCTAGTGCCAAGGAGGCTGAGCGAAGCGTTGGCTGTGCTGAAGACGAAACCTTTACTGAAAGA TGACAGCATTCGGGAAATGGAGGGATTGAGGTTGGATGTATGTGAGCGGTGGTTTGGCGATGAGATTATTTACTTCAC ACCTTATGTCCGGCATGATGATTTGGAAGGGTCATTGGCGGTTGAAACACTACGAGGTTGGGCGAAGAAAGCGTCAG AAGTGTTACTGGAAGGTTTTACGAAGACTCTTCAAGGGGGATTAGACTTTAAAGTAGTTGTTGAACTACGAACAAAGAT TCTGGAGGTGTGGGTTAGAGATGGAGGCAAAGCAAGGGGATTCGATCCCTCTATACTTCTAAATGGCTTACGAGACGT TATAAACAAACGACTCGTAGAGTTATTAGAAACTAGAGTTGGCAAACTTCATCTAGTGGGGACAGAGATAGAGTCCACA TTAGCAACATGGCAAGAAGGAATCACCGACATACATGCAAGTCTTTGGGACGAAGATATGATGGCAACCGAGCTCAGC AATGGTGGTAACATTTTCAAGCAAGACATACTTGCTCGCACGTTCGGACGGAACGATGCTGTTTCAAGAGTTGTTAACA GTTTTCACACTTGGAGACATCTCATCGAGGAAATTGGTACTTATATTGATGAACTGAAGAAACAAAGATGGGATGATGA TTTGGAAGATATGGAAGATGATGAAAGTCTCGAATCACGACAAAACCTTCTTAGCAAGGAAGATCCACAAATGCTACAA GATCATCTCGATTCAAGCTTAGAAAATTCGTTCCAGGAGTTACACGCAAAGATCACTTCACTGGTGGACCAGCAAAAAG ATAGTAAACATATCGGGAAAATATCGATATATATTCTCCGAATTCTACGAGATATCAGAGCAGAATTACCTAGTAACCCT GCACTACAAAAGTTTGGACTCTCACTTGTCTCATCACTGCACGAAAATCTCGCAGGTATGGTCTCAGAAAACGCCATCT TAGCCCTTGCAAAATCTCTCAAGAAGAAGAAGGTTGCGGGCAGAGCATTATGGGAGGGTACACCGGAACTTCCTGTTC AGCCCTCCCCAGCAACATTCAAATTTTTGAGAGGTTTATCGACTGCTATGGCTGATGCTGGAGCCGATCTATGGAGCC CTGTTGCCGTCAAAGTGTTGAAAGCGCGTCTGGACACCCAAGTTGAAGACCAATGGAGTAAGGCTCTAAAAGAAAAAG AGGAAGAGCCTAGCAATGGAATCTCTGGTTCTCCCACCAATGCTCCCGAAGCAGATGCCGAGGAAAAAGAAGGGGAC GCTTCTGCTCCTAATCCTGCTGCTGCTGTAGAAGTAGATGAAGAAAAACAAAAGGATTTACTAAAGCAATCACTGTTCG ATATATCTGTCTTGCAGCAAGCTTTAGAATCACAGTCAGACAATAAGGAGAACAAACTTAAGAACTTAGCGGATGAGGT GGGAGGAAAACTAGATCTCGAGGCGAGGGAAAGGAAACGTATGGTTAATGGCGCGGCGGAGTATTGGAAGAGGTGC AGTCTTTTGTTTGGACTTTTAGCGTAGATTCCAGATGGATGAATTAGTGAGAGGCTTATAATGAATTATATTACGAATAC TTTACTTTTGAGTATTCA BC1G_10508 SEQ ID NO: 23 GCAGGGGTCGGATCAACATGTCTATAAACAAACATATGTACCGGCGTTGATCTCTCCTGCAGACTGCATTTGCACTTG CTTCCCTCTTCCTCCTCCCGTTTCCTGGTCTTCTTCTACAAGCTGCAGGCGAGAGAGATAACTTCTACGCACCTTCCAT ATCCCTCACCTCTTCTCTCCCCACAAGTTCGTTCATAATCCTTTCGTCCTGTTGTTTTGTCTAGCATTACCTTGCAATTCT TAACAACGGCCGATCGTGGACATCAATCAATAAAAAGGACGACAAATCATCTTATAATTATTATCCCAAACTTTCATTGC ACAAATTTGAATTGGATACTCATTTGGCTTTATTCGGAGCGATAAACGTAGAAATTAATCGTATAGGGGCTTTTATCAGA CAATCAAGAACGGTGATTGGCTCACAGCGGTGAATTGTGAGGGGTGGTAATACAGAAAACAAATAGTATAGGGAGTAT TTTTGGGTGGATTGTTACCAATGTCTACCACAAGAATCTCAACACCGAAAAGGTCCCCCAAAAAATCGACTTTTGTCAA AACTGGAATCTTGACCACCAAATCAACGCCCAATCTCAACGCCTCCTATAATTTGGCATTACTACAAGCTTCAGGAGCT ACACCCGTTCCTGCATATCCTTCCAATAACGGTCAAAGTTTTGCCCTAAATAATCCTAGGTCGCAACCGTCTCGACAAG TCTCACTCGCTTCCCTTACCTCGAATTCACTTGCGACAATCCCGGATGCAAGCAAGAGATACCCTCTTTCTACAGTCTT TGATGAGGATATGCCAACAGTAGGCAACATGCCGCCATACACACCTGCTCGAGTTGGCGGTGGACCGGAAGAACTAG AGGTTGGTGATATAGTCGATGTGCCAGGTAACATGTATGGTATCGTCAAATTTGTTGGCAGTGTGCAAGGCAAAAAGG GTGTATTTGCTGGGGTAGAATTAAGTGAAACGTTTGCTTCGAAAGGGAAAAACAATGGCGATGTCGAAGGAATTCAATA CTTTGACACAACCATCGATGGTGCTGGGATTTTTCTTCCAGTCAACAGGGCGAAGAGACGTAGCACCCCTTCGTCGCA TGATGAGTCATTTCCCCTTTCACCGGCGTCTCCATCGATGGGCAATAGGGCTGGGAGATTAGGATCTGAATTAAATGG TCAGCCAACACCTTTGTTACCAAAATTCGGTCAATCTGTTGGTCCAGGCAGAGCGGCAAACCCATATGTCCAAAAAACA CGTCCATCCATGGCTACACCTACCACCTCAAGACCGGAATCACCAGTTCGAAGAGCAGCCAATGCCAACCCATCATTA AATACACCTGCACAAAGAGTCCCATCTCGATATGCAAGCCCTGCGCAGGCAAACTTTGGACAGAGCGTTAGAGGAACA CAAGATTCTAGAGATCCAAGTAAGAAAGTTGGCTACACCCCCCGAAATGGCATGAAAACACCAATACCTCCACGAAGT GTTTCTGCACTTGGAACGGGGAATAGACCTGCACCAATGAACTCGATGAATTTCAGTGATGAAGAGACACCTCCTGCA GAGATTGCACGTACGGCAACAAACGGAAGCGTAGGCTCAGTCTCTTCTTTCAACGCGAAATTACGTCCAGCATCAAGA TCCGCATCGCGTACAACTTCCAGGGCTACCGACGACGAATTTGAGCGATTGAGAAGTTTGTTAGAAGATCGCGATAGG GAAATAAAAGAACAGGCTTCTATTATAGAAGACATGGAGAAAACTCTCAGTGAAGCACAATCGTTGATGGAGAACAATA ACGAGAACGCAAGTGGTAGACATAGTCAGGGAAGTGTGGATGACAAGGACGCAACACAGTTGAGAGCAATAATACGT GAAAAGAACGACAAAATCGCCATGCTGACTGCCGAGTTTGATCAGCATCGAGCTGATTTCAGAAGCACGATAGACACG CTCGAAATGGCCGGTGCGGAAACCGAGCGAGTGTACGACGAGCGCATGCGTGTTCTCGTAATGGAGCTCGATACAAT GCACGAGAATAGTCATGATGTAAAGCACGTTGCTGTACAACTGAAACAGCTAGAAGAGCTCGTTCAGGAGCTCGAGGA AGGTCTTGAAGATGCACGACGTGGTGAAGCCGAAGCTCGGGGAGAAGTTGAGTTCTTGCGTGGAGAGGTTGAAAGAA CTCGATCTGAACTCCGCCGCGAGCGAGAGAAGACTGCCGAAGCTCTTAGCAACGCAAATTCTCCTACGAGCGCAAGT GCGGAAACACATTCCAAAGAGATTGCTCAGAGAGATGACGAGATTCGTGGATTGAAAGCCATCATCCACTCGCTCAGC AGAGATGCCATACCTGATGGGAATTTCTCGGATCATGAGGCAACACCAAATATTCTACGACCTGGACTAAACCGAAGT CGAACAGAAAGTGCTTCGGTTTCTGAGGAGGAGCGCCGTACTCGGGAAAAGCTAGAGCGAGAAGTGAGTGAGCTTC GTGCTCTCGTCGAAAGCAAAGACAATAAAGAAGAACAAATGGAGCGCGAGTTGGAGGGATTGCGAAGAGGAAGTGTT AGCAATCCTACTACGCATCGTACTAGTGCCATGAGCAGCGGAACTGTGACTCAGGATAGGAATTCTCTCCAAGACAAT AAGAGCACAGTTGTAAGCTGGCGAGAACGTGGTGCCTCAGATGCTCGCCGCTACAATCTGGATTCAATGCCAGAGAA TGACAGCTACTCCTCTGCAGCTGAGGATTTCTGTGAATTATGCGAAACCTCAGGTCATGATGTTCTACATTGCCCGATG TTTGGCCCCAATGGTAACAGCAGCAATTCTAAGGATGAGTCACCTAAACAGCAACGAACAGGAAAAGACGTTGTCATG GAGGGACTTAAATTATCACCCAAACCTTCTCAAGAAGAATACAAACCGGCGCCGTTAGCGCCAGCTAAGAAGTCGCCT GATGCGTCGCCTATCAAGACTGTTCCCAACCTTATGGAACCAGGACCTGCCCCAGGAAAGGAAAGTGGAGTAATCAA CATGGATAAATGGTGCGGTGTATGTGAAAGAGATGGACATGACAGTATTGATTGTCCTTTTGAAGATGCTTTTTAGGAG ACTACTGCTTTCGATGTTTCAGGATAAGCAGTCACAACGACGACTTTTTTCATAGATTTTCTTTGTTAATCATAGGCAAG GCCGCATTGCATTGCAGGAGCGTAATCCGTCTGCGATATACCCTTTCGGTTCTCTGTTTGAAGTATGCTTTTCAAGCGA TAAGTTTAGAGGGGAAGATGATGTTTTTACGAGGATTGAATGAGATGGATGAATGCAGGCTAAATCGGGGAAGGGGG AGGGAAGACAAACATGAGTTGAACGGACGTAATGATCATGTAGTATACTTTGTCAAATTAATGATCCAAATGCA BC1G_08464 SEQ ID NO: 24 GATCCACCCACATCCTTCCTCATATGACTTCGATGATAATTACATAGACACTGCCAGTATGCCTGGCCTCGTTCGCAAA CTCCTTATCTTTGCCGCCATCGATGGGTTGATTTTGCAACCAGCAGCGCCAAAAGGCCAACGCCCCGCCCCCGCAAC GAAGATCGCATACAAAGATAAGCATATCGGGCCAGTATTGAGTGATTTGCAGGATCTGGAGGGGTCGTCTGCGAAAA GTTTCGAGGCATTTGGTATTGTCGGTCTCTTGACGGTTTCCAAAAGCTCCTTCCTGATATCGATTACGAAAAGAGAGCA AGTCGCACAAATACAAGGGAAACCTATATATGTTATTACTGAAGTGGCTTTGACCCCATTAAGTTCCAAGAACGAAGCA GAGATCTCGATTGATAGTACGAAAGCGGGGTTATTGAAGAGTAATATCGAGGGGCAGCATGGCTTGGACGAGAGTGA TAGCGAGGATGATGTCGTTAGCGATGAAGTGGAGGACGATACAGCAGTAGAAGCACACAAAAGAACGAGTAGCGTAG CTGAAGATGTGATCTCGAAGAAGGGGGGATATGGAAGATTTGCTCAAAAATGGTTCTCGAAGAAAGGATGGGCCGTG GACCAGAAGAAGAACCTGGGGATGAGCGCTGAGCCGTATTCCACAGTGGAGCAAGCTTCCAAGGCCACCGATGTAC CAGCTACGATTTCAGGAGTCACTGAAGGAAAATCTGATATCTCAATTCCCGATAAGGGCAAGGAAATTGAGGACATTG AAACTCCTGAAAATATTAGCGACATTGCAGAGAGCATGCTGCCAAAATTACTACGAACATCGCAGATATTGTTTGGGGC CTCTCGGAGTTACTACTTTTCTTACGACCATGATATCACAAGAAGTTTGGCAAATAAGAGGAATACAAATTCTGAATTGC CATTGCACAAGGAAGTTGATCCACTCTTCTTCTGGAATCGGCATCTTACTTTACCATTTATTGATGCTGGCCAGTCTTCT CTTGCCTTGCCTCTTATGCAGGGCTTTGTAGGACAGCGTGCATTTTCAATGGATAGTAATCCACCAAACCCTGCTATAG GTTCAGACACTGGAAAGACTTCCGTGCAGATGAAGGATATTACAACAAGTAGTTCGGATGAGCAAATTTACACAGCAC GTGCTGGTACAGACAAGTCGTATCTATTGACGTTAATATCTAGAAGGTCAGTCAAACGTGCCGGGCTTAGATATTTACG CCGGGGTGTGGATGAGGACGGCAATACAGCCAATGGCGTGGAAACAGAGCAAATCTTATCGGATTCTGCTTGGGGCC CTTCGAGTAAGACATATTCGTTCGTTCAGATACGTGGCAGCATTCCCATATTCTTCTCCCAGTCACCTTACTCTTTTAAA CCTGTACCTCAAGTTCACCACTCTACCGAAACAAATTATGAAGCTTTCAAGAAGCATTTTGATAATATAAGTGATCGCTA CGGGGCCATTCAAGTGGCTTCCTTGGTGGAGAAGCATGGAAACGAGGCAATAGTCGGTGGAGAGTACGAGAAATTGA TGACTCTCCTTAATGTCTCCCGAGCTAGCGAGCTTAGGAAATCCATTGGGTTTGAATGGTTTGATTTCCATGCTATTTG CAAAGGTATGAAATTTGAGAATGTCAGCCTGCTCATGGAAATACTGGACAAGAAGCTTGACTCGTTTTCGCACACTGTT GAAACCGATGGGAAACTTGTATCGAAACAGAATGGCGTTTTAAGGACTAACTGTATGGATTGTCTGGATCGAACAAAC GTTGTTCAAAGTGCAGTGGCAAAGCGAGCACTTGAAATGCAGTTAAAGAATGAGGGACTAGATGTCACTCTACAAATT GATCAAACTCAACAATGGTTCAATACTTTGTGGGCCGACAATGGTGACGCCATTTCTAAGCAATACGCTTCTACAGCAG CATTGAAGGGAGACTTTACTCGTACTAGGAAGCGGGATTATAAGGGGGCCATCACAGATATGGGGCTTTCTATCTCCA GATTTTATAGCGGCATTGTAAATGACTACTTCAGTCAAGCTGCCATTGATTTCCTGCTTGGAAATGTGAGCTATCTTGTT TTTGAAGACTTCGAGGCAAACATGATGAGCGGTGATCCTGGCGTTTCGATGCAAAAAATGAGGCAACAAGCCATTGAT GTTTCTCAGAAACTCGTTGTTGCTGACGACCGTGAAGAATTTATTGGAGGATGGACATTTCTCACTCCGCAGGTACCCA ATACGATCAAATCTAGTCCTTTTGAGGAATCCGTCCTCCTATTGACAGATGCTGCATTGTATATGTGCAATTTTGATTGG AATATCGAGAAAGTATCATCTTTCGTGAGAGTGGACTTGAACCAGGTGAACGGCATCAAGTTTGGAACATACATCACGA GTACTTTGTCACAAGCCCAGGCAGATGAGAAGAGGAATGTGGGCTTTGTAATAACTTATAAGGCTGGTTCAAACGACA TTATTCGCGTGAACACGAGATCTATGGCTACGGAATTTCCTTCTTCGAAACTCTCTCTCGAAGACAAAACATCCACGCC CGCTTCTACATCTACCACCAACTCTGTCGTCGCCCCAATTGCCGCCGGGTTTGCAAACCTAATCTCAGGTTTACAAAAT CAAAGTATAGCGGAACCTAAAGATCTCGTGAAGGTTCTCGCATTCAAGGCTCTACCCTCCAGATCTGCGGTATCAGAT GAAGGAGTTAGTGAGGCCGAGCAAGTGAAGAGTGTCTGTGGAGAGATTAGAAGAATGGTTGAGATTGGAAGTATAAG AGAGGCTGGAGAGGAGAGAAAGGATATTGTAGAGGAGGGTACTATCATTAGTTTGGCCGAGGCCAAGAAAAGCACGG GACTATTCGATGTGCTGGGACATCAGGTGAAGAAACTGGTTTGGGCTTAATGAAAGTGTATCGATACTCGTGCTAGTA ATGCTTAGAGCAAAAGAAGCACTTCTTGAAGGATTTACGAATGGAATTGTGGAAGTTGGCAGGGAGGTTAGCGATCGT CAAGAACGGGTATGTGGAATTCAATTCCATATTGAAGCTGCGAAACTCATTAACTTCAATAGAAGTGGATGTGTAGATA GACCCGAGTATATGGTATTGGCCAGATAAGTAATTTTAATGGGGA BC1G_15133 SEQ ID NO: 25 GAGTATTCTCGATTAGACAATTAGAATTCTCGAACAATAGAAGCCGGAGCTCGAGTTCCTCGATCTTTACCTACCTGAA GTCTCTCGATCAGAAGAGTGTCAAATTCCTATGATATCAATGATTATTGAGGATATATTTACAAAATCAAATCTCTTCAAT GAATCTCTATCTACCTAAGCAAGTCAATTATGATTGATTACAATTATCGTTGTTGCACGGAATCCAGTCGCATTTGGTCC CGGTCACTCGTAACAGCAACCACATCGGTATTTCGTAGATTCCCGAGTATTGCCTTTACATACCTAAGGAACTTTAAAT CCCCCCAACAACAGAATTGACGACAGAATTACTACCATTACAAGTGAAAACACTCCATGGTACCCAAATACAACAGTCT CATATAGCCATTTGATCGCAACTCGCATCTTTCATCTACAAAATGTCGTTTGGAGGGGACATCGGACTCGATACAACAT CGTCGTCCAATGCTGCTGGTAATGGCGGCAACCAGGGCGAGACAACTGGAAGACCTGCCACCCCTCAAGATGCAAC CGCAAAAGCAGTTCAAGATGTCACAAGCTCGGAGATTGGAATATCAACCTTGTTAACCCGACTGAAACAAAGTATTGCT TCCGCAAAGGAATTCGCACTTTTCCTCAAGAAACGGTCCATCATGGAAGAGGAACATTCGAACGGTTTAAAAAAGCTGT GTAAGGCAACCGGGGATAATATTCGCAGACCAGAGCATCGACACGGATCGTTTCTACAGTCATACGAAGAGGTCCTCA TTATACACGAGCGAATGGCCGAGAATGGGGCTCAATTTGGCGTGTCTCTACATCAGATGCATGAGGATCTTATCGAAA TGGCTTCGAACATAGAGAAGGGCAGAAAGCATTGGAAGAATACTGGGTTGGCAGCAGAACAACGTGCTGCTGATACC GAAGCTGCCATGAAGAAGTCGAAGGCGAAGTACGACTCTCTGGCAGACGAGTATGATAGAGCTCGCACTGGGGACA GGCAACCAGGAAAGATTTTTGGCCTCAAGGGCCCCAAATCGGCAGCGCAACATGAAGAGGACCTTCTTCGCAAAGTC CAGGCTGCCGATGCAGATTATGCGTCCAAGGTACAAGCTGCGCAAAGCCAACGAACCGAGCTCTGGTCAAAATCAAG ACCTGAGGCTGTGAAAGCTCTAGAAGATCTCATTCAAGAATGCGACTCTGCATTGACATTGCAGATGCAGAAGTTTGC ATCCTTTAACGAAAAGCTACTTTTGAGCAATGGCTTGAATATAAGCCCTATCAAAGGAAAAGAGCAAGGGACATTAAAT CGCAGTCTCCGTGAAGTTGTTCACGCAATTGATAATGTTAAAGACCTGAGCAACTACATCAGTAGCTTCTCTGGTAACA TGCAGTCCCGGATCACGGAAATCAAATATGAGCGTAATCCGGTTTTGCAACCCGCACAAAATACCGCTCAGCGACAAT CGGATCCCAACGCTCTCCAAGCTCGACAAGGACCCGTAATACCACCACAGCCATCTCACCAAGTTCATATGAGCCAAC CTTTTAATCAAAGCAGTCCCCCAACTCACCAGCGCGAAAGAAGCTTTAGCCATGGCCCATCTCTTTCGCAACACATCGT TGCACCTGTTGTATCGCCCACTAACCCAATATCCACCTCTCCCGACTTCAATACCTGGTCACCTCGTGCAGATGGCCC CCCCCAGATATCAACCTTGCCATTTCAGCCACAACCTCAAAACGAGACACCAATACAACAGACACCACAAAACCCTACA ACGCATGCACCAGTGTCCCATGGCCCATCCTCGGCACCACTATTCGGAGCGGGATCGGCTCCAGCTCCAGGCAACA GCACTCATCTAGCACCTTTGAAACCAGTGTTTGGACTCAGCCTCGAGGAACTCTTTGACAGAGATGGCTCTGCTGTTC CAATGATTGTCTACCAGTGTATTCAAGCAGTTGACCTCTTTGGGCTCGAGGTCGAAGGAATATACCGGCTATCTGGTA CCGCATCTCATATAATGAAGATCAAGGCAATGTTCGATAACGACGCATCTAAGGTGGACTTCCGTAACCCGGAAAGCT TCTTTCACGATGTCAATAGTGTGGCTGGTCTTCTCAAACAGTTCTTCCGCGAACTCCCAGACCCTTTATTGACTATCGA GCAATATCCTGCATTTATCGAGGCTGCAAAGCATGATGATGAAATAGTCCGTCGCGACTCTCTACATGCGATCATCAAT GGCCTTCCTGATCCCAATTACGCTACTCTTCGAGCCTTGACTTTACATTTAAATAGAGTACAGGAGAGTTCGGCATCTA ACAGGATGACTGCAAGCAACTTGGCCATAGTATTTGGCCCTACACTCATGGGTGCTAATTCAGGACCGAACATGTCAG ATGCTGGGTGGCAGGTTCGTGTCGTTGACACTATTTTGAAAAACACTTATCAGATATTTGACGACGACTGAGGCGAAG AAGATTGTCGATTGACTTGAAGAGTTCTTAACGAGATACCATAGCTGCTCATATTATGAACCTGCCTTTGGAACAGAAA CAAGGGCAGGGAATTCCTAGCATCAGACCTCTATTTGCCGACAAGACATTCTAAAGAAAGTACATGCCACTGTATTTCG AATACTATTATTGTAAGGCACGGGCCTGTTGACAAATATTTACGGTCTATCAAGCGAGTGTACGTCAGGGGGTGGTCT ACACCACGATCGATTTTGTAGGGTCATGTGCTCAGCTCTGATGCCAGTATTGGTGCAACTATTGAATCAAAAGGGTACC AAGGTTTCAATACTCGTTAATTTTGGATCACGAAAAGATCA BC1G_09781 SEQ ID NO: 26 GATACAAAAGCTTTCGAAAGCCGCTTGAGTAAGTAAGAAGGCAATAAGAGAGGTCCTCGTCCGTGTCGAGATGTGATG CTTGAGTCATTTTCCTGGTATAGCTTCTGCAATCGAGTTCACACTCTACTACTTGATTCAGATTACACCAGGAGTAACAC CTCAAGTATTCCATATTAAATACAAACCTTTCCCATCTTAATCTATTGTTGGCGCATGGGGAGAGGAATTAATTGCTTTG CTTTTTGGCCATCAGGATGTGGTCATTAGATCGATTATCCGGACACACAACACCTTCTGCCTCTCCACCTCCCCCGTTA AATAGGATCCCAAATCTCCCTCGTCGTCCGAGTCATCTTGTGCCATCCCCAGTTGGTGGTAGACCTCCTTTCAACCCA AGATCGTCTTCCCTGTCGTTAATCTCCAATGACTCTAATTCATCGTTGCTATCATCACGGAGACCCAATGGTTCGAATCT CAAACAAGCAGTCACATCTCCGAATGTGCCAGATCCTTTGGAGGTTTTGGGAACACTACTGAATAATGGGGAAGAGAC AAAATTGCCATCAGCGAAAAGCCCGGGGGCGACAAATGGGACAGTTGCTCCCATTGAAGAGGAAGACGATGAAGGC GAATGGGATTTCGGAGGTTTAAGTCTGCAAGACATTGTAGCAGGAGAACCTCTCGATGTTGAGGATGAGCATGTGTAT AAATCTCAAACGCTGGAAGAATATGAGCGCGAGAAAGAGAAGTTTGAAGACCTCCATCGATCAATTCGCGCCTGCGAT GACGTTCTTAATTCAGTCGAGATAAACCTCACAAGCTTTCAAAACGACCTTGCTATGGTATCTGCGGAGATTGAAACTC TGCAAGCACGATCGACGGCTTTGAGTGTAAGGTTGGAAAATCGCAAAGTAGTAGAGAACGGACTTGGGCCTATAGTG GAGGAGATCAGTGTCTCTCCAGCTGTCGTTAAAAAAATTGTGGATGGAGCTATAGATGAAGCTTGGGTTCGAGCATTG GCGGAAGTTGAGAAACGATCAAAAGCAATGGATGCTAAATCGAAGGAGCAACGTACTATAAAGGGCGTGAACGATCTT AAGCCTTTACTGGAGAATCTAGTTTCCAAGGCATTGGAAAGAATCAGAGATTTCCTCGTTGCTCAAGTGAAAGCATTGC GATCGCCCAATATAAATGCACAGATCATTCAGCAACAGCACTTTCTTCGCTATAAGGATTTATATGCATTCTTGCATAGA CATCACCCGTTGGCTGAGGAGCTTGGTCAAGCATATATGAATACAATGCGATGGTACTTCCTTAATCAGTTCACGA GGTATTTGAAGGCGTTGGAAAAGATCAAGCTTCATGTGTTGGACAGATACGATGTGCTCGGATCAGATGACGGGTCTC GTAAGGCCACTCTTCTTTCAGGATCCAAACAGACAGGTCCACCACACGACGCATTCAATCTAGGTCGACGAATCGACC TTCTCAAGACGCCAAACCAAACTGCACTTCCCTCTTTCTTAGCCGAAGAAGACAAACAAACCCACTATATGGAATTTCC TTTCCGTAACTTCAACCTCGCACTGATTGATAACGCTTCCGCCGAATACTCCTTTCTTACCTCTTTCTTCTCTCCCTCTC TAAGCTACGCTACCATTTCCCGACACTTCAACTACATCTTCGAACCCACTTTTTCCCTCGGCCAATCTCTCACCAAATCC CTCATCCACGAGTCCCATGATTGTCTCGGCCTCCTCCTATGTGTGCGCTTGAATCAACACTTTGCATTTTCCCTTCAAC GCCGCAAGATCCCCGCTGTAGATTCCTACATATGCAACATCCATGCTCCTCTGGCCACGCTTCCAACTCACAATGG ATATCCACTGCGAATCCGTCCGCACCCTAACATCCGCTCTCCCTACCCGCAAACCCTCAGCTTCGGAACAAGCTAAAC AATCTGCAGCTCCACACTTCATGACCCAACGTTTCGGTCAATTCCTACAGGGTATCTTAGAATTGAGTACGGAAGCGG GAGATGATGAACCTGTAGCGAGTAGTTTGGCAAGATTGAGAGGCGAGATGGAAGCATTTTTGACAAAGTGCGCGGGG GTTATGCCGGATAAGAGGAAGAAGGAACGATTTTTGTTTAATAATTATTCGTTGATTTTGACAATTGTAGGGGACGTAG AGGGTAAATTAGCCGGGGAACAAAGGGCGCATTTTGAGGAGCTGAAGAAAGCTTTTGGAGATGGTGTCTGATCCTTCA CTTCATTTTGATACTTAATTGGAAGTTTTTGAGCGTGTACACTTATCAAAGCGTATTATTTGATCATGTATTTTGTATTTGT GAAGAGAAACAAAGAACTTTTATTATGGTAGAAATAGAGCCGGAAATAATCTATGCTGTGGAAGAAACCA BC1G_05327 SEQ ID NO: 27 GGGTCTATTCACACCTCTCCCTCGATCAATACGACGTCTGCGGCTTCTGCAACCCATTGAGAAAGGTAGAAAAGAGGT TCAAAAAGTCGAGATTCCCCGTGCCTATTCTTCCTTCTTCTTCCTGTTCTCCTCCCACTTTCCTCCGTGTGATACTTCGT CTATATCTACCTCACCCCCTCCCCCTCGAACGCAGATTGTACCGATACCCCAAGTGATTCCGCCGTACCGTGTACGCG TTTTCATTAATTTACCATATCGTATTACCTACCTATTACCTACTACCTATTACCCATTACCTACTCCCTCCCACCACTACT CGACTCTACCTGGGTGCGTTGCGATTATATTCTTCTTCTTAGTAGCTCGTTTTACTAGAAAGCTTTCCCACCCACCCAG CTTGAACCCCTCCATTACCAAGAACTTTAAACGCTACCCATCCATCCTTGGGCCGAACCTAGACCGAAAACCCCTCCG TCCGTTGTGATAAATCCAACGAGCACAGAAGCTCAACAAATACCATCACCGTCCAAATCCCAATCTTCTCAAACGTTCA GTCATGGCTCACCACGATGAGAAAGGTCCTCATGGAGATGGAGCTTACAGTGAGGTTTTTGAGGAGGGTTCCGACAT CAAACACCCACATACCGTCCATCGTATCAGAGCCAACTCCTCTATTATGCAACTGAAGAAGATTCTTGTTGCCAATCGT GGAGAAATTCCTATTCGTATCTTCCGTACAGCCCACGAGCTTTCTCTCCAAACAGTCGCAGTCTTTAGTTATGAGGACC GTCTTAGTATGCACAGGCAGAAGGCCGATGAAGCATATGTTATTGGAAAGCGGGGTCAATACACACCAGTCGGTGCTT ACTTGGCTGGAGATGAAATCATCAAGATTGCTCTCGAACATGGCGTTCAAATGATTCATCCTGGTTATGGTTTCCTTTCT GAAAATGCCGAGTTTGCAAGAAACGTTGAGAAGGCTGGACTTATCTTCGTTGGTCCTTCGCCAACCGTTATCGATGCC CTTGGAGACAAGGTATCTGCCAGAGAAATCGCCATCAAGGCCGGTGTACCAGTCGTTCCAGGTACCGAAGGAGCTGT CGAAAAATTCGAGGATGTAAAGAAATTCACCGATGAATATGGTTTCCCAATTATCATCAAGGCAGCATATGGAGGTGGT GGACGTGGTATGCGTGTTGTCCGACAACAAGCAGAACTCGAAGATTCTTTCAACCGTGCCACATCCGAAGCCAAGTC GGCTTTTGGTAATGGAACTGTTTTCGTCGAAAGATTTCTCGACAAACCAAAGCACATTGAGGTACAACTTTTGGGAGAT AACCACGGAAACATTGTTCACTTGTACGAACGTGATTGTTCCGTACAACGTAGACATCAAAAGGTGGTAGAAATCGCAC CAGCTAAGGATCTTCCCCAATCAGTTAGAGATAACCTCTTGGCCGATGCTGTCAGACTTGCCAAGTCGGTCAACTACC GCAACGCAGGAACGGCTGAATTCTTGGTTGATCAACAAAACCGTTACTACTTTATCGAAATCAACCCACGTATTCAAGT CGAACATACTATCACCGAAGAGATCACTGGAATTGATCTTATTGCAGCACAAATTCAAATCGCTGCAGGTGCAACCCTT GCTCAATTGGGTCTTACACAAGATCGCATTTCCACCAGAGGTTTTGCTATTCAATGTCGTATCACCACAGAAGATCCAT CCCAGGGATTCTCACCAGATACTGGAAAGATTGAAGTCTATCGTTCAGCTGGTGGTAACGGAGTTCGTCTTGATGGTG GTAATGGATTCGCTGGCGCAGTTATTACTCCTCATTATGATAGTATGTTGGTCAAATGTACTTGCCAAGGATCTACTTAT GAAATTGCTCGAAGAAAGGTCCTTCGTGCTTTGATCGAATTCCGTATTCGTGGTGTCAAGACCAACATTCCTTTCTTGG CTACTTTACTCACTCATCCTACCTTTATTGACGGTAACTGCTGGACCACATTCATCGACGATACCCCTGAACTGTTCGAT TTGGTCGGTAGTCAAAACCGTGCTCAAAAATTGTTGGCATACCTTGGAGATGTTGCCGTAAACGGAAGTAGCATCAAA GGTCAAATGGGAGAACCAAAATTCAAGGGTGAAATCATCATGCCAGAACTCTTTGATGAGAGTGGAGCCAAGATTGAT ACCTCTGTACCATGCAAAAAGGGATGGAGAAACATTCTTCTTGAGGAAGGTCCTGAGGGATTCGCCAAGGCTGTCAGA GCAAACAAAGGATGTCTTCTCATGGACACAACATGGCGTGATGCTCATCAATCGCTTCTTGCTACACGTGTTCGAACA GTTGATCTTTTGAACATTGCAAAGGAGACAAGTCACGCTTACAGCAACTTGTACAGTTTGGAATGTTGGGGTGGAGCTA CTTTCGATGTTGCCATGCGTTTCCTTTATGAAGATCCATGGGACAGACTCAGAAAGATGAGAAAGCTTGTTCCAAACAT TCCGTTCCAAATGTTGTTGCGTGGAGCTAACGGTGTTGCTTACTCTTCATTGCCTGATAATGCTATCTATCACTTCTGTG AGCAAGCAAAGAAACATGGTGTTGATATTTTCAGAGTTTTTGATGCTTTGAACGATATTGATCAACTTGAGGTTGGTATC AAGGCTGTACACAAGGCTGGTGGTGTTGTTGAGGGTACAATTTGCTACTCAGGTGACATGTTGAACCCAGCCAAGAAA TACAACTTGGAGTACTACTTGTCTTTGGCTGAGAAGCTTGTTGCTCTTAAAATTCACATCTTGGGTGTTAAGGATATGGC TGGTGTTCTTAGACCAAGAGCTGCTACATTGTTGATTGGAGCTCTTCGCAAGAAGTATCCCGATCTTCCAATCCACGTT CATACTCACGACTCTGCCGGAACTGGTGTCGCATCTATGGTTGCTTGCGCTCAAGCAGGTGCTGATGCTGTCGACACT GCTACTGATAGTTTGTCTGGTATGACATCTCAACCAAGTGTTGGAGCTGTCCTTGCTTCATTGGAAGGATCAGAGCTTG ACCCAGGCTTGAACGTTCACCATGTTCGAGCTATCGATACCTACTGGTCTCAACTTCGTCTCATGTACTCACCGTTTGA GGCTGGTTTACACGGACCAGACCCAGACGTGTACGAGCATGAGATACCCGGTGGTCAATTGACCAACATGATGTTCC AAGCATCTCAACTTGGTCTCGGTGCTCAATGGGCCGAGACAAAGAAAGCTTATGAGCAGGCCAATGACTTACTGGGTG ATATCGTCAAGGTCACTCCAACATCTAAGGTTGTTGGTGACTTGGCACAATTCATGGTTTCCAACAAACTTGACTTCGA TTCCGTTCAAGCTAGAGCCAGTGAATTGGATTTCCCAGGTTCCGTTTTGGAATTCTTTGAAGGTTTGATGGGTCAACCA TACGGTGGTTTCCCTGAACCATTGAGAACCAATGCTCTCCGTGGCCGACCCAAGCTCGACAAGCGCCCTGGTCTCAC TCTTGCGCCACTTGATTTGGCTCAGATCAAGAAAGACATCCATGCTAAATGGGGCAGCGTTACTGAGTGCGATGTTTC AAGTTATGCCATGTACCCTAAGGTCTTTGATGAGTACCGAAAGTTCGTTCAGAAGTACGGTGATTTGAGTGTTCTTCCA ACTAGATATTTCCTCTCGAGACCAGAAATTGGAGAGGAATTCCATGTTGAGTTGGAGAAGGGTAAGGTTTTGATCTTGA AGCTTCTTGCTGTTGGTCCATTGTCAGATACCACCGGACAAAGAGAGGTCTTCTACGAGATGAACGGAGAAGTTCGAC AAGTCACAATTGATGACAACAAGGCAGCTGTTGAGAACACAAGCAGACCAAAGGCCGATCCAGGAGATTCCAGCCAA GTTGGAGCTCCTATGTCAGGTGTTGTCGTTGAGTTGAGAGTCAAGGATGGTGGTGAGGTTAAGAAGGGTGATCCACTT GCTGTCTTGAGTGCCATGAAGATGGAAATGGTTATCTCTGCACCACATGCTGGTAAGGTCAGCAGTATGCAAATCAAG GAGGGAGATTCAGTTGGAGGTTCTGATCTCATCTGTAAAATTGTCAAGGCAGGAGAGTAAATAGCAAATTTCAGTGTGA ATGCAAGTTTTGGAGCGGTTATTATGATATCAGATGTTGCAAGTATTGATGGGATGAATGGATTATGATTGACAGGTTTA AAGGTTATTGCTTGACCTACTTTTTATAGAATTATGAATAAGCTTTTATCAATTTCTGGTGTTTTTAGTGTCCTCATGAATT GTATGTAACCTAACATGATGTGAAAATTGAGAGCCAATGATGTAATACTGCCTCTCGTATACA BC1G_15423 SEQ ID NO: 28 GGAGAGGCGAGGGAGGGATTACTTGAAGATTATTTATACGAAATGATTTTCCCTATGTTTTGTTCCCGAGATTGTTTTC CTCCATTGCTTTCTTCATTCTTGTAAAACCAAGTTTTTTTTCTTGTTCTACTTTGAGAAACTTTCTTCAGATATACCTGGC GCTTAAATCTGCAATCCAACAACTACCCCACCGGCTCTTCACATTTGCCAACCTCGCATATCTCGCATCTACCCCCTGC ATATCATACCAAGTATATAGAAGGTCGAGGTCACACTGACTCTCACCATAACGAGTCACAATGATCTCCCATCATTTTG AAAGTCTCCCTGTTCCTCCCCTAGAGAATCTCAGCACAGAATATATACTCCAAGAAATTATCGACCACATTGGAAAACT CGCCGATGATCTCCCACACACCAAGCTCAATTTGTTTCGCAAACAACTCTGGGACATTAGAAATCGGAATGTGGATCC AAAAACACATTTGCGAGGTTTATTGAGAGTGTTTGAAAATACACATACATTCAAACATGCATTTGAGGAACTAGAACCCG GTTTGCAAGCGCAGATTCGTGCGTTTATGGATGATGAAAAGGATGTGAAGGAGGAGGAGATTATGGGCATGGGGAAA GTCAAAGGGGAATTTTTCATTCCGCCATCGCCGGCAGTGAAACATCATTTCAAGGAGATGGTCAAGGAGACGGTGAG GGAAAAGGCTCACGAGAAGAAGATGAAGTTGGTGCAGAGTAAAGTGATGAAGAAGATTCAAGAAGCGAAAGAGGAGA TTGAAAGAGAGATTGTGGAGGAGGTGGGAGGCCATATCGAGATGATTCAGAAGGTTGAGGACCATGTGGGGGAGTTT TGGGGGAGACATGGTCACTTGGGAGCGTTGCTGAAGAGCAATGATGTTGTCTCTTTGACTTCAAAACTAGATGCTTCG ATGCTTGGAAGTGGGAAATCTCCAAAGATCTGGGAAGATGAGAGAGGAGAGAGGATCATGGAAGTCCACAAAAATGC CCCGTTTCATAATTGGGGGAACAGCGTGAAGAATACTCCTCTTTATACCTTTGTTCCTACCACAGTTCTGGGCCTGTCG AATCTGGTCAAGTGGGCTAAAGTCGAGGGTTATAGAGTGAGATGTAGTGGGTACAGACACTCGTGGAGTAATACTTTC TCGCAAGACAAACAGATTTTGGTCAGTATGTTGAACTTGGAGAGTGTGGAAAAAATCCCGGATGTCATGAGCATTACG AAGGAGAAAGGAGATGTGGATTTGAATGGAGATGGAGTGATAGATGTCAATGAATTAAAGACGATTGAGTTGGCGCCG AAAATTGAGGGATTGAGTTTGGCGGGGGATGAAAAAGGGAAAATGCTCTGTAGAGTTGGAGCGGCGGTTACGAATGA ACAGTTTAGGAGGTGGGCCGTGGGTCATGGCAAATGGGCCTTGCCGGTGGATGTTATTCTTGTTGAGGTCACAGCAG GTGGCGTCAACGGTCCCATTTGTCACGGCGCCGGTCGTCGTCATCAAACAGTATCAGATTATGTTCGTGCCATCGAAT ACATCGATGCAAATGGTGTGCACCGCACCGTGACAAAACCAGCCCATCTCCGCGCCGCAGCTGGTTGTTTCGGACTC CTCGGTATCGTAACCCACATAACACTCCTCCTCTCCCCCATGACATACGCCGTTCTCCGCCCCACCAAACCCGACATT GCACTTGCCATCCCCCCTCTCTCCCCTACCGATATCCCCATCGCGCTCCGCAAATCGTGGACCCCAGCCCAATACGC CGATGCGCTGAAAGAGTTTGAAGATAAAGCCAATAATGACTATTACAGCGAATGGTTTTGGTTTACGCGCAGTCAGCA GGCGTGGGTCAATACGTGGAATGATACGGCGGATGCTGAGGGCGCAGTCGAGTATCCGAGCCCGTTTGATACGTTTG TGCAGTGGGTTCAGGGGTGGGTGGGGAGTGTGTTGACGGGGAGTGAGGTTTTTGGTTTGTTGCCGGGGAGGTGGCA GGCTTGTATCTTGAGTTCTTTTGGGATGGTCGCACTCCCCCCCTTTGAATTCAACGAATTCGAACAAAAGAAAACGGTC GAATACAAAACCGCTCTTCCCAACGGTCTCCATTTCCGTCGCGGCATCCAAAACATGCGAGTCCGCGACCTCGAATTC CAAATCCCCATCCCCTGTCTCCCCAACGCAACGCCCGATTACACCATCGTCCGACGCGCCTGGTGGGATATCATCAA CCTCTGCTATCGCGATTCGGAAACGCCGATGCGGCTCACGCTCGAGTTACGGATCATGGGGGATTCGAATCTGATTAT GGCGCCTCAGAGAGGGAATCGCTGGGGCACGGCGAGTATTGAGATTCTGAGTGTGCCCGATGCGGTGAGGGATGAG GAGTGGTTGCCGTTTTGTCAGGAGGTGGTGGATTTGTGGGCGGGGTATAAAGGGAGGATGAGTGTTGATGGGGAAG AGCGGTTGTTGAATGTGAGGCCCCATTGGGCGAAGGAGTGGGAGGGGGTGAAGATTAGAGGGAGGAAGGCGAGGG AGTATGTGAGAGAGGTGGGGTATAGAGAGGAAGTGGGCGAGTTTCGAGCGGTGCTGGGTGAGATTGGGAGGGAGCA GGGGTGGGGGTTGGAGGATTTGAAGGGGAGGTTTAGTAATGAGTTGTGGGATTATGTGGTTTTTGATGGGATGGAGG GGGGGAAGGTAAAGGGGGGAGAGGGGGTGCAGAATGTTAAGATGGGGAAGGGAAACCCTGTTGTGATGGATGTCG GTGTGGATGTTAAAGAGAACAAAGAGACTAAACCTCTTGGAGGGGTGGATGGTACAAAAACCACTAGTCCGGAGAATT TAACAGATAACTTGATGTTGGAGAGGAAGGGGAAGGGGAAGGAACAGGAACAGGAACGGAAACGGGAAATCAAGATC AACGAGGTGGAAAGTGTCGAGTCGAAGGGAGTAGCTAATAACGTAAGCGAGGTGAAGAGTTTGAGTAGTTCTGCTGT GCAGGTGCAGGGGAAGGTGGTTGGGATTCAGGGAGGGAGTCACGCGTGTGGGGTTTTGCCTGTTAGGTTGGGGCG GTAGATGATTGGATTTTTTGGGGGGGGGGGGGTTCTTGTTTTTCTTTTCTTGGAGGAGAAGGGAAGGGTGGGATGGA TTCTTTGGTTTGGGGGTTTGGGGACTTGGGACTTGGGGTTGGGGTAGGGAGGGAAGGAAGGAAAGGGAATGAGAAA GGGAATTGGAAGGGGTGTTTATTA BC1G_09454 SEQ ID NO: 29 GAAACGTGATGATGAAATTAATTCGAATTTCACCAAATGCTATGGAGCTTTCCAAAAATCCGATTTCATCATGTCTTTCTT CGTTCTCCTCACCTCTATTCTTATCCTTCTTTTGTCTATACCTCTCTTCTACCGTACAAAATGGTGGAGGGATGGGCTCG AGCAAGTGTGTTTCAGACGGATTCCAATCAATGCGCTATCAATATCAAGTCTCCCCTCGAACTTCTCCATGCTATTAACT CCAGTGCTCAGAATATCTCTTTCAAGACCTATTTCCACAATGTCATTCTTCTTAAATCATTTGAAATCACACACCCTAGTT ACCTTACCCATTCCTGAAAAGAAGTTTACGGGGAAAACAATCATTGTCACAGGGAGTAATAGTGGATTGGGACTAGAG GCCGCGAGGTGGTTTGTCCGTCTCGATGCCCAAAAAGTCATCCTTGCCGTCCGCTCCCTCTCAAAAGGTGAAGCTGC ACGTCAATCCATCATAAGCAGTACCTCCTGCTCTCCAGACACCCTCGAAGTATGGAATCTCGATCTTTGCTCTCAATCT TCTGTCAGAGAATTCGCGCATCGAGCAAATGCGCTCCCGAGACTTGATGTTTTGGTATCGAATGCTGGAATCTATGTTT TTGATTTCGAAGTAGCAGAGGAAAATGAAGAGACGATTTGTGTAAATGTAATTAATACGTTTTTGTTGGCTTTGCTTTTG TTGCCTCTGAGGGAAACTAGTATAGAATATGATACGAGGGGGGTAATGACATTCACGGGAAGTTTCGTGCATCAT CTTACTACGTTCCCGGAACGGCGAGCCGGGAACGTATTTGAAGAATTGCGAGTGGAGGAAAGAGCAGATATGAAAGA TCGATATAATGTGAGTAAACTCATCTCTCTGCTATTTTCCCGAGAACTCGCGTTTGCTCTTCGCGAATCTGAGAGGCGC GGGAGGGAGGGACATGTTGTTGCGAATATTGTAATCCCGGGTTGGTGGATACGGAGATTATGAGACATGCGACGGG AGCTACGAAACATTTGGTGAGGGGAGCGATGAAATTGATGGCGAGAAGTGTTGAGGAGGGGAGTAGGACTTTAGTGC ATGCTGCTGGAGGAGAGGAGGAAACGAATGGAATGTATTTGGATGATTGTAAGATTGGGAAAGTATCACCATGGACAA CATCACTCGATGGGATAGCAACCCAAAAAGACATTTGGATGGAATTATCGCAGGAATTGGAGAAGGTAGAACCAGGTA TCATGGGGAATGTATGAGAGATTTAGATCGAAATTTATACTGCCTTTTGTAATCAATTCCCATGCCATTGTGTTAAAATTT TGGGCATAAGTAACA BC1G_15945 SEQ ID NO: 30 GAACTTTAAGGCGGAACCCGTATCTCAATCGGCACTAGCCCCAGCAAGAACGAACACACTCCAATCCAATTGGCTTTC GCTGCTCACAATGATATTTCATGGTGGTCTCGGTGTATTGTCGCAATTCAATTCACCTCATACTCAAACTAATCACCAAG AGCGACTCAATCGACAATTCGATTTGGTCAATCCTTACACCAATGCTTTATGGCAATTTCACGGATCGCTCATAGGAGA ATCCAACAGTGACAAAGTATCGGCGGACAATATAATTGAGAACCGACAGAAGCGACGGATTGGGTGTCCAACGGCTT CTTCCACCTCACTACATGATACGGCGTTTTCCGGCGCATTAGTTGCGACGATGCCTCCAAAACGAAATGCTTCTGGTG AGCCAAACGGTTCGAATGCGCCCGTTGCTAAGCACATTAAATCGGAACAACATCCAGAAGAATTCTCAAATACCGTGA AGAAGAAACTGCTGGCATCCACGAGAACTGGCCAAGCTTGCGACCGTTGTAAGGTTCGCAAGATACGATGCGATGGA TTGGCTGGCGGTTGTTCGCCATGTATCCAAAACCACAACGAGTGTAAAACGACAGATAGAATAACAGGTCGTGCGACA TCGCGGGGTTATGTGGAGGGAATCGAACAACAAAATCGAGATCTGCATCTTCGCATTCAGGAATTGGAGCATCGATTG ATGCAAGGCGGTGCGGATATCAAACCGGCGAATGGTTATCAGGATTCGGGATCGGGCCAATATGGTTATGCTCAATC CTCAAATGGCATGCAATCAACATGGAGCTCGACAGGTCCAGCATATACTTCACCCACTTCAACTACGTCGAACAATGG CCAGCAGCAAGAAACTAATATGTTTCGCGCATTGCCTGCCTATCGCGCTGGATGTATGGGCGATAATTATCTCGGAGT ATCGCCTGGCAGTTCTCACTTGAGCGCAATCAAAGGGACGGCTTTGTCGATTTTGGGTATGGAAATTGATATTGCGGA CTTCCGTTCAACGGATATGGATGAACCAGATCCTTCGATTTTCCATCCCCAGCTATACAATAAATCATATCAGTCTTTTA TGCAATCGGCTTGGAATGTAAATCCAAGGATTGAAAAGGTTGAATTGCCCGCACGCTCAGAGGCTCTCATTTATGCGG AGTGGTATTTTCGTGTTATTAACCCATACTGTCCTCTACTTCACAGAGGCACTTTCATGAGATTGTTAACTCGCATGTAC GACGATCCCAACTTTCGCCCCACGACTGCTGAGAATGTTATTGTTCATATGCTGTTCGCCATCATGTTCTTTCAATACG CGACCAGAAATTGGGAAGATGCCGAACAACAAGCCAGTTTGAATTCTCAATCAAATACACATTATCATTACTGTCTTGG AATGTTCTATCAACTGGCATGTAGTCACACAGCACAAGATGTTCAAGCATTGGCCTTGATCTGCTTGCACCTTCGAAAC TTTCCTAAGCCGGGAGCCAGTTGGGTGCTTGCAAGAATGGCAATGACTCTTGCTATTGAGCTTGGCCTTCACCGATCA ATGAAGAGATGGGCACCTGAATCGAACACGCTTAGTGAGCTCGACATTGAAATGCGCCGACGAACATTTTGGGTCATC CTTGCTGTCAATGTCACTCTTAGCGGCAAGCTTGGCCGTCCAATGCCCCTTCGAAATGAAGATTACGACGTCGAATGT CCATCACAAATTGATGACGATTACATTCCCGGAGAGGGTATAGATCCACCCAATCCAATAAAATGTAACCATGAGATTG GAATTCAAGGTTTCAAATTGATACCATGCTATTTGGAGCTTTATTCGACTATCTATTCGATTTCTCGTCAACCAAGTACCT ATATTGCAACTGTTAACCGATTGGAGGCAAAGATTCGTGCTTGGAAAGATGACTTGCCCCCAGAGCTTGTGAACGGAG AGTTGGGACACAATGAACAAGAAGGACGGGTATTTGCTCTTTATGCTCAATCTTGGTCTCAAGAATTCCGTCTTCTTCT TCGCCATCCTTCAGTTTCTATGACCACAGATCCAGATTTCAACGCGGAGAGTATGAGAATTTGTGTAGAGTCTTCCCGC CAAATGTTAGGAGTTGTTCGTCAACTGCAGAAGTATAAGAGCCTTGATACGACTTGGTACAATACCTCAGTTTTTGTTAT GGCACTTACTACTACACTTTTTGCCCAATGGGAAAAGCGTGGAGGGACTTCATCAGCTGATTTGGCTGCATTGAGAGA AGAGATGGATATTTGGTTGGATATTATGGGTGATATAGGTTCACTTCTTGGTTCGGGAACACGGCTTAAGAAAGCTGTG CAAGTTGTCACCGATGGGACACTCGGATTACTAAGTCGAAATTTACCTGCTAAGAATGACAAGAGCTACGCTTCCAATA ATAATGCCCAGGAAGAAGTCAGACCTTCGGAGCAAACATCGAATACCAATGGAAATAATGGTTATCCGGTCAATGCTC AAAACTTTAATTATAATGAACCAACTTCTGCTACGGGGACTGCGCCTACACCTAACTATTCACCCTCCGAAGGTCAAAT GTCTCATCAACAAACACCCTATCCAGCAGCAACCCAATATTCACCATATCTTGAATCGGCTTCTGGTACTTCGGATTTG ACATATGCGCAACCAGAGAATCAAGGTTATGGAGGATATTCGGCCCCAACTAGTGATTCTGTAGAAGCACCATTAATTG CTGCGTTAGCTGCTCAGGCAACGCAGGTCGCCCCTAATACATGGCACAGAAACCCGATCCAGGTCAACACAGCGCCA ACACAAGCCTGGCAACATTGGACATCTACCGTCACAGGTAACCTTGAGCCACAAGAATGTTACTCGGCAAGTGCTCTA ATGCAATTAGGAGGAAGAGATATGAGTAATGGCGACACAACACAATTGAATACATCGATGGGCGATGTTCAAAGCGGA GGAGTTAGTGAGCCAGGACATTTGGGTGGTCAAGTTTCGGGAGCCATCGCGGGTACTTGGCCGCTTAATCTTTTTGAT ATTGGTGTGAATGGTTCGACGGGTTGATCCTTTTGGCTTTTCTGCTTGTGATTAATTTTCTTGTGCATATTATGATGGTG GATGGAGATAACCGGCGTCTTAAGGATGGATGGGGAAAGATAGAAAGGCATGGTGCAATGGACGGGCCGGTCGGCT TACTTGGAGTTATCAGGCGGTGGAAGGGGACTACA BC1G_14887 SEQ ID NO: 31 GAGCAATTATTAGCAATTATCAACTACTTTGGGGGCTGAAAGCCATTTCAATTCATGAGTAGTGATATGTGAGCATTGG GGCAGAGGAATTTAAGAGTTTGGTCTTTGCAATATGTTGCAGAGGTGAAATTGGAGGTTCAGCCGTCGCATTTCCATTA CTTCGCTCCCATCTCAATCCATCCTCCCGTCCAACTTTTCCACGTCCCACATTCATTCACCGTGGCAAACAAGATCTTT ATGCTCTTGCCAGCAGAAACTCGACCATATTTACGTCTGCGAAGCAATATCGACCTCGCCAGCTAATATTTCGCGACCT TGCATGCAAGCTATTCGCGTTTTGCCATCCAGGCGCAACCACTTTCTTGACTTTCAGGTGTGCGCGCAACAAACAAGA ATTAATTGCTTGCAAAGTCAAGGGGGCTTTATAACTACCAACATCATTAATACGGCGTTGTGTTCTACCGCCGTTGGGT ACTTCACGTCTGCCACCACTAGTAAGGGAACAAAAGGCCGCTTCGAACACATTAATAAATAGTTCGGCTTCCCCTTCG CCTCAACACACAAAAACAAAGTAATCGCACCACAACCTTACAAAGTCTCCTGCTCACGATGGAGGATGACATTCGGGA GCTCCAGCCAGAAGCTGTAGATGCTGCGATTGGTGAAATGAAGATTGAGGAGGGGATTGAGGTCCAGGATTTTGCCA ATGGCTTAAATGGATATATTTCTACTCCTACAGAAATCAAGAGATCTCACTCCAGCACACCGGGTCTTGTAAATTCTCG CTCTCAGACACCGCCCAGAAAGCAAAGCACCAGCCAAACACCAAAATCCGGAGATGAAGAGGAAGAAGAGGTTATTG GCGGTGATATCACCGTCACCGTCGAACCTGGCAAGGCACCGAAGCTATCGAGAAAATCGTCACAAAAAGTAATCCCTC GACCACCCCCTCTCTTCAACGATCTTCCAGATTCTACAGAGGAGGCAGCTTCGGTATTTCAGGTAATCAAGGATTGTAT TTATGGAGCTAAGCACATGGGAGCTTCAGATCACGATGCGTTGGATTGTGATTGTCCCGAGGAATTCAGCGATGGAAA AAATTATGCCTGCGGAGAGGATTCTGATTGCATTAATCGACTGACCAAAATGGAATGTGGTGGAGGTCATAAAGATTG CAATTGTGGTTTGGATTGTCAGAATCAACGCTTTCAACGCAAACAGTATGCCAAAGTTTCAGTGATCAAGACAGATAAA AAGGGTTACGGTTTACGCGCAAATACTGATCTACAGCCTGATGATTTCATTTTCGAGTATATCGGAGAAGTTATTAACG AACCAACGTTTCGACGACGTACTGTCCAATATGATCAGGAGGGGATCAAGCATTTCTATTTCATGTCTCTCACGAAGCA TGAATTCGTGGATGCAACGAAAAAAGGGAATCTAGGTCGATTTTGCAATCATTCTTGTAATCCAAATTGCTATGTCGATA AGTGGGTGGTCGGAGAAAAGTTGCGCATGGGCATTTTTGCCGAGCGTGCAATCAAAGCCGGAGAAGAGTTGGTCTTC AATTATAATGTTGATCGATACGGTGCCGACCCTCAACCTTGCTATTGCGGCGAACCGAATTGTACCGGATTCATTGGA GGCAAGACTCAAACTGAGCGTGCTACTAAACTTCCTCATGCTACCATTGAAGCTCTTGGTATCGATGATGGTGATGGTT GGGACACAGCTGTTGCCAAGAAACCTCGGAAAAAGAAGACAGGTGAGGATGATGAAGAATATGTCAACAACGTTCAAC CCAAGGGGCTCGATGAAAATGGAGTGCGGAAGGTTATGGCAACTCTTATGCAATGCAAAGAAAAATGGATTGCTGTCA AGTTGCTTGGTCGAATCCAACGTTGCGATGATGATAAAGTTCGAAACAGAGTTATACAAATGCACGGTTATCAAATTCT TCGTACGACCTTGACTACTTGGAAGGAAGACAACAACGTGATCCTCCAAGTTCTCGACGTCCTTTACAAATTTCCACGA CTTACTCGAAACAAAATTGTTGATTCCAAAATCGAAACAGTTCTAGAAGAATTCACAACTTCCGAGCATGAAGATGTTGC TTTCGAGTCAAAGAGGCTATTGGAAGCATGGAGCAAATTGGAGCATGCGTATCGAATCCCAAGAAGAGCCCCAACTCT TGTTGCACAAGTATTTGAGCGGCGTCCAGACCAAGTAGAAAAGGTCACTCCATCGCCATCCCCTGTTATTGTCGCCCC TACTGGCCCCCGAAGTGGTGTTCCTCAACGCAACGCCAATTTCGTTGCCAATCGCTCAATTTCTCGGCGCCCGTTCGT CCCCATGGTATTACCACCTGGCTGGTTTACTGCGATGGACCAAAACGGAAATGCTTATTATTACAGTAAGACGGGACA AACAACATGGGAGAGGCCATTTATGCCAGCAGGGGTATCGCCACCACCTCCACCACCCAAGGCAGCTCCAAAGAGTG TGCAAACACAAAAAGCTCTTCAAGATATTATCGACAGTATTACAAAGGAGCCCTCGACGACTCCGGCACTTTCCTCCCA TTCCGCCGAGGGTACACCCAAGGAGAAGAAGAAGAAGCCTGTGGAAAAGTGGCGCTCATTGCCTATCGAGAAGCAGA TGAAACTGTACGAAAATACTTTATTTCCTCACATCAAACACGTAATGCAAAAATATTCTGGCAAACTTCCCAAGGATGAT CTTAAAAAATTCGCCAAGGAATGTGGAAAGAAGCTCGTGGCTTCTGATTTCAAAAACAATCGCATTGAAGATCCCACAA AGATATCTGACAGAAATCAAAGGAAAGTAAAGCAATATGTGTTTGAATATTTTAAGAAGGCTGTGGAAAAGAAAAGGGA GATGGACGCCAAGCGAGCAGAGAGGAAAAGACGCGAAGCGCAGGCTAAAATCAATGGAAACGGCACGAGTGAAAAG GGGATAAAGCGAGAGAATGTAAATTTGATCAGTAGTCCGGATGTGATTGATAATGAGGACGTAGAAGTTAACATACCAA GTCCAACCGCATCGCCTAGTGGACAACTCGAGATGGAGTTGTTGAAGAGGAAGAGGGAAGATGACGAGGAAAGTCCA TCGGAGAACAAGAGGGTAAAAGAGGATGATACTGAGAGTGCAACACCAACGGATTCATCTACGCCTCCTCCGCCTCC TCCGCCGCCGCCCGCGGAAGGGATGCCTATGGCAGAGTCGGAAGATCCGGAGATGGCTAATGGCGAGGGAGAGGT GAAAGAAGAAACGGAAGAGGAAAGAGAGTTAAGGATGCAGGAAGAAGATTTAATGAGGGAGAATGAAGAGGCTATGA AGATGGAAATGGAAGTAGATACTGATGGAAGGTTAAAGGGGAATAATGGTTGTAGTGAGCATATCAATGGTGGAAATA GTTGTGGGGAAGTCTCAACGGAGGGATGATATTTATTGCCAATGGAGGGACACAAAATTGGGAACCGCCTGTATCAAC ATCATCATTATCTTCATTCAAAAAAAATCATCGGCATCGCATCGCATCGCATCGCATCAGGGGTCGGTTATATCATATTT ATTATATGGATAGGGGAGCGAACTAAGTGAGTTTGGCGTTTACAATTTCTTCATCTCGTATTGGAGATCGAGAGATGAA CATCATCTTAGATCAAAAGGATAGTTGGAAGGGATAGTCACAGAACAAATACACCCTGCTATTCCTCATGCATTAAAGG AAAGTAGGCTATTTAGATACTAGGCAGTAAATGGAAATCAAGTGAAGTGTAATGATAATTATTAATCAAATGGCATTTGT GAAAACTCCA BC1G_07589 SEQ ID NO: 32 GAGTCGTGCCTGTCTGCAAGACTTTATTATTAGTCTTCATTAAATTTAACTCTTTCAAGATATACACTACATACACTACAT ACTTCAATTTTCACTTCGCCCAGCCGTTTATACCCATCTTGAAGTTACAGCGAAAACATATTTTAATCTATCATTTTATTG CATCTTACAAATAGTCCAATATTTGTTTATACTTTTGTTCTTGTTCTCAAAATCTGCAGGAATGAGCTTGAATTTTGGACT GACCAATATTAAACCTGTGGCGCCAAAATTTAAATCCGAAAAGGTTCCAAAACAGAGGCCGACTCTATCTAGTAGGACA TCCAGTAATGGCCTTCGAATTGGAACACCTGTATCCAAAGTCACTGATGCTCGTGGCAGACTAGCCGTCCCAAGCCCT CCCCCCGAGGCAGGAAAGAAGAGGAAAGAAAGAGAAATCAGCGGAAGCCGCAACACTAAAAGAAACACAACTCTAAC CCTTCGAAAAAGCCCCAGTCAACAGCCGTTGACGAGTGATAGCGAGGAAGATGAAGAGATCGCCGTGTCTTCCAAAC GGGCCAAGCCGGAAAACATCGAGCCTGATTTGAAGAGGAATTTGAAGGACAAAAAAGCCTTTTCGACTGAACCCGATA ATACGCAAGGCTCTACATGCAGAATGATCCATGCGGCGGATGTCATGATGACGAAACGCACGGCTAAGAGCGGCGAG AAAGTTTGCGATAGGAAGAAGGAAGACGGCGACGCGGTCCTTCTAAGATATCCCAGTGTCAGTCGCAGAGAAAGATA CCAACTTATCTCCGAAGGCGAAGTTATTGATCCCGCAGGAGAAGATTTGATCAACCCTTATGACGAGATACCGAAGATT GTGGAAATTGTCAAGGATGAATATTTGACCGATGAACAAGCAGCGGAGTTCGCACATCCGGAAACGGGTATAATTCGA AAAATCAACAAAGCGACGAACAATATTACCTGGACTCTTTCCAGCGCAAAAAAGCCCCACGACAAAGAGAAAATGAAG GGGCTGTTGCTTGAGTTCAGGAATGCTGTGGGAGCTTACAATGACGCGCTCAGCACTCTCACTAAAAATGGATCGCTG GCGAAAAATCTAGAAAACAAGCATTCACTGTCGTCTAAGCTTCTCAAAATGGTTCTCCAGCAAGTTTACGACCGAGCAG TGTCTCCCCAAGTTGACTTGACTAATAAATACCAAAATGGCACGGATTATGTTTACGGCGAGCTCACATTCCCGTTCAT ATCCCGAATCCTCAGGGAGGATACTCGCATGAAATCCGATCAAGTTTTCATAGATCTTGGTTCGGGAGTAGGAAATGT CGTCGTGCATGCCGCGCTACAAGTTGGTTGCGAAAGTTGGGGTTGCGAAATAATGCCTAACTGCTGTAAGCTGGCTTC CTTACAACAGACAGAATTTTCCGCACGCTGTAGGGCGTGGGGCCTCAGCGCCGGGTCAGTCAACCTCGAGGAAGGG AATTTCTTGAATAACGAAAACATTCTCAAAGTTATGAAGAGGGCTGATGTTATCTTGGTTAACAATCAAGTTTTCGCACC TGCTTTGAACCAAAGTCTTGTGAACCTATTCTTGGATTTAAAAGAGGGTTGCAAGATTGTAAGTTTAAAAACTTTCGTAC CGGATGGTCACGTTATAAATTCTTACAATGAACACAATCCCATCAATTTATTGCGGGTGGAAAAAAAGACGTACGCGGA AGGCGACGTTAGTTGGCATTCTAATGGAGGGGATTACTACGTTACTACGAAGGACAGCACTATCGTAGCTAAGTATCA CCAGACCCCAAAGGATAGAAAGACACGGGGGAGTCGGGTTAGATGATTTTTGAATTTGAATATACGGTTTCCTTGCAC AGTTGATACCATTGGGAAGGTTATTATTGGGTACTTGAGCACGAAGCGATATCACAGCGAGGCAGCATAGAGTAGATG TATGGATAAATGTATGTATTTGTAACA BC1G_05475 SEQ ID NO: 33 GATGCTGTGAAGCTAGCTCGACATATCTTGATCTCTTTCAAAAGAATTATCCTCCACCTGCATTGACTCCACCCTGAGT ACCACAGCATTAGCACGAAATGGCCCCAGCTAACATAATAAGCATTCTGAGGCTCTGCGCTAGCAGAGACGACGGGC GCGGTATTGTCACTTATCCACTGGGAAGCAGAAACAGTGTGAAGACGTTATACAAAGATTTAGAGTTCCAAGTGATCCA CAACGCAAGATTCCTGTCACGTATCTCCAACTTCAGACCAAGATCAATCGTTTTACTTCATTTCACGGATCACCTTGATA ACATCGTATGGTTTTGGTCCGTAATTGCTGCTGGAGGCATTCCTGCACTATCAACACCATTCAGTAATGTTGAAACCCA GCGCCTGAAACATATTGCACATTTACACAATCTCTTGAAGGCTCCCCTCTGCATAACGAGACGTTCCTTGTTAGATCAG TTCTCGGATCAGGATATACTGAGACCATACGTTATCGAAGACATCTTCTCCGCTCAAGTCGCCTTAGAAAATGATAATA TAGACGAACTTGGTCAAGTTGCAAGAGAAGAGCATCCGGAAGACTTAGCTATATTAATGCTTACCTCTGGCAGCACGG GAAACGCAAAAGCCGTCTGCTTGACTCATGGCCAAATTTTTGCCTCAATGGCTGGAAAGTCTTCAGTTCGGAAGGATA TCCCCAAGGATTTCTCTGCCCTGAACTGGATAGGCTTTGACCATGTCGCCAACTTGACAGAGATACACCTTGAAGCCA TGTACCTTAATATAGACCAAGTTCACGTACAGGCTCCAGATGTCATTTCTAACCCTCTGTTTTTACTGGAACTCATACAC AAGCATCGTGTGGGATGGACATTTGCACCAAACTTTTTCTTGGGAAAATTGAGGAAACAGCTAGACACAGTTATTGTGG ACACAAGTCTCTACCTAGACTTAAGCTGTCTCCGTCTTTTGGTTTCCGGTGGCGAGGCAAATGTCGTGGAGACATGTG ATGTTCTTTCCCGCCATCTAGAAAAATACGGAGCACCATCAAATGTGATCTCTGCAGCCTTTGGTATGACAGAAACCTG CGCTGGGTCTATCTATAATCTCGATTGCCCTAGATACGATGTTCATAATATGCAGCAGTTCTGTTCTCTTGGGCGTTGC GTACCGGGAATAGAGATGCGAGTTACAATCCCTCAGGCTGGCGATGAAATTGTCCGGGCTTCAGCCAACGAACTTGG CCTTCTTGAACTTCGTGGACCTATCGTGTTCAAGTCCTATTTCAATAATAAGTCCGCCACAACAGCTTCCTTCACTCCAG ATGGCTGGTTTAGAACAGGAGATCACGCCACGATCGATCGAGCTGGAATGCTCCATCTGGCAGGGAGGACAAACGAT ACCATGAACATCAATGGCGTTAAGTATCTCCCGAACGAGCTAGAGGCTGCTATCGAAGAGGTTGGAATTGAGGGTGTG ACACCGAGTTACACAGTATGTTTTTCCTTTCGTCCACTTGGTGCGGAATCAGAGCAAATCGAAGTTGTTTACTTGCCCT CCTTTGGACCCCAAAATGTCGATGCTCGAATTGCAGCTCGAGACGCCATTATTCAAGTCACAATGTTGCAAACTGGCT CTCGACCTTCAGTTCTGCCATTGAACGATGCTTTGCTGCAGAAAACGACACTCGGAAAACTCTCTCGCGCCAAAATCA GAGCTGCATTTGAACGTGGTGACTATAAGAAATGCCTGGAATTTGATAAGATGCAGATCGAAATATATAATTCATCCCA TATGCAACAACCTTGTACTGAGAGTGAACGCATCATTCAAGAAGTATTTTGCGAGGATCTAGATCTCCATCCGCAAGAG TTTGGCGTCAATACACATGTGTTTGAGATTGGCATTACCTCCATCCATTTAATCCGATTGAAGCAGAAACTTCAAAGCC GCTTCTCTATCCCAGAGATTCCCATTCGCATGATGATGCAAAATTCGACCGTTCGAGAGTTAGCCACGGCTTTGGAGA ACCTCGGTAAACCACGAAACTATGAACCCATCATATCACTTCAGAATATCGGACAAAAGGCTCCTCTATGGCTCTTTCA CCCAGGAGTTGGCGAAGTTCTCGTATTTCTCAATCTCGCAAAGTATCTTCCTGATCGCCCAGTATTTGCTCTTCGTGCT CGAGGCTTCGAAAAGGGGGAAACATTTTTCACAGATATTAAAGAAGCAGTAAACACATATTTCGAAGCCATAAAGAGCA AGCAACCGAAAGGTCCATATCTTCTCGCAGGTTATTCGTATGGTACAATGCTCGCATTTGAAACCGCGAAACTGCTAGA AGCGAGCGGTGATGAGATTTCCTTCCTTGGATCCTTCAACCTGCCCCCACATATCAAATTCAGAATGAGACAACTTGAT TGGACCGAATGCTTGCTGCATCTGGCCTACTTCCTTAGTCTCATCGATGTCGAGCATTGCGAGATAATGGCACCACAG CTCCGACAATATTCCAAAAAGCAAGCCATCCAATGCATCAGCAAAGTCGCAAACCCAAACCGTCTTCTTGAGCTTTCAC TCAATGAAGAGATGCTTGGAAATTGGGTCGACCTTTCATATAGGCTGCAGAGCATGGCAAATAACTATGACCCCTCGG GAACAGTTGCGATGATAGATATATTTGTTGCAGATCCCTTGCAAGCTGTGGCAGCGAATAGAGAGGATTGGAGGAAAA ATTGCTTAAGCAAATGGGCGGATTTTAGCAGATCGAAACCAAGATTTCACGATGTAATGGGCGAGCATTACACAATGAT TGGGGCGGACCATGTTTTCAGTTTCCAGCAGACTTTCCGTAAGGCATTAGAAGCAAGGGGATGTTGAAATTTTCGCAA GATATAATAATATTATGCGAACCATACCTACTGCAGGTAGCAGTGTTTGGAGCAATGAAGGCAATATACTATGAACTGT CCGAACATTATGCTAATATTTATAATTGTTAGATAGCACGTGTATTTTCA BC1G_07401 SEQ ID NO: 34 GTTTAACCATCAAGATAATAACTGAAAAATCCTATCCACATCTGAAGCTCCTGAGCCTCGAGATATTTTCAAAAGCTCGA GAGCATTAAACTACACCACAATCTAATCGGTTTGACCTTATCGTTCAATATGGCGGACGCAATTACCGAAGGAACGGC CAAGCTCCAGCTTGATGAGGAGACAGGTGAGATGGTCTCGAAGGCCGAACTGAAGAAGAGATTGGCAAAACGTGCGA AGAAAGCAGCACAAGCAAAAGCAAAATCAGCAGCACCACCTAAAGAAGCTGCTGCAACTAAACCTAAGAAGCCAGAAG AGACCAAAGCAGCAGAGCCATCAAATGTATTCGCCCAAGGATTTCTCTCAGAAGTGTACAAGGAGCGTCCTGTCAAAC CAGTCTTTACCCGATTTCCACCTGAACCCAATGGATACTTGCATATCGGTCATGCAAAAGCTATTGCTGTCAATTTCGG ATTTGCTAAGTATCATGGCGGTCAGTGTTATCTGAGATTTGATGACACCAATCCCGAAGCAGAGGAAGAGAAATATTTT ACAGCGAATAAAGAAATGGTTTCGTGGTTGGGCTTCACACCTTACAAGATTACACATTCCAGCGATAATTTCGATAAAC TTTATGAGAAGGCAGAGGAGCTTATCAACTTAGGGGGGGCTTATGTTTGCCACTGTGGTGATGCTGAAATCAAAGCTC AGAGAGGAGGTGAAGCACGGGGTCCGAGATTTAGATGCGAGCATGCGAACCAATCGATCGAAGAAAATTTGAGAAAG TTTAGAGCCATGCGAGATGGCGAATACAAACCTAGGGAGGCATTCTTGCGCATGAAGCAGAACATTGAAGATGGAAAC CCTCAAATGTGGGATTTGGCAGCATATCGAGTCTTGGATGCTAAACATCATCTAACGGGAGATAAATGGAAGATTTATC CAACATACGACTTCACTCATTGTCTTTGCGATAGTTTTGAGAACATCACACACTCGCTTTGCACGACCGAGTTCATTCTA TCAAGAGTATCGTACGAATGGTTGAATAGTACACTGAAAGTATACGAGCCCATGCAGAGAGAATATGGTCGCCTAAGC ATTACGGGTACTGTCCTTTCTAAGCGAAAGCTCAAGAAACTTGTGGACGACAACTATGTTAGAGGATGGGATGATCCA AGACTATATACATTGATTGGAATCAAAAGACGTGGTGTACCTCCTGGAGCAATCCTTGAGTTCATCAACGAACTAGGAG TGACGACTGCTCCTACCAACATTCAACTTTCTCGTTTTGATCAAACTGTTCGTAAGTACTTGGAGCTCACAGTTCCCAG ACTTATGTTAGTTCTGGATCCTGTACCTGTCGTCATCGAGGATGCCGAAGAGCTTGAACTTGACATTCCATTCTCACCT AAAGTACCGGCAATGGGCAGCCACAAGGTCAAGTTGACTAGAACTGTTTACATTGAGAGAAGTGATTTCAGAGAAGTT GATAGCAAAGATTACTTCCGTCTCGCCCCTGGAAAATCTGTCGGTCTACTACACGTTCCATACCCAGTCAAGGCAGTC TCATTCTCTAAGGATGGAGATAAGGTCACAGAGATTCGTGCCGTCTACGATAAGGAGAGCAAGAAGCCCAAAACTTAC ATTCATTGGGTTGCAGATGGTTCAAAAAATGTCGAAGTTAGAATTTTCAACAGTCTCTTCAAGAGTGAAAAGCCAGACG ATGCTGAAGGTGGTTTCTTAAATGACATCAACCCTGATAGCGAAGAAGTTTGGCCCAATGCTGTTATCGAGTCTGGATT TGACGAGGTACGAAAACGAGCTCCATGGCCAGAAGCTGCTGGAGAATCGGAGCTCGGCAAGGGAGGTCCTGAATCT GTCAGATTCCAGGCCATGCGTGTAGCATACATGGCAATGGATTCGGACTCAACGGATGATAAGATTATATTGAATCGC ATTGTTAGTTTGAAGGAGGATGCTGGAAAGTAGGGAATTAGGGGCCATTATGCAAGGGTCCAAAGAACTCATCAATTG AGAAGTGCATGGGATATCATGAATGAATGATTTGTTGCAAAGAAGTTTACGTCTAGTCAAGAATATACTGGCCTTGAAA AGCAGATTCATGCGCAAACAATTGAAGGGAATACTGAGTGAACAGCGTATCA BC1G_09015 SEQ ID NO: 35 GAGCAAAAAGAAAAGACACTGCCCTTCCTGCGGACAGACTGTGCATACCGTACACACTACGTCCTACACGCTACTTGC TACTTGCTACTCACTACTCGTACATAAACACAACGGTGCTAAAGGCAGAGGACCCCAGTCTTCTATTCTTCCAGTCCAG TCGTCCAGTCGTCCAGTCGCCCAGTCGCCCAGTCGCCCAGCCCAGTCAGTCTCCCAGCCCATTCTCCCACTCGTCCC AGTGCTCCCTCGCACCCTCGCACCCTCACACCCTCACACCCTCAGTCACTCACACGCAGTCACTCTCATCAGTCAGTA CAGAATCTAGATCCACTTTTTGTTTCTATAGGCAACGGAAAAGACCTTGGTCATAAACCCCCAACCCTGACCACCCTGA CTTTCCTGAGCCACCTCGAATCTCGAAAAGGTACGGGAAACATCAAGCTTTTATCCCATTCGCAGCACCAGCAACCAG TAACGGGAACGTACAGGTACAGGCTTGCAATCCATTCCCCCAAATATTGTTCAACTCCTCTTAGTCTATCTGCAGCCGC AAAGAGACTGACTCTCCATACAATAAAAAAAATACAACATCCACCGCTATCTTCATTTCACCACTAAACACAATCCACGA GCCATTCCTCGAGATATCTTCCAAACTTCGAATGCAAAAAGAGGAGACCGTCAATTGACGCGCTTGATTTCTGTGGAG AAGAGAAAAAAAAAAGATATTGACTCTCGAGAGACGCAGATACAGATAGCTTTCCGCTGCATTTTACTGGGTTCCTATT TACAACGACTTCCCTGTTTACTAGTTATACCCTACGACGGCCATTTGAAATGAGATAGTCTATCGACAAACTCGGCCCT TAAACGGACTGAGCTCAAGGAAAAGCAAAATCCTTTACTCGAGATTAATTTCTGTCGCTGGCTTTCCCCAGTGACTTTG GTTCCTTATTCATGATTCGGGAACAGAGGGCTCCATCAGGTCCACGGCCTGACCTTTCACCCACAAGACAAAGGATTG CTGAGAATTATCCTCCCAGTGTAGGCACCGGAGGATCGCGTCTGATAGCCGGGACAGAGCCTACACTGCATGCTCCG CAACGAAACAATCATACTTTATTTACATTTGGGGCTCACAACGACGATAGTTCGACGTCTTACGACTTCTTGCCTTCTCC CAGTTTTGACGACCTGCAAACCAGCATCTCCAATGAACTACAGCTTGCAGCTCAATATCCGGCAACAGGTGGGGGAGA TTCAATGCCGAGAGAGAAGCCTTCAATGGGGGAAATCAAAGCATCTATGAACAATGGGCGGGGAATAGGTTCTGCGC GTGGAGTGTCTGGACCACGACCGGCGAGAACCTCCTCTTTTCAACGTAGGCAGAGTGTGAGCAATCGTCAAGGTAGC ATATCTTCAACAACTTCTTCAACTGCATCGGGGAATATGGACCCACCATCTGCTCCTCTAGCTGTTCGAACCCGACGAA ATCAATATCCTCCGATATCTGGAAGTGCTGCCTCCAATGCGCCTGCTGCTAGAATACCGCGCAGATCTGTCGGAGGC GCTGAGTCGGATAGCTCGAGCAAGGCGGGGACCACACAAAGACGACGTCCGAGTCTTGCTCCAAGTACATCATTACA ATCTTTGTCGGATGCTGCCAATGCATCTGCAAGAATGAATAATACAGGGGTTCCAAGTTATATGGACGGAGCAAGAGG TACAACGGCCTCGAGAGCAGCGAAAACTAAATCATTGCAACCTCCGAGTAAAGGGCAACCCCAAGTTTCTATTCAGCC TGGCACACCAGATCACAGCAGATCATCATCCCTTGCTGCAAAGTCACCAGGGAGGCCCAGTGCAACAGGAATACCTG CAACCACACCATCATCAACCTCGAAGCGGATGTCAGTTTTGCCAGGTACTTCCCATGCAAGTGGGCTTGGGGCTAGAA CCATCAGCCCTACGGATACTCGAAGAGCCAAACGTTTATCGACTCATCAAGGAAACCCAACCGTTTCGCCGGGTACAC CGCCAACTCCACAACCTGACTCTTATCCCGCATTTACTCCTCGAGGGTCTTCAAGATCTCCTTCCATGTTACCTAGAAA GGTGCCTACACCTTCATCATCTCGAACTACCCCGGATAGTAACCGTAAGTACAATTCTGCTATTTCAGCTGCGTCGAGT TCAAGCTGTAACACATCTCGAAATACTGCAGGTTCCTTACAGCCTCGAGTATCGTCACTTGCCCCCACAGCATCAAGG TTACCAACACCTAAGTCACGAAATGTTCATAGCTCCGCTGGCAATAATGAGGAGGAGGATGTTCCGCCAGTTCCCGCG ATTCCCAAAGCGTATGAATCCCCCAAAGATTCACCTATCGAAACTCCATTTTTCACCAAGAGGAAATCAAGTATGCCTTT TGATGCTAGTAGTATTAACAGTACTTCAACAAATAGCATTTCTGGTAGGAATTCTGCACGTGAGCCAACTAAGGTTGAA CGAGAGCCAAAGAGGTCAAGGCATGCACCACCCAGCTCGAATTCGGATCTTGAACAGCAAAAACAGAATACCACGAC TCCCAAGAAAAAGAACCTTCAACCACTTCGTCTGCCACCCTTGAATTTGTTACCATTGAGTGCCCCCACGGCTGCAAA GGCTGCGGCCATATCCAATCCTGAGCCCTTACCAAATGGTGCCATTACTCCTCCGCCTAAGCGGACAAATACAAAAAC TCCAAGTTCACCCATGACAGCTTCCAAGACCTCATTCTTTTCCCGTCGCAACGAAGACAAATCAGAGCATCATATGCCC AAAATGCGGAGCAATAGCTCTATTCATCATAGACCAACGGAGTCTTCGCAAGTATTTGGAAGTAACGGTGGGACAAAG CCTATACCTATAGCTAATAACCGTCCACCGCCGCCTAGGGAAACCTCCCCATATTTGTCCTCATCTCTCCCTAAGAATA ACGCTGGCCAACATCTTATGCCTCGATCCAAAACTAGTGGTGATTTCACTACGATGGACACCTCGACGACTGAAAACA AGCCGGCAAGGTTGACTGGACCACGTGCCTTAAAGGTGAATAGATTAGCTAAAACGGATACTCCTGCGGAAGTCTCAA GTCCAGAAGAACCCCCAACACCATCTTCAACAACTTCATTGCGAAGAAAGTTGAGTCTAGGCTGGAAGCGATCTGGAT CGAAGAACACCGCCAGTGCTGCTCAAGCAACAGGCGGAAGAGAAGCCAATCAGCCTCCTCCTCCCCCAAAACATGAC AATATGCCACCACCTAGATTGCCTGCTTCTTCTACCATGAATAATATGAGTAGCAATAATAAGGAAATACCTAGTCCTAG TCCCTCGGTCAAGTCAACCACTACTACTTATCTCAATTCCAGTCGAAGAAAGAGCTCAGTTTCAAGCCTCAATATGATC ACAGGTCACGACAGAACAAAGAGTGATAGCTGGGGTTTGAATCGAAACAGTCCGAAGAAAGAGACATCAACCGACTCT ATGGCTTCTGAAAGGAATATCCCAACCGCGACTTCTCGAACTACATCTTCGGTTATGCATAGAATGCTGAATCCAAAGG CTTCCAGTACCAGTATTAGACATCAGGATCACTGGACAGCGGAATTGGACAAGGATGATCTTCTGGCAGAAGATGAGA TGAAGAAGCTCGGGAATAAACGAAAGGAAACAGAGACGGCAGCTCGTCAATTGGATGCTCTAAGAAAACGTGCTACTC CTAAGGATCGAGCGAACCCTCAACAGGCCCTCAAACTTGTCTCGCATCTCAACATTTATGAGAAGGGGGAAATTGTCG ATTACAAGGACATTTACTTCTGTGGAACATCTAGTGCAGCTAAACACGTTGGTCAGCTTCAATCTGATGCTGCCAATTT CGGGTATGATGATGAAAGAGGAGATTATCAAATCGCCACTGGAGATCATCTCTCATATCGTTATGAAATCATCGATGTT CTTGGCAAGGGAAGTTTTGGTCAAGTCGTAAGATGTATTGATCACAAGACTGGAGGATTAGTAGCTATAAAGATCATTC GGAACAAGAAGAGATTCCATCAGCAAGCTTTGGTAGAGGTTAACATCCTCCAAAAGTTACGCGAATGGGATCCCAAAA ACAAGCACAGCATGGTCAACTTTGTTCAAAGCTTTTACTTCCGTGGTCATCTTTGTATCTCTACTGAACTTTTAGATATG AATCTTTATGAGCTCATCAAAGCTCATTCTTTCAGAGGTTTCTCACTGAAGATCGTTCGGCGATTTACAAAGCAAATGCT TAGCAGTTTGTTGCTTTTGAAATCAAAGAAGGTCATTCATTGTGATTTGAAGCCCGAAAATATTCTCCTCGCACATCCTC TTCATTCGGAGATTAAGGTTATTGACTTTGGATCAAGTTGTTTCGAGAATGAGAAGGTATATACATACATTCAATCCCGA TTCTACCGATCGCCTGAAGTCATTCTCGGTATGACATATGGTATGCCAATAGATATGTGGAGTCTTGGATGTATCTTGG CGGAACTTTTTACTGGAGTACCGATCTTTCCTGGTGAAAACGAACAGGAACAACTCGCCTGCATCATGGAAGTGTTTG GTCCACCGGAAAAGCATTTGATTGAGAAGAGTACTCGCAAAAAGCTCTTCTTTGATTCTCTCGGAAAACCACGTCTTAC GGTATCTTCAAAGGGACGTAGACGTCGACCATCCTCAAGATCGCTTCAACAAACCATCAAATGCGATGACGAAGTTTT CCTTGACTTTTTGGCGCGTTGTCTCAGGTGGGATCCTGAAAAGCGTCTGAAACCTGATGAAGCTGTTAGACATGAATT CATCACTGGCCAAAAACCTACTGCTCCACCTCGTATCAATACTCGAATCGACTCGCCAATAAAGCGACACAATACCACC GCTGCACCTGCCTCCAATAGGCCTCTTCCAGAACCACCTGCTACTAGTTACAAGAGTGGTTCATCTGTTCGGCCACCC GCAGCTGGGACAAGCCCAAGTAAAGCTCTTCCACCTCGAAGACAATCCAATGCCACAACATTAACTGGACCTCCTGGG CCGAAACGTACAAGTACTGGAACCGTGGCAATTTCTGGTGGTAGCAGCTTACCCCGAGTTACACGAAGCGTCAGCTC GAAACAGGATTTAGCATCAGCGGGGGCATCGGCAGCTATGAGTAGTCGGCGAGCATTATAGAATATGTAATGTATGAA ACGAAAAGTGTTGAGAGTGAATAAATCATTCATATCACTCATTGGGTACATAAGGAGCGGATTATACGAATAGACGAGT TTTTATTACTTCACTGCCATTTTCTTCCTTTCCTTCGTTTGAAGTTGTCCTTTATTGCATAGCAGCGAGGTCAACCGGAG CATTTTTCTTTTCACATTTTTTTTCTTGTCCATGATGCATACCCACTGCGCAACAACTATACATACCTCATTCGTTTAAAAA CACAATGCGAATCGTATAAATCTAGCCGAAGTCTTTCATTTGATACACTGAAAGTTAATCAGGCGTTCTTGTGGCAGCA GGGCTGTGAGCTGGAACAGTCTGGAGTATCCTTTTTGCGGACCGACCGCGCATTCATTGATACGCATATAAACACTAC TATAATTTAATTTGACGTCTTTCATTCACGAACTTATTTACTGGGAGTTTGGGAGTTTTTTTTAATTAAGAAAAGATGGGT TGGAGGGGAAGATGAAGGAGGGGAAAAACATTTGTGGGGATGAGGAGGCTCGTTCGAAATAGCTTGTTCGAGGAAG CTTGTTTGCATGTAGGGAGCTTGTTTGTATGGAGACTTTGGTCGCAGTAAATGCAATGCATAGCAAAAGGAAGGAAGC GGGTACGGATTGGAATTGAATGATAGGGAATTGACGAATAGCATTGAGATGAATAAGATGAATAAATTA BC1G_03832 SEQ ID NO: 36 GGCCAGCACAATCAATCAATCTCTTGATTTGATTTCCTAATAATCTGATGATGCACTTTGGAGATTCTTGAGATCTCCTG TATGTGAACATCGACTTTTTATCCCGACCATACCAACCCAGTTATCACATATTCAAGCAAACTTTTACCGGTGTATTGAT ACCCAAGACTTATCTGGGAAGGGAAAATAGTTTGTCGGTAATAGGAGTATCGGCGTATCAATTATCTTTGAAGGAAGTG GGTTGTACCAAAAACCACATCAGGTATTCCACCAGACAATTCGGTACCGCAAAACGAATCTTCTAAAAGGACGGAAAC CTTCAATTCACATTACTATTTTACAAAAGCTTGTCGGCCCAACGACAATGACCAGATGTCTATTCTTTCCATTGAACGCT TTTGTTAATCTACTTCCTTAATCTACACCACTTCCAAAAGTATCCATTCTTCGACGACCCCTCTGCCAACCTGGGATTTC GACATTGTCCAATCTGGACATATACGCTCATTTCCGCGATTTGATTTACAATTAACGCATACCTTTCATGGCTACTGCGC CAATGACGACAGATCCATCGAGGCTGTCATTCGCAAAGGTTGCCGCTTCAGCTGGGAAGGATAATGTAGCTCTCGCTT CGTTCGCAAAAATTGCTGCTTCTTCAACTTCTGTACGAGATACGAGATCTGAAAACATAGCTCCAACTGTACATAAAAAC AAAGACACAAATATGCCTAGTGCTACACGCAATGATACTGGCAGTATGGCCACTCTCAAAGAGACGGGCACATCGACA AACGATCAATCCTCAAAGAAGAGGACAATTACCGAGAGCAAACCTACGGCTGCTAAGAAGGAATCGGATTTGGCAGAT GCGGTTAAAGCGATGCACATTCGTGATATCACACCAAGCCTTGTTGTAAATGGTTCAGGGATTGCACCTCCAACCCAC AAAAGAGATTTGGGAGAAGGATTCCCAGAAGATCCATTTCAGAGAACAGAATCTGGGTCCGACCTAGGAACGAAGCCT CCAAGTTTGGATGGAAAGAGCATTACCTCAGGCACAACGTTCGCTTTGGACGAGAAGGAGTCTTTACGTCCCGATGAC AGCGCGAGCGTAAAAGCAGCCGAAGATGATGATACATTTTCTGGTCGCGGTTCCATTGTTGCTGGTTCTAGAATTGGA TCTGAAGCAGCTGCAAGAGCTTATCGTGCACAGTTCTATGAGGCTCCTGATCGACGTAGTATACAACTCATGCAGGAG CGTCAAACTCAGGGCATTGTTACTCCTCAAAGTGGTTCCTCTGGGCAGCAAACCACGGATGATAAATCCAAGCCGCTT GTAGGCCCATCAGGATCAACTGAAGCAGCATTTACACTCTTCTATCGCCAGACTCCCGACGAAAAGCTTTTGGAGGCA TTAGAGTCGCCAAAAGACCGCATCTTTCTCCTTCGTCTCGAGAAGGATGTTATCGAGTTTGTGAAGGACTCCAAGGAA CCTTTCATTGATCTCCCACCGTGTAACTCCTTTTGCAGAATGCTGACTCACAAGTTGGCGGATTACTACCACATGACAC ATCAAGTCGATGCTGTAGTTGGAGCAGTCCGTATTTTCCGAACACCATTTTGCAGGATTCCGCCATCACTAACAAGCAT TTCCAATCCTCCTACTACTGGAAATACCCCACCTCCCAATCTACCTGCAATGAAGATCATGCGTAGAGGTGGTGATGGT GACACTGGACCGAGCCCCTCAAAAGCTACTTCCGAGACTGGAAGCGATGGCAAGGAAAAGGCACAGTCCGCTAAAGA GAAACTTTCGCGAGAGGAGCGAGAAGCCGTTTATCTTGCGGCTCGAGAAAGAATTTTCGGCAAAGAAGACAAATCTGG CGAGGCTACACCAGAAACCGACGAGGGTAACGAGATGTCACGTTCCAGCTCTGTTTCTACAAAGGATAAAGGCAAGA GGGGTAAAGTTGGAAAACAGCGTCGTGATGACTCTGAAAGCTTCGACGTTCGATCTCAATACACTCCCTACTTTCCAC AACAACAAAATCAGCCGGCCTGGATCCCCACCCAGAATTTCGGCGCAATGGGAGTTCAGCAATACAATGGCGTCATG CCAAACAATTATCAAAACCAGATGCAACCTCAATATGCTCCACCTCCGCAACCATTTAATCCTGCTATGATGAGCAATG GAAACATGCAACCATACAATAATATGACACCACCGCAATTTCCTCAGCAAAGTCAGCCACGTTACCAACCACATAGCGC TCCAATTACGACTTACGGCACACCTGCACAGTCCCCTCAACCTCCCCAACAATGGATTCCACAGAATCAATACCCAGG AGGCCAGTATCAGTCACGAGGACCTGTTGCAGGAGGACCACCTAACACTATCCCTTACGCTTTTGGACAACTACCCAG CACGGTAAACCCAGCCGATCCCAAAAGTCAACACCCGATTCCGGGAAGTTTCATTAATAGACATGCCTTCAATCCAAA GACGCAGTCGTTTGTTCCTGGCAGTCAAGGTCTTCCTATCCCGCAGCCCATGTCTCATCATGGATCTCCTCACCATGG TTCCCCACACCATGGATCTCCTCATCTCTCTTACAGCAACTTCTCTCCACCTCAGCAACAATACGGGGCTGGAATGGG TTATAGCATGGCGAGACAAGGGTCTAATAGCTCTTTACCCTCGTATCATGCATCTCCACACATGGCACATAGACCAATG ATGCATCAGAATATGCCGCAAGGTCTTCCTCAAGGCCTTTCCCAAGGTCACCTTCAAGGCTTACCACAAGGTTTGCCA CAAGCTATGCCACATGGTATGCCACCAGGAATGCCACAGGGCATGGTTCCAAATGGTCAAGTTGGAAGCCACCTTCCT AACTTTGGCAACCCGGCAACTTTACCTCCAAAGCCTCCAACTGGTGTTTAGGTGTCTTTTGAGGAATTGCGGATACATT CTGTGATGAATAAACGGTGGCGTATGGTAGCATTGGTGGAGTTAGTGGGAAATGTGGGCATTAAAACGAAAGTCATTT TAAGTACCTGGTTTATATTGGCTGATAGACCTATGATTACAAATACAATACATTTGATTACACCA BC1G_09907 SEQ ID NO: 37 GACAGTCATTCTTCCCTTCCTGAGAATTTCTCCATATCAATCTTCTCATCATCACATGCGCACATGGACTCGCAAATGC GAATGACAGGGCTGAGTGAATTCTGAGTAGTGCATGACTCGATTCGAAGTTCTATAATAGTTGAATCAGGATTCAGGAC TTGATAGTACATCCCGCCCAATCAACCTCTTTGGTAAAAAGAGGGGGAGATATTCTCGCTGAGTATCACATCACCGCAA AAGTTGACACATTCTTCTCAGCCCCTTTTCCACTGATCGAAATTCTGCATACTAAATTCTATCTTTCCCTAGTTCACTTAC ACACGAGTGCACCACTGGGATATCTTATGTGTTTCGGATTGAGCAGGAAGTGAATAATATTAGTGTGTAATTTCCTAGT TCGAGGCAATGCGGAATTTTAGATGACTTCGTGTAGAATCCAAACTCCAATTCATAAAGCTTTATAATCCTGCACAGCT GTCTCTTTTCTCACACAACTAACTATATTTCATCCCCACGAACCAGTCTCGGAGAGTCAAATAAATATACCTGTTCGCAT CATGGTTGATAAAGCCCAAGATGAGGCGGAAAAGGCCGCTTTGAACCCATCTCCAGAAGAAGGCGCCGTTCCCAAGG AGAAAGTTGTTGAGCGAAGAGGTATGCCAGGGATTTGGAAGTCAGGAAGAAACTGCGTTTCGTACTTCGCTAGTCTCA GCATCTTCACGATCACCACTCTCCTGATGATTCCGGGCCTCGCTCTTGCGTGCTATCATCAGAGAGCACTTCAACTCC TTACGCTTACTACCATATCTACTGCTCCTGGTAAGACTATTGGAGGTTTGAATGCACAAATGGAAGTGGAGACAATCT CACCTACAAGATTTATCTATGGTATTATTGTATCTTGGGCGTTGCTGCTGGAACTGGCAATTTTGTGACCATAACGGAT GTTTGTCATCAATCAAGACAAGCATTGACCTATCACATTCTCCCTTCCCTCAATTCAACTTTCATACCCCCTCTTCCTGG ATACGATGCCTCTGGTCCTATCATGACAATAAATGGTCTCTTTCAGAACTACGCATACCCGGCTTTCGCTTCATATGTC GCCGCCATTTTTCTCTTGATAATTTTTGCAAGTTTCTTCAACTTGTGGTTCGGTGCTACCGCCACGCCACATAAGAAGAT ACTTATGCTCGTACTTTCCATCTTTACAGGTTGTTTCGCTACCCTTGCAGCACTCCAAACCTATCTCTGCTACCAAACCG TCTACGTGCTCAACCAAATCATGAAATATTCCAAATCCACTCTAAAAATATCCGTCACACCCGGTTTTCTCTACCTCATC ATCATTCATCTCTTCTGGATCATCCTTCTTCTCAACGTCCTCATCATTCCCATCACAACTTGCACCAAGCGTCGCCGCG CTAAGCGACAACTTCAAGCCCTAGAAGCCGATGCACAAGAGCTCAAAGAAAAAGAGACTCTAGGCGGCGACACGAAT GTACGTAGTAGTCCAGCGAAGTCTGCTGATTCAGATTCTAGTGACGATGATCACGATATGTCTCCTCGTGGTGTGCCT CAGTATGGTATGCCTCCTTATGGTATGTCCGCATATCCTCATCCCGGTATGCAAAATGAAGGATACTATGGTCATGGCT ATGATATGCCGATGCCTATGCAACCACAGTCTGGAGAGCGCAAGAACAAGGGGAAGCGAGAGCAAGGAAGAGACAG CGAACGACGACAACTCAGAGAATCTGATGTTTGAAAATTGCATATCTGCAATATCATGATTTTTTATACCATTTTAGTTGA ATTCCTAGATTTAGGATGACTTGGAGGAGTTGGGCGGGCCAAATAAATTTCACAACTTTCA BC1G_02544 SEQ ID NO: 38 GACGCGCAAGCAATTCCTTTTGATCAATAAGTTGAATGAAAACTCACTGTCCCCAATACCTCCTTCTGTGTCAAACATCT TTACTCCATCTCTTGTGAGGAAGAAACATCAAAGTTGTCGCAATTGCTTTAACACGATTGATTCCCCAGCCGCATACATT CCACAGCGAGAGCGCAGATACGGATACGATACCCACACATCTTACTTATCGATACCATCCATAGTCTTTCGAGCTTTG GAAGTTCTATTTAGACAGTTGCTAGTAGTTTCCACGATCAAACCCTTTGGAAGGCCTTGGGGAGGAGCTCGATTGCGT CCTTCTACAAAACTGAAAGCTGTATAAGACAATTTGAAAAGCAGAGCTGTGGTTGGATGCTGTTATCGACTTGTTTTGA ATTGCTTATGACCTCATGGTTCTCTGATACCGATATTTGAGGAATCCAAGATATCAATCTTACCCCGGATATTCATTCGA CAGGAACAAAGCTTCGTCCCGCTCCAAATAATACCTCTTGCCATACAAAAATCGTCATTCACGATGGTCACTCGAAAGC CCGTTCCCCAATCTAGCATCCCTTCCAACAACACCTCATTGCCGCCATACCCCATATCCCCAGTTTCTTCCGATCCACA TCATATTTCACACCCCGAAAGGAACCACAATGCGATTTATGATAGCTCTACAAATGACCTAGAGCCTAATGTTTGGAAT GAAGAGGAGCATTCTCATCCTGATCCCAAAAGCCTACCTAACGCTTTAAGAGTTGGCCCATCGACAATCCCTCCCAGG CCTTCTCAGGATATGTTAAAACCCAGTCCCTCAACCACGAACCCATTTTTAAGGAGGCAGCAATCGCAGAGTTCGCAA AGTGCAGCATCCGATGGGAAGGAAAGTAGCGCAGATATCTGGAATGAGCTCACAGAGAAACCCACACAGCCGGCTTA TCCACCCCCTCCTCCTCCTGTATCTCAAGTAACTCAACAATTTTCGACCATGGGAGTGTCTGGCCAAGACACGAACCC TTGGCAACCCACCGCGAACGAAAAGCCGCCATTACAAACACCCAGTCTTCAACGCGAAGATTCGGGAAACGAAGCCT GGTCAGGCGCAAATCCTCCAAATATCGTTACCTCTTCTGGCTTGTCTCAAAATTCGCAACATCCAGTTTTAGTAGATATT GATGAACCTGAATCTCCAGCATGGGATGAGGATGATTATGACGATGGTGAAGAGGAAGAAGGAACGCCAGTCAGCCC CAAGAAGTCTACGCTACCTACGCACGAAACGCAGGAGATACTAGAAGACCAACATGCATGGGATTCTACTCCTGGTCA AAGTTCGGATCAATCGCAAACAATGCCAGTTCAGTCCTCTGGAAATACACAATATTCGAACCCTCCTACGGAAGGGTG GAATTTGATTGATCATGATCCTATACCGGGGAATTTTCAGCAAAGCGGAGTAGTCGGAGCAGATGGCACAGAGATTTC CAGAATGACCCCTGAAGAAGTTGCTCCAGCACTTCCACCGCGAAACTCTCAAGAACATCCTCCTCCTCAGCCTCCGCG GCCAGTCTTAGTCGCGACAAACACAAGTACAACACCGGCTATGACACCTGATTTATCAGCGGCTGCTCTAAGACAGAA GAAAGAGACGTACGAGATCAAAAAAATATCTTGGCATGACATCAACGCCCAACACAACCCCAGAATTTCACCTGTTCTA GTGCAAAATGCAAATGGACCTTGCCCTCTGTTGGCTCTTGTGAATGCTCTGACTTTATCGACACCCGCAAATGTGGAAA CTGCTTTAGTGGAGACACTCCGGTCGCGAGAGCAGGTAAGCCTCGGGTTACTGCTTGATGCAGTTTTTGATGAACTCA TGTCCGGGCGACGTGGAGATGCTGCACAAGAGCTTCCAGACGTGGGTGATCTCTATTCCTTTCTCCTAACGCTTCATA CGGGAATGAACGTGAACCCTCTCTTCTTTCCTGTTGATCCTATCCTATCAGTGAATGATCCCAGGAACTCAATGCCACA CATTCATCCTGCGCAGCGTGAGAGCTCACTTCCAGGCACATTTGAGGAGACTCGTGAAATGAAATTATATGGTACTTTC TCTGTGCCTTTGATTCATGGTTGGCTCCCCGAGGAAGAATCGCCTGCATACATGGCACTCAAAAGATCCGCCAAGTCG TATGAAGATGCACAGAACTTGATGTTCCATGAAGAGGTATTGGAAGAGAAGTTAGCCGCTGAAGGCCTCAGTTTCGAG GAACAAGGGATTCTAGAGGACATTTCGACTATAAAAGCGTTTTTTATCTCCGCAGCAACTCAGCTTACAGCTCATGGCT TAGATCTCATAACTAAATCTATGAGTCCAGGTGCTGTAGCCATTCTATTTCGAAATGACCACTTCTCCACAATCTTCAAA CACCCCACAACACTTCAACTATTGCAGCTCGTGACAGATTCTGGTTATGCAGGACATGCAGAAGTTGTATGGGAAGGC CTTATTGATGTTAATGGAGAAAGGGCCGAGTTCTATTCTGGTGACTTTCGTTTAGTCGGCGGATCCTCTACATTACACC AGGGAAATGAAGAAGGCAACTGGACCACAGTCACTGGTCGTAGAAATAATAACCGTGTTGAAAATTCACATGATGCAC CATTAGGGAATCAACAAGAATCGCAGAATCACGAGCAAGGTACGAATGCAGAACAGGAGGATCACGATTTTGCCTTAG CACTGCAACTACAGGAAGAAGAGGACGAGCGGAACCGAAATGAGACCGCCCGAAGGCGAAGAGAATCAGAGCTCTC ACAGCAGTACATCGAGCAACAGGGTAGTAGCAACGACACTGGTAATGCCCCTGTCAGTCAGCGAGGCGGCAATGGAC GAGGTAGTACCAGAGGCCGTGGAGTCAATGTACCAGTTCGAGGAGGGTCAATTCGTGGTAGTGCTAGTACCCGAGGT CGTCCCGCGATTCCACCTCGCAACAATAATGTTGCCACTCCTGCCGCCGACCCAGAAGCAGGCATCGATGCACCGCC TCCTACATACGAGCAAGCCGCTACTGAACCGGCTTACCAACCTCCAGATAATCATCCTGCACATCCAAACGCAGATCC AAGTCGGAGAACAAGTGCTTACACGGCAACCGCTAATAGTCAACAACGTCCTCCAGCTAATGCCGCAGGTCGCCGTA ATACGACTTCCCATAGTGGCATTGGAAGGGGCAGTCAGACACTCATAGATCAGGTTCCTGGGCGCAGGATCCAAGCC CCAAATCAAGGGCTACCGAACTCCCAGCAGCCAGAAAGGCAGAAGGATTGTATTGTTATGTGATTATTGCGTTTTATGA ATATATGGCAACGATGGATATGCAATTGGGGCACATTAGTTGAGCGGAATTTGAAGCTAGGCGTTTAGGCAATGGGTA TATTGATTTATAAGAAGAAACATATCACGAGCTACGGTCGATGAGGGGACTTTTCATCATGTACTCATACGCTTTTTTCA AATGGTTAATTTGCGGGCGATAAATAGGAGGATAGACTTGGAGGGTGGTTTGGTGGTTAATAATCAATTTATTAGTATA CTTTGAAATTTATGGACTTCATTTTATGGCAGTATGCCTCTCTCCTGTTCAGACCATATCTTTAATTGATCGAGATTGGC AAATCAGACGTATTCCTTCCA BC1G_11528 SEQ ID NO: 39 GCTCTTACTTCTCAAATTATTTGTTTAGTACATTAATTATCATTATGGTAGATTCCACGGACTTTTCTCATTACCATCTTAC AGGATGGAATATAGACGACGACTCCTTATCTTATATTGATCATGATTATTGGGAAGGCGTGCTAAATCAAATAGTCGAA TCAGAAATGGGTAGAAAATTATCGGATCTGGATCGAGACAAACTGTTCCACAAAGGCTTTGGCCTCATCAACAACCCA CCGCATGGCGATCGTTCAGGACTAAGACGTTACAGCAAATACTCAGAGAGTCGAAGGTTCAAATTTGTGATAAAATGTT TATGGGATATCACTGCTGGTCGGGATCGTGGTTGTACATTAGACCTTGAAGGTAAGAGACGTAAGACTCGCGATTCAG CAGATAATACACCATGTGGAAAGGATTTCGGCAACACCATATGCAACATGCCGGTTTCTACTAGGGGTTTCTTTTCCTT TGTAGTGGCAACATTACACGCTGCCAAAGAATACGCGTCGAAGCGCAGTCAAATTCCAGCTCTTCATCAGTCAATTGA AGTTGATTCAGAAGAAAGACTATCAAAAGAGACTTCTCCACCTCTGCTAAAAGAAACCTCGAGCAACCAGGAAGAACC AACAATGGATCAACCAATGTCCAGTTCATCAAATGGATTAGACCATTCAAGTGTGGAACAATCAGATGACGATCTTTCA GCGTCGATATCAATTGCATCTGAACAGTCGGAACATTCGACTGGGCAGGGGGAAGTTGTTGAACCGTTAGCAAATTCA TCATGTGGATTGGGACACCTGGGTGAAGAACAGTTAGAAGTCGATCGTCCAGCATCAATGTCAATTGCATCGGACTCT TCGGAAAATCCAGATGTTGGTCATCCAGAGACAATAGCAGTTACACCAGGCTCGTCAGAAAAATCAGACAGTGATCGT TCAGCGACAATATCAATTGCATCGAACCCTTCGGAACAATCAAACAGTGTTCGTCCAGCACCAGTGTCAATTGAATCAG ACTCATCGGAACATTCAATTCAGTCGGAGGAAGTTACTGATCTGATAGCACTTGCACCAAACGGATTGGGTCATTCAAT TGGGCCTTACCATCCACCACTAGTTGGCATTGATATTACAGGTCATGGAAGTCTCCTTATCAAGAAAGCCTTCTTAGAC AAAAGGACGGAATCGCAAAATGCCCTTCGAGTTTCTTTGAACGTTCTTTGTACACAGTCCAAGGACTACATCCTATGTG GACTAAGATCTTGGGAGGAAGGAGGCCATGTCGAGGGCCAATTGGCTCTTGATATTGTTGGCGTGTGGCTTGAGAAA TCAATGCGTCAATATTCTTGTCAAACCTTCATATGTTTCATACACGACCTCGGTGCAGGACAACAATTGGATTTGGAGC AACTTTATAGGGCTGCTGGTGGATTTTCCCTTGTGGCTAGCCGAAGTAAATTCGATTTAGTTCCAAAAGACGCAGTAGT TTCAAACCAGTCTCAGAACGTTTCGCATAATTCTTCTTCTCATCGGCACGTATTGCAAATTACGAACCAGAACGTTACTA GTAAGTTCATTGGTCATGACGGAGCCAGCGCAAGAGAAGTCGAGGAAATTCTAGGATTATCCATGTCTATCGAGCATT TTGATGGAAAAGAGTACATTGTGTGTAAGCCACACGCAAATCAAATTCTTGATCGACAGGAACATGTCAATCATGAAAG GTGCCGGATTGGGTTGGAAATTATTAGTATATGGCTTTGGGAACATTGGGACGCAAAAAATGACTACATAGATTTGCCG GGGTTCCTTGTTTGTCTGAAAGCATCAAACGATAAGATGGCTTTGGAGGAAATCTATGAAGCCGCAATACAGTCTATGA GGCGAACAAGGCTGCCATATACCCAAAAAGCTTTCTTCAATTCAAATTATACCATAGAAGCAGAATCAGGAGCTTAGAA AGATGGATATTTGAATCAATGTCAATCAGGTGGAGCAAGCAACTCATCAGTGATGTATCTTTTGGACATGCCCAATATT AGAAAAGCATGACAATCATCACAAGGAAAAGAATCAATGGCCGAATAAACTTTGAACTGTGGCGCTTGAGA BC1G_04218 SEQ ID NO: 40 GAGAAAGCATTGAATTTCATAACAAAATATACTTTTACAAGAGAAGGTTATATTTCAGAAGAACGATTATCCTGTCACTA CGGCGATGGAAAACAAATTAGGTTAGTGTCTACTACGCTTTTTGTTACCCTGTACTGCCGTATCAAAGAAATTACAAGG TATCATAGAAATGCATCCACAAACCTTTGATCTGCTCCGGATGGAGACTAGTCTTCGCAAAATGCAACTATTCGAGCCT CACGATCCTGTCGTCATCGGCGTCGACCACAATTTGGATCCTTATTTCAAATCCCAGCATTCATTTTGCCTCTTTCCCA GATTCCCGCCGGAGCTTCAGCTTATGATCTGGGCTGCGGCTGCCGATGATCGACAGATTGTTCGGATTAAACCTTGC GCCGAGGATGGATCAGGAGAGGAAGGGTTCCGGGGTGATTATACCATGCCGGTGGCTCTGCGCGTTTGTCGCGACT CTAGAAAAGAAGCGCTTAAAAGATACACGGTTATATTCAAAGGTATCCTTCGCAATCCTATTTATTTCAATTATCAGCAA GATTACCTGAGTCTTGTTGGTAGTAGCGCACATGAGCATTTCCAAATTCTATCTGGAGAAGACCATATCATTTCAGAAG AGATCCAAAAGGTCGAAAATGTGTTTTCGATGATTGCTGGTTGTGGAAGTGGTGAGAGCGAGGAAGATGTTTTGACTG AGATATTGGGCATCTGGGATGGTATCAAGCGTCTAGTCATTGCAGAAAGATCGCCAACCTGGTGGGGCACATTCAAG GAGATCTGGTCCGACAAGGAGGTGAAGAGGCTTGCTCGAGACGCCAAAGCTGACCGTATCAGGGAAGGAACTGCGA CTCCAGAATTCCCTCAAGTTCGCATTGTCAAGTTTGATGATGTTCTAGATGCCGTAGCACGAGGTGAGCAACAATCAAT GAGCAGTACGAACGCGACGCTTTCTTTTTTCGACTCGATATTTGAAGCAGATTCTACATATAACATTAAGAAACAGTCTA AGAAAGCTTTGGAATCAGCATAGGCAAAGAAACAATGTAGCTTGCTTTGGTAACTGTTGGAATAATGCTTTATTCATAGA AACCCATGGAAATAGATGGCGGTGTCAATGAAAGGAAGGTTGAAGCTCTAGTTATCTCATGTGTGGGGCATTGGATGG CTTTTGGTTCAAGAATTATGTAACATAGATCAGCTTTCATTTCAAAGGTTGTCTACATATCATGTATTTTCATGATAATGA AATTACCTCTATATTTCAAGGTTCCAGGCGGTCTTCCGTGTAATCGAAAAAAAAAAATTCTACACATCA BC1G_00860 SEQ ID NO: 41 GCTTCTATTTCCACCACCATCATATTTCACGATCTATAATACTGCGTTCGCTGATTCTATTCAATCTTCCAACTTTGCGAT CAAACTGTCAGATACGATTTCCAAAACAACCCCGCAGCCTTGGAGATTACAACAATATGGGCTCTTCAAATATAGCTCG AAAGGAGCGGCGCAAAAAACAAACACGCTTGACATTCGATCCGATCTCCACCGAAGTGCCTTCAGATTTAGATTTACC TGCCAAAAGCCAAGGACCGTCGCCTGCGAAGGTTAGATATGAGAGAACAAATGACGGCACATCTGCTGGAAGTGGAG GAAGAATTACGCGCAGTGGATTGTCTTCAGGATCGCCCTCGAAAGTAACTTTGGATAGGAAAGGAAAATCTGGGGGCA AAGGAAAGAATGCGAGAGATGGAAAAATCGATTTTGGAACATTACCAACGCCTGCGAAAAGCTCGCAGAAAGAGGATA TTATTGTTGCAGATGCAGAAGTGACTAGCGGATCACGTCGAAGCACACGAAGTTCAAAAACGACTCCATCGAAGACTA CGCCAAAGAAAAGATCGGTAACTTTATCGGATACAAGTGATGATGGCGTATTCACATCAAACTCAAGACCTTCACAACG CTCTGGCCTATTTAGTCAGAAATCAGCTGCGCCAATAGAAAGTAGTGATGAATCTGGCGAGGAAGCTGACGAAGATTC TGAGGATGATATACTGCCATCTTCTACTACGCGTCGACAAGCAACACGGATCGTTCCGCAAGTTGCACTTGAGATTGA TTCCGAAGACCCGGATGATGAGCCTCCAACCTCACCCATGAAGAGAAAGCGACCCACCATAATTTCTGACGATGAGGA TAGCGTTGTTAGGTCGCCTGCAAAGAGAGCGAGGGTTGTGGATGAGAGTGATTCGGATGATGATTTGCCGCATATGA CTAAGCTATCTAAGACCACCCCCCCTGAATCTGATAGCCCAGCTCCTTCCCCACAAGTTAAACGAAAAGGACCGCCTA GGAAGCACAGAACTGCTAAGCAGAAGCAATTAGAGATTCTCAAACGCAAGCGTGCTGGAGAAAGTAACCCCATTCTTA CAGAATCCGAGTCTGATGAAGAAGAGGTTGGCGGTTTATATGATTCGGGTAGTGATGCATTGACTACATTTGAGGATG AAGAAGAGGAGGAGGTGGAAGAGGAGGTTCAAGAAACGCGCAAACGAAAATCGCCAAAGAAGACTGTACGAGAGAAT GAGGATGAGTACGATTCGGACTTTGTTGATGACGACGATGTTGGCCTTCTTGGAGTACCGGATTATGCTATGATTCCC CTACATCTCACGGCCGCAGCCCACAAACCTCTCAGAGAACACTTTGTCGAAGCGGTTGAATGGTGTGTTCAAAACAAG ATCAATCCAGGTTTCAACCAAAATCTCATGCCCATTTACAAGGCGGCGTGGAATAAGCTCGAAGACGCATACAGTGGA TTATCTGGTAGCAAATTTGTTTCTACTTCATGGACTCGTGATTTTACCAAAGGCCTTTATGCCCGTCCCGAATTCATCAC CAGGAGACTCGCCCCAGGAGAAGCAATTGATCTATTAGGCGAAGCTAAATGTGAGGCATGTAATCGTAGGAAGCATAT ACCAACTTTTGGTATCACATTAAGGGGATCTGCATACCACAAGGATAGCTTAGCCGAGGTAGAGAAAGATGATAGTGA TACTGAGGAAGACGACGAGGAAGATTCTGATGATGAGAAGGACACGCGGAGTTTGAACAGCAGGGATGAACCTCTAC CACCTCAAGACAAAGAGTACATGGTCGGCTCTGTCTGTAAAGAAAATGCCGAAAACGCACACATTCTTATTCATTTGAA GTATGCACTCAACCAATGGGTCATAGGCAGTCTAGAAAGTCAAGGGCATCTTACGATTGAGAAGCTTGCCAAGAGAGA CAAGATGAGTGCAAAGAAGAGACAGAAGGAAGTCAACGGGATTGTCGATAAGTGGAAGGAGGAGAAAGAAATCAAAG AATTGTATGGCATCTGGAAACAACAATTGGAGACGGCACAGAATGCCAGTACAACGGGAAGACGATAAGATACCACGT GGTAGCTGAAGGTGTGAATTCGGAGACGAACATGAGAGGAATGGGATTTATGGCACATAATGGTAGAGAACTGGGAA GATTTTAATGATGCTGGGTAAAGGATCAGGTATTTGGGAGCGAAATATGGAAGCAGCTAGCGATGATTTTGGAATCAT GACTTTGATTCTTCTTCACTTTATTTCAGAGTCAGTAATTAGGGATGACTGGGAACAGAATTTTATTAAAATCAGAGATA CGGCCTGATTTTAGATTTAGATATATATCCACATCCAATAGCAAATTATTAACAATTCA BC1G_04811 SEQ ID NO: 42 GATCTTTTCAACAAACAAACCACTTTAGGTTCATAATGGTGGCTCTCTGATTAATACGGTTCGCTATCGATTATTCCACT CGAGGAACGCTTGTTGCAGACTTGCGACATCTTACTTTTCTTCTGAACCCCTATTGACCCTACGATATGGATCTCTAAA GTCTTCGCATTACTCTCTGCATATCTAGTGTCTTTATTATAAGGTTGACGAAATTCACCTTTCCGCGCTTTACTATTAGG CCCGAATTGATTTCCATCCGTTCGAAAACAATCCTCTCGATAACACAAATCTTGGAGGGTTTGTGGTTACTCTGATCAA ACAAATCAATCATTGTTCTTTTTTAAACACGTGCACTTCACGTGGGCCATAGATCGAATGCCTCCAATACGTCTTGACGA GAGTGACGACGACTCTGAGCTTTCGGACGTTGACGTAGCTGAGATCGCCAGTGTAGCTCTCTCGGATACCCCAGGAT CTACAGTAATTCCAACTGCCACAGGCTTACCTGGACACGATGAGATGAATAGGAATGTGTCTCCTCCTAGATCTCAGA CCATTGCAGCATCATCAAACCCAGAAGAAGATGGTGGAATGATTGGTCTTGCCACCCGGCCACTGTTCCATGACAAAG GCGATCCACGAAATAGTGTAAAGGCGGAATCTGAGTCTCCCAAACATACTCGATTGACCATACAAAATTCGGGACGTC GAGGCAAGAAGTTATTGTTATCCACCGAACGGGAGTCTGGAAATAATCCATCCGAACAACCACCGAATACCCTGAAGA GAAAATCATTTCCAAGTGACTCTCCTAATAATGCTTCCACGAGTCCCACAGCACACAGACAGCTTCGTCGTTCAGATCT TGTTACGCCAACGCTAAGACAACCTTCCATAGCGACCTCTGAACGTCAGTCCATCCGCCACCACGAATCACCATCCAA TGCCAAGATCCAAGAAGAAACTGCTCATTTAAGGGAAGTTTTATTGCATGTGTCAACTGAAGCGACTCAAGAAATATTG AAGGAGCAGTGGAGAAACTTTCTTTTCACGAATGCAAAAGAGTCACACATCACATTCATTCTTCGAGCTGGATTGAAGA ATGCTACTCCTAATGTTCTTGGACGAATCTACAACGACTCTGGTGTCATGAAAGATGCCTTCTTGGAGACTATCACCTC TAAACAGCCCGTTGTCGCTAGGGTTCTCAAGAGTGCATCTGCAAATCAACTTGCAGATCTTGTGCCCAGTAAAGTTCTG GATCAGGCGTTATCTGAACGGTTAAAGAGTGTTCCAGCAAAAACGCTCATACGATGGCTAGCTGAGGCTGACAGACTT GGTTACAGTCTTGATGACATCCTGGATGAGAGCGATGAGACTGTCGTACCAAACATACCGAGTAGGGCGCAAAGTCAT GACGCTGATGATGGTGATGATAATGATACAGAAATGATAGATGATGGACAAAAGAAATTGGAAGCCCCTTCTTTGGATC CACTTGTTGCTGAACAGGAACGAATCAGCGCCCTGCAAAAGTCTCAAAACGATGCCCAAGCAAATCCTCCACGCGAGT TAAGATGCCCCACATGCACCTATAAGTTTGATACCGTTAGAGGTCATAATTTCCATCGACAGAAGAATATCTGTACTAG AACTCAGCCTCCGGGATTAAAGTTCTATTGTGGTAATTGTGCTCAAGGCTTTACGACCAAGCAAGGAATGCTATATCAT GAAAAGAAGCGTGTTTGTCTTGGGGAAGAAGGAAGTGCAGACGACGAAACCATTTATCAAGACTACCGAGACGTTGTT TCGAATTCGCCAAATGCTCAATACGGACAGCACCCTGATCACCCACAGACTACATCATTTGGCAATATCCCTCGCCCA CCTCTCCACACTCCAGCATCGCGTTCCAAACATATCGAGGCGATTATTGCTTCATCTCCCTGGGACGGCGAGGCTCGT CATTCACCATCTGAATTGCCACCCGAGAAACGTGCTGCTTTAGAAGATGCTCTTCAGAAAATCGAAGAGAAATATCTCG AGGATCAAAGCAAGATTCCCGAGGACTGGACTCCCGAAAGACGAGAAGCACGTCTTATCTCTCTCAAGAATGGAAACG CATCCCGCAAATCTCAAATCCGCAAACAATTTGGTGTTACTCTTCGTATGCGCGACAGAGATAAAGAGGCAAAGAAGAT TCGCGAGGTTTTGGGAGCTAACTCTCCAATGGTGCCTACTGGCATGAACCGAGCTGAATACCGTAATTCACCAACGGT TGCTGGCTATCCAGTAAATCCTCAGCAGCAAATGCAACCGAATCAAACACCGGCCAGCATAAGAATGGAGATGGTGGA TGTGAGACCTGCTACAGGATTCTCGCCAATCAATGCCCCGCCGCAAAACCAGCAACACCAGCAACATCAGCAACACC AGCAATATCCGCAAGCACCACCAGGTCACCACCCAATGCAATATTCAGGTCCACCTCAAGCTCAAGGTTTCCAACAAA GTATTCCGCCTGTATCACAACTTCTGTCGCAGCAACGACCTAGCCAGGACCACCAAATGAGCCCCCTTGGGTATCAAG GAGCTCCGGAGCAAGCATACAGAGGACCAGAAGATCACGCAAACAAAAGACTCAAGCGTGGATCAAGTGCAGGACTG TCACGATCAGATGAAGAAAGAAGTAGGCATTTTGCATCAGCTGATTCGACTCCAATGGGTGTGAATGAGACAAGGGTT TCAGGGGGAAGAACTCAGGCTTATAACGGTGCGGGAATGCTCTCTGTGGAAAATCAAAGATCTGTTTCTGCAGGAGCA AATGGTGCTATGATTGAAGGTGAGAGTAGACCAAACTCTGCAGGCTCAAGTACTGTGCGAAAGAGGGTGCCAGTTGG TGCGTTGCAGAGGCAATGGGAAGCGTTGAATGGCAAGGGGCCGGGTAGGAAGTCGGAGGTTGAAAATAAGGCGGG GAATGTATTAATGAGTAGTGTGGACGGGAATGAGAAAGCAAATGGACGGGCTGAGGGTGGAAAGTTGGTTATGGGTG GTAAAGGTAAGGAGCCAATGCACGAGGGAGTTAGGAATGTGGTCGATTTGATTAGTGATGATAGTTCGAGTGAGCGT GGAATTAGGAGACCCAGTGGAGGAGGAAAATAGACTCCTGGGAGGGGCAGTGAGATCCTGAAGAGATCATACATTTG TTCGATGGAAGCATGGATTTTCATTTTCATTCAAGGCTACTTGCCTTTTCTTTTATACCTGTTTTTGTCACACAAGCTTTT TTTTTTCTTTCTTCATTCGGAGACCAAGCAAAGGAAAAGAAACAGCGAGATAGGAGACTTATTGGAATCTACATTACAG AAATGGATAGATGGGAGAAGTGTCAAGAAACGTATTGTATTCTAAATACCTCGGTCTGCTTTTTTCCCTTTTTCTTTTTTT CAAAACAGTTTTGATGCGACTCGATGCGATTCGATAAAATACAATACGATAGTTGATGATGTCCTTGGCCTACAAGATC GTGGCTTTAAATATCGTATTTTGATGAAGATGCAGAAGAAGAAGATGATGATGATGATTACTTAGTTAGTTAATACGATG AAATTACTGGATGTTGATTTTCGAGAACATTACAGGAGTTTTTATTGGATGGATGGATGGATGGATGGATGGATTGTATT TGATAGTGTAGGTAGTGTATAATAGGTCATTAGATAGTACCTACCTAGGTAGGTTGATTGATTAATTGATCACCTCTTCC ACCA BC1G_05162 SEQ ID NO: 43 CAGGAACTATGCATCTTATCGGTGACTTCATTCAGTAAGAAATCCGAGAATGAAATGATTTTGAGCCTCATGAATTGTGT ATTAATGGTGATTCCGTTTGCCGCGCCGTAATCAATATTTAGTCATTTTAAGTCGTTGAGTTTATCATGGACAAATTTTTA TTCGACCAACATTTGCGAGATTGCACCATAGTGCAAGAAAAAACAACATGCTTCGAAACTTTTCTCTATGCTGATCCAG AATACCGAACCACAGTGACCGAAGAGACCCTTCTTGAGGCCGAAGAGTTTGATGATTTTTTGAATCAAAAGGGCAGAT TCGAAAACAGAAATCAAGGGTGCATCGGAGGAATTAGACTTATCTTACAAAGAAATGCAATCCATCCCCATACATTCGA ACCCAAGTTTTTATCTTTACCTAATGGCTTTCATAAAAAGATTGTGGACGCAATGCATCTCCCTCACTCATGGATTGAGA CTCTAAGCGCAGTGGGCCCATTTTACTGGTCTGGATATGAGCAAAACGATAACGATCTTTATCTTCAGATAATATACCG CAAGAGCGACGTAAAAAAGCCATCCAATGCTCGAAACTGGGAATTGGTTCTTTCACACTCCCTCAAGACTGGTATCAC GAATGCCTTTTTCAAGGGTACGCCTCGGGCTGATGTTACTCAATGTATTACATGTCTTCGTCAATGCATCAGTGAGATC GATCACCCTTTATTCCTGCCTGCTCTGGTCTTTTCTTGTGACATTGATTTTGGAGAAGATAAACGTCACCGAGACAATC GAGAGCGAGTCCGGATCTTAGAAAAACAAGTAGTCGATGCATCCCACATATATGCACATCCAGACTTTACCAAGCGAG ATAAAGTCAACCTTTCACAAATCAATAGTGACTTGGTAGATTGCCATAAGAATGTGTTGTGGAAGCGGCCGGAAGGGT ATATCACTATTGTACAAAAAATGGAGAAAACATTATACGAGTTCAAAACTTTGTGGCCGGTTGAAAGAAAGGAAAGATTA AAAAAGCTTCAAACAATGATGGAAGGGAGGCTTGAACTGCTTCAGTCTAAGCTTCAGGGAATAAGCACCCATCGTGAA GTTACAATCTCGAGATTGAAGTTAATTGGGGAGGTGTTGGAAAATTTGGTCTCGCTGGATATCTACAAGCAAGAGAAAC AGCGGCAATTCAGTAAATTGCTGAGTCGAAAAACGGCACTTCTAGAGGAAACAAAACAAGAAGAGAGAAGAGAAATGG AGAAAACACAGAGAGATCTAGAAGTAATGCTAGAAACAAGGAAACAGACGACTATGTCATTACTAGGCATTTTGTTTCT ACCTGGTACATTTTTTGCAGCAATTTTCAGTACCACATTCTTCAACTTCCAACATGGTGATTATGCGGGAATCGTCTCTA AGAAATTTTATATTTACTGGGCAGCTACGGTTCCGACCACTGTAACTTTGTTAGGCATGTGGCTCCTCTGGCAAAGAAG AACTAAGAAAATGCTAGAGAAGAGAGATGATAAATTTCGGGACCTTGAAGCAAAGAGCAAGAAGGCACGAAACGATAT CTTTAAAGAGGAAGAAAAACATTTTAGACCAGTTTGATTCCACAGCTCTTGAATATGTATTTTTCAACTTGGGGTTTTGTT TGCTATAATTTGAAGAAGCGGGTCGCGATTCGTCCAAACACATAGTCGGTGTCGAAGAAAGATAGCATTACACCCGAT GTAACAGCTTTTGGGGATTGTGGGAAAGATAGTCCAATACATGATCTTTCGCTGGAAAATTGCAGTACTGACTACACGC AAAGTTGACGATGGTTCATGAGTTGTAACAGGAACTTATTAAAATGATCGAGCCCA BC1G_06835 SEQ ID NO: 44 GGCCTCAATCTCTCCTTTTCACATATCGTGTCTTGTCTTCTGTTGAAAGTCGGCATTCACAATTTTTTTGGTTCAATCAAC TTTTGGTTAATACATGCATGCATGTAATAGCTGTATCACGCATTTAATTTCGATTCATTCAAAATTACCTCCTTTTGTAAG CATTCCATAAAGGACATGCTCCGTCGAAATAGTTCTAGTCGACCTGTTCGAAGCAAATCAACATTATCAACCTATCCAA AACACGATTTTGTCGACCCTGAAGAGTCTCGTATGCATGCTCATGCTGCAGCAATGCATGCTTTCAATAGGGCCCAAG AGAGGAATGGCACTAGTTATGGAAACAGGAACGGTCTTTCACGAAGCAACACTACAAGTCAAGAAAGTCAATGGCGGC CGAGTCAACAAAATAGTTCTACAAGTCTTGATAACCCAGGGCTCAAGCGTCAGCAGAGTGTTCGATTTGCAGGCCCAA ATGCGGTAAAGAGGCGCCAATCAGCGGGGAAAAGGACGGACCCGCCAGCACTGAACCAGAAACTAAGTACTGCTACT TTGGGACCTGTTGTGATGACCACAAATACTCCAGTCCCAGCAGTGTATCGTCCACCCAGTCGTTCTTCTTCAATTGGCA AAGCTTCACTTAACAAATCAGTCGTTCGAGACTACTCTGCTCATAATTACGTTACCAACTTAGATTTCGATGAATACTAT ACGCAAGAGAACGATGTGGCCTCGACGCCATCTTCATATCGGCGAATCAGAAAGTCGAGGTCTATGTTCAGCCCCTTG TCAGCGCCAACCAACATCTTCTACAGCAATGGCAGCCCTGATCGCACCAATTGTTCATCCACTCCGCGGACGCTAGAG AATAATGCTCCATTACGGGCTCCAAAATCAATGAGCTTCCTCCGAGGGGGGCGGGACTATTTCAAATCTACATCGTCTT GCGAAAGAAATGACGATGCCGTCCAAATGGCCAGAGATAGATTTTTTGTTCAAGCCAATCAACAAAGACTTCGGGAGC AGCCATCTTTTCTCTTCAGATCGAAGGCACAACGGCAAGAGAAGCCTTTTCGAAAGTCGGTTCGAAGCAGCAGCGGAA AGTCTGCAGCGACATATGATTCGGCCGAATCTATGAGAGAGGGTGGCCTAAGAGCCAAAGCTCGCAAGGTATCCCAA GGATTAAAGAGCAAACTCCGAAAAGTTTTTGGCCGCAGCAAAGACGAACCCGTCGCTATCCCTAATCAACAGGTGGAT GCCATTGAAACTCACGTTCGAGAATACGCTGGACAATTAGCGTCAGATCATGAGTCGTTCGATGATATTCCTATACCCG ATGAGGCCGCATTTGCTCATGTGGCAGCTAGAGTCCCATCATTACGTGCTATTGCTTCAAGCCAGAGACTCAGATCAC AAAGTGGTAGTATTCGTAGCTTACGAAGTGATCATAGTGATGAAAAGTCCAGAGTAACAAGCTGGACCAATAGTACAG CTAACAATACTGTTACCAGTCAAGGATTGCGTCCTCCGCCTAGCAGAGACCAAAGACTTTCTATAATCAATGAATCAGG CACGCATATCTCTAAAGCAGCATTTCATCGCCCAAATGTAAAGAATCAACATCCAGCTTATCCTGCATTTCATCGTCCTG GCTATATCCAATCAATTCGACCAGGAGGTGTAGATAGCGCCAGACTTTGCTCTGCTTTGATGAAGCGTCTCGACGAGA ATAGCCCAGAAGCAATACTCGCAAAGTCAAAGAAAGCCAGCACTGAAACTCTCGGACTTGAGAAAGTACCTAGACAAA GTAGCTCCTTTACCAATACTCTTTCACGGCCCAAGCCATGGATTAGACAGGTACCTCCTGACTGTGACCCAGGAAATC AGAGCCAAAATCAACTTCCTAACGTATACTGTTCGAACAACGCTGGCCCAATACCCGTCACGAGCGGCGAGGAACTAC CTGGTCAGGCAATCGACTCTGAGTATCAATTCAAATCTGCAGGTTTACCATTACATAATCCACAACTTCAAAGCCAAGA CGATGTGTTTTCCTCACTCCCAGGATCTAGTCATGGCAACTCCTTTCACCACGGTAGCTCATTTCATGAAGACAACTCA TTTCATCAACGTGCTCACCAGCGTAATTCAAAGTCTGCACACAGACGCCACTTATCCGATATTGATGCCGCATATGACC CTGTGCAAGACCCTTCAGGTCTCACTCCGCAGCAAGTCGCACAGCGGGACGATCCTATAGTTCCCAAACCAAAAGTTA TCCGCGAGGCAAGGTCTGCATTTTTCGGAGGCACGACATTTGCAATTGACAGAGTCGGAAATACAAGTCCGTATCGTC GCGCTTTGGCGGAAAGCGACAATTCTGCTGCCTACAACGAAGTGAGTATGGCACCGGTAAATGATGACGTTTATAGTG AGAGTGTTTACTCTCGAAGTATTGGCCGTAATCTTTCGGAGGCTATGAGTAGTGATACATCGGTACCGCTCCCAAATGT CCGTATGCCGTCATTGCCCGTCGATGGCTCAACTCCCAATGGTGGCGCTGTCATTATCAACAGCACAACCTATCGTCC AACTCATCCAAGACAGCGAGGTGACAATTCCGGTGGTTCTATTGAGTGGCAAACATGGATGTCGTCTGAAGTGGCAAA GTTGGAAAGACCATCTGAAAACGATCGCGTAAGCGTCAGCAACATCGAACAATCACTATCACCCACGCCTACGATGTC AAACTCCTTTCACATTGTGCACAGAAGAGAAAAGGCTCAGATGGCTGATGATGATACGGATATCGCTCAGAAGAAACTT CCTGCTGGTAAACAGCCGCTTGGTCTCATTCAACAGAATCTTAATGCCCAAGTTCTTCTGAAGCCGATTTTGAAAAATC GCTCGACGACATCTTTGCCTGAAGATGATTTCATTGATAACTCTAAGCCGTTTAATATTCCTTCTGCACCACCACTTCCT CTTAGATCGATATTAAGACCAGCACAAAGCAAAACGAGTCTGAAAAGTACCTCGAACTCTCAACACGCACCAACCCCA AATCCCGTCACTCAAACCCAGAATCCAAATACCAGCGCTCGCAACGTCTTGCGCAAACGTCTCTCATCTACAACCCTAA GAAGCGCACCAACAACACCTAATCATGGTGTAGAAAAACAATCCCCGAGTACGCGTAATGTACTCCACAAACGAAACG TATCGGAAGCCACGATGAAAAGCGGCAAGAGTATTAGAAGCGTGAAGAGTTTCGATACGAGTGGAAGTCAAAGCCGT AGCTTTACCACTAGTCCGGCGAAATTGGTCAAGAGGAGTGGGAGACCGGTGTATAATTTTACGCCGCAGAGTAGTCC GGGTACGGGTATTGGGGCCGCGGTGGAGAGACAGTTTGGGAGTGCGAACGCGAAGCCGAATGCGAATACGAGTGG AGGTTTGTATGGAACGGGGAGATCGAGAGTGAGGGCTGGGGGCAGGGAAAATGAAAGGGTCGGTGGAGGCGGCAC GGATGATGTTTATGGGGTTGAGGGAAGTGGGGTGGGGGATTCGAATGGGTTGGGGTTGGGGTTGGATCAACAACAG GTGGGTAGTAAACAGATGGTGGATATGTTTTTGAGTAGTAGACGAAAGAGAATTGCTAGTGTAGGGACGATCGCGGG GGGGAGTATGGGGGGTGATGGGGGTGGGAGGAGTGATGGTGGAATGGATGATGGTGCGGTGTTTCTTTAGGCGTG GGGATTGGTGTATGAGTATTGGGAATAGATGAGAGGGTAACGAAGTCATGACTTATGGATTTGGGTGCTTGAGACCAG GATTAGGATTAGGATTATGTATATATTTTTAGCGGGTATATCATGTATTATACTTGGTGACTCGGTTACTGGGGATTGGA GAATAGAACAATAAAGCGCTTGTGAGAGGGCTGATATAGTATGGATTAGGGTCGATGACATTACTTTTGCTTTTCTTTTC TTTTTTAGAAAATTAGAGTTTAGTGTAAGTAGACAGCTGGTAGAGTAGTGTAGTGTAGTGCCAGTATGAATGGTAGTTG AGGTATGGAAAATATTAG BC1G_10526 SEQ ID NO: 45 GTTTCCAAGTACAGTACAGTACCACTTCAAGTACATAAACTCAGCGCTCTTCTTGAGATAAAAGGTTAAAGGGTTGCAA GATTTCTTTGATACATATCATTGGAAATAAAGTATTCCGGATTACATTAGAGGAAGCTCACTGTAACAGGTTTCTGCTTT GTTGTTCATGGACATGATGGCAGCAACTCCAGACATTTCTTTGACCTGGTCATCAGTCTATAAAGTCGCCCCAAAAGAC AACGTCTCGCTGCCCGGGGACAAGATACTACTACCTCAATCAGCGCTGGAACAACTACTATCGGCATCTACAGTTACG GTGAATTCTAACACTCGCCCCAGCAATGTTGCATTTGATCCATTCAATCCATATTCATTGGCAGCCGCTCGCATAGAAC AGTCGCAATGGAGAGATACCCAACAACAACTGCCCCATCCTCTCACCTTTAGGCTGGTCAACTCGAAGAACGGAAATG TAGTATATGCAGGAATTCGAGAGTTCTCGGCAGATGAAGGAGAAGTTGTCTTAAGCCCATTTTTGCTAGAGGCATTAG GGATCACTGCGCCCTTACGAAATCCAACACCACCAAGTTCAAAGGTTGAAAGCAGGAGAGGGTCGCCGGATACGCCT ATAGATCTTACAGATAACCCTGCAATCGATCTTACGGGTGACGAGATGATAGACCTTACAGACGAAACCGAAGAACCG GCGCAGATCACTGTACATGCGAAACAATTACCTAAAGGCACATACGTGAGGCTAAGGCCATTGGAGGCTGGTTATAAT CCCGAGGATTGGAAATCATTGCTCGAAAAACACATGCGAGAAAATTTCACAACTTTAACGAAAGGAGAAATATTGACGG TTCGAGGTTCAAAGTCGGAGGAATTCCGATTTCTGATTGATAAGTTTGCACCGGAAGGAGATGCAGTTTGCGTTGTTG ATACAGATCTAGAGGTCGATATTGAGGCTTTGAATGAAGAGCAGGCTCGGGAAACCTTGAAGCAAATCATGTCAAAGG CACAAAAAGCTCCAGGAACGGCTCAAGGGAGTTCAATTGGCGGAGAATTAGATCTTTGGAATGCTTTGCAGGGACAG GTCGCAGAAGGTGATTATGTCGACTATACTTTACCTTCATGGGATCGATCAAATGGTCTTGATATTGAGCTTTCACTTGA GGACGATGGTGATGGTGATGTGGAGATATTCATTAGTCCTCAATCAGCCCATCAAAGAGCAAAACCACGGGAGGATGA ACATGTTCTCGGAGATTTCTCAAGTGACAAAATCAAGAGAATAACCATACAACAATCAAATGTGGAATTAGACGGAGCT GATGCTATATTAATTTCTTTATACTGTCGAGGAACTGGAGCAGGCTCTGAGCCACCACATGGACCACGGAAGTATTCCA TTAGAGTAAAATCGCTTGAAAAGGGGGCAAGCAATGGGGCCCCAAGCAACCCAATCTCGCTCGAAGAAGATGCCGAA ATGCATGGATCTGATGAGGAGCAATGTAAAAATTGTCATCAATGGGTGCCAAAGCGGACAATGATGCTTCATGAGAAC TTTTGTCTCCGCAATAATATCTCATGCCCTCATTGCAATGGCGTCTTTCAGAAGAAATCTTCAGAATGGCTGAATCATTG GCATTGTCCTCATGATTCAGCCCATGGAAATTCCTCAGAAAGCAAAACTAAACACGACTCTATTTTTCACGAAGCTCGA CAATGTCCCAATTGCCCTTACGAAGCAACAAATATGAGGGATCTTGCCACTCACCGTACGTCTATTTGTCCTGGCAAGA TCATTCTATGTCAATTTTGCCATCTTGAAGTTCCTCAAGAGGGCGACCCCTTCGATCCGTCTCCAGAAAGTCTTATTTCC GGACTTACAGCACACGAGCTTGCAGATGGGGCTCGAACTACGGAATGTCACCTGTGCAGCAAAATTGTTCGACTTCG GGATATGACCACCCATCTTAAACATCACGAACTCGAAAAGAATAGCCGATTTAAACCAGCCATCTGTAGAAATGCAATC TGCGGTAGAACTCTGGAGGGCGTTGGTAAGAATGGGGAAGTGGGCGCTGGATCGAGAATGGGCCAAGGACCTGGTA ATGATTTGGGTCTTTGCAGTATCTGCTTCGGTCCACTATACGCTAGTATGCACGACCCATTAGGAAAAGCAATGAAACG CCGCGTGGAACGAAGGTATCTGAGCCAGATGATCACGGGATGCGGCAAGAAATGGTGTACAAACATCTATTGCAAGA CTGCAAGGGCGAAAGAAGCGAATGGGCCTCAGGCAATACTAGCGATGAAAGATGCCCTTCCTCTTATTCAGCCATTAG TAGCCCAAGTAGAGGATAAGACCGAACCGATGCATTTCTGTGTCGATGAAGGAAACCAGAAGAGAAGAAATCTGGCTG AAATGTTAGCTATGGAGCCTGGAGGTTGGGAATTGGAGTGGTGTGTTGCGGCTTGTGAAGCAGAAGGTGCAAATCTT GATAAGGCCAGGACATGGTTATCTAATTGGGCTCCCAAGAAAGCTTGATGTGGTTCAGATCTGGAAGATATTTTGGTAT GGATGAAAGGGATGGAGCATGGCGTGGTACCGATTGCATAAGTAAGGGAGTTCTGGTGGCTGATGACGATATGATAT GATATGATACCAATTTATAGACCCGATTTTGTTGTGCGTACATAAATATACATGGTTGGCGTCGCATTAGCTAGAGATAG ATCGAACAGATTAAGAATTTACTGCTAATACATAAACATATATACATTCTTCA BC1G_03606 SEQ ID NO: 46 GGATCGCAACTAACTCTTCTGGAAGGTTCTTGTGGCAATATCAACCACATGGATCTTCAGTACCACCGCCGTCAAATTG GCTGTGCTTGGGTTATATATGCGAATCTTCACCACGCCCGTTTTCAAGCGATGGGCCGTCTCTTTGATGACCATAGAC GTTTGTTTCGGTATCACCTTCTTCGTCGTGTTTTTAACTCATTGCAACCCAGTCTCTCAAGAATGGAACCCTGTTCCACG GGGTTCATGCAGATCTCTAACATTGTCCGAGTTTTCCTCCATCGCTCTCAATCTGGCTCTCGACACGGCAATCATCATT CTCCCTATGCCATGGCTATACAAGCTTCAAATCGCATTAAATCACAAGCTTTTTGTGATGGTCATGTTCAGTTTCGGCTT TGCAACTATTGCCATCATGTGCTATCGTCTTGAATTGACAGCCCGAAGCCCTTCTGATCCCATGATTGCCATTGCAAGA GTCGGAGTGCTGAGCAATCTCGAGCTTTGGATTGGTATTATTGTTGCCTGCTTACCTACTATGAAACCTTTTGTTAGAG TATATCTCAGACCCAGCCTATCAAAGCTCTCCCAAAAACTTTATGGCAGCCCCACAGTGTCAACAAAAGACGAAAATCC ACAACTTCAGCTAAGGAACTTCGGGGGTTCCGGACCTTCACGCCCCCAAAAAAAACAGTAACTACACTGAACTTTCTG AAGCTCCATCTGTGCAGACAGATACTGACGAGTTGCATCTCGTTCCAAATGAATCATCCAATTTTGATGCAAATTGTGA ATCTAGCAACA BC1G_04443 SEQ ID NO: 47 GCACGGTTGGCTTGCCAAGACTTTCCCACCCACAGAAAGTGCGATACTGGAGAATACCCCTGTCAGAGGTACCTCCG GAACCGGGCAGGAAAATTTCCTAGCTACTGTTGCCCACAACAAAAAGACGAAGAGTCACATCTACAACTTTTTGATTTA AACCTCAAAATACCCATCTGTTATTCTTCCTTTTTTTTTGAACTCCACTCACTTCTTCCTTCAAAATGGCCGCCCGTACAT TTTCCAGAGTCGCTAGACCAGTTGCACGTCAATTGACTGCACCAGCACGCAGAACTTTTGTCTCTGCTATCAATGCCTC AGCCAGACCTTCCGCTGCTCGTGCTGTTGTTGGAGCTTCCCAACAAGTCAGAGGTGTAAAGACCATTGACTTTGCTGG CACAAAGGAGAAGGTTTACGAGAGAGCCGACTGGCCAGTTGAGAGACTCCAGGAATACTTCAAGAATGACACAATGG CCATTATTGGTTACGGTTCCCAAGGACATGCTCAATCTTTGAACATGCGTGATAACGGTCTTAACGTCGTGGTCGGTGT ACGAAAGAACGGTCAATCATGGAAGGATGCTCAACAAGATGGTTGGGTTCCAGGAAAGAACCTCTTCGAGGTCGATG AGGCTATCTCAAAGGGTACCATCATCATGAACTTGCTTTCTGATGCTGCTCAAAGTGAAACTTGGCCAGCACTTAAGCC CCAGATCACCAAGGGAAAGACTCTTTACTTCTCCCACGGTTTCTCCCCAGTCTTCAAGGACCAAACCAAGGTCGATGT CCCAACTGACGTTGATGTCATCCTCGTTGCACCAAAGGGATCTGGACGTACCGTCCGAACTCTCTTCCGTGAGGGTC GTGGTATCAACTCTTCCATCGCCGTTTTCCAAGATGTTACCGGTAAGGCACAAGAGAAGGCTATCGCTCTCGGTGTCG GTGTTGGATCTGGATACCTCTACGAGACCACCTTCGAGAAGGAGGTTTACTCCGACTTGTACGGTGAGCGTGGTTGCT TGATGGGTGGTATCCACGGCATGTTCCTCGCACAATACGAGGTTCTCCGTGAGCAAGGTCACAGCCCAAGTGAAGCT TTCAACGAGACTGTTGAGGAGGCTACTCAATCTTTGTACCCATTGATTGGTGCCAACGGTATGGACTGGATGTACGAG GCTTGCTCTACCACTGCTCGTCGTGGTGCTATCGATTGGTCCGGAAAGTTCAAGGATGCTTTGAAGCCAGTCTTCAAC GACTTGTATGACTCCGTCAAGACCGGAAAGGAGACTCAAAGATCCCTTGAGTTCAACTCCCAAAAGGATTACCGTGAG AAGTATGAGGCTGAGATGAAGGAGATCCGTGATTTGGAGATCTGGAGAGCAGGAAAGGCTGTCCGTTCCCTCCGTCC TGAAAACAACTAAGTGGATAGTTAATGGGGCCTTTGGGGCTGGAGTTGCATATTTGAAATTGGGCCAATTGTATCATAC TCTCATGACTTTCCGTTTTTTTAATCAACGGTATCTGGAATTAAAAGTTTAAGCCATTGAATTCAAAAAAATTATATTTCCA ATTGTTTTTATAATTGAC BC1G_12479 SEQ ID NO: 48 GAGCACACCCACTTTCAAAATTTCTTCCAAGTTTTGGATACCTCGAAGTTACATTTCTGGTTATTCTAATAAGTATGGCG CCTTCTCCGGTGACAGTAAGTCTAAAAGATTTGCAAAGTGGCAATGTTTCCTTCTCAACACTCGAAGAGGCTTTTGGCC CCGAGTCTTTAGGTATTATACTCGTCAAAGATGTTCCAGAGCCATTCGTAGAGTTAAGACATAGTCTACTCTCATATTCA TCTTATCTTGGAAACTTGCCTGAAGCCAGACTAGAGAAAATCGAAAACGCGGCTGCAAAATATCTTACCGGCTGGTCT CGTGGTAAAGAAACTCTAAAAAATGGCCAAGTGGACACACTCAAAGGATCATACTATGCGAATTGTGCCTTCTACGTCG ACCCATCTTTAGCATGTGCGATTCCTACTCCTGACTTTTCACCCGAAAATTTTCCCGAATATCTCAGTCCAAATTTATGG CCTGGAGAAATCGTGTTGCCTGGCTTCAAGAGCACATTTGAGAGATTGTGTCGAATTATTATTGACACCGGAGTACTG GTCGCTCGGGCTTGTGACAGATATGCAGAGAAGGAGATTCCAGACTACAAACCTGGATATCTTGAGCACGTTGTAAAA ACTTCGACAACCACTAAAGCACGATTGCTACATTATTTTCCAGCAGAAGCCAAGGACTCTTCTGATGCTCTAGACGATG ATTGGTGTGCAACCCATTTGGATCATGGCTGCTTAACTGGACTCACATCAGCTATGTTCATTAACGAGACTCGCAATCC ACCCGTGATTCCAGTATCCTACTCATACCGTCCAACTACCCTTAGCCCTCTTAAGGAGCTTCCTACATCTCCGGACCCA ACTGCGGGACTTTACATTCAATCTCGGAGTGGCGAGACTGTTCAAGTTAAAATTCCCAAAGACTGCATTGCTTTCCAAA CGGGGGAGGCCCTCGAGAGAATCACCAAAGGTAAATTCAAGGCAGTTCCTCACTATGTGAGAGGTGTACGACCAGGA GTTGCAGATGGCGAGAATGAAGGAGGAAGGATTGCGAGAAATACTATTGCCGTCTTTACTCAACCCAACTTGGACGAG ATTGTAGACTCAGAGATGGGGATTACTTTTGGAGAGTTCGCGAGAGGGGTAGTTGCGAAAAATACAACGAAGTGAGGT TATTCTAACAAATTATTCACAAGTTCATACAAAATACCCAGTACAGCTTTGTTTTTATCTAAATATATTTCATGATGCTCAA TGTTTTAGCGAGGGGGTATTGGGGGAAATATTGAGGTGGCGAAGCGCATAACTTTCCAGTATCTCAGCCCAAAGGCC CCCATTTGCCCCCCCAATTTATTGTATCGGATTGGAATTCTTCCGTCCGAGTGAAAAAAAAAGCAATAACATCCAAGGA TGGCGGCGGTACGGGGACATTGGAAGGACGTTCCAAGACTAGGATCTTTATTTTATTCTGGTGGCAATAACCCCTA BC1G_06676 SEQ ID NO: 49 GCTTGTCTTATCTGATCGATTGATCGGATTTCATTGGTTTTCATTCGACAATAGCCATGCGGTCCCGGATGTGACAACT ATTTTCGAAGTGTGAGTTCGTATGAAAAGGTGGGCAGGCATGGTATGAAGTAACTGTGCTCCGTATCTATGGGGAAGG ACGAGGCGTAGAGGTGGTCCGTTCTTTCTTGTCATATCCTGATATAAATATGTACTCCACGGAAGTCGTGATATGTAGT CTTTGAATACTTTGCCATTCGGTGTGTTCTTTTCCATTTTGGCTAACGTTGCACATCTCTTTCTTTCTCTTGGAACTTTGA GATTCGTTTTGATTTTACTGTATTCGTACAAACAGTCGGGAACACAATTCGCTTGACTTAAGAAGATCAGTGTCTTCCAA TTCCCCAAACTATGGCTCCCTCCATCGCAGAACTTCCGTCTTCCCCCTCGACTACTGTCAAGGAAGCTCCTATATCTAC CACTTCTGGGCGCGGCATCTTCAATGCAGAAGTACAACCTCCGGAAGCCTCTGCAGTTCCAATATGGCAATCCATCGC TACTCGTCGCCAGCAAGAAATCAACTCTTCTATTCCTTCGGAATGGCTTCTTCCAACAGGCCTCCTCCAATCTAAACGT CCTCTCGATCTAGTAAAAACATGCGGTTTGTTGGATGAAAGAGAGGTGAAGATTGTGTACAGTGCTGCTGTGGATTTG CTCGAGAAAATGAGAACGAGAGAGTATACAGCTGTGGAAGTTACAACGGCGTTTTGTAAAGCGAGCGCTGTTGCCCAT CAAGCGACAAACTGTCTCGCTTGGACGATGTACCCCAGCGCCCTCTCCCACGCCGCCAAACTCGACGCTCACATGTC CCTAACCGGGACTCCCATCGGGCCCCTCCATGGTCTTCCCATCTCCGTAAAAGAACACGTCTACCTCATCGACACACC TTCCACATCTGGTTTCGTAGGCTGGGCCGATAACTTCTGTACTTCCTCTGCCCAAGAAGGAATGTGCATCCAAGTCCT CCGCGACAGCGGCGCAGTCTTTCACGTCAAGACTACTAATCCCCAAGGGCTCATGGCTCTCGAAACACAATCAAATCT CTATTCAACCACTACCAATCCTCTCAATACCTTCCTCTCCCCAGGTGGTTCATCAGGTGGTGAATCCGCCCTGGTAGC CATGCACGGGTCGATTCTCGGAATTGGCACCGACATCGGAGGGAGCATTCGAAATCCCGCCCTGAGTTGCGGTATCT ACGGACTCAAACCCAGTGTGGCGCGACTTCCACATTCCGGACTCTCCGGCGCACACGACGGAATGGAAAGTGTGATT GGGGTTGTGGGACCCATTGCTACATGTTTGGCAGATATGGAACTGTTTTGCAAAACGCTCTTGGATGCGCAGCCCTGG AGACAGGAAGTTGGATTACTACCCATTCCATGGGGAAGTCGCGAAGCTATCGCTGCCGAGAAAGAAGAGAACAGGAA ATTGAAAATCGGTATCATATACACTGATGGAGTACATACTCCTCATCCACCCATTACCCGTGTTCTGCACTCTACGGAG TCAGCACTCAAAGATGCAGGACATGAAATCATTCCCTTCCCAACACATCTGCACTCTCCTATCGTCTCTACTGTCAATG CATTATACCTCCTAGACAGCGGCGCCGAATATCTTTCCCACCTCTCTCTAACCTCTGAGCCTCCCACCTCATTACTCCA ATGGCTTTTAGAAGAAGAGACCACGAAAAATCGTAGCATTCCCGAACAATGGAAGTTACATAAGGAGAGAAACAGGCT TCAAGACGCATATGCGAAATTGATGTTGGAAACGGGTGTAGATTGTATCATAGCGCCAGGGGGTGTGACGGTAGCGA ATGCACATGAAGAGGCGAAGTACTGGGGATACACGAATGTGTATAACGGGTTAGATCTACCGGTTGCCTGTTTGCCTG CTGGAGAGGTGGAGGAGGGAGATGCGTGGGGCGATGAAAATGAAAATAAAATTGCAAAAACGCATATGGAAGCTCTG TGGGGCCCTGGAAAAGAAGGAGCGCAAAAATATGAAGGAGGAAGTGTAGGATTACAGATTGTTGGAAGGAGGTTGGA GGAGGAAAAGCTATTGAAGATGACCAAAATAATTGAGAGGGACTTGGGATTATCTGGGCCCAACTAGAAGAAAGAACT CGAAGGTAATGTGAAAATGAAGATTAGAGATCAAATCTGAGATATCGAAGTGATTCAGATTTTTTTAGAAGAACA BC1G_12472 SEQ ID NO: 50 GGCCCCGAATCTTTCATCTTTTTCCTGCAGGTTCCAAGTTTTAAGGTTCTGTCGAATCAAACGCGGTTTAATTATACAGC CGTGAGATTTTGGTTAATCAGCCATAATCCATTATCCTTCACCCATTCATTACCCATCATCCCCATCCCCATCCCCATCC CCATCGCCATTCAGAGCCTTTCATTACCGGGCCGTTATTTCGTACTTACTGCGCACCGGTGGTTGATTGATTGATTGAT TGTGTACAGCGCTGGTTACAATCTCCATTTTCTGTTCCATCACAGCCACGGCCACGTCTTTTTTCCCATCGTTGTATTAT TAGATATCGTACCGGATCCTCACATCGCCATCACCACTCTCACCACTCACCACTCACCACTCAGCTACACTCGGGTCA AAGAATACAACATTTAAACCGTCCATTCTTTTCAACTGCCTCGAGTTTCTCCACCTATCGACCGTTCACTCTCGAGCCCA TACCTACCGACCTACATATCCATATACACACGCCTACATATATTGGTACACCATCGTCCCAAACGCCATACATAGGTCC CATACCACAGCCTTCAATTACGAAAAGAATTGCCACGATCGTTGCCAATGAGATCACAGTGTGTCTGATAAAACGAAAA GAGGATCATCCCATAACCCCATAAACCCATTTTGGTCTTTCCAAGTGCAAAAGGTACAAACGAAAGAGACAATAAAGTT TGATTGATTTGGAGAGATATCTTACTTTTTCTCGACTCGACCACCACGCATCTCGTCACCCATCTCGGCATTTCCCTCG CAGAACGGATTACCTCTTGTATACTACTTATATCATCACCTTGCCTGTCTCCTTTCATTACATTTGTTTGTTTGTTTATTTA CCAACCAAGCACTGACTGGTATAAAAAGAAGTGAAGCACGAAGTGAAAGAAGAAGTGATCTTATTATTATTATTATCATT ATTATTACTATTACTATTACTGTAGCTCTGCTGAAGCTTGTTAGCGCAATCCAATCTCGCTAATTCAAAGGTCCTGAATG TCCCATCCTATTATCGACACTCATCTCGTCCAATCTTCATTCAAAAGTCATTCTTTCAATTTCTCTCCTTCAGGAGCGTC GAGATTTGTTGATTGGACATCAACTTAAATCATTCGACGCGTTTTGAAGATAAAAGTCCTTGGATTCGATTCGACAGATC TTTATAAAGATTTAGTCCTCTGATAATCTTGTTTTTTCTTAATCAATATCGAATTGCCCTCGATGAGTAATGAGGTAGCTC AGCCGACTGAGCAAGATCCTAGCCGCTCAACTTCATTGGAAGGAACGAAAGGAGCCAAACCACCTACCCTCGACACT TCCAACTTCACCGCAGTTTCCCAACCACCCAGCTCATCTACACAGCAGTCAACTACCCAAAACACTTTGACAGGAGATT CCGATAACGGTTTGAATTCGACCACAAACGTTGATAACGATCAAGGACGAACCAGCGAAACTTTGACTGAAACTCCCA AGAAGAATAAAGACCTACTTAAAGTTCCATCGAGATCCTCTTCCAACAAAATTCAGCATTCGCCAACTTCTACAGGTTTG AGTGGAGCGACGGCGAGCGAGGGAAGAGAGAGCATAGGTGGGCGATCCAAGGAATCGAAGGGTAGTTTTCTTGGGC GAAGGCGGAATGGGAGTGCAGCAAGCAGCAAAATGTCGATAAAATCACCTGGAAATCCCACGGGCGCTGCAGGTGC TTCGCAACCAGCAGTTCCAGACGCACCTTCAGTTCGTCAGCCGAAAAAGAAGAAGAGCTTTCTCTCTCTCCTTTGTTGC GGTACTCCGGACCACGCCAATTCTTTGGATGCACCTGTTCCGGCCAACAAGGTCTCAAAATTTAGTTTAAGTCGCCCT ACAACAGCTAAGCAACCCGACGCGAGTAAGATGGGACAACAAGCCAGTGTTCCCGCGGTACCACAAGTGGAGAAAGA GAATTTGCTGCAACCACAACAGGCGCCTCAAGTCGAGAGTGGAGAGGAGAAGCATGACGCAACAAGCTCTCAAGAAA CCGCCAAGGCTACCTCTTCTTCGGATGCCAATGGGGAGCTGAATCGTCCAATCAGCAACGCTCGCGATCAACCTTTG CCAGACTTGCCCACTGTCGTAGAATCAGAGCCCACGCTACCCGAGACCGCAAACCCAACAGTATCTGTTGACACCCC AGCGCAATCTGAAACGGCAATTGGAGCTGTATCTCCAAGTTCGGATCTGGGACAGCAAGATGGTGGGGATGAGAAGA TCGCAAACTTGGATCCAGGAACTACGGAAATCGAAGAGGCCCCATTACCACTCCCAAAAGACGAACCATTGGCTGGTC AAACTCTCCCCCCTCCTCCGCCCGTTCCTCAAATTCCAACTACCGAGGATGATGCCGAAGTAGAATCGATAGATCAAA AACAACAATGGCTCTTACCACCAATTGCACCAAGATTCAAAGGGAAAAAATGTCTGGTTCTTGATCTCGACGAGACTTT GGTACATAGTAGTTTTAAGATCTTGCACCAAGCAGATTTCACCATTCCTGTGGAGATTGAAGGGCAATTTCACAACGTA TACGTGATCAAGCGTCCTGGTGTTGATCAATTTATGAAGCGAGTCGGGGAGCTCTACGAGGTTGTGGTCTTCACAGCT TCAGTTTCCAAGTATGGTGACCCACTTCTCGACCAACTAGACATTCATCACGTTGTTCACCATAGACTTTTCCGTGAAA GTTGTTACAACCATCAAGGAAATTACGTAAAGGATCTTTCTCAAGTCGGTCGCGATTTGAGAGAAACCATCATCATTGA CAATTCACCAACCTCTTACATCTTCCACCCGCAACATGCTGTTCCTATCAGCAGTTGGTTCTCAGATGCTCACGACAAT GAGCTTTTGGATCTAATCCCAGTTCTTGAGGACTTGGCCGGCTCGCAGGTCCGAGATGTCAGTTTAGTTCTTGATGTT GCGCTCTAAGAAGGGGGCAAAATCTTCTTGCAATTCGCTTGATATCATAGCGGAAGGCGTTTCGGTTGATACCTTTGG TTTCGTTGTAGAGTGTACTGTTTAATCTATATAATGGGCCAGCGTGCTGGGTCAGCCTTGGTGCAGGAAGGTATGCGA GTGGGAGTGATGGAGGAAAATTGCTAGAAGGCGCGAGATTGAATAAGACCAACGGGTCAAAATCTCCGCGATTGAGA TGTGAAAAAAATCACATCATCTCAGTGGAACAACGAACAGCAAAACAGCAAGCATCATACGATGCACACCGTACAACAA CAGATCGGCCTGTCACATTCTTTTCCTGCCCAGCAAGATCTGAGGCACTTTGGGCAGACGCTTATCCGACATTTTCATT TGTCCAACTCTTTTTTTTTTACTTTCCTACTTTATTAAAACTTCTCGGGGCTTTGCGCATGGCGCAGACTCTTCATGTATC AAACACTCTATCCACCGTCTGTGAATGCTTTGGAGATAGCATTCATCAAATACCAAAAATGAAACGATTCCATACGACCT TCTACTTTACTTACACTCCAATTACACCTTTCTTGTAAATAATTACTGGGTAAATAAAAACTTAATAATAATACTAAGATGC ATTTTTGGGTGGCTATTTCTTATTGGTTTCCA BC1G_02471 SEQ ID NO: 51 GAGCATTCGACAATCTGGAATTTCTACCTATTCTACAACTTTATTTAACATCTTCCATTTTGTCAATGAAATATCGGTAGT AATTGTGGAAGCTCTAGGGATTCTGAAATCATCCTCTAGCAGCAACAAAAATCATGTCTAAATCCAAACATGCGGTTGA GCTTTGCTCACTGCTAGTTGATGATATTTATGGCGAACTATCGTCTCGCATTTTTACTATTTTGCTCAGACGGGGAAGG TTACCTATGAATGCGCTCAAACGACACACTCAACTCACAACGCGACAATTGAAGCTTGGATTAACGGTCTTAGTACGAC AAAATTTGGTTTACCATAACTCAGAAGGCAGTGACACCCATTATGAAGCGAATATCGATGCCGCATATGCGTTGGTTAG ATCTGGGAAAATCTTAGAAATTGCGGAAGAACGATTTGGGTCTGTTGCGGCCGAGATTATGGGACAATTGGTACTTTT GGGCCACGCCAAAATATCCGACATAATCGCAGAGTTAAACAAGAACCATGAACCACACGCCAATGGCAACAGCAACG AAACCAACGGCGCGACAAATGGCAATGGTGTTCATTCATATCCCTCAGGGCAATTGAACCATACATTGATCCAATTATT GGAGGAAGGATTTATTCAACCTGTTGGCCAGAATATGTTTCGAAGTCCGACAGATAGTTATAACGCGGTTGAAAAGGC GCTTCTTCAAGATAGTTATGGGGGAGCCACGAGAGGCACGAAGCAAAAAGACGAGTTGAGGATGAGAATCCGAGGAC AGCTCCAAGAACTGAGAGCTCAGGTTCCAAATTGGAAACCTGTCGGTTACAATCGCTCATCTACCAATGGCCATACGA ACGACATTGCCTCGAAACGAAGAAGACTCTCTCACAGCGGGGGTGCAACTAATGGGTATGACTTTGGCGACGACGAA AGTAGCAAGCTTGACGGAAATTTGGTTTTACGAATCAACCATGAGAAATGCACTGTCTTTATGAGAAATCGACGACTTG TTGAGCTTGCAAATTCCCGGATTGGCGTAACCACATCGTATATCTATGCGGAGCTTCTTCGACTCATGGCAGAGCAAAT TCCTAGGTGTCGACCCGATCCTAGAATTGACGATGCTGTGGACGACGCTGATGGGCCTTCAATCATAATAACAACACA AGAGTTGACTGATGCTTTAAGTAAGACAATCAACGTATCCACTGGAATCGGCAAAGCTACGAGCCAAAAGATCGACAC TTCCAGACTTGACAAACTGCAGAACGGCAGAAAGAGAAAGGCTCAGGATGAAGCAGAAGTAGAAGGTGTGGCAAGTT CTGACGAGGAGTCAGAAGATGATCACAAGCCTTTCACGAATGGAAACGGCCATGCAATGGATGTTGACGAAGATGATC CATTTTCGGATCAACCCGGGGCTAACACCAGCAAACGAGCCGTCACTTTTAAAGACCGGGACAGAACTCCTCCTCCAA CAGAGAGTCGCCAGGCCCGAATGATGCATGTAATGAGCCATCTCCAGTTGTTAGCCGCTGATGATTGCCAACTACTAC GAAAGTGCGGTGCTCGGCAAATGGGCGAGTGGACGGTAGATTTTGAGCGTGTGATTGACCGACTTCGAGAATCCGAA CTTGACTCCATCATTTATGAGAATTTTGGCCAAATTGGTCATCGACTTGTACGAGTCATGAGGAAGATGGGGAAGCTTG AAGAAAAGCATATTGCCAAGCTGGCGTTGATCAAGCAGCAGGACTCCCGTACTACACTTGTGAACATGCAAATGCATG GTATGGTTGATATCCAGGAAGTCCCCAGGGATACTGGTCGTATGATTGTGCGTACTATACACTTGTGGTTTTGTGATGA AGACCGGGTTACCTCACTTTTGTTGGATCGAACTTACAAGGCCATGTCAAGATGTCTCCAGCGACTCGATGTAGAGAA GCGACGCAAAGCAAATATCATTGCATTGTCAGAGCGTACAGATGTTCAAGGTCAAGAAGAGGCTTTTCTTCGACCAGA ACAGATGAACCAGTTGCGTGAGATCCGGGCGAAGGAGGAAGATTTATTAGGACAGATTTGTAGACTCGACGAATTGGT CGGCATATTTCAAGATTATTAACTCATATGGAGGGAAGGTTTTGGTTCGGGGCTTTAGCGTTCTTGATTTTTCACACTG GGGCGGCGCCATCTACTGCATAAAGAAAGGCGTTCTAGTATAGTCGAGCAGCAATGGTTATTTCCAGTTGACTCATTA CTTTGAGATACCATAGGTTTATTTCGTAGCCTAGATTAGTTGCTCAGGCAAATATTCTCCAAATTTACAGATTGTAAAGT AGGTATGAAGCTTTTAATGCCATTGTTTCGCTTCTGATTATCTCCCCTTGAATAGATACAATATTACTTAATTACCTAATA TTCTCCAGTCAATACATAAAACTCA BC1G_03511 SEQ ID NO: 52 GACATATAAGACGACCACATGCACTTACAGCAGTCCAGATTATGAGGATCGACCTGCATGATCCAAAATGGATTCAAA GATTTCGACTTTGAATGACCCTCCAAGACTTTTGTCCGGGCCACAACTTCTACATGATTTGATCCGATGGAATGAATAC GAAAATTCTTGTGCAATTGACTTCACTAGTCACGATAGACGAGAGAGGTACCGTTATCGAGACATACAAGCTTGTGTGA CATCTCTCGTTACACGAATCCAATCAACGATTAAAGTTTGTCAAACATCTCAACAGCAGCACATTGTCCCAATATTGTTA CCGCAATGTCCTGGGTTATATATCTCTCAAATCGCAATCCTGCAGTCGGGAGGGGCCTTCTGCCCTATCAACCTCGAT GCGCCGAGAGATAGGATACGATTCGTCGTGGGCGACGTTTCTGCGAGTATCATAATTACGACATCGGAGTTTCGAGA CTCGGTTTCTTGGGAAAATGGACCCAGAGTTATTGTCGTCGACGAATTTCCCATTGCCCCCACGGAACTGGATGAATC AACTGAATCACGTGAACCTACTAGCAATGATCTTGCATATGTTATGTATACTTCTGGTTCAAGCGGAACCCCAAAAGGA GTTGCAGTCAGTCATCTCGCTGCTTCACAGTCTCTCTTGGCTCACGAGAGTCTTATTCCCAAATTTAAACGATTTCTCCA GTTTGCCGCACCATCTTTCGATGTCTCCGTATTCGAGATTTTCTTCCCTCTGACTAGAGGTCAAACATTGGTTGGATGT GATCGTAGTCAGCTACTTAACGATTTACCAGGCATGATCAACAATTTGGATATTGATGCTGCCGAACTTACTCCAACCG TTGTGGGCGCTTTATTACAGAAGAGATCCTATGTTCCTAAATTAAGATTGCTGATGACGATTGGTGAAATGATGACGAG GCCAATCGTGGAGGAATTTGGTGGATCTGATACAAAAGAGAGCATTCTTTATGGGATGTATGGACCGACTGAAGCAGC CATTCATTGCACAATTCACCCCAAAATGGAAGCAAGTGCTAAGCCGGGTAATATTGGAGTACCCTTTGAGACAGTATCT GCGTTCATAGCGGAAGCGGCTTCTGGGTCTGAAAATGAGCAGGATCTCAAATTTCTCCCACAGGGCGAGCTCGGAGA GCTTATTTTAGGAGGCCCGCAACTAGCAAATGGTTATCTTAACAGAGAAGAGCAGAACAGGGCTGCTTTTCTGGCAGT GGCAGATAAAAACTACTATAGGACTGGTGATAAAGGTCGGATTCTTGAAGATGGAAGTATAGAAATCCATGGCCGTAT GAGCGGTGGACAAGTTAAACTACGTGGCCAACGTGTCGAACTTGGAGAGATAGAAGATGCTGTCTACAAACATCCGG GGATCAGAGCTGTTGTAGCAGTCGTGATACGCGGGGTACTGGTTGTGTTCGCTCTCACAAGTGAAGAAGAAACTCATT CCGAACAAGTTCTGAATACTTGCTCACAGTGGCTTCCGAGTTTCATGGTACCCAGTGAGATCATTATCCTGCAAGAGTT TCCTTATCTACCGTCTGGAAAGGTAGATAAAAGGAAGTTGGAAGCGGGCTACCAGCAAGAATGTGAAGAAGGGGACG AGCAATCAGACTTTACACAAAATGAAGTAATAGTGAGAGAGTTACTGCGCGAGATACTTGGTCCATTTCCCCCAAATAT ACGTTTGGCAGCTGCAGGTCTTGACTCGCTCGTTTCTATCAAAGTATCTAGAGAACTTCGATTGCGAGGATTTAACGTT GCGACTTTAGATGTTTTGAAAGCCGAAACATTAACGTCGCTTGCGAGGCTTTGTGAAAATTGCCCCGAGGTTTCAAGTT CAGCCAAGGCTCAATTGGGCCCTACCAAGTCAGAAATGCACGCTATGCTGAATGGCAATGCACATGCCGTTGAAAGTT CTTTCCCTTGCACTCCGCTTCAAAATGCAATGCTTGCTGAAACTGCCCTCGACGGGAGAGCTTACCGCAACTGGATCG AGTTAGATTTACCTGGACTTAGCGACACCGAAAATCTTCGTACGAAGCTACACGACCTCGCTGATTGCAATCCAATCTT GAGAACTGGCTTTGCAGAGTCTTCTGATAATAGCGGATATATGCAGTTTGTATGGAAATCATTTCCCGACTCGAACATT AAAATTGTGGACGTATTGACCTACGATCTCGAAGTTGAAAATGCATCACTTCATCGCCCGATTGTTTTCGAGATTCTAC CTACTAAGCCCTGCCTAAAACTCTTGATTCACATCCATCACGCTCTGTATGATGCCTGGTCGTTAGATCTTCTGCTTGAT GATTTGAATTGTCTGTTGCAAGATGAGATTCCAATTCCACGTCCCTCATTTGCGGATGTTGTGGGGGGTTATCTCGACG GCAGCATCTCTTCTGATTCTCGAGTCTCTAAAGATTACTGGAAAGATCATATGGCAAACCTCGAGCTTAGACATTTACC TAATTTTCACACAAGCAACGTTGCTTCCGCTAGATTGGCTGTGGCGCATCACTCGACTCAGCTCTCAACTTTAGATGTT GAAGTAGCCGCGAAACAATTAGCTTCGAGTTCGCAAGCTATTTTTCAAGCGGCATATGCTCTAATCTTATCCTCTTACTT AGGAACAACAGACGTTTGCTTTGGCACTGTTTTTTCTGGCAGAACCATCCCCATTGTTGGAATAGAAGAAATTATCGGA CCATGTCTCTCAACCTTGCCGATTCGTATAGATACCTCCATAGCCTCTACTCTCCAAGATCTTGTAGAAGAATTAAACAG TATAAATAGGAAACATCTCAATCATAGCACCCTCCCACTTCGCGAGATCAAATCGGTCAATGGTTTCGAGCCTCGACAG CCATTATTTGATACACTTCTGATATGGCAACAAACTCTCCATAGTTATGACCAGAGCAGAAGCAACGTCCTTCTTATCGA CCAGCTTGATCAACTGGAGTTTAATCTAACTCTTGAAATAACTCCTACATCTAATACCATTCAATTCAAAGCAAATTATCA ACAGTCGATATTCCCCGAAAGCCAGATAAACATGCTTCTGTGTCAAATTGAAGATGTCGCGAAAACAATCATCCAGCAT GCAGGATCTTCACCTATAAATGTCTTCAATGAAAGTATCTCTGAATTATTATCTTTGGAGAACCATACACCTAGCGTTGC CCTTGGACCCGAGACTCTGATATCTTCAGTGGAACAGATCGCAGAAGAAGATCCCGATCGTCCGGCAATTGCGTTTGC TAGCAGAATCGAAGACGTCAGTTCAGACATTCGATACATGAGTTATGGTACTTTGAATAGTCGTGCAAACCAGCTGGG ACACTATCTATCCAGTAATGGTGTTCTGCCGAATGATATTGTTTGCGTTTGTCTAGAAAAAAGTCATGATTTTTATGCCT CAGTATTGGCTATCACGAAACTCGGTGCAGGCTATCTCCCAGTAACCCCTGATATTCCACATAGCCGGTTGCACCATA TCTTGATGGAAGCCAAGGTAAAGGTATTGGTTGGACATTCTTCATCCCGGAAACTGCTGGAACAATTTACGGAACAAAA AGTTGTTCAAATCGATGAGACTGAACTGGGTCAACAATCTACGAAAAACCTTTCTATTGCCTTCAAGCCAGAAAATATCT CATATTGTGTGTTCACTTCGGGGAGCACTGGAACTCCAAAAGGAGTGCTTGTCACACAAGGCAATCTTCTAAGTAACCT CGACGTGTTAGTAGAGATCTATCCAGCAACCAGCGATTCTAGACTTCTCCAGTCATGTTCACAGGCCTTTGACGTATCT GTCTTCGAAATTTTCTTCACTTGGAGAATTGGGGGATGCCTGTGTTCTGCCGTGAAAGACGTTTTGTTTCGAGACATAG AACTTGCGATTCGTGTTCTGGAAGTGACTCATCTCAGCTTGACACCTACTGTTGCTGCTCTTATCGATCCACTTAATGTA CCTAAAGTAAAGTTCTTGGTCACTGCCGGAGAGGCTGTGACACAAAAGGTTTTCAACACATGGGCTGGCCATGGGCTT TACCAGGGTTATGGTCCCAGTGAGACAACCAATATTTGCACTGTCAAGTCACAGGTCACCCTAGATGATCGTATTGACA ATATTGGTCCTCCTTTCAAGAATACGTCAGCTTTTGTAATTGCTCGCAACTCAGAATTCTCCTTGGTACCAAGAGGTGG CGAGGGTGAGTTTTGCTTTGGTGGCTCTCAGGTCTTCAGAGGGTACATGAATCGAGCTCAAGATGAGGGAAAGATTAT TAATCATCCCGAATATGGGCGTCTATATAAAAGTGGCGACTTTGGGCGTCTGATGTCAGACGGATCCCTTGTTTTTACA GGACGAAAAGATGACCAAGTCAAGGTCAGGGGCCAACGAGTTGAACTTGGCGAAATCAACAATATCTTGATCTCTTTA CCAGATGTCGAAGATTGTGTAACAATGGTTATCAATGGACAAGGAAGTTCGCAACGCCTAGTTTGCTTTTTCACGCCAC AGTCATTAACATCTGGAAATATTCTTCCTCTTCAAGTTGATCCAATTATTATTAGCGAACTCTATCGAATACTGGAGTCG AAGCTCCCGAGCTATATGGTACCTTCAAATCTCATTCCGGTTTCAAACCTTCCATCGACATCGCAAGGCAAGATTGACA AGCGTCGACTAATTAGCTTGTATGAAAACTTTGAGCTTGCGTATCTTGACTCTACTACTAAATCTTCAACGTCTTCTGTA GATCATCAGTGGACAGAACTTGAGCTTGAGATCCGCTCCTCATTGAGTGAAATCTCAAAAGTTTCAGTAGATGATATCG GTCCAGATACATCATTCTTTAGCTTTGGTATCGACTCGATTTCGGCAATTGCATTCTCCCGGAAGCTACGTCAAACAATT GCAAAACCAATTGATATTTCTGATATTTTGAAGCATACTTCTGTAGTCAGACTTGCAGAACATTTATCAAGATCCGATGA GCTTAGAAACGACGACATCTCGATGGTTGATACAAACTTAGGACTCAGCGATGAATTTTTAGAGTCTACTTTGTCTCAG TTTACCACCCCGGAAAAAGTTGCGATAAGCGTTTCACCTTGTACGCCTTTACAAGAAGCTATGCTGTCCGCGGTTGAG TCTTCCTCGGGCGTATCATATAACAACCATGTCATGTTCAATATATTTGGTGATCTCGAACGAATTCGTGGCTGTTGGC AAGAAATGGTCCGGAGACATGAAATTCTTCGAACTTGTTTTCTTGCTACTGAAATGCAAAAACACCCTTACGTCCAAGT CGTGTTTCAAGAATTTGAACTCAAATTCGGCTCTCTTGATTCTAACACTCTGGAGGCTGCCATTCTTGAAGTAGAGACA AATTTAACACACAACGATGATAGCCCGCCTTACAAGGTTAACGTTTTGCACTTCAATGGCCAGCAGCATCTTTTGGTCT CAATGCATCACGCACTTTATGATGGAGTCGCCCTGGCAATTCTTTACGATGAAATTGAAAGGCTGTACAATGATTTGCC TCTACTTCCCCAGGTTTCCTTTACTCCATTTCTAGAGCACATAAGCTCAATGAATCTTGATTCTTCTGATAAATTTTGGG GATCTACCTTACGAGGATATTATCCACTTCACTTCGAAGATATGCCAAATTTGACTAGCCAAGTTGAAGTGGACAGCAC CCGCATTCAGAAGCTGATATCGAAAATTCCTCTTAGTAGCGTCGAAAATAATATCAAGAAGCATAGTACCACCCCTCTC GCTGCGCTTCATGCGGTCTGGGCTGGCATCATTTCTGAACTTTTCAAAAGCACTGATATTTGTTTTGGCAATGTAGTCA GTGGTCGCACTGCCCCAGTTAATGGTATAGAAAGACTGGTCGCGCCATGTTTCAACACGGTTCCAATCCGTTTGGAAA ACATTCACAAGTCCACTTACCTCGAGGCATTCAGAAAATTACAAAATGCAAATGCCAACTCCTTGCCATACCAATTTACT CCTTTACGACGACTTCAGTCAAAGTTCAGTCCTGATGGAACTCGTCTATTTGATACCCTTTTCATTTTACAACAGCCGTC GAAGGAACTCGACTCTTCTATATGGTCCATTGCGGAAGAAAACGGTGCCATGGATTTTCCTTTAGTCTGCGAAATTATA CCCAAACCAAGCAACGATACCCTTGAAATTGTTCTTCATACATCTACTTTAATGTTTTCCGATTACGATGCAAATAATTTA ATTCAGAGATTCGAGGATTTACTACAAGTCGCCCTGGAGAACCCTCGGCGCCAGATTATTTCCTCTTCGGCAAGAGCG CAGATCCTCGCTGTTGACGAGGAAAGAGAGAGAAAAAGGGTGCGAATTTTGGACCCGGAACACCAGGACAAAACCAT GAGTCCATTGGAACTAGAAATTCGAAATATAGTTGCAGGATTTACAGACGTTCCCCCAGACAAGATCTCTCGGGATACC AGTATTTTCAGGTTGGGTCTCGATAGTATCAGTACAGTTCAGGTTGCTTCTCGCTTGAGAGCTCAAGGGCATAACCTCC TTGCGAGTGATATCCTACAGCACCCTACCATCGCTCAAGTTGCTTTGCATCTTGAACAAAATAAGTCTTCAGTGAAACA AAAAAGCGTTCAGTATGATTTCGCTGCTTTTGACCAAAAACATCGCGAGCCAATCTGTTCGAAAATTGGAGTTTTATCTC ATAATGTTGAAGCTATCAGACCTTGCACAGCTGTACAACAAGGCATGCTTGCTCAAAGTTTGCATTCTGGAGGTCATGA ATATATCAACAGCGTGTCTCTGGAGATTTTACCCGATCACTCGTTGGAAGAAATTAAACATTCTTGGACTAAAGTCTGTA AAGTTCATGACATGCTTCGTACAGCATTTGCTCAGATTGAAGACCCAAAGCATCCGTTCGCAATGATAACATTCACAGA ACACTCCTTTGTTCTCCCGTGGTTTGAAAGTGGCGTCCAAACATTCTCTGAGGATAATGATCGTCTCCGAAACCCATGG GACATGACGATGTACAAGAACGGGGACGGAACTATACTCACTTTCACTGCACATCATGCACTTTACGATGCTCAATCTA TGGAAATGATATTTTCGGACTTTACAAAGTTATATCATCGTCAAGAATTGGCCAGTCGACCTAGCATGAACACATTGTTG GGTTCAGTTCTTCAAGCATCCGAAGGAGCCCAAGATGAGAAGAAGACATTTTGGCAACTGCCTGAAAATCGAATTGTG GTCAATAAGTTCCCTGATTTGACTCCCCTCCGTGTCGCAGCACCTAGTAATGCAGTTCGTGAGATAAAATCTTCTGCTT CACTGAAAGACCTTGAGAATAGATGTCGAGAACTTGGAGTCACTATGCAAGCAGCTGGGCAAGCTACTTGGGCGAGG TTGTTGATGGCATATACTGGAGAGAACGCTACGACTTTTGGAATGACCCTCTCTGGTCGATCTGTTCGTGATGATGCCA ATTTAGTCGCCTTTCCAACTATCGTCACACTTCCGGTTAATTGCAACGTGATGGGCAGTAACGGCGATCTGTTGTCCAG GACTATGTCAACCAATGCACAACTTCATAATCATCAATTTACGCCGCTGACATCAATTCAAAAGTGGTCTGGGTACCCC GAGGGACGGATATTCGACACTTTATTTGCGTATCAAAAACTACCTGAAGATGGAGAAACTCTGAATTCTCCATGGAAAG TAGTCAAAGAGGAGGCTACAGTGGACTACGTCATATCTCTAGAAGTCCAACCCTCATCATCGGGTGAAATCACAATTC GATTATCATTCAGAGAAGATGTCGTACCCGCAGCTCATGCTGAGCTAATTGTCAAACAATTTGATGCGCTACTGCTGGA TACGCTCCAAAACCCAGATCATCCCTGCAATGTAGCGCCTGATATTGGAGTTGAGTTGCTGTCCATTACTCCTGCACA GGATCCTGTTCTTCCGGACTCCGTAGCCCTTCTGCATCAATACGTCGAAAGAGGGGCCAAGACATGGCCAGATAAGG TCGCATTAGAGTTTGCAACTTGCCTTCAACCAGGCAATTATCAAAGCCAAAAATGGACATACCTACAATTGGACGAAGA ATCCAACAGGGTGGCTCAGATGCTCCATGCACGTGGAACTACTCCGGGTGAGATAATTGCAGTTTGTTTTGACAAGTG TGCCGAGGCTTCTTTCGCAATTATTGGTATCATGAAGGCTGGCTGTGGTTATGTTGCACTGGATCCTAATGCTCCTGCC GATCGCTTAAAGTTTATCGTGGAGGATTCTGCTGCGAGATTAACCATCAGTGCAGGAAGCCCAGCCCAGAATTTGAAA ACTTTCGTAGACGGGAAGATTATCGATCTGACTGATCCGACCACACTTCGCGAATTTGCCCCTGAAGCCCCGGAACTT TCCAGAGAAATCACCCCTGACGACATATCCTATTGTTTGTACACGTCTGGAACAACAGGAACACCGAAAGGATGCCTG CTTACTCATGAAAATGCGATTCAAGCGATGCTTGCATTTCAAAGACTGTTCTCTGGACATTGGACCACCGACTCGAAGT GGCTACAGTTTGCTTCTTTTCACTTTGACGTGAGCGTCTTGGAACAATTTTGGAGTTGGAGTGTTGGAATTTGTGTAGC TACAGCTCCTCGAGATCTGATATTTGAGGATATTCCAGTTGCGATTCAACAACTAGGTATCACGCACATTGATTTAACAC CGAGTCTTGCACGCTTGTTACACCCAGACGACGTCCCGTCATTATGCAAAGGTGTTTTCATTACGGGTGGTGAACAAC TAAAGCAAGAAATTCTTGATGTATGGGGCGAGCATGCTTGCATTTACAATGGATATGGGCCAACCGAAGCTACTATTG GTGTGACTATGTATCCTCGAGTACCGAGAAATGGCAAACCTTCCAACATTGGTCCTCAGTTTGACAACGTCGGATCGTT CGTTCTGAAGCCAGGAACTGAGCTACCCGTTCTAAGAGGAGGCATTGGTGAACTTTGCGTTTCTGGAAAACTAGTCGG AAAAGGATATCTCAATCGCTCAGAACTTACGACTGAGAAATTCCCTACGCTTACTAATTTCAATGAGCGAGTGTATCGC ACCGGAGATCTTGTTCGAATCTTGCACGATGGCACCTTCCTCTTTCTTGGTCGTGCTGATGACCAAGTCAAACTTCGTG GACAACGTTTGGAGTTAAGCGAAATCAATGAGGTAATCAAGAAAAGCAGAAACGATCTAGAAGAGGTAGTCACATTAG TTCTAAAACACAAAGCACAAGCTAAAGAGCAGCTCGTCACGTTTTTTGTCGTGTCAGGAAAGAGCCAGTTGAAAGATAG TGAAGTAATTCCCTTCATCAGAGATGCCTGCAGCTCGCGACTTCCAGGATATATGGTCCCAACACATTTCATCCCCATC AAAGCACTTCCTCTCAACGCAAACAACAAAGCGGATTCGAAACAACTCGCAGCAAAATTCGACGATTTGAGTATGGAG GATCTTCAAAACATGAGTATTCAGGTGCAGAACCATGCGGAATGGACAAACAGAGAGGAGAAGGTGGTAGATACCATC GTTAAGGTATTTCCCATCGATGTTCCCGAGTTAACGCGCAGCTCGAATATTTTCCAACTCGGTCTCGACTCCATTACCA TGACTGCCTTTTCAAGCTCCTTGAGAACTGCGGGATACAATAACGCCACCAATGCCACCGTCAGAAGCAATCCCACGA TCGGGAAGTTGGTTGAAGCACTTCTTGCTGCCAAAATGAATGATACCAGAGAAAACTCATATCTTGTTACAGCTCAACT GAGAATTGCCGGCTTTTCACAGCAGCATACAGTCACCATTTGCAAAGACTTAGCGGTTTCACCCGAGCATATTGAGAG CATCGCACCTTGCACTCCTGTGCAGGAAGCAATGATCTACAGGTTACTTGAGAGTGATGGAAGATTGTATTATAATCAC TTCGAGTACAAATTGGCACCCGGAGTTAATTCTAAACACGTTTCCGATGCGTGGGATCGTGTAGTTTCTAATCTTCAGA TCTTGCGAACCAGATTTGCCTTGACAGACGATGGCTATGCCCAGGTGGTTCTCAAACCCCAGGCATCTTCGAAGCATT GGGAGTCGGGCATCGTATTAGAAACCTTGGAAATTCTCAATAACCCGTGGTGTTTCGATATCAAACATCATGGAGACG AAGATACCGTATCGTTAAATATTTTTCATGGCCTTTATGATGGGAGCAGTCTAGGAATGATCTTGAATCATCTTTGCGAC GAATCTCGCCAATTACCGAACATTCAGTATGGACCGGCTTTCCATTCATCGTTGGCTTATGGGCCGCTGTCGATAGTTC CCGGAAAGGAGGAATTCTGGAAATCCCATCTAAAGACATGGACTCCCTATTATTTACCTCATGACTACGCAGATCCGG GAACTCGGATATTTTCTCGTACACTTGACCTGCAAGATTTTGAAATCAGACGGAAAGCCTTATCTGTTGCGCCGCAGGC CATAATCCAAGCAGCATGGATCTCAGCCATTCAAAAGATCATTTCTACCAAATTGACCACAATTGGCATTGTCACATCC GGCAGAGCAATTGATTTCGAAGGAGTAGAAAAAGTTGTTGGACCCCTTTTCAACACCGTGCCCTTCCATCTTCCTGTAC AGGCTGGCATTCAAATTTCCTCAATAATAAAGGAGTGCCACCGAATAAATATGGAAATGCAAGAATTCCAACACACGCC ATTGAATGATATAAATAAATTAGTTTCTGCTGCAGTCACAGGTCCGCTCTTCGAGGCACTATTCGTGTTCCAACGTCCG GATGCTAACGAAGAGCAATTATCGGATCTAATGGGAAATATTATCTCTCCTGAGGAGGATAGGAATGCAGATTATCCTA TAGCACTCGAAGCTACTCTGAGCCACGATAGTACTAAGCTTATTTTGGAGATGGTCGTGAAGAGCTCAGCTGTGACGG AAGAAATGGCACGCCTTGTGCTCATTGAGATGAATAATACCCTTAGAACTATTCTTCCCGGTAACGACAATGCGACAAG AACAGTTGGGATTGATCTTCACCATCAAGCCCACTCAAGACTTCTCCCAAACCCCTTTCACTGGCTGAACTTAATTGAC GATTCAAGTCACCTAAAGCAATCTTCGGGAGCTTTACATCAATCTGCGCGCTCAGGCCAAATACCTCTAACCAAAGAAA AGGGTGATGTTGTTTGCAAGGAGGTTGCAAATTTGGCCAAAATTGACAAAATAGATATTGATGATCATAGATCTATCTTC GAACTTGGACTTGATAGCATCGATGTGATCAAGTTGTCTTCACGTCTGCGGAAGAACGAGATTGTGATATCTGTCAGC GAAATTATCAAATGTCAAACGATCACTAAGATTGTAGAAGCCGCGACACTCTCCAAAGAAATTGTATCCGACGCATTGT CTACCAAGAAACTCGCGAGACTTAGTCACAAGCTTCACGGGTATCTAAAGCCTAGGCTTCCTGCAGACTTCGAATCCA TTCTACCGGCTACACCTTTACAAGAGAGCATGTTAAAAGAAATGGTTGATTCCAATTTCAAAAGCTATTTGACCCTCCAG GTTTTCGAACTGAGTGAAAACACCCAGGAGGGAAGATTGTTGGATGCTGTGGATATGGTTATCGAAAATTCGCCAATTT TAAGAACCACCTTCCTTGAAGTTCAAGACCCGCAATCTCCCGTCAACTATGCACAGATTGTTCACAAAAAATGGAACAG GGTGGCCGGAAAGTATCTACCTAATTTTGATGATCATGGGTGCCCCGAAGACCTTTTACAATTAGCAGAAAACAAACTA AGAGCGGACATGTCGTCGATAGAGAGCCAATTGTTTGGAATACTTCCTGTACATTTCGAAAACAGGAGATTTATCGTAA TGGGAATTTCACATGCTCTTTACGATGGGAAATCACTGCCGATGATACACGACGATATCAGCAAAGCTTATAGGTACCA AACAATTGCTAGTCGTCCAGACTATAGACCGTGCCTTGCAGAGATCTTCAATTCTGATACTCATGAAGCGAATGACTTC TGGAAAGCTACCCTGTGGAACTCGCCACCTGCAATATTTCCAAAGCAGGAACCATCATCAATTGGCGAGACTACGACG TACCGATATGAGAAGCATTCTGAGTTCTCTCTAAAAAAAATCAGGAGCTTCTGCCGCTCTTCCAACATTACACTACAAAC TCTGGGACAAGCATGCTGGGCTTTAGTTCTCGCAGAACTCATGGGCCAATTTGATGTTGTGTTTGGAACTGTACTTGC CTGTCGTGATACAGGTGACACAGCCAATGAAGTAAACTTCCCACTGTTCAATACTGTGGCAGTTCGATCAGTACTTCGC GGAACTGTGGGTCAAATGCTTCGAGATATGCAAGAGAAGAGCGATATGATTCGTCAATTTCAACAATTCCCCCTTAGGA AAGCTCAAGCCCTCGCACTTGGCTCTCGAGACCATTCAACCAAAGATACCACATTGTTCGACACATTGTTCACATATCA AGGCTCTCGACCTGAGAAGGAATCTGATCCATTATATTTGTCATTTGGTGGTTCTTCGGATGTTCAGTTCGCAATCTGT GTCGAGATGGAGGTTGAAGATAAATCTGATCGTCTTTACTGGACAACAGCTTGTAAATCTGTGGCTAGAAATCACTTCC AAACCAACGAAATTCTTGAAAAATTAGACAAGGTTCTTGGGAAAATCATGGCAGACAAAGAGGAACAGATCATTAAAAT TTACAGCGACGGAGTCTCTGTATGCGGATCTCCCAAATTTCAACTTCGAGAAAGTCCCCATCAGAAAAACTTCCAAGTA CCTTCTCCTTGTGAAAGTTGGTCTAAAACAGAAATGGAGATTCGAAAATCAATATCATTCATTTCAGGTGTCCCAGAGAA AGATATCCTCAAAGACTCCACAATCTTTCAATTGGGCTTGGATTCAGTTACAGTCCTCAAGCTTCCAGCACATCTCAAAA ACTACAACCTTCATCTGACTGTTTCGGAAATCATGAGACATCTCACAATTCAGGATATGGCTGATCATTTAGCTGAGAAA CAAGACTCACAGTCGAATACTCCTGCCAACGTCGACGTTGACGTCGATGTTGATCTCATCCTGGCTCAATCTACACCAT CGATTGATGAGACCCAGATCAAGCAATTGAATGAATCTTTTGGCGAGATAGACTACATTATGCCCGCAACTGCAGGAC AAATGTATATGATTAGACATTGGCAAAACTCTCAAGGATCTCTCTTCCAAGCAACTTTTGAGTTCAGATTATCCAGCGGT TACGACCCACAACTACTCGATTTTGCTTGGTATAATTTGCTACTTCAGCACGACATTCTACGAACTGGTTTCATTGACTT GGACTCAACTATCGTTCAAGTTGTTTACAAAGAACCAACAAGTATGGTAAAATATGTTGAGGAGCTACCTAATCTTCAAC AAGAATGTAGCCTTCAAGATCCACCAATAAGTCTTTTTGTCATCACGCCACAGAACACTTCAAAACAGGTCGATATGCA TCTTGTTATTCACCATGCTCTTTACGATGGAATCAGCATCTCTTTGTTGCTTAAGGAATTGATGGCTTGGTATAATGACC CGAACACCATGGCCAAGTCCACGTCTACAATCGCCAAAAATGAATGGAAGAAATTTGTTGCGACGACAATCGAGGAAA AGAATAAACCGTCCGTGAGGGATCAATGGATTGAGTATCTTGGCACTGTTCCCTCTAAACAATCAAGCCCTGATTCAAA TGTCGAATTCGAAGTAATAGGACCGGGAATCAGGAAGCCTAATCGAGTCGAAGTTTTCGAACCCAATGTGCCAGCAAA AGGTGTAAAAAAATATGCACGAAATACAGGTGTTTCTATTGACCACATACTTATCGTTTTGGCATCGACAGTCTTGGGT GATCAACAATTTAAGAATGTTGTGGATCTTGATGGAAATTTCATCGTTGGCCTGTATCTAGCCAATCGCTTTCCATTTTC ACAGGACCTTTCTTCCATGATGGCACCTACGCTCAACATATTGCCAATCAGAATCGGGCCAAGTAATCGGAATGAAGA TGATGGTTTTGCGATACCAGAGTTGGCCAAGAATGTGCAGAAGGGTTTGGCTAAGATTGGTAGAGGCGGAATGGCTA ACGCGGGGCTGGACGAAATCTATCAGTGGACTGGCGTGAAAGTACATGGATGTATCAATATTGTTAAAGAGGTTTCTG ATCATAGTGAGAAGATGGATGAGGCAAGCTCCGAGGAGATATCGGATTGGGAAGTTGTTGAAGACTTGAACGGAGAT ACGGCGAAGGAGCATAAGAAACCTCGCGAGGAGGTCGGTTTACAGCCTGTGAAGAATGAGGAAAAGGATACGACCAA GCGAGTTCTTTTCGAATCGTTGGAAGATATGAAAGGATATGCGAGAGTGGTGAAGCCGAAGAGGGATCAGACTATGTT TGTTAGGAAGGATTCGGGCGCGTATCCTTCGTCAATCGATATAGAAATTCGCTATCATCCTGAGAGTGAAACCATCGAT GTTGGCATTTTCGGGCCGGATGATATGTTGAGTCTTGAGGAGGCTGAGGAATCGATTAGAATGCTTAAAAGTTTTTGCT TCTGAAAGGAGGTGATGGAATTTTTTATTGTCGTTGGGGAAATAACGGAGCGAGGGATTCTGTTCA BC1G_03981 SEQ ID NO: 53 GATTTACTTATTCAATTAAACTAAGCTCACCTTCCGCAGTGACTGCGGGCAGTCTAAACCATGGGAAAGATAGCAACAA AACTACGGGAGATCAAGGAAGGAATCAGAAACGATGAAAACTTAACTCGAGGAAGAAAGGGATTTGTTCGAGGAATAA AAGGGTTACCGTCATCAACAGGGAAATATTTGGTTCGGAAGATTCCTTTCGTACATTGGTTCCCGAACTATGCTCCAAG ATGGCTTGTGGACGATATGATTGCTGGGGTAACAGTCGCATTGGTCTTGATTCCCCAGGCTCTGGCATCTGCAGCGCT AGCTGGCATACCATTGCAGCAAGGACTCTTTGCTAGCTGGCTACCATCGGTTATATACTTCTTCATGGGTACATCGAAA GATATTGCTACAGGACCCACAACATCTTTGAGTCTACTTACCAATGCCGTTGTGTTATCGATTACTGCCGAAGGATTTC CAGTACCACCAGCTCTCATTGCCTCCGGTCTCTCTTTCTCGATAGGTACCTTTTCTCTATTATTCGGACTCCTGAACCTT GGATGGATCTTGAACTTCGTCACTGTTCCTATGCTAGTTGGGTTCCAAATGTCAGCCGCGTTGATCATTGTTCAAGGTC AGATTCCATTAATTTTAGGAGAATCGGGCGTGGGCCAAAACTTTACGCTACAAGGGATGCAAATACCCAAAAACATTGC AACTACTCAACCGTTGTCTTTGGCTGTTGGCGTAGCTTCAATAGTGATTATCATTTTATTGAAGCTCATGGGCAAAAAGT GGGGGCACAAGAGTAGCATCATCAGGATCTTATCAAATTTACGGAACGCTTTTGTGATTGCTATTTCCACTACGATATC CTTTATTATCAACAAAGATCTCGTCATTCCACAATTCCCCATTGCTGGGACGGTAGCATTAACCCTACAATCTCCACAAC TTCCGACTAAACTTGTTCTACTTGTCGCCAAGAAATCCTTCCCCGTTTTTATAGCTGCCATAGCTCAGCATTTGATATTC GCCAAGTCATTTGCTCGTGAGCACAACTATGAAATTGATGAATCGCAAGAACTTGTTTTTTTGGGTACCGCAAATATCG TGAATAGCTTTTTTGGTGGGATGCCAGTATCCGGATCTCTTTCTCTATCGGCAGTAAATTCAACAACTGGAGTGAGATC ACCACTTAGTGGACTTTTCTCTGCCGGGTTTGTTTTTCTTGCCATCAATATGTTGACGGAAACATTCCAGTGGATACCAA CTGCAGCAACCAGTGCGATTATACTAGTCGCTGTAGGAGAAACATTACCTCCAAACAGTATTCCACTCACATACTGGAA GGGATCATTTGCCGATTTCATAGGCTTTTTTGTTGTCATGAATGTGGCGTTAGTTACAAGTCTAGAGCTTGCTCTTGGA CTTGGGATAGTCTACATAGCGCTCTACACTCTCCTACGCACATTGTTCTCCTCAATTAGTCCACTAAAGCCCCATGATA TCGAAAACAGATACAGCTTTGAAAGTGTAAACAGAATGAGCATACCTCTTCAGGGAGGGCGCCTAGTACCCCAAGGCA CGCAACTCATTACGTTAGAAACTCCCCTCATCTACTTGAACGCCGAGAGAGTTAAGAAAGATATCTTAGAAGCTATTTG GACCTATCATGAGCCAACTCCGTATGGGCCGACGGAACGAAATGGATGGAGCGACTACCGAGTTCGAAGAACTGCCG CTCTCCGTCGCAGGAGTAACATTAATACACCAACTAGATTCCTTCCAAGGCTTGAAGTTATCGTATTCAATTTCACACGA GTCACATTTATCGATACCACCGGACTCACCTATCTTCAAGATCTCAAAGACGAAATTATGGCATATAGTGGTGACGCTG TAGAGTTACGTTTCGTAGGTATGATTGACTCTGTACAGAAGAAATTCAAAAGAGTAGGATGGCCGTTGGGCACTTATCA AGAATCACAAATCGGCCTAGTCGCGGGAATTGATATTATATTCGAAGATCTACACGATGCAGTTGCAGCACCTCGAAG TGTAAGAGCATCTATGAATGGACTGGATTTTGGGTTTGCAAATCCAAGGAATGATATGGAACAATTTGGAGATGAGGAG GCTTTTGAAAAGGGCAGGATGAATGTCATAGTTACGAATGTTGTAACAAAGGATGGGAGGGCATATAAGGAGAAAATG TAAATATACCTTTGGGTGCTTTGGAGTATTTTGGGAGCGATCTTTGCTGTCTTTATTGGGAGAATAAGAATTGTACAAAT ATATATGCGGAGAATCAATGCGGGAGGATGCTTTCTTGGACTGCATAGTCAAAACGATGAAAGGCGTTGAGACAGTCA CCATATCAACTCACAAATTCCAACCGAAACA BC1G_14507 SEQ ID NO: 54 GGGTGTGGGTGTAGATGAATTAAATGAAGAACATCAGCGTTCCAAGGTAATCCGTATCCATCATATCACATCACATCTC TTCACATCACTCCAATATTCTCTCTTCTATCCTCTCTCTCTCTCTCTCTCCCTCTCCCTCTCTGTCTTCCTCCCCCTCGC CGTCGTCGCTTCATTGTAGGAGACCTCTTTCTCGTCGCTCCATACCAGTCCCGCAAATCGATAGCTTCTTCCATTTGCC TGCTAATTACCATTCCATATTACATTATTTATATGCGTAATTAGCAACCTTTTGCCTCCTTCCCCTTGCATTAGCACCACG AAACATCGAGAACCAGACAGCTCCATTCCCTCAAACAACCTCCTATTCGATCGATCATTCCTTCTTCAACAAGACTTTG GAACAACTACTGCACTTCAATATGTCTCAACAACCTGAAGCTGTAAATAATATGCATAATTTGACTACGCTCATAAAACG ACTCGAAGCCGCAACCTCTCGTCTTGAAGATATAGCTTCCTCTACCATTCCACCACCTGCTTCATCATCCATCCCTCTA ATTTCTCCTCCGGCCGAAGCTGCGAAAACAAATGGCACAACTCCGCCGCCGCCAACGATCCAAACACCAGATATCAAA AAGATCATCGAGGATCCAATCCCAGGAGTAGTCTCAGAGTTCGATAATTTTATTCAGGGGGCGGTTAAGAAATATGTTA ACTTGAGTGATGAGATTGGAGGGGTTGTTGCGCAGCAGGCATCTAGTGTATTGAAGGCATATGTCGGACAACGAAGAT ATATTTTGATCACTACAAAGTCAAAGAAACCTGGCATGCAAGATGAACCATTCCAAAAGCTCATCAAACCTCTTCAGGAT TCATTTACTGCCGTTGATGATATCCGAAAGTCCAATCGTGCATCTCCATTCTTCAATCATCTCAGTGCTGTTTCTGAAAG TATTGGTGTACTTGCCTGGGTTACAATGGACAACAAACCATTTAAACATGTCGATGAATCATTGGGATCTGCTCAATATT ACGGAAACAGAGTATTGAAGGAATTTAAGGAGAAAGACCCAAAACAAGTCGAATGGATTCAAGCATTCTATCAAATCTT TAAAGATCTCAGCGAATATGCTAAGGATAACTTCCCAAACGGTATTCCATGGAATCCAAAGGGTGAAGATTTGGAAGTT GCGATTAAGGATGTAGATGAAAAGGCTCCAGCCCCTCCTGCTCCTCATCCAAAGGCTGCAACTGCTGGAGGTGCCGC ACCACCACCACCCCCTCCACCTCCTCCTCCACCAGTCTTCGATGACATTCCATCAAAGCCAGCACCAAACCAAGCAGA TTCAGGTGCTGGACTAGGAGCCGTTTTCTCTGAACTGAATAAAGGAGCAGACGTTACAAAAGGATTGCGCAAAGTGAA TGCTGATCAAATGACACATAAAAATCCTTCTTTGAGAGCAGGTGCTACAGTTCCCACCAGAAGTGATAGTCAATCCAGT ATTAATTCGAACCGAGGAAAGAGTCCTGCTCCTGGTAAAAAGCCCAAGCCAGAGAGTATGAGAACTAAGAAACCCCCT GTTAAAAAATTGGAGGGTAACAAGTGGTTTATTGAAAACTACGAAAACGAGTCTGAGCCAATCACAATTGAAGCATCTA TTTCACACTCGATCCTCATTTCCCGCTGCTCAAAAACCACTATTATCATTAAAGGAAAAGCAAACGCTATTTCTATTGAC AACTCCCCTCGTCTTGCCTTGGTAATTGATAGTCTCGTCTCATCGATTGATGTTATCAAAGCACCAAACTTCGCACTTCA AGTACTGGGCACATTGCCAACGATTATGATGGATCAAGTTGATGGTGCTCAAATTTACTTGGGGAAGGAGAGTTTGAA CACGGAAGTCTTCACGAGTAAATGTAGTAGTGTCAATGTGCTACTTCCAGATTTGGAGAGTGCAGACGGGGAAGGAGA TTACAAGGAGGTGCCGTTGCCCGAACAGTTGAGGACTTGGGTGGAGAATGGAAAGGTCAAGAGTGAGATTGTTGAAC ATGCTGGATAGATTGGTTGAGATGGATTGTGGAGTTTGGGGAGAGGCTCTGGCGAAAACTTGTTGGGGGTGAGGGGT AATGAGATGTGATGGAGAATCTGGGTAGATTTGATATTATAGAGATAGTTGAGTGAAGTTTTATATCATCGCATGTTAGT TGAAGTTTTCAGGCAGAGTAGAAGTCAAAGTTGAATTGTACATATCTATGTATATGTATATCCGAGGCTTGTCTCGCTTT GTTGTTTAGTAGATTTCAAACCGAAGATTTTCTACTCATCATATCGTGCCGTGTGTTTTATATTGGGCGATGTGTCGTTG TGCTTTTTCTCTCTCTATCTCTTTTACTTTCAGGGAAATAAATATA BC1G_09414 SEQ ID NO: 55 GGCTTCAATTGACGTTGAAACATGAATGCTGAATGATGATACGATACACTTTACTTCAGCCCCTTTAACATTTTGTCGCA AAATCGGTGAAACTTGGGTTGTATGTATTTGTATATTAAAGATCGCTAAGCCCAGCCTCTATGGTAACAGATTACCTGA GCTTCGTCATTTCGACCCCCGGACCGTGATCTTCTACCAACCTCGAACCCATTCCTTCAAATAAATGTCACAAATCTAT CTTTCTTCATACCTATTTCTTTTTTGTTCATACTCATAATGTTTTCGGGTTCGAACTCGTACCTTGGTGGTAACACCGGC CGCCAACCACCACAGCAACCGCAACAACAATATGGTGGTTTCCAGCCAAACCAAGGTTTCCAACCACAGCAGACTGGT TTCCAGCCACAACAGACTGGTTTTCAACCTCAACCCACAGGATATGGTAATGCGGCTCCTTTACAACCCAATTTCACCG GTTATCCACTTCAACCACAGCCTACGGGATATTCTCAGCCCTCTCAAGCAGGCTTCCCTGGAGGCCAGCAGCAACAG CAGCAGTTCAACAATGCTCCTCAACAGCAGAACTTCCAAACGGGAGCTCCCCCAATCCCGCAGATTCCGCAGCAATTC CAGCAGCCTCAACAAACGCAACAGGCTCAACCACCTCCTGCACCTCCTGTGCAGCAACCGCAAGCGACCGGATTTGC TGCAATGGCAGATTCATTTAAACCTGCTGCTGCAGAGCCATCGAAGCCAAGAGGACGCAGAGCCTCCAAGGGGGGAG CAAAGATACCTAGTATACGACTTTCCTTCATTACAGCCCAAGATCAAGCAAAGTTCGAAACTCTTTTCAAATCCGCTGTT GGGGATGGGCAAACACTTTCTGGGGAGAAATCGAGGGATCTTTTACTACGCTCAAAACTAGACGGGAACTCACTGTC GCAAATATGGACGCTCGCAGACACTACAAGATCTGGACAGCTACATTTTCCCGAATTCGCATTGGCTATGTACCTCTGT AATCTCAAGCTAGTCGGCAAGCAGTTACCATCCGTGCTTCCCGATGTTATCAAAAATGAAGTTTCTAGCATGGTGGATA TCATAAACTTCGCTATAGATGATGATGCACCAGCGGCAACGAATGCGCCCAGTTTTGATGGTCGACAAAACACCGCGA CACCTCCGACTATCCAACAACCACAGCCAATGGCGTCTAATTCCGCCCTTCTCACTGCGCAAATGACAGGTTACCCTG GACAGCAGAATAACTTTTCGGGTGGATTTCAACCACAACAAACAGGCTTCCAGGGCCAAATGCAAACTGGCTTTTCTG GACAGCAAGGCGGATTGCAACCTCAGCCAACTGGATATAATCAGATGTCAAACCCTCAAGCAACGGGCTATAATGGAC CGCGCCCTCCAATGCCTCCTATGCCATCTAACTTCAGTTCTCATTTATCTCCGGCTCAGACGGGTATGCAAGGTGGAA TGATCGCGCCATTGAATAGCCAGCCTACAGGAGTCGATGGCCAATGGGGCTTGGTAAATGCGCCAGCCCCCAATATC GATCTATTACATTCCCGGATGATGCCGCAACAGGGTCGAGAACAAGGCAACTTCACCACGGCTGGTATAACAGGCAAT GCTGAAATTCCATGGGGAATTACGAAAGACGAGAAGACCAGATATGATTCCGTTTTCAAAGCTTGGGATGGGTTTGGT AAAGGATATATTAGCGGTGATGTCGCTATTGAAGTTTTTGGGCAGAGTGGTCTCCCGAAGCCTGACCTGGAGCGCGTA TGGACCTTAGCAGATCACGGCAACAAGGGAAAGCTCAACATGGATGAATTCGCGGTTGCCATGCATTTGATTTATCGA AAGCTTAATGGATATCCTCTACCAGCCCAACTACCTCCGGCGCTCATACCCCCTTCCACTCGTAACTTCAATGATTCGA TTGGGGCTGTCAAATCTTTACTTCATCAAGAATCTAATTTCCGCAAGAACTCTGGTGCTACCCTTTTGCCACAAAAGACT GGAGTGAGCTACCTCAAAAATCATTCTTTCCGTGGTGATGCTACCCCAGGTCGCACAGGCCGTAAAGACGCTACAGTA TACAAAAATAACGACGATGATGTTGGGTATAAATCTAGTGCTCGTCGCAGACTCGGGGCCTCTTCTCCACGACCTTCG TCTCCGGGATCAACAACTTCCAACGATGACCTTTCACTAGACCAGCTTAGAAAGAAAATCGCGGAGAGACAAGTGATA CTGGATGCAATTGATTTCAAGGCCGAAAATGCTGCAGATGAAGATGATGCTCTTGATCGTAAAGATCGTCGTGAAGCA GAGGATCTTTATCACCGCATTCGTCGTATTCAAGAGGATATCGATGCGCATCCAGACGCATCGTTGCGTAATGTTGATT CCGGCGCCGAGCGTCGTGCTTTGAAAAGACAGTTGCAGACATTGACAGATAAACTTCCAGATATTGCTTCGCGTGTCC GAAGAACGGAAAGAAGCATTGCTGATGCCAAGCTTGAACTATTCCGTCTAAAGGATGCCAAAGCTCACCCTGGAAGTG CCTCTAGCATTGTTGGAACTGGTCCTGGCGGCGCTATCACCGAATCAGATAGACTCAAAGCAAGAGCCAAGGCTATGA TGCAACAACGTTCTGCTGCTCTCACTGGTAAGAAGATTGAGGCGAGTAATGATGACTTGGATGCGCCAAAACGCCTCG AAGAAGAAAATCTCAAGATTCGAACTGAGAAGGAAAACAACGAGCGCATGGTTCAAGATGTTGAAGAGAGTGTCCGTG ACTTTTCACGAGGACTGGAGGATAGTCTCAAAGATGGTGGTGAGAGCTCGTCCAGTGAGCATGAGAAGAGACGTTGG GAGGATGGGCTAGGTGTTGAGGATGAAGTGAAGGACTTCATCTTCGATTTGCAAAGGAGCAGCAGGAGTGCCAGAGT TCGAACTGATGATCGCAGCAGAGAGACTCCTCGTACTGAAGCGTCTCATGCTAGCCCTGCTCCAGCAGCTCGTAGCG AAACTCCATCGTCACAGCCATCATCTACACCAACCCCTGCTGGAGGTTCATACTCACAATACAAGACTCCTGAAGATAG AGCAGCTTATATCAAGCAACAGGCCGAGAAGCGCATGGCTGAACGTCTAGCTGCTCTTGGTATCAAGGCACCATCTAA ATCTGGAGAAACAACACAACAGAGACTGGAACGTGAAAAGAATGAGCGTGCAGCCAAACTCAGACAAGCAGAAGAGG AAGATGCTAAACGTGAAGCTGAGAGGCAAGCTAGGATCGCTGAAGAGCAGGGTGCACCACCACCTGCCCCCGAGCA ACCAAAGGAAACCGCGAAAAAGCCACCTCCACCCCCTTCAAGGAAGGCCGCAAGAAGTGACGCTAGTGAGCGCAAG GCCGAAGAGGAGAGAATCATTAACGAGCAAAAGGCACAAATTATTGCCACAAATGAGCTAGAGGACGATGCTCAACGA CAAGAGGCCGAGCTTGCAAAGGAACGCGAGGCGGCTCAGGCTCGTGTCAAGGCCTTGGAAGACCAAATGAAGGCCG GGAAATTGAAGAAAGAAGAGGAGAAAAAGAAGAGAAAGGCTCTCCAAGCTGAGACCAAACAACAAGAAGCTCGTCTC GCAGCTCAACGCGCAGAGATTGAAGCCGCACAAGCACGTGAGCGAGAATTGCAACGTCAACTTGAAGCTATTGACGA TTCAGATTCATCTGATGATGACGAAGGTCCTGAGCAAGTTACCCCTCAAGCATCAACGCCCACTCAAGGAAGTCAAGA GCTTGAGCGCAAAGAACCTTCTCCACCACCTCCTCCACCTTCAATTCCAGTTGTTGTATCACCAGTCCCTGCTATTGCA ACAACAACTAGTCTTCCATCACCAACCCCACAAGTTACTAGCCCTGTTGTCAGCCCTCCAGTCGATACAGAGACCCGC AATCCTTTCTTGAAGAAAATGGCCCAATCCGGTGACGCATCTACCGCATCTACTGCATCTAACAATCCATTCCATCGTC TTCCTGCTCAAGAGCTTTCTACACCTGCACCAATTCAAGTTCAACCAACAGGTAACAGGCCATCTCGTGTTCGTCCAGA AGAAGATGATTGGGATGTCGTCGGATCTGACAAAGAGGATGATTCCTCTGACGATGAAGGACCAGGTGCAGGTGGTG CGCGTCATTTGGCATCGATCCTTTTCGGAACCATGGCACCTCCTCGCCCATTGTCATCCATGGGTAACGAAGCTACAT CTGCGCCTGAATCTCCTGCTGTAGCATCTCCACCAGCGGCAACCCCCCCACCTCCACCAGTACCTAACTTCAATGCAC CGCCACCTCCTCCAATGCCATCAGCCGGTGCGCCAGGTGGTCCTCCACCACCACCTCCTCCTCCACCAGGGATGGG TGCTCCACCTCCACCACCAATGCCACCAATGGGAGGCGCTCCTGCTCCACCAGCAGGTGTACGACCAGCTGGTCTCT TGGGTGAAATCCAGATGGGGCGATCGTTGAAAAAGACACAAACTAAAGACAAGAGTTCAGCTGCTGTTGCTGGAAGG GTTTTGGATTAAATACCTTTCAAATCATTGAGAAGAGACAAGATGAAATGGAGGTTTGTGGTTAGCGAGCCTAAGAACA TGGATTGTATTATAAATTACTTTTGGTTCATAGTATTGGGCAAGGGGGCTTAGGTGTGGAAGGTGCGAAACAGGAAAG ATAAGAGACGAGCATAATTTGTAGTCGAAGTAGCAATTTGAAAATATTCGTTCGTTTTGATAGTCATTTGATGCACTTAT CACCA BC1G_04258 SEQ ID NO: 56 GATATTGTACACGAGCCTCTTCCTGCATTGATTGATTGATTGCTCTTACACATATCCAGTTCATCTCCCACAAAATACCA AGCGGCCGCATTTGGATGCAACATACATACTCACTACCTTCCACTTCACCTACCTACCTACTGACTTAATATACCTTCTT GTCATCTTTGATGGCACTGAATAAAGTACCTTCCTATTAAAACTACCTCAACCAGTCCAGTCATTACTACCCACCTTACA TCTCGAGAAGCCTCCTTCCTCGATATACATTCTTCTCTTATATTAATGCAAAGATGTCGGAGCACGAACATCAAAAACAT CTTTCCGATTCTGAAGAAGATTCCATAATGGAAGAGAGAGAGGAGAAAAAGGGAAAAGACGAGATAGAGGAGAAAGA CAAAAAAGACGAGAAAGACGAGATAGAGGAGAAAGAGGAGAAAGAGGAGAAGGAGAAAGACAAAAAAGACGAGGAA GAGAGAGAGGAGAGAGAGGAGAGAGAAGAGAGAGAAGAGAGAGAGGATACAGTTGATCAGAGTTCTGATCATGAGA GTGACACCTTCGAGGATGCCAATGATGTTGAAGACATTGCAGACACTCTTACCTCCCCAGTTGAAAGGACAAGATCTTT AACGAAACGAAGATCATCATCCATTAAGAGCAATACACAAGACCTCAGTACCGATATCCCATCGGTCCCAACAGTACCA CTTCCAGAAACGAATGGCGAAACGAATGACGAACAAATAGAATCCGATAATCCACTACCTAAATCTCCCCTTTTAACAT CTCATCGCATGTCCACTACATCCCTACATAATGTGAATCTCGAAGACGGTGATGATTTTGGATCACCTCCACCACCTCC TCCCGTTTCGAAAGTAGCACCAGAAGATCAACCACCCGAATTACCTCCAAAGCCCAATACAATAATTCCAATGCAGGG CCTTTCTGGAGCCCTTCCAGATGTGCCATTCTCACCGCCCCCTCCTCCTCCTCCCGCTCCTCCCGCTCCTGCAAACCT CGCTGCGCCAGCACCTGTCACCAGAAAATTAACCAGCCCATTCTCATGGCTGTCGAGAAATACCTCGGCTCCAAAAGA GAACGTCAAGTCACCGCCATTACCTTCATCTCACGCAACCGAGCGTAGACATACCGCTTCTTCGATAGCGACCATTAG CAGCAATCCTGAAATGATGGTAAACAAATTGGAGGAGGGTAATGATACAGATGCCGCGAATGGAGTTAGACGACCTG GGAGGAATAGTTTACGGGACAGGTTTAAGCTCGTGAGAATGCGAGAAGAGGCTGGAATAACAGAATTGCCTGAAGAA AAGGATGAAGCAGGCAACACAGCATTTGGGGGTCTCATTAGGCAGAGTACAAGTCTTGGTTTGGGATTTACCGCCTCA AATGATGACAAAGACCCTTCTCCCGTATCTCCTGGTCCGCCTACGAGTCCCAACCCAATTAGTGTCAACCCTGCATTA GCCCCCGGTACGGCATCTGGAGTTTCTGCAGGCCCTTCTGCATTGGGTGAATCAGAAGCACCAGTCGATTGGGATTT GTGGCAAAATGTCGTCTGGGAAGGACCAGCTGCGGTAGCAAGAACAAGTGCAGAAGAGCTGAATCACGCTATTGCAA CTGGTATACCACATGCTATCAGAGGCGTGGTATGGCAAGTATTGGCGGAGAGTAAGAATGAAGAGCTCGAGGTTGTC TATCGGAATTTGGTCAATCGGGGCACAGACAAGGACAAGGACAGGATGAGTACATCTAGTGGGACACAAAGCAATGG ATCAATCAAGGAGATTGTGGTTTCATCAGCATCATCAATACATTCAGAGAAATCTACACCCGCTACGACAATCACCAAT GGAATGAGATCTCCTTCTCCCCCTAGTGAAAAGGATGTAGCCCAGTCTTTGGCTGAAAAGATGAAAGCTAAGGAG GATGCGGCGGCATTGACAAAACTCGAGAGAGCCATAAAGCGGGACTTGGGTGCTCGAACAAGTTATTCAAAATTCGCT GCAAGTGCTGGACTACAAGATGGATTATTCGGTTTATGCAAAGCATATGCTCTTTATGATGAAGGTGTTGGTTATGCAC AAGGCATGAATTTCTTAGTTATGCCTTTGCTTTTCAACATGCCCGAAGAAGAAGCATTCTGTCTATTAGTACGACTTATG AATCAGTATCACCTTCGAGATCTTTTTATTCAGGATATGCCAGGTCTACATAAACATCTTTATCAGTTTGAGAGATTATTA GAAGATTTTGAACCAGCATTGTATTGTCATCTCCATCGACGTCAGGTCACACCTCACTTATATGCTACGCAATGGTTCC TAACTCTTTTCGCCTATCGATTTCCATTACAGCTTGTGCTTCGAATTTACGATCTCATTTTAAGCGAGGGTCTCGAGGCT ATTCTCAAATTTGGAATTGTACTCATGCAAAAGAATGCAGCTCATCTACTCACCCTCCATGATATGGCTGCATTGACTAC GTTCCTGAAAGATCGACTTTTCGATGTTTACATTGATGCTTCACCTTCAGCAGGATCAATTCTAGAATCTGGTTTCTTTG GAAATTCAGGAGCGACTATCGATAAGGAAGTTTATCGAGCAGATCATATGATTCAAGATGCTTGTGCCGTCAAAATTAC ACCCAAAATGCTGGAAACTTACGCATTAGAATGGGAGGAAAAGACCAAGATAGAAAAGGATCGTGAAGCAGAATTAGA ACACTTGAAATCAACAAATGTCGCCCTTACACACAAAGTTCGACGTCTGGAAGAAAGAGTCGAATCTCACGATACGGA GCACGCAGCTTTGGCAACTGAACTTGTTCGGACTAAGGTCGAAAATCAAGAGATTCATGAAGAAACAGAAGTTCTTAAA GAACAAGTTAAAGAACTGAAAAAAGTAATTGATAAGCTACCGGAAGAAATTGAAGCGAAATTACAGAGTGAGATGGATA GATTGATGAAGAGAAATCAAGAAGTTCATGAAGAAAATCAAAAATTGGAGGATGAAATGAATGAAATGGAACAAAACTT GGTGGAAACAAAAATGAAATATGCTGAGATGAATGCGGCCCATGAAGCTCTAACTCGTAAATGGACGGATTTGAGAAA AGCTTTGGGTGATTAATATCGTTACTTTGAGATATCCTAAATTATTAAATACGACTTGTACAGTTCTTCTCAATTGATACC GATGCCTTTGAAGTTTTTGGGGGGTAGGGGAGAGAGGCGTAAATGCCTATATTGGGGAACGAAGGAACAATGCTCTC GTTTGGAAGCTTGCTGGATTTCTTGCTAGGTGGAGGGGATGATTGGGAATCAATCAGATTATACAGGTACTGCTGCAT TGGTACGCAAATGGTATAGGAATTGGCGTGGGTTGTAAAAGTACCGGAGAAATACTTTGGGTGCTTGCTTGTCTTGTTT CTCTCTCTTTTTTTTAGTCGTTTTAGCGAGTTGTGATGTTGGTAGGAAAGAAATTAAGAAATTATGGACGGGTAGGGGG AGTGGAGAGAGGAAGGGAGGGGGTGAAAGAGGGTGGGGGGAGGGGAAGAAATAAAAATTAAGAATAAATGATCA BC1G_03372 SEQ ID NO: 57 GAAGCTTTAAAACATACGATTATTTGATCCTGTTTGAACACGTTTTCTTGAAATTTCAAGCTTGAATGAAACACAACACCA AGTCTATCGGCCAAAGGACCCCTTTGAGATTGCATTGAGCGTTGTCCCATCTCAAGATTTAACAACTGTTATTCACGAA ATCATGCCTCCACCACCACCACCTCCTCCTCCGCCGCCTCCTCCGCCTGGAGGAGCTCCAGGAGGTATGCCATCCAG ACCACCTGCGAAAGTTGCTGCAAATAGAGGCGCACTTTTGTCGGATATCACGAAGGGAAGAGCACTCAAGAAAGCTGT AACTAACGATCGATCGGCACCGGTAGTAGGCAAAGTATCTAATGGTTCTGGACCTGCGCCAATAGGAGGTGCTCCTC CAGTACCGGGAATGGCAAAACCTCCCGGTGGATTTGGCGCACCGCCAGTACCAGGAGGAAATAGAGCTCGAAGTGAT AGTAACCAAGGGAGCAATAATGCGGTTTCGGGGATGGAACAAGCTCCACAGTTAGGAGGAATATTCGCAGGCGGCAT GCCCAAGTTGAAGAAACGAGGTGGAGGAGTAGATACTGGCGCAAACCGCGACTCATCGACTGCATCGGAACCAGAAT TCTCTGCTCCCAGACCGCCAGGTATGGCTGCTCCCAGACCTCCAACAAATGCAGCTCCGCCTTTGCCATCAGTCCGG CCTCCTCCTCAACCTAGCGCTAGTACTCCCGCATTTGCGCCCTCGGTTGCAAATCTGAGAAAGACCGGCGGGCCATC TATTTCTCGTCCTGCATCCTCAACCTCTCTCAAGGGGCCACCACCCCCTATTGGCAAAAAACCTCCTCCACCCCCTGG AACTCGAAAGCCATCATCAGCGCTATCAACCCCACCACCACCACCGCCTCCAGCATTCGCCCCTCCACCTCCTTCTTC AGCACCTCCGCCACCTGTTGCACCTCCACCACCACCTTCCCCAGCTCCACGCCCTCCGAGTAACCCACCTCGATCAC ATGCACCACCGCCACCACCACCACCACCACCACCAACATCTCCACCTTCGACTAACGGAGGTAACCCAAGTCTTGCTA TACAAGCAACAATTCGTGCTGCTGGCCAAGCATCACCAATGGGTGCACCACCACCACCACCACCGCCTCCTCCTCCAT CTAATGGGCCTCCCTCTCTCTCGTCGCACAGAACGCCATCTCCGCCCGCGGCACCCCCAGCGGCACCCCCAGCGGC ACCAATATCAAGAAGTCAAAGTCAACAAGGAAGAACTCACACAATGGATTCCAGTTCTTATACCCTTTCATCAAACGGC AGTTTACCGCAAGCCTCTAGTTCTAGCAGAAGAATCATGATCAATGATCCTCGATGGAAATTTACAGATGAATCGGTAT TCCCAAAACCTCGAGATTTTATTGGTGGGCCCAAAAAATACCGGGCTGGTCGTGGAAGTAGTGTTCCGTTGGATCTGA GTGCTTACCATTAAGAATTTCGCTTACCAAAAAGAATATAACTCTTCGGATCGTATTCATGTGTTACCATTATGATTTAAG GCGTTATAGCGGGATATCATTTAGAATCCGGTAAGGCGGCATCAAGCTATCTGAATTGGGAGTTATACATCAGGACAC TAAAGATCGTCAAAAAATTTCCCCTGAATCGCGAGATGGAGATTGACGAGAGACATCAGCTCACTACCCAGGGTACCG AGGAGGAAATCGCAGCTATAAATATCACGGGTGATGGGCAAATTCCACAGTGGAACCTTAAAAGAATGAGTACGGAGA ATATTAAACTTTTGAGATTTATCTTTCTCTTCCTGTGATTTTAACCA BC1G_14667 SEQ ID NO: 58 GGTAAGATTAATTGTAAGGCAACTCTCTAATATTATTTCTTGAACGTCAATCGTCCCAAGTGTTCATCTTTAAGTTTATTT CGTTCGTTTTACCATTTGTTTAATTTTTTCAATGCCAGTTAATCTTCAACCTTCTGTTGGTACTTCTGGTAGTCTCAGGAA AGAAAATTCAAGAGGAGAGGGCACGAGAAGGATGCCGACCAATTCGCGACCTCCCCTATCGCATCGGATACGGGCAT CATTTGAAGGAAGGAAATCTCATGATTCTACCAGTCCTAAACATGCGAGCTTCTCCGGTAGCAGTCCAACAGATCCGG AACTCCTCCGACGGATAATCGATGAAGCTATCTCTGGAGAGGTCTTCCAGGCTGGACTTGCTTCACATATAGCCAAATT GCTCAAGCCCGAGATCAAAACGGCTTTAGATACAATTGAGCCAGTTGTCAATGCAGTTCTACAACATGAGCTACTCTTG AAGAGAACCAACAACAGCGTGGATCATGTTTTATTGAAGTTGGAGTCAATGGCAGATGACGAGGGAGCAATGACTCCA GGCCAAGCACGACTTAGTTTTCACGGCGCCCTGACTTCACACCCGATAGCAGAAGAAGGGTCACTGCCAATATCAGA GAATTCGGTCTCTGGAACTGGTACACCTGTTTCCGTTTCCAATCAGGAATCAAGACCCCTCTTCAACCGAGGCCTCAC ATACACAGCCGGAAAATTAAATGAAATATCGGACTCTTTGGACTTGAATAACCATAAACTAGGGAAGGTGGTCGAAGGA ATAGCGGAAATAAATAATCTATTGACATCGAACGAACGCTTGGATAGTTTGAAGGAAAGCTCAGACAAGAATGATACCA AGACTTCGGTAATACAAACGCAAATAGATCAACTGCAGGAGAATGTTAGGGTAGTCATTACTCGAATTGGTCCGGATCT AGGAATAAATGTAAAGGCTATCAATGATCATCTGACTGGAGAAACGACGATTCAAGAGACGAGGGCGGTGGCTTCCAA TGGCAGTGGGGGTGATGTTGAGCTTCTTCAAGCCATATCTTCCAAATTAGAAGCCTTGAAGGATAGCTTGGAGACAGG AACTTCGTCACATAATGATAACTTGGGACTATTGAAGGAACAAATCAATGCTCTACAGTCAACACTCGACGCGCAGAAA GAGATATTAGGGGAGATTAAGGAAGCTGATAATAGCACTGAAGTTTTGGCTGGTATACACAAATCAAACGAGTCACATG AAGCGCATGCCACAATTTTGGGCGAGCTCAAAGAGAGAAGTACAACACTTGCGGATTTATCAACTCAACCGGCTCCCA CATCAGCAGACGCGGAAACACTCCAAACAATCTTGATAGAAGTACAGAAATCCAACGAGGCACATGAGAAACATACAG CTGCGCTCGAGAGTTTGAAGGAATCGGATACAAATGCAGTCATATTAGCGGAAGTTCAAAAGTCGAACGACTTGCATC TTTCGCATGCATCTGCTCTAGAAAGTCTCAAAAGTTCCACTCCACCACTAGAACAAACCACCGCAATCGATCTAGGAAG TTTCGAAACTAAGATGGGCAGCTTAATAGAAACAAGCACAGCAATTCTTACGGAAGTTCAAAAATCAAACGAGTCACAT GTTTCACACGCAGCTGCATTGGAAAATATCAAGGCCCTACCAACTCCACCTTCTGAAACTGAAACTGCAAGTGCAAGT GTTGATTTGGGAGGCTTGGAGAAGGATATGGGAACTATTATTGAAAAGTTGGACTTGCACGCTGCTGTTCTAGAAGAA ATCAAGACAAAGGATACTCCCGGAGCCGGAGTGATTGATGCTACTGCCTTTGATGGCCATTTTGGTTCCATTAATACTC TCTTGGAAAGACACACAGCGGCATTGGATGAGATTAAATCGATAGATGCAGGAGGTAGTACGGATTTTAGTCCAATAA CTGCCTTGTTAGAAGCTCACAGCGCAACATTGGAGGATATCAAATCGAGAGATTTAAAACCTGCTGATTTTGGTCCAAT CGTATCGATGCTTGAAGCACATACTGTGGCTTTGGAAGAAATCAAGTCGAAAGATCCGGGATGTAATCCAGATTTCAGT CCAATAAGTGCCTTGTTGGAAGCTCATACTGCAACCTTAGATGAAATCAAGGCCAAGGAAACTACAAACAGTATTGATT TAAGTCCAATAACTGCATTGCTAGACGCTCATACTGCCAGCTTGGATGAAATCAAATCGAAAGATATGACAGCTGCTGA TTTCAGCCCAATAACTGCATTGTTGGAAGCTCATACTACAACCTTGGAGGATATCAAGGCCAAGGACAGTGCAAACAA CGTTGATTTAAGTCCAATTACTTCGACTCTGGATTCTCACCGTGCAGTTTTAGATGAGATTGTATCAAAGGATGTCCAAT CTAGTGGTGTACCTGCGACAATCAACATGGATGCCTTCGATACACATTTCGGTTCAATCACAGGTATACTAGCAGCACA CACAGCCGCATTGGACGAGATCAAGTCCAAAGATAGTCCTTCCAATGCTTCGCTGCCTGCAGAAAATACCATTGAAAT CCTCGACAAACATTTTGGTTCTATCATTAACATGTTGGAAGCACACACTGCAGCACTGGAAGAAATTAAGGCAAAGGAT TGCACGGCGACTACAGGACAAACGGAGTTGAACACAGCAGCATTTGATGATCACTTTAGTTCTCTGGCACGCATGCTA GATTCACACACAGAAGCTTTGGATGAAATCAAATCAAAGAACAATGATTCCACTCCGCCTACAATATCAAGAGATAATAT TGGCCTCGAATCATTCGAACCACATGTTACGGCGATTAAGAGTGCACTCGATGCTCATATGGTTGTGCTGCAAGACAT AAAGTCCGAGGCCCTTGCCAAAAATGATATGGATGCAATGGTGGTAGACAATTTGCTGGAACCACACATCATAGCTAT CAAAAATACATTGAATGCACACACAGAAACTCTGGAAGAACTTAAATCCAAAATTCCTACTAACACCACAAATTCATTCG AAATTGCCAACGATGCTTTACCTAGGATCTTGGATACCCTTAATAGCCACACCGATCTACTCACAGAAATCAAGAATTC AGATGTTAGTGACGAGATTTTGACAGCATTGCATGAGCTGCAGGAAGGCAATTCTTCAGCTTTCAATACCCTCAAGGAA TCAGATGTCAGTGATGAGATACTTACTGCGTTGCATACATGCAATGATTCACAAGAAAAGCTGGATAGATCACTACTTG AACTCCAAACAGTAGTGAATAACTCTATTTCCTCCGAACAGAATAGGAACAAGTCCATTGATACTGCTGAAGTAGTCCA AGCACCGATTGCTGCTGTAGATTTGAGTGGATTGGAGACTCAGATTAGTGCCATTATTGCAACTCTCGAAGGCCAAAAT GTGGTTTTAGGTGAGATCAAGGATACTACTAATGCTGGAATGGAAGCACATGGCTTGCATATCACGACTCTAGGTGAG ATCAAGGATGCCACTAGTGCCTCAAATGATTCTCACGCAGCCCATGTGGCAGCTCTTGGAGAAATCAGAGATGCAGCT AATGCTTCAAACGAATCCCATGACGCCCATACTTCTACACTAGGAGTCATCAGAGATGCAGCAGCCTCCTTGAGTACT GCACATGCCGCCCAAATTGCTGCTTTGATTGAATTGAAGCAAGCAATAAACGCCTCTAATGAATCTCACAATACTCACA CCAGTACCTTAGCAACGATACGAGATGCAGCAGTCAGCTCGAATGACGCAATTCTCTCTCACACGACTACTCTTAGTG AGCTCAAAGAAGCAATCAATGCATCGAATGACTCTCACACTTCTCACGCCGCCGCTTTGACAGATCTGAAATCCATTCA TCCAACACAGTCACCGCCAGATGATACGTCTGAGTCGACATCACCACCATTCCTTGATACAAGTGCACTAGACACCCA GCTCACAACTATCATTACAACGCTTGAATCTCAAAATTCTACTCTGGGAGAGATGAAAGGTGCTCATGAATCTCACACA ACAACTTTGAATGAAATCAAGGACGCAACAGCAGCATCAAACGTGTCACATACTTCACACACGACAATTTTGAGCGAAA TCAAAGAAACAATTGCTCCTATTCGTGGCATCAATGAGGTCATAAGCACACACACAGGTCTATTGGAAGGTCTGAAAGA AGACACTGGATCACAACATAATGAGGTGAGAAGTGATATCGATGGTTTAAGGAACCTTGTAGACGAAAATTCCAATAAA CACGAGGAAAGTCTGTCAAAATTTGGGGATTTAATCAGGGAGCATGGCGACTTGGTTAAAGACAGCCATGATGGGTTG AAGGGAACGATCGCCGGACTTGCTTTGGGTGGAATTGCCGGAGCGGGGATCATGAAAGCTGTGGATGATGGGGAAG ATAACGATGGCGAGGTAAGTGATGTAGTAGAGCGGGATGTGAAAGTGCCGGAAGCTCCAGTCGAAGAAGACAAGGTT ATTGAGGAAGAATCACCAGCATTGGAGCCCGAAGCACCTGCGGTGGAAGATCCAGCTCCAGAGTCTACAGAACAAAC TCCGGAACTTCCAGTCGAAGAACAAGTTCTGCCTGAACCAGAAGCACAGTTAGAGCCCGAAGTGTCTATGGAAGAAGA GAAGACCGCCAGTGAGGAAACGCTAGTAGAGCCAGAGCTAGAACCGAAAGTTATCTTGCCAGATCCTGAGGAGACGG TCGACGTCAACGAAGATTCGGACCCTGCACCAGTAGACCAGGAACCGGGGCCAGAAGCTATTGACAAGGAATTTCCA GCCGAGGAGCCGACACCAATCGAAACGGAGGCTCCAACGCAGGAGGCTGTCGTTGAAGAGCTGATTCCAACAGAGG AAAAGCCGGAACCAGCTACCTTGGAAACCACGGAAGAAACACCAGCTATCGAATCCCAATATACTGAAAAAGATCTCC CTGGCGAAGAAACAATCCCTCAAGGGGAAGCTGAGCCCATAGCAACCCCCGAAGATTCCTCTGAACCAAACCAAGGA ATTGAAGTTCCAGCAAGTATTGAAAATCGGGAGCCCGAAGCTCTTGAGAAGGAACAAGAAATTGAAGTTACCACGCCA AATTCGGTTGAACAATCGGATTTGGTCCAAGATACTACCGAAGAGGAAGCGCCTCAAATACAAGAAATAGAAGGAGAA CCAATACCTGGAGAGGACGATGTCACAGAACTGTCTAAGGACGAATTGGATCCCGAAAGAGAGCTTGCCGTTGAGGA GATACCTGGTGAGGAAGAGGCTGTTGCGATGGAAGGGTCTGAGGAGGAAGCAGTTGATGAGGGCGAGAGAGCTAAA GTACAGGAAATTGAAGATCTAGGCGATGATGATTTGAAATCCACTGAAGAAATAGTGCCGGATGCTGTGGAGGAAGAG AAATCAACAGAAGACATAGCTCCAGAAAATGTAGTCGAGTATGTGAACCCAAGCGAGGAAGCTCTACAGGCCGGAGA AGATAAACCTGTCGATGAACCAATTTCACAGGAGTCAGATGTGAATTTGACTACCGACTTACAACATACACTTCCTGCA GACGAAGAAGAAAAGCTGCCCGAAATCAAGGAATCTAATGAGCCAAGTTTGGAGGAAACAAACATCGAAAATGCTAGC CCAGAGGTTTTGATAGACAAACCGACGGACTTGGAGGCGACTCCACCTTTGGAAATAAACGAACCTGTTCCGGAGACT GAGCCAGCCAACGTATCTGGTTTTGCAGATCCGTCAGTGGAAACCGAAGAAATACCCATTGTTCCAGATCACGATGTC GATAGTCATACTCAAGTACCCGAAGCAAGCGGTGAAGTTTCCGCGGATGACTTAGAAATTCCTACAGATTCTGAAGTC ATTGAGCCGTTCAATGAAGAGCAAAAAGTTGATGAAGAAACCGAGAATGAACGACTGGCTGAACATCCGATCGATCCC CAAGAAACAAATCTGAAAAATGAGGATCGAGAGCCTAACAATGAGGATATTCCTATCGAGAACGCGGAGAGTGTTGCT GAACCATCGAAAGAGGATAAGTCTTCAGAATCAGTTGCGGAGATCGAGACACCGCACTTGGATTCAAACGATCAAAAT GAAGGTTCTGCCGAGGTAGATACAAAGGATTTGGAAACAGAAGCTTTGTATCCCAGCAAGGAAGAGACACCAGACCA GACAGAGGAAGCTGTAGAGCTCTCTAATGATCAAAGTAATCCCAGCCCTATTTTTGAAACCGATGTACCCGTTTCGGA GATAGACGACCAAGATGAAAAGCCTGTTGAAGTTGAGGCGAGGGATTTGGAAATGGAAGATGGGGAACATCACAGCG ATGAGGTACCTGAAAAATCTGCGGAGAAACCCTCACAAACCTTACAGGAAGAAAGCGATTCTGAACCGGTTGTCGAAA CCGAGACATATGTTCCTGAATCAAACTCTCATGATCAAAATCCAATTGAAAGCGAAGAGAAACTAGCGGAACTTCCTGT TAATCAACTTGTCACTGAGGAGATCTCTAGCGAGCCCAGAGAAGACTCTGAGACCTTACAAGGGAAAAACATTTCACA ATCACCTGTCGAAACTGAGGAACATATTCCCGAGTTGAACACTTACGTCGAACCTTCAGTTGAGAACGAGCAACCCCC TAAGGAGCCTGAGGACAGCGAATTTGTTGTCAAGGAACCTGAAAACTTCGAAGACTTGACCCGATCTGTCGAAAATGA AGAAGAGACTTTCGAACCAGAAAACCAGGTATCTAGGAGTGAGAACACACCACTCGAAACCGAACAAACGGTTCCTCG AGAAAAGACTCCAGTTTTAAATGCTGAATCCGAGATACCGGCGTTTGAGTCAGATGATCAAATGCAAATCCCTGCTGAG AATGAAGAGAAGTCTATGGAACCCGCTCTTAGTGAGCCAGAAGCCGCAGGTTTGGAAATTACAGAGCCACAAGTGAAT AATGAAGCTCAGATCACTGAAACATCGCCGCAAGATACTGTTGAGGAGCCGGTGGTTGAGAATCAAATTCCTGTTGTT CCAGAATTGAGCAATGAGACTAGAGGGGTCACCGAAGATCATGAAACTCTTGAAACAGCAGAGCAACAAGCTGTCGA GGTACCTGTCGAAAAATCAGTCATTGAGAGCCAACTTGAACTCTCCAACGAAGATAAAAGTATTGAGGACAATGCATCA ACAGAAAATACCCCCGAGCCAGATGTCGTGGACAAACATATTTCTGATGGGTTTGGATCAAGCGAAGAAGGACAAATC GTAACCGACCATGGAGACGAACCTCTATCAAATGAGAAAGAGATTCTTGATAATTATCAAGAAGAATCGGTTCCTGAAA ACGGATCAACTTCTGAGAGTGTAATTCATGAATATTCCAGAGATATCAGAGATGCAGACCAACCAATGGAAATTGATGA ACAGGTTGCGGATACAAGCGGTCAAGATTCAAATCCTCAAAGCCAACCAACATCAGAGGTAGCCATCTATGAAGATCC TGAAGATATCAAAGCCCGTGAGGAAATTGCTGCTTTGAACGCGGAGATGGCTAAAATATTAGCTGAAGCTGAGGAGGA GGAAAGGAGAAATGTTCCGGTAGAGACGGAAACAATTTCCGAGGATGAACCTATGGAGCCGGAGGTCGAATATCATG TCGAAGAACCTATTGATGTCTCGGATACACAGCCACTGGTCGAAAGCCACGAAATCCCCGAAGACCGAACTGAGAATG AGCATGCGCAGGAAGAAGTGACTGAACCGGAAGAAGAGCAGAAGTTTGCTGTTACTGATGAGGAGCGCTCAAACGAC ACTAGCACAGAAGAACCTCTGGAAAGCCATGTTGTGTCCTCTACCGATTCTGAAGAGCATATCATGCCCATATTACCAG AAACCAACGCCATCGAGTCTACCAATATTTTACCTGCAGATAAATTGCATCACGTCGAGGATACTATTCCGGTCAACTA CGAGGATCTTAACGAGAGCCAAAATCAGATTACAGAGGATGGAAATATAGATGAAAAGCCTTCCGTGTTCTCTTCCGAA GATGAGAATAGATCTTGGAATACCGTCCATAGCCGAGCAACCTGAGATGGAAGTTGTGAGCAATGAAAGTGCACCT ATGCAAGATAAAGCTTTATCTAGAGAAGAAGTAAAAATTCCGGACATGGAATTGCTACCCTCTGAATCTCACATGGAGC CCGAGACGGAAAACCTTGAGGGCGCACACTTAGGTGACCATGTTGTACTTCCTTTGGACAGCGAGGAAGACAAATCTT TGTCTATCCAAACTGAATTTGAATCAGATCCTAGGGAGATAGCACCAGAGGGACAAAATCTGGAGGGAGAAATCAATC CTGAACAATCTTTCGTAGAATCCGAACAGGAAAATCCAAAAGATGAAATGACATTCGAAGATTACCCTGTCGAAGAAAG TTCGATTCCGAAGTTGGATTCCATTAAGGAAAGCACAGAGGATCCAGAAAGTGGAAACGAGGAAATAGAGAATGGCAG TCCTTCAGTAGAGCATCTCGAGGTTGTAGAAACAGAGCCAAGTCCTGAGGAGCACCTAAAAGAGCTCGAATCCATAGA TGACGGAGATTTCTACCCCGTAGAGCCTGAAACTGACCGAGAAGATTTCGAAGACCACAAAGAATTAGAAGCTAATAC TGTGGTTCCTGGAAGTCTTGAATTCGAAACGATCGACAATAGCGAGCCGGATGAAGTACATGATATTTCCGATGGAAG ATTGCAAGAATTAGAGCATGCAGCGGAAGCTCAATCAACTACGTCTAATCACGGAGAAGCTGCAGATACCGAAGAAAA TTATCATGACAGCGAGCCGAGTCAAGAAGAAATCGCTTCCGAGATTCCTCTCCCAGGCCCATCAGTTCAAGAAGGGCA ATCTATCCTAGAGGAAGAGAAAAATCCTGCTATTAAACAACTTCCAGCCCAAAATGACATGGAACCCGAAAGCCATCAA ATGTCTGATGATGTCTTTCCAGTCAATAATGAAGGTGTCAATAACAGCTTCCATGTTCCAGATGAAGATGAGCTAGAGT TGACGGACGAGCCAAACTCTAGAGAAGTTCCAGTTTCGTTTGACACCAAGCACACAACAGAGAATATTGTTCCTTCCG GAGTCACAGATAACTTAAAACTCAAGGATACCGAATCAATCTATTCCCAAGAAAATGAGCCAATGATCGCAACAGGGCA CTACAGACAAGAGAGAGAAGAGTTTTCTGACCCGACAGCCACAGGTCAACATGTGGCTGCCGAGCAAGTAGAACCGG AACAAGAGTTAGAAGCTAGACACTTTGTTCCCGAAACTACCCCAACTCACGAGACCCAGCTCAGTCAGCCAGAAACTT CAGCGGAGCAAAGGTACACAGGTTATGGCTACGACTATGAAGAGCCTACTCTAAATACACAAACTTACTCCGACTCGG AAGATGATATCGAGCCAATTCAGTCGGAACAAACGAGTTCTCGCTATGAATCAAGGGGCTCTTACCCCTACCAAGGAA CCAGCTTTAGTAGATCTATACCACAACCAAGATATTCAAGCTATGAAGAGCCCCCTCACGATTCACGAACTTTCTTCAA CGACCAAGATGACAACCAGTATTTGAGACCAATGCCTACATACTCTAGCTCAAGCTATTCTCAAGAATACCTCTCAGAG TCCCATCCGACTCAAGAAATCCACTATAACGAGTCTGAGCCTCAACCGAATCAACCGAGAACGCCAACGGACCAAACA ACCCATGAGGATACCATCCCACCCACTCCTCCAACAGCTTTAACTACGAAGATGTCTACAGAAACATTCCCTACATATG ACGAGTCCCGATCGGTTTCCCAGGGTCTAAATCTTGGCTTACCGATAAGAGGAGCAGAACGAGTTGGAACAATTCGC GAAAGTCCTGAGCCTACATATCCTTTATACAATGAGCCAATGCGATCTCCCGCACAATCACGACTACCAATCACGAGC CAGAGATCATCGGATAGTATGCGTAGGAGCCATAGTCCTGAATTGAGAAAACAGAGCAGTTATTCTAGATATGCACAT GATGAGCCTGGATTAGGAAAATCTTTGGGATCTTCACAAGGGTTCAATTTTGGTCTTTCACCGACGAAAATTCCAGGTT CTATTGGAAGGTCCAGCAGGATACCTGAGGTCGGAAATGAGTATGGTTATTCAAAGACTACATATGAGGAGCCAGTGC GTTCTTTAGGGACTTCGCAAGGATCTAGATTCAGTCTACAGAGTACGCATTCAGGTAGAGAGCCTTTTGAGGAAATTCC AGAACCAGGTAATGGAAAGAGGAGTAGTAATGTGAAAAATCTGTTGAGTCGATTCGAAAGTGGTGAATCCTCATCTTCA ACGCCTCCGCAACAAGAGCGTTTCAGTATCCCGACATATCAAGACCGTTTCGGCACTTCTCTTCCTCGACCTGCTGAT AACAGATCGGTCGGGAAACAGCCTCAATACTTGCAAGAAAGCCAACTCGAAGCTGTGATGCCGCTTGATCATGGTAGA TTTGATCTCATGAGTGAGGAAAGTAGTCCGGTGCAAACTCCTCTTGAAGAGAGGGAACTTCAGTTTGAGAGTGAAGGA AGTAGCGCAGTGCAAACGCCTTTGGAAGGGGAATTTGATTTGGATGGGAGTACAGGTGGGAATGTAAATACAGGAGT ACCGAAGAAGAGGAGAAGTAAGAGGGGGAAGAAGAAGGGTAATGGTGGGGGAGGTATTGGTCAGGCTTGAGGGGC AGGAGAAGTAGGATCGAAAAGTTTGAGATGTGGTTAGGGTGGAAATGTGAGTCGGATGACTGATGGAGAATGAAGAA TGATTGATGTTTGATGGTAATGAAAAAGTTGGATAAATATTGGGATTCGCATGAGTTTTTAATAATTTTTGGGGTTTGTTT TTATAAGTAGCGGGTATGCAACTGGGCAGGAGTTTTGATATAATGCTCATAGAGATACTATTAATAGTCCAATTTATATT TTCA BC1G_14204 SEQ ID NO: 59 ATGGACATTCCTATGCGTGGCCAAAAGCCGAGCTTCAGCACACCCTTACCAGAAATCCACGTACAAGACTCACACCAC CCCGATCGATATACCGATAGATACTCAGATCAACACAAATACCATTCTTCCAACTCTTCAAGGGCTGCGCCTGGACCAA TGTCTATACCTCACGCGAGAGAGTCTCCTCCTCCTCCTCTACCACCACCTAAATACGTTCCCGATACAGATAACGGGG GAGATCTTGGGTGGCATTTCGCAAATCAAAACCGGGAACCCGATTGGGCAAGAAATATCCCATCGGTTCCCGCCGGC TCGAGTTTGTATGGGAGCTACAGTCGCAGTAGCATATCAGATGAGCGACCGGACATTGGACGTCGAGGAAGCTCCAA CGCCACTATCACTGTTCATCCGTCGAAAGATGCGAGCAGCCATGCAATTGCACTGCCAAAAGACGAAGGCTATTCGAG CCTTTCTGCTTCCAACGCAAGCATTGGGTCGACACAGTGA BC1G_10316 SEQ ID NO: 60 GCTCATTGATTCTCCATCTTCTACGCTCCTACCTACCCCAAAAACTCTTTCAAACCCCCCCATAACGAGTTACAATGGA CCCATATCAGAATCAAGGTTACGGCGGTAACCAGGGCTGGACTGGTGGTGCATGGAACCCTGCCCAACATGGGTACA ATCCAAACAACAACTGGCCACCACAACCTCCACAGCCCCCACAGCAACTACTCCCTCCTCCTCCTCAGTACAATACGC AAGTTGCTTCTTCTCTTTTCTGCTGCGAGAACTGCCAGCGTGTTGCTGCTCCAACTCAGCCAAGCGTTCATGCATATAC CACTCGTTTGGCGTTTTTTACGGCACACATCTTGCATCCCACTGTGGCTTCCTACACCCAGGTACCTAACCGCAATCAA CACCCGAATTGCTTTGCTAGTGATGTACCTCAATCTCAAACAATTGCCCCTACTGGGGGTCATGGGGGTCATGGGGGT CATGGTCAAGGTACCAATGCCCAGCAGATTGCACAGCAAGTCATCCAGCAGCAAGGTGGCCAGCAACAGCATGGTTT CATGCAACAAGCTCCAACCGGACCTGCTGCAGGTGCTGGTACTCATTACACTGCTGTTACTGGTAGCAGTCATCAATC TGGCTTTAATCAGCAAGGAAACTACCAAGCTGGTGGTGGTTATGCTCAAAACAATGCTGCACAACAACATCCTCGCCC AAATGGCCCTCCTAGCAACACCTCGATGGCTATAATCGGTCCTATTATGCATGCTGGCTCATCTTACAGCATCGATCCG AACACCGCCATCCCTCTTCCACGATTTCCTCGTCCTACTTTCCAGCTAAATGTCAAGTTTCGTCTTGAACGCTTCCGTC CAGATCCTCCACAGCAGCCTTTTCAGTATGGAATGCCAAATTATCAAGGCTTCAATGCCTACCAATACCCATCGTACAT GAATCCCTATCCTAACACTGCCGTCTCCACCTCCACTGGTGGCCCTAAATCCAGGGACAACATGGAGCTTATATGGTA CTACTGGCCAGTTCAGCTCGAGGTTCCTCTCTGGGCTAGAGGTCAGAATACTTTGACTTCCGCACCAGATATTGGTGC TCAACTCATTCGAGAGGGCATGCAGATCATCAATGGAGAGCGTTGGGGCTTCATCCAGCACCAAGAGAATCCAGAGG GCTTGTGGCACAAGCGACGATCTTACAAGATCCTCGAGTGTCCTGTTCATGGGATGTACTGGAAGGTCACTGTCTTCG TTCGTCGTGGTTATTAGGGTATTTTAGAAGGCATTGGGTCAATTTTAAGCCTTGA BC1G_05030 SEQ ID NO: 61 GAAAGAGTCAGCTTGTGTTGGCGCTTGTTTGGGCTTTGCGCAACATTGCCAGTGTTATACTTCTCATAGCAAATAGCGC AGGTATCAGTTCTGTGAAACCCATCATTCCATAACACTACGGACTGCTTTCTTACTTCTCAAGATGGATATAGAGGCTA CTAACAAGCCAGCTTCTCTACCCGCCGCTACGATGCCACCAAGTTTACAATATATACCTGCAGAAATTCGGAGAAAGAT ATTTATATGTCTGTTGGTTAGTACTGAGCTAGGAGAGGCGTCTTCCATTGACCAACTTGAGGGATATGGAGCCGATGC GAAATATGGCTTGAGCCCACAGATACTACTCGTCTGCCGCCTTTTCCATGAAGAAGGTATGGAGATTCTTTATGGCTTG AACCAATTCATTATCGAATCACTACCGAGTATACGCATTAAAAGAATGGATGTACTTCATCCGTTCACCATATGCAGTCC TTTGACTCGCTGGGACAACCAACCCACCACGGATCTCCCAACCCACTCCATTCAAAAGACTCTATTACACAGGAATCAA GCTATTAAATTCGTCAGAAAATGGAGAATAATTTTAAGCGCCAGGCTCTATGAGCCCAGAAGTCGAGATGGACTTGTTG AATTGTGCCGTTTACTGTGCGAGCTGCAGACACTTTCAGGAGGGTCATTACTGAGGGAGTTAGAAGTATGCATCATTC CCAAGGGTGTCGAAGTCAAATATGGCTACATGAACATGAACGAAATGCGCGAAAGTCTTGTGCCACTGGAGCTGCTAC GAAATATACCTATAGTGTCGATTCGAACAGCCAGCATTGATGAGATACCAGACTTTGCATATAGGCATAAGTGGCTTGA TACACCACTCGTAACACCGTCAATGCTACCTACCGCATCCTATCGCCGCCTCCTCATCCACCTCATCCGTGGAAATTCA GAAGTCGAATTGAGTACCAAGATGTTCACTTCTCTTTTGGAGTACACGCAAGCCTTTGAAAGAGATGCCCAATTCAAGA ACGCGATGTCCTTGAGCTCCCAAGAGGTAGCCGCTTTGATGCCGAAGCTGCCTGCACTAAGCGAGAATCCGTTCCTC AACAAAGAGTTTCACTCAAAAGAATTGGCTCACACTATCGAGACTGGTCTACAAAGAGCACGATATATGACCGAGATCG AAAGTGGAGATATTACCAAGACCACCCAGTTCAAGGAAGAGCGATCTGTTATCCTGAAATACTTGGAACGTCAGTTCTG CAGGATAAGCCACGCATCCCACGAGCTCATCGACTTTCTCAAATTACAAAAGAGAAAGTGGGGCGTTTTTGATCCTGC TTGTACAAAAAAATACAACGGTTTTGATATGGCGATTTATACTGAGGCCATGGTTCTACTTGAGGACTACGCCGCGTCA TTTATCCGAGAATTAGACGCATCAACGAAAAGAGCAGTGCGCGCGCAATTTGGTCTTTTTGAGCATCGCTACGAGTTAA TGGCAAGGGAAGTCAAACTTCAAAAATGTAGGATAGCTTACAACAGAAGAGACCCCATCACGTTTAGAGCAAACTTCC AAGAAGCGGTGAGCGATATGGAGTTGCAGTATCATACCATACTCACGACTAGATCTAAGCTATACGATTGGGACGCTG GTAGCAGTATTCCCGATATCAATATCGCACCGTTGAGCTCATTCGAGGACTGGCAAATTAGATGGGAGATAGAGGAAC CAGCAATCACCGCTATAACAGAGGTAGAAGCGCAAAGGATTCAACAAGATCTTCGCCGCCAGATTGCCCAGAAATGTT TTCTTGCACAGGAGGCAGAAAACAAAGCTCCCGGGGACAACCAGGATTTGGATGCAGCGAATTGTGATGAGGCTCAT GACCAGAGCGGGAGCACTACTGAAAAGGAACTCGAACTTGATATCGCCAATTGGGAGTCTCTACCATATCATGAAGAT GACGAAGTCTCTAAGCTTATCTTACATCTGGATGAAGAACAGCCTCCACTACCATCTACTGTCGAAGCCCTCATGAATT CTGACAATGATTCAGAAAATGATTTCTACGAAGAGCTTTTCAGAGATCGCCCGGAAGACGATAGCTTTTGTTTGGAATC CGAAGACGACATTGAAGTCGGCGATGACTGTATCGATAGGGACAGGTCTACCCTTCACGACCTACCTTACCCCGGGG ACTCTGGAGGTTCTCTATCACATGTGTTCCCGTGGATGACACTCTCTGAGCTATAATTGCCCAAGTCTTATCGAGGTTG TTATATTTGACCAGAGTTATCTCCGATAATGCTTCTGTAGTCGTATCATCTAAGCCCTTGGTGGATTTATGGGATTATAT CCGTTACCACTATGGTTGTAGTAGACCTTAACGGTCCTAGTTGTCCTAATTGATGAACTATGACTCTGTACACTGGATT CTAGAGGATTTGATGAAGCTGATGGGTGCACCAGTGGGTGCATAGACTGGCGGGACACTTCTCAAATTTCAAACGTTT TAACA BC1G_00624 SEQ ID NO: 62 GGTATCGAGGGTCCAAAGTGTGGTCCGTCCGGGTGATGATTATTTTTTTGGCTCTGCCTCATATTAACACTTCCTGCTT CTGTTCGAGCCCACCATTTGTCTTTCTCGAATTCCTTGCAAAGCATCTCTCTCATCCATCGAGCGATGTTCTGATAACCT CTTGTGCCTCATTCATCAAGAGCGATATAAAAACGAGGGAGCAAGAAAAAGAGTTTGATGTTTGATACTTGAATTGAAT ACCTACCAATCTACCTCCCTCCTCCCAAGCTTACATCTCGACTACGATATCATACCCGAAGTACATATATACCAACGGA CCCATCCAATTTCTCCCTCAAATCTTGAAATTTTATCCTTCGAGCCGGTATCACACATATCCTTCCTAATCAAAAGATCG ACAATATCAAAAATGTTTACGACGAGTATCTTAACGCTTTTGGCGATAACGACGAGTGTTTTGGTCCAGGCACATACGG TGATTACATACCCGGGATGGAGAGGTGATAATTTGATTACGAATGAGACTTTTCCTTATGGAATGCAGTGGATGTATCC TTGCGGCGGCATGCCTACTACCACCAACCGCACTCTCTGGCCCATCCACGGCGGCGCCATCTCCGTTCAACCCGGCT GGTTTCAAGGTCACGCCACCGCCTTCTTCTACTTTAATCTCGGATTCGGCACCGATGGCCCCGACAATGGTCCCCAGA ACATGTCTTTCCCCATGACCTCCGTCATGCAAATCGTCGGCCCTAGCAAAAATCCTTACCCGGGAACCTTCTGTTTGCC TCAGGTGCCATTGCCCGCAAATACGACGGTTAATGTAGGAGATAATGCGACGATTCAGGTCGTGGAGACGGCGATTC ATGGGGCTGCTTTGTATTCTTGCGTAGACATAACCTTCGCACTCCCCGAAGACGTCGCCGAAGTAAACACCTCGAACT GCTTCAACTCCTCCGACATCTCCTTTGCAAACGTCTACACCATCAACGATGCCTCAGCCCCCGGAACTTCCTCCTCCG CCTCCTCCTCCGCATCTCCTTCGCGCTCGCTCTGGGCTGCTAGTCTCGCGAGCGTGCTGGGCATCGCTATGTGGAGT TTCTTGTAGGAGATGCGAGATGGAAAATGATCGGAGAGAAATTTGTAATTTCTGGGAGATTACAAACGAAAGATGGGG AGGGGAGGGGAAGAGAAAAGATGAAAGATAATCAGAAGGAAATTCAAGGAAGCAGAAACAGGCAGCATTGTAGATAT GATAAAATATGATATGATACCACGGGCAGATGATAGACGGACACATCAAGTGAGTGTCCCTGCCTCTATACCCAACAA ATCGAGATCGAAATCTCAAACCATGGGAACTGGGAACCGGGAACCGGGAATTGAAGCAGAGCATTCAAGTACCCAAC GAGGAGCTACTTTGCATGTATGTATGAGCACTCAGGCGTTTTATGGCGAGGATTGTGATTGGAAGGAATGATTTTTTTA TTAATTTCATTTTAATTCTCGAGTTTCGAGTTTCGAGTTTCGATATTCAATTTCTATCTCAATACAATCCAATTCAATACAA TCATATCCTTTACTGCGCA BC1G_15490 SEQ ID NO: 63 GATTTACACGGGATGTGTTGCCCTTCTCCACGACGTCAACAGTTTTCTCGACAAGTAGACAGAAAATCATGACTGAGAT CATCCCAATTCCTGAGCCCAAGGGCTGGCCCATTATCAATCATTTGGTAGGGGTCATTGATAACGAGAATCCGACTGA GTCTTTCAAACATCTAGCAGAGCAGTTAGGGAGGATTTACAGGCTTCGTCTGATTAATATACCCATCACATTTGTTTCTA GCTACAAATATATAAATGAGCTATGTAATGAGAAGAAGTTTCGGAAAGTCCCTGGAGGGATATTTAAGGAATTGCGAGA TGCAGCCAACGATGGATTGATCACGGCATATCTTGATGAAGAGAATTGGGGTATCGCCCATCGAGTGCTCATGCCTGC ATTTGGACCCTCTGCTGTTCACGGCATGTTCGATGATATGCATGATATTGCCGCCCAGCTCACCATGAAATGGGCCAG GTTAGGCAAGTATGAATCATTTGTCCCAGCTGAGGACTTCACACGTCTCGCGATGGATACTCTGGCATTATGTTCCATG GATTATAGATTCAACAGCTTTTACGGGCGCGAGACACATCCTTTCCTTGAGGCGATGGCTAGAACACTTCTAAGGTCG CGTTATCGTGCTCGACGCTTAAATATTCCCATTGTTAAGTTTTTCTATCAACAAGAGACGAAGCAGTGGTATGAAGACAT CGCACTCCTGCGGGAAGTTTCGGATAGCATCATACGTCATCGAATTAAACATCCCAGTCCTCGAAAGGATTTAGTCGC TGCTATGTTAACGCACAAGGACCCAATGACAGGAAAGGTCATGACAGAAAAGAGCACGACTGACAACGCCTTGAGTTT TCTTGTCGCTGGACACGAGACAACTGCGGGACTGCTCTCTTTTACACTGTACTATCTGCTCAAAGATCCTCGGGTCTA CAATAAGGCTCGGGAGGATATCGATAATGTAGTTGGAGAAGGCCGCATTCGAGTAGAGCATCTTTCGAAATTACCCTA CATCGAAGCAATACTCCGCGAGGTCCTCCGGCTGGAACCACCACTGCCGGTATTTTCGGTCCGTCCTTACGAAGATA CCTTGGTCGATGGTCGCTTTCTCGTAAAGAAGGATGAAGGTTGCGTTCTCCTCCTCAAGCATGCTCATCGCGATAAGG AAGTGTACGGTGAGGATGCGGATGAGTTCCGACCCGAACGTATGCTCGACGAACACTTCAACAAACTCCCACCCGGG GCCTTCAAACCCTTTGGAAATGGACAAAGAGCATGTATTGGCCGAAACTTCGCTCTCCAAGAAGCAAACCTGATGCTC GTCATGCTTCTCCAGAACTTTGACCTCGCTTTGGATGATCCATCATACGAACTGCAAATCAAACAGACCTTGACCATGA AGCCCAAGAACTTTAAGATTCGGGCTAATTTACGAGATGGATTGACTCCGATTACACTGCAGCAGCGATTACTCTATGG GACTTCGACTTTAACAGCAACTCAAGAAGCTCGCAAGGAATTGCGAAATGTTGCTGCAACGGCTCAATTCAAGCCCTT GACAGTTCTCTATGGATCGAATGCCGGCACTTGTGCACAACTGGCACAACTTCTAGGATCACATGCTCGTTCCCACGG TTTCAACGCCGTGACTATCGAAACTCTCGACGCCGCAGTGGAAAAAGTACCCAATGACCATCCTGTCATTTTCATCACC ACATCCTACGAGGGTCAACCCACAGACAACGCCAAGCGATTTTTCTCTTGGCTAGAGACGTCCTCGGGAAAATTTCTT GACGGTATCAGTTATGCCGTTTATGGTCTTGGACATCATGATTGGGTTTCCACGTTTCACAAAATTCCTAAGGCCCTGG ACGCTCGATTGGAGCAAGCTGGTGGAGAGCGTCTGCTTCCACTCCAACTTGATGATGTTGGTGACTCTGATATTTTTTC CGCCTTTGATACATGGGAGGAAGATGTGTTCTGGCCAACATTGGAGAAGCAGTATGGTGTTATCAACGCGAATCATGA GAGTCATGATGTTGATGAACTTGATACTAAGCTAGTGAGCCTTCGAAAAACGACCTTGAGCTACTTTGTCTCCGAAGCC CAAGTTGTCAGCTCCAAAATCTTGACTGCCCCTGGTGAGCCAGTCAAGAAACACCTCGAGATTAAGTTGCCAGCCAAC ATGCCATATCAAGTCGGGGATTATCTTCTTACATTACCGAAAAATCCCCCTGAGACAGTCGAACGAGTGTTGAAGCATT TTCAAATCTCTCGCGATACTCAGAACAATACATTTCCTAGGATTGAATCCTATACTCTCACCACCGTGGAATCAATCGAG TCGTATGTAGAGCTGAGCCATCCCGCCTCGAAAAAGGCCATGGCAGTACTAGTTGACGCTACAAAGAACGAGCAAGT CAAACAAAAGCTACAAGAGATGGCTATGGAACTGTACTCATCTGAGATTGAGAGCAAATACATTTCTGTTCTGGATTTG CTCGAGGCGTTCCCTGGCATTGAATTATCATTAAATTCATTCTTGGCACTCCTTCCACCACTCAAACTTCGTCAATATTC CATTTCGTCCTCTCCATTGTGGAAACCAAATCACGCCACCTTAACTTTTTCCCTCTTGGATGCGCCGTCACTGGCACAC CAAGGACGACATCATGGTGTAGCAACTTCGTATCTCAACTCCTTGCAGAATGGAGATTCCGTCCGCGTTGCCGTCCGA CCGTGTCACGATGCTTTCCGACCCCCACTTATCACGGAAGATACTCCTATTATCATGATCGGCGCCGGTTCCGGCCTT GCACCCTTCCGCGGCTTTATTCAACAACGATCACTTCTCACTCTCAATGGCGCCAAACTCCCAAAAGCATATCTATTTC AAGGCTGTCGGGAACCTGGAAACGATGATATCTATGCTGATGATTTATCAACGTGGGAGGATGAAGGGGTTGTCAAAA TTCATCGTGCGTATAGTCGCACACCTGAGAAAGCGGGTGGATATAAGTATGTACAGGATGTGGTTCTGGGAGAGAGTA TGAAGATTGTTGAGTTGTGGAAGGAGGGGGCGAAGTTGTATATTTGTGGGTCACATAAAATGGGGGAGACTGTCGCA GAAGCGGTGCAGAAGATTCTTTCTGAGGCTGATCTTGTGGAGGGGGAGAATGTGAAGTGGTGGTGGGAGAAGATGA GGAATGACAGGTATGCAGTTGATGTATTTGATTAGATTATCAGTCGGTATATCCCAAGATAATACTGCATGTAGGCTGG GAAATTTTGATGAACA BC1G_14979 SEQ ID NO: 64 GGGTAAGCAGCCCACATAATGAGCATCGTAAATAGACAAATAAATAATGCCGCATTCAAATGGCTCGCATTGCCGTCA ACAGTAATGGAGACAACCCTCCAGATGCCAACTCTCTTCCTAACCCCCCACGCTTCAACGTCGAACTACCACCTATATC GTGCTTCATTGAAGACAAAAATGGTAGCCCCACGAGAAAGTTTTTCACGACCCCAGATGAACTCACAAATCACTTGGA GCGCACCACGCATCACAAGGAGAGGAAATTGTATGTTTTGGAAGGGTTGCCGATTGAATACGTACAGGTGTTAGGGTT ACACTTCAACATAGATGTGGATATTTTTGATTCTCATGCGATGAGAAAGAGTGGGCAATTGAATAAGCTGGAATTTCCA ACCAAAATAGGGAATGAGAAAAAAGTTCGAACTTTTGCTCTGGACCATCCTGAAATTACGACAAACATTACCCCGCCGC CTGAAGCCAGTGGAGGAGTTGCTGGTGATTTCATGATACCGTGTAAAACGATAGACATATCAGATGAAAGCTGGAATG GAATCAGTGTAAAATTATGTCACGTGACTTTGGTGTGCTTTCCCGGGGAAAATGGGAGTGAAACTTTACTATTGCTTCT CGAAAACCAGTCGTGGGCGAGAAGAGGCGCCCAATTTCAAACTGCGGGTTACCACAGTATTCTTGCAAATGCCCTCAA AAGTCTTCCAGAGGGAAAGCAGAAATGGAAACCATCCCGAAAACATGACCCGGCTTTGACTCTAGCAGACGAGATATT CAATTCTATAGAATTGCCGGGTGGCATCCTGGCTTGGGATGACCTCACAGAGATACTTGCTGATATCGTACTCAGACA ATGGAAATTTGCCTTGGGCGAGGTAATCGAACATGCATGTGCATCTAGATCGATTCCTTATCACGAAATTCATCAGGTA TGTGATCTGATAGAATCTAATATCTGGACTTTGGATCGTACTGAGGCTCTCTGGGGCCCTCATTATGTTGTAAGAGTGG AAGGGTTTAAAAGACTTTTAAAGAAAGCAAAGCGTTATGCACATTTATTTGTGTGGGGACAAATTGTGGAGGAGGGTCT TGAGACAAAGGCCAAAAATGAGAGTGCGACTGACAATGAGGATGATGACGATACCAGCTCCAGTGCTTCTTCTAAGTC GGGAGTGCATATTCGTGGAGGAGAGACCTTAGATTTGGAAACCCGCCAAAGCATCAATAGAGTGACCTACCTTGGCG GTGTATTACTCCCGTTCTCCATAATCGCGGCAATATTTTCAATGGGTGGGAATTTTCAGCCTGGTGGAGATCAGTTTTT CATATTTTGGGTCATCGCTATTCCAGTATGTATGCTTACAACGGTTTTAATATATGCGGATAGTATTCGGCGAATGACCT TGGAGCAATTTGCTCAACAGTACGGGTCTGATGCAGTGACGGCAGAAGCTGATGATATGGTTACTTCATCAATTTCTG GCAGTGAGATCATTTCATACAAAGTGGGTATTAAAGAACGTCTTAGGTCGCGTATCCCAGGTGTCTGGAATTCACGCA GGGCTGGTTCTTCCTCCAGTGTTGGCTATACAGATAGCGATGACAATTCATCCTCTACAGACAGTACTCAGTTACCTCC AGGTCTATCCATAGATGGCGATTTGTTAGTTCGCAGGAAAAGGAAAAAGGTGTCAAGATCATGGATTTGGCGATTTTG GAGACGGAAACCTCTGGGTCGAAAATCAGATCCGGAGAATGTCTTGCCATCTCCTAGACATTCGGATCACAATGTATC TTCACCTTCTGCACCTCCTCCGACTTCTCCACCATCCGCGTTTCACCCTATTCGATCTTCACCACAAATTACACCGGTG AAGCCCATACTTGTTGGAAATGACCGTCCAGAGTCTCTTACTTCTGATAACTCTCCGACGGCCGGGCCAGCCCCGCCA GAAACACCCCCAGCTAGTCCTCCGTTACCCGACCCTGACCTATCCATTCCTGACCAAATTATCCCTGAGCCAATAGTTC TTGACCCAGGCTGGAATTTTGGGGGAACCCCTTCAAAGAAATCTAAAAAAGGCAAAAAGACAAGACAACACAGGATTG GATACCTAAATGATGAATTCGATATCCCAACCCGTCCGAATCCAGCCACTTCTCCACCACATCCGTCTACACCAGACCC CGCGGGGATACCACTACCTCCATTGGATTCGGATTCTGATGACTGGCGAGAGCGAGACAGTTCTGAGGGAATACATC CTGAAAGATCTCCATCTCCAGGTCGTGCAGACTCGGATTATGCCACAGATCGTGAACGCCGTTCTTTGGAAAGACGAA TGAGAGAAAATGACGACCGAGCACTGACCAGAAGAGGAAGTAGAGAATATCTAGGCATTGGAGATGAATATGAGCGC ATTGTTGAGCGAGAAATCATTTATCGACGCCGGCGCCGATCCGAGCATTCTGTGAAGTCTGAGAGAAAACATGTAATA GAAAAAACGACTGAAAAGCTTGTTGAAGAGCAGGAAAGAAAACATGCGACAGATGATATCGTGAAAGATGATGATGAT GTTCCGGAAGACCGAGGAAGACAACGAAAACGATCTACAGTACGATGGGCACACCGTGGAACTTATTATGATTATCCA AGGCGGCCAACACCCAACACTGATCCTACTGAGATACCATTGCCACCATCCCCAGAAGAACTATCAGAGGAAGAACG AATTAGAATGAAACTAGAGAGAGAGAAACTAGAATACCTTGAGAAGTTGAAGCAAAAAGAACGACATAGGAGAATGGC GGAGATGGAAGAGGAACACGCAAAAAAGCGAGCGGAAGAGGAATATGCAAGAAGAATAGCCGAAGAAGAATACAAGA AAAAGGCGGCAGAAAGTAGAGCTGCCAAGGGAAAAGATCGAGCCTACTCCCCTGTGGAATCCGATAACAAGGGATTA AAACCAGCGATAAAGTTCAAGGACGCTGTGGGAAGGAAATTCACGTTCCCATTCCATTTAGTGTCTACATGGGCTGGA ATGGAAGAATTAGTGAAACAAGCCTTCCTTCATGTCGATGTCATTGGGCCTCACGTCAATGAGGGTCACTACGATCTC CTTGGCCCCACAGGCGAAATCATCCTCCCTCAAGTATGGGAATCAGTTATTGAGCCTGGTTGGTTAATAACTATGCACA TGTGGCCAATGCCGGAGCCGCGAAGGCAAGCACCCGCTCCTATGCCTCCTAAACCAGGGCATCCCGGTAACTTTCCA CCTCCTCCTCCTCCACCTGGATTCACAGCACCCCAGCCCGGCGGCCTAATTAGTGGGCCTACTCCGAGAATGAAGAA ATCTACGCAGACTGGAGCTTGGGACTGGGTGGAAGGAGCACGTCACTCGAAATCTCGCAAGAAACAAAAGTCGGCAC CGATACGACTTGGGCCTCCTCTACCGCCTTCATTTCCTAGGCCCCCTCCGCCGCCACCGGCATCTGGAAGACGAGAA TCTGATACAGTCGTCATAATAGAGGATCTGCCGCCAAAAGTTCACAGAAGACAAACGGGTATGAGCGACAGACATAGA CACGGAGCAAGCGGCGGTGGCATAATTGGAGGAGCAGCAAAGCCTAATGAGGAGTTGGGGTGGGTAAGAGCCCTGG GAACCATTGTTGGTGTGAAGCCGGGGATACAGGTGAAAAAACGCAGTGGTGGAAGTAGTTCATCGTCGAGTGTTTGAT GGGTCGTTGATGAGATGACTGACTGCTCGTAAATTTGAGAAGCTAAGGTATCAATGGTTGAATGTGTGCCTGCA BC1G_12936 SEQ ID NO: 65 GAAGTATTAATCTCCAACTTTCAGACCATGTGAGGCTTCACGGAACAACACCTTCGGGTACAAGATTAATACAATGGCA GCCACAGCTTTATCAGCGTTATTCTCTTTGGAGGGGCAAACCGCACTCGTTACTGGTGGTACTCGAGGCATTGGACAA GCTGTTTGCTTAGCACTTGCTGAAGCAGGAGCAGATTTGATCTTGATACAGCGTAGTCGTGAGAATCTCGAGACTCAG AAAGCCGTCGAGGCTCTGGGAAGGAAAGCTCCTATATACACCGCGGACCTGGCATCGCAGGAAGAGGTCGCCGGCA TCACATCTACTATCCTGAAAGATGGACACTCGATACACATCTTGGTAAATTGTGCTGGGATTCAAAGGCGCCATCCGAG CCACGAGTTTCCGGATAAAGACTGGAATGAGGTGATCCAAGTCAACCTCAATACTGTCTTTACCCTCTGTCGCGATGTT GGCGCACACATGTTGAAGCTCGAACCATCTGCTATTACTGGCCGAAGAGGTAGCATCATCAATTTTGCTAGTCTTCTTA CCTTTCAAGGTGGTCTTACTGTTCCAGCATATTCCGCATCGAAAGGCGCGGTGGGACAGCTTACCAAAGCTTTATCGA ACGAATGGGCATCGAAAGGAATTAATGTCAATGCGATTGCTCCGGGGTATATTGAGACGGAGATGAATACCGCCTTGT TGGCCAACCCAGAACGATTGAGGAGTATTAGTGAAAGAATACCGGCGGGTCGATGGGGTTCCCCAGATGATTTCAAG GCGAGTGTTGTTTTCTTGGCAAGCAAGGGAAGTGCATATATCTCTGGAGATATTCTCACGGTAGATGGTGGCTGGATG GGTAGATAAACACTTGTCAGGTTAAAATAATACATTTCTAATTCTAATTCGACGCTCTTTGACTTTCTGCCGATTTCCTCA ATTCTCACGGTCATCCAAATATTCAGACTCTCCCA BC1G_04424 SEQ ID NO: 66 GTAACAATCAACAAATTTCATCAACCACCAACCCACCACATCCATTCTACAGGTTTGGGGGATTTCTATATCACGTACC GAGACCCCTGGACGCGTCTTGAGCCATATCTGCTTTTCTGCTTGGTCAAGGCCCTTTGACAACAAGTACATATAACAAT GGTTCTCTTCAAGAGGAAACCAGTGCAATATGCACCCAAGCCACATGTCGAAAATGAAGACACAGAGGTCTGGGTAAT TCCTGCTACTGGAGAGTATTTCTTAGAGTATGAACAATACTTAAGCCGAATGGATTTCTATAGACAGCATAAATTCATTT GCCAGATTTCAGGTCATTCTCAGTTAACATTCTTCGACGCACTCAAGAGTGAGTTGGCAGGCGCACAAGAAGTCGAAG AGGCATTCCCGAATCCATTGAAGCAACCAGTTCTAAGACGTGTACAATTCTCAACTATTTCCCGAATCGATACCTTGGT GGACATTATTTTCGAAGAGTTCAGATCCGATTATTTCCCCGGCGAGGTTGTTACAGTTCATGTGATTACGGGCGATCGA CTTACTGGTACCGTAAGAGAAAAAACGCACTTCGGAAGCAAAGTTCTGCCAGATGGCTCACTAAGCGCACCTTTCTCG AGATATTTCGTTAGTCTGGATGGCCGACCAAATGAAGAGGCAGTGGTGGATGACCAGCATATTACTCGTGATCGCAAG ATATTCACAAAGCAAGTTCTGCGATCTTTTATTAAGAAAACCGTTACAAGAGAGGCATGGACCGGCGCGCCTTGGCTG GTGAAGCACGACGTGGCCGCCATTTACAATATCGATACCAGGATTCCTCCACATCTTCGATATGAGAGTAAAGCTGCA GAAAGAAAACAAAATCAATCTCAGAAAAAATCGGGAGGGACTGATTTTGATAATATGATTGGTAGCTTTCATGGAGGAA ATGGACCACAAGCTAGACTCCCGGAGTTGAAGCCAGCACCCAAAAGCCATAAAAGCAAGCAGCAACAATCCCAACTA GCAAAGGGTAAGCAGCAGCCATTTTTAGAGCAAGCTCCTTTAAATTTCATCCCTGCACATTTCCCTCCCCATCATTTCTA CCCCCAACCCCACCCCAACTACAATCCACCACAAATTCCATACAATTCTCACCCTCCTCATCCTCCTCAACCCCACCCC AATTACAATCCCCCTCCTCAAATTCCATTCAATCCTCATCCTCAAACTCCTCCCTTCATGTCTCACACCTTTCAAGTCAAT GGACAATCACAACAAGCGGGACCCCACTTCCAGAATTTTCACAATTCTAGCTTTGCGCTTGCGCCTCTTGCATCGCTTC CTCCGGCTCCTCCTCCACCGCCTCCTATCAAATACCCAATTGAGGATTTGGAAGTTCCTCCCCGAGTTGATGGACCGA AACGACCCGATATCAAATACTTTTCGCAAGATAATCCAATGATGGTGGGAAAACCAAAGGCCGAGGGTAATGGCATTC ACATGTCATCGATTGGACAGTTACTGGAGACCTGGGACACTTTGAATGTTTACTGTCAAATCTTCAAGTTGGACTCATT CACTTTTGATGACTTTGTCGAAGCCTTACAATTTACATCTGAAGATGTAGACTGCGAACTGTTCGTCGAAATTCATTGCG CTGTTTTGAAAATCTTGGTTAATTCTGAAGCCGATGATGGAGAGATGCAAATTCGGTTACGAGAAATAGAGGAGTCAGA TGACGAAGAAGAGTCCGATGACGAGGCTAGCGTTGCACCATCACCTACACCAGAGCCAGAGCCAAAACCCAAAGGGC GCGCTACCAGAAGTAGTCTCGCAAAAGCCGAGGCAGAAGCTTTACAAAAAGCCGCCGAACAACCTCCCGAAGAGCCC GCTGGACCAGTCAACACTCATCGCGCAGCCGAGATGGAAGATAGTCTTGAGTGGGCCCAGAAGCTAAGAAAACGTGA TTTCAAGAATGGTGGCTGGGAAGCTATTATGGTCGGCCTTTTGTATCAACTTTCGAAATACGAGAGATACTTTGCCGCC TGTGAATCACTCCTTGTTGAACTCGCCCCCCTCGATTCGGAGCCAACGCAGGAAACCGCTCGCCTACAGTACGCTAAA CTTGACGTTAACCTTCGTATCAAGGCACTGCAAATTATTTGCATGCTTACGATGGAGACTAAAGCAATTCGTGGTTACA TGGAAGAGAGTAGTGAACACATGACGGAGCTCCGAAAGGAAAAAATAAAGTACCAGCGTGATAAGAAGGATGCTCAT GATGCTCTCAAAAAGCTCAATGAAACGCGCAAAGCACTCGAACCACCACCCGAGCCAAGTCCAGCGCCAGCTACAGA GAAGCCTGCAGAGAAAGAAGCTTCAGCCAGCGTCAACGGAGATGTGACTATGGTCGACGCCGAGGATGAAGTTCAG GACTCTCATGGTGATGAAATTATGGACTCAGATGGAGAGGCTCCCCCAACTCGATCATTACGCCGCGGATTAGATCGA GCAGCAGAACGAAAGCGTAAGCGTGAGGCCGAGCAGGAGAAGAAAGCAAAAGCAGAAGCTGAGCCTAAGGCCCCCA AACAATCTAAGGCCCTCACGAAAGTTCTCAAAGACATCCAAAAATTGCATGATGAGATCAAGCATTGCGAGGAAGAGAT TGCCATTCTCGATAATGACCTCCGAGAGGCTGATTGCCCTCGCACTCGTGTACTTGGCAAGGATCGATTCTGGAATCG CTATTATTGGTTTGAGCGCAATGGTATGCCATATAGTGGTCTTCCTACCAGCTCTACTGCTGAGGCTGGATATGCCAAC GGATGTATCTGGATTCAAGGACCGGATGATCTTGAGCGCGAAGGTTATATTGAGATGCGACCTGAGTGGCAAGATGA GTATCGATATAAATTCAACCTGACTGTGCCGGAAAGAAAGGTTATGGAGGAAGGAAATACTCATGTATTCAATTCTCGT GAATGGGGATACTATGATGATCCTGAGTCAGTCGAAGGCCTGCTTAATTGGCTTGACGCCCGTGGAAACAACGAGTTG AAACTTCGAAAAGAACTCCAACTTTACAAGGACAAGATCATCACTCACATGGAAAAGCGCAAGGAGTATCTCAACCCTA GTGATGAAAAGAGTATCGATTCTAGTCACAAGCGAATGTCCACTCGTGGAAAACAACAACCTCATGTTGATCATACAGC TCATCGATGCCTATCCTGGCACAACAATACGGCAATTGAAGAATTAGGTCACTTGCATTCCGATCCACCACGAAATCGT AAGCAAACTAAGAAGGCGGCTCCTATTTTACCACCGGCAATTGAAGAAGAGAGACAAACTAGGAGCGAAGCGGCTAA GAGACAGAGAAAGCGTTAAGTTTTCGGTGTTTTACAGCTTTGAGAATGATAGATCACGAGCGCTCGCAAAATTTACTGG TGCGTTTTGTTCATGGCTATTTCATATAGAAAATCTTGAACGCGCATGGAGTTCATTGGTTCTATGTATTTGAATTTGGC CTTGGGAGGAGTTTATGGGTTTATGGGCTTCAAAAACACATTTGAAGTTGGGAAATAAGGAAATCACAAAAGTCATGGG AGTGCGTGCATATATGGTATTTTACAAAATGGATTGGTTTGTATTTAGACGGTCTGTGGTGAGGGAAAGCATTGCTTGC GTTGCATTTGGATGGTGTTGGCTGGATTGTGTTTTGATGGTTAGTTAGCACTGAGAGGGAGCACTGAAGAGAGGAGAG ACTGGAGATCTGTTTGTATGGAATGTTATTTGCTTCATGAGGGAGCGAGCGAAGAGAGCAGTAGTATAGTGAGTGATG CGAATACCCAAAATACATATCAAATT BC1G_14463 SEQ ID NO: 67 GGAACTGTGGGCTTATTCGAGGTCTGCCTCTCTTGCAATTTTCTCTCTTCTCTTTATAACTTTTTGATCTAAATTTTCACA TCAGCTCTATTCAAACTACATAATTCTCAGGCCACGTGCTACTCTTCATAACTATTATATCCTATTGGGGGGCGCTGGT CGTCACACTAGTCAAGGTATATTAGTCTTCTTTCTAAAATCTTGATACTATAAGCCTGTCGCCTCACTTTCCACAATGCA ACAACAACCACATAGTATCACCAGAATCAGGATCCAATAAACTTAGCTCCCTTATCCTTTTCGGCTTCCAGTTACCCTTA TACTTCATCACTTCATATCTACATCACTGACGCTTTCATCTTTCAACAATCTTCTGAAGAATTTGATGTCGAAAATGGAGC TTGACGATACATGGGATCCTGATCCCTTGCCAAGTGGTAGTTCTAGGAACCAATCTCAGCCTCGATTCAAGAGAGAAA CATCTCATCACTCTAAGGCACAACCGGACCCGCAGCATCAATACTACGAACAACCAAAAACATCTCATTCACAACTCAG AGGTCTGATCGCGCCCATGAAGCTTTATCAAGACTTTTCAGACGATGGAAGCTCATCTGATGAATATCCTGTCGTCTTG CAACAACCACAGATTAATAATAAAAGGGTGACAAGTCCCGCTCAACCTGCGAAGGACAGACGGAAGCGACATCAGAG TGAACACCCAAATCGAATTGAACGTGGCCGCACAACAAACGTAGAGGAGGTTATATATGATCACATCTCAGCGATCCC GCGGTCTCGCAATGAATCCGTTGCCCGCAATGACGCTCGATATAAGAGTGTTGCAAATGATGTTTTCGAAGAGTATGA AAGTTTCAAAAACACCTCAGCAGTTAGCAGAACATCGGTCGCCCGTAGTCATTCGCTTGCAAGAGACTTGTATGAGGA CCAAGGTTATGTTACAATGAAAGATTACAACCGGCAGTTCGACAAAGAGCCAAGTGTCTTTTCACCTAACAATGCTCAA ACTAAGAGGCGCATGAGGGAGGAGTCAACCTACGGATCTATGTCATCTGGTACAGATGCTCATAGAACAGCTGGCCG AAGTCGTCAAGAAAGTTCAAGCCAATCGCGAACTAGTCGGTGCACCCAAGAAAAAAAAACGTCATAGTTATTCTCGT GCACAAAGTCTAGCCCCAAGAATCTCAAACGACAATAGCGATGTTCAATATCTGGGCACTGAAAATGGTATGTACAGT GTCAGAATTCAAAAGCAGGGAAAGAAGCCCCAACTTCGCTCGCCATTATGGCCAAGCTTTGAATCTGCTGTACCCAAA CCTTACTCTGCTAACAGATTGAAAGGGAGAATTGATAAATCTGCCTCGATGAAGCCACTCCCACATATGCCAAAGAATC AACCAGTTAGAATCAGATCAGTTGCGTCTGATCGCATACAGAACTATTCAAGTCAAGCCCGAACGGTTGATTATGGTCT CATTGATGACGACGATGTTTATGACACACCATTGGAAAATGATCTTCGCCGCAGATCTAAGTCTCAAGTGAGAGCTCAT AATGCTCCCATGAACTTCATAAATGCTCTACCAAAGTCTAGTGTATTTCGAAGGAAAAACTCCGAAGTCGCAGAACAGG TTCATCAGACTCCATCCAGAGACTCAAATAGATCTAACAATCCGGGCGTCACTATTGATCTCGTTACTCCAGAAAGTAC TGTTTATGCCCGCAGTGCAATGCCTTTTATACCTCAGCACTGGACTCCAACAAGGAGAGGCCCAATGAAAGTATCGGC TCCAATGGAGATCTCTGAGCAGGATGGTCTTGGCACTAAAACTGGACAACAACCTGGTCAAAATACTCATCAGCACCA AGTCATTAAATCTAGTCCTAATAATGGACAACAAACTGAAGAAAACATACGACAACGACAAGCAGCCGAGAAGATCATC CGACAAGAACTCAATGCAGATAATGAGGCTTTGCAAGCGGAGCTTTTCGGAGAAGTTATTGGTGAAACTGAGGAAGAA ATGAGAGAGCGTGAAGAAGCTAAACGTTTGGAAGCTCAAAGAGTGCGGGAACAAAAAGAGAAGCAAGATCTCATTGAT GCTGAGAGGAAGCGAAAGAAGAATGAAGCAAGAGCCAAGAAAGAGAACGAGAGGAAAGCGGCTGAGCAGGCCGAGA AGGAGAAAGAAGCAGCAGCAAAAAAAGCCAAACGTGATGCCGAACGCCATCATCAATCATTGAAGGAGCAACAGAAT GCAGACGAGAGACGTAAGGCGGCAAACAAGTTACTACAAGAGAAGAAAGAAAGAGATTTGGCTGCATCCAAGGTCAT CGAGGAAAATGTCCAAGCTGCAGAAAAAGAAAGAAAAGAGAATGAAGCTAAGTTTGAGCGAATGAAACGACAATTGGA AAAACTTGAGGCGCAAGTTAAAGCAAAATCGATTGCGGAATTGAAGCCTGCGAGAAAGTCTACGGCTTTGGACGGTAT CTCGAACAGAGTCAACTCTCAGCCTCCTCAAGTCAGGCTTTCAACAAGCATGGAAATTGACGATGAAAGTTCATTGCC CACTACACAGACCCAAATAACACCTGTAAACGGTACTGATACTTCACATACAGCAAATACTTCATCTACTCAAGCCACA CCTTCAATAATCACCGAAGTCGAGGATGAAGATTCACTGTTCGTTTCAGACAATCGAAAGACAGTTGTGGAAGCCACTC CAGAACAGCAAATTTCGAATGATCTTCAAAATTTCACTGGGAGCTTTAGTAGTGACTCGACAATTGTTCAGTCCATAGA GCATGATCGACCTCCTACTAGTATAACTGAGATCTTTGCCAAGACAATTCACAATCCAAGTGGTGACAAGACTCTCGAA GATAGGGACGCGGAGCGAGAAGCCATTCGAAAAAAAAGAGCAAACGAGAATGCAGCTGCCAAGCAAAAACGAGCAAA TTCCATACCCGCAGAGCCAAACCCCGAAATATTTGCTCAAAAGGTTGCTCCACGGGAAGTTTCTAAAGCACCATCGAA AAGCACGCCAAAGAAAAAACGTATCCAGCCGCTAACAAAGGCATTAGGAGATTCCATATTCAGTGTTAAATTACAGCCT CTAGCCGGACATGAGCCCGAAGGATACGTTCCTCGTGAACAGTCAGAAGGTTTTCAGAATTTCACTGAGAACTCTTCC ACAGACCTTACAGTCTTGAAACCCCGCCCACTTCCATTGACTTTACCTCCCCCTCTTCCTCCACCAGTAGCATTTACTA CTACTTCAATTAGACCAGAAACTCGTCTGATTTCACAAGCAGAGCGAGAGGAAATTGAAGCTAATCGCCAAAGAGTCC AGGCTGCGGCACAGGCTCGGAAGGAAAATTCGAACAGGGCAAGATTGGAGGGGAGAAAAGCTGCATCTGCGAAGAA GAGAACAGTTGAGTATCGCAAGAGGAAAGAGAAAGAACTCATCGAAGAGGCTCATAAAGAGGGTAGGATATTAGGTAA TTCTGAGCTGGAAGCTAGACTTGACAAGTTGATGGAGAAGCGAGAGCGTGAGCAAAAACGAAAGAAAAATCGTGCGG GAGAAAAGGCTTCATTTAACGAACATGAACATGAACCTCTTTCTAGAATAAATATACTTAACCATTCTAGCATGCCCGCG GCGCAAATCTCATCCTCCGATACTGCCAGTGATTCTAATCAAATTGAAGAAGATGATGATCCTCCGGCTCTAACTCTGA AAGAGCATAAGATTAAAACGGCCGAAATTATGAAAGAACGGGCTCAATTGCATGCAGCTCAGCGTGCCCAACCACAAC CGAAGAAGAAACTGGAACCAATTTTTGACTCGGACGAGTCTGAGGAGTCTGTAGAAGATCCGATGGACGAAGAGACTA CGGAAATGTACATAGAGCACGCTCGAAAAAACAACACCGAGGCTAAAGAAGATGTCGAAAAGAGTGATGTGGTTCAAT TAGAAACTCGGACTGAGGAAGACATTGCTTTCGAGAAAGAGATAGAAGATTTTCTTGAAGAAGATCCAAATTTCGAAGG AGAGGCTCAAGAAGCAACCACTACACTCAACCCCGATGAACATAGTGCTCAGATCGTCCTACCAATGCCCAATATGAC AAGATACTTTGAGGGACAATCCGCTCCACGGTCTTCCAGTAATCTAGAGACCCAATCAACGTTACTTGCAGGACCGAT TCAAATGGCCAAAAAAATACCTCCCAAACCTCAGCAGCCCGCATCATATGAAATGGTCAATTTATATATGGTCATGACG CAAGTGACACTTCACGAATGTGAAGACGAAGCAATTCTCAAAAAGAAGTTCCTTGATATTGAAAAGGCCAACAAGTACG CACAGATGCTTGTCAACGAACACAGAAATAAAATGTTCAGACAACGGGAAATTCTGGAAAGATGGGATTCAGACCGTA TGTATCATGGCCAAATCATTCACGACAAACAGAAGACTACCAAGATTTTTGTTGAATTTAAGCCAATGAACACCGAAGAT ATTGACAAATATGATCCAACACTGGTACGACCGATGTTTGCTACTCAATACTACATGGTTCGATTTGAGAAAGTCGTTG AAGAAATTGACCCCAAAACCCAGAAAGTCTGTATGAAAAACCATACTATTGGATTTGCAGACTCGGGCAAGCTATACAC GGTATTAGAAATGGCAAATCATGCTGCTTCCGAATACCTCCTCAAGGAAATCAAACCCAAGGAAGAAGTTGAGGAGCA TCATACTACTTACGAACAAATTCTCCTCCCGGAAGTGAGAGCAGGAAGAGATGATGCCAACCAAACAGATCAAATGTTC AATTGCGAGTTTACTTGCGAAGGAGCTCCCTGGGTAGATTTCAAATCGTTCGAAGTTGGCGTGGAAATGTATAAGACT GAGGGCCCGGTCAACTGAAAAGGAAAGTGATGAATGTGCTTGCCTCGTCATCTTCTATCATCAATACAAATTGTTTACT GAAACCATCACTGCTCTGTTTCTTACAACACCACTCTTATTTTCATCAAACGACACTTCTTGGCCGCCAAGTTTGCACAT TTTCAGATAATTACACCATATCCATTTCAGCATCACATACATTCACTATAAATAATATCGACGGTTTCAACAACACCTCCA CACTTTGCATCACCCCCGAAATGCCATCATATTTCATTCATGCTTCCCACCAAAATCAGCATAGCATTATTATTCTAGTG TATCAAACTCAACATCAAATCAATCATCATGAAAATCGCAATCGCTCAATCCTCCACAAATTTTCATCGCCACAAAAACA AATAATACAGTCAGAAAAGAAAGTGCAGAAGTCAGTTCAGCCATTAGACGTTCAAGGGTAGTAATGACACGAACAACTC TTGGGGGACTCATCGATGAGTTTATTTCTTGCTGTTTATTAATAGGAAGGGCGTGGGATTTAGGTATTTTATTTTACTTT ATCTGCTTTTTATTACCTTTTACTTTACTCCGGTATTTGTGGTGACAGGTTCCGTAAGCTTTTCAGAGGAAGGGGGGCG GTAGTGGGATCGAATAGGGAGAGAAAGGGGTGAGGCCATAGGCGGGTGGAGAAAAGGGGTGAGTTTGTGCTGAGCT AAGCTGAGCACACGTACTGGGAAAAAGCTACGTGACAGGAGGAAGATTCTCGGAGAGTAGGGAACAAAACATTTTCTT TTGTTGTCGTTGTTTCAATGAAAATTATTGATACTA BC1G_10235 SEQ ID NO: 68 GACTTTTCTGTCTGTTCTGAATGAATGAAGGAAGAAGCCCTCGCGGATTACGACCCTTTCTCCCATTCTCCCATCCATA CACATTAAAATTAACCATCCCATCCATCCCATCCATCCCACCCATCCCTTGTGAACTCTTTTTCCATTTGCTTTTGCTTTG GTGGAAATAATTAGGATCAGACAGGCAGACTGGCACACAGGCACACAGGCACACAGCCAGCCAGCCAGCCAGCCAG AGCGCGACCACAGGCTGAGATTAAGGAGATAATTTACTATTCATTTTGCAAATATTGGCCAATATCGGCGCAACTTTAT ATCGTTTGAACCCTTGGATGGATGGATGTATCTTAGTAAAGTGTCGAATGATTATTGCTTGCGAAGTGCTCTTTTCCCC GTTGGTCAACAGAAGCGTGGGAGCTCTGCTATATTTGCTTCTTGAGGGTTTGTTCACGGCGCAAATCCTGCACGAAAA AGGAAATCTTTGGAAAGCTGATGTCTTGCTCTACAGTCCCGTTACCCATGGCTTAATGACGATACGATCATCTTTTCGA GATACCCTCTGCGAATGCGACCTTAGACATTCACGAATCGAAGCGGCCGATTTTTAAAGGACCTGTACACATCGATCA TCCAACAATAATTTACATCAAATACAATGGCTGATGATGGGCCACCACCTCCTCCTCCCCCTCATGGCACTCCGCCAAA ATCATCCGGTCTGCCGCCGGGGAATTATGACATTTTTATCATTCCACCGCATGCGTCAGGTTCAGGATTTCTCTATTTA CCGTCACTGCAACCAAATGTCAATAGTTTCGTAGCGGGGTTTGCCTCAGCGCTTGTGCTTGTCGCACTAACTTTCATAT TAAAACCATTCATGGATACCATGAAAGGAGGTGGAGGGCCAGCAACCTTGATTCTTATGGTTGCAATTGGGTTGGGAG CTTGGGCACTAGGGCGGATGCAATCGAACGGTGAGACCAGGCCCGGACCAAGTCAAGGATCGGGTGCACCTCCGCA TGGTGGATCATATTCAGGTGCCAATGATAACACATACTCCAATGGATCGACTTCAAGTGGTGGGCCACGAACTTCAGG AACTGGATTTTCACCTGGATCCACATCAGAGGGGGCTGGGGGTCCTCCACCTAATCCGCAGGCCGGATCTGGCGCAA GAAAAAGATCAAGTGAAGGTTGTGAAGAAACTCCTCCTCCTTCGCCTGATGCCGGTCCAGAGATGCCGGGCGCAACA CCCAGGTACAGTCCTGGCACAACTCCTGGCGCAAACGATGACGCTCGATCGAAAGAAAATGCTTCGAGGACGGCGTG GGAAGAGGCTCGAGAAAGGACGAGAAGGAAGGAAGAGGAGAGAAGGAGGGTAGAGGCCGAGAAGAAGCGAAAGGA GGATTTGGAAAAGAGGTTGAGAGAGTTGCGAGCAAAGGAAGCTCTTGAGCGAGCTGCCCGCGAGAAAAAACAAAGG GACGAACGCGAAGCTAGGGAACAAAAGGAAAGAGAGGAACGAGAAGCCAAGGAACGAAAGGAAGCAGAGGAACGAG AAGCCAAGGAACGAAAGGAAGCAGAGGAACGGGAAGCCAAGGAACGAAGAGATAGGGAAGAGCTGGAAGCTCGGG AGAAGAGAGAACGAGCAGCGCGATGGAAGGAAAGAGAGGAACGTGAAAGGTTGGCAAAATTGGAGAGAGAAGATCA ACAGGCTCGAGAGAGAAAGGCAAAGGAGGACCGCGAAACTCGAGAACGAATCAAAGCAGAAACAGCGCGAATCAGG GCAGAAGCAAGAGCAAACTACGATAGGAGACTTAAAGAAGAATTGGCTAAGAGGGAAGCTCTAAGGAAAGAAGAAGA AGCCAGGAGGGAAGTTTTAAGGAAGGAAGAGGAAGCCAGGAGGGAAGTTTTAAGGAAGGAAGAGGAGGCCATTAAG AGAGAGCAAGAAAAGTTACGACTAGAAGCTATTGCTAGAGTAGAAGCCGACAAGAAAGCCAGAGCAGACAAAGAAAG GGCAGAGGCGGAGGCAAAAGCAAAGGCGGAAAAGGCAGAGGCGGAGGCAAAAGCAAAGGCGGAAAAGGCAAGAGC TGCTGCGAAAGCATGGGCAGATGCTAAAGCCGCGGCAGCAGCAAAACGTGAGGCCAAAGCCAGAGAAGAGCGCGAG AAGGAAGTAGCGGCGCAAATACGTGAAGTCAAACTTAAGGAGGAGCGCGAGAAAGCAGCCGAAGTAGCAGCTCAAAT CAGGGAGCTCAAACTCCAGCAAGAGCGTGAAAGGGCAGCCGAGGTAGAAGCGCAAATAAGAGAAGTCAAACTCCGG GAAGAACGTGAAAAGGCAGCCCTAGCCGCACTCGCAGCGGAACGGAGAAAACCGAATACTTATTCGAATGCTGGAGT GGGGGAGAGAATAAGCCCGTGGCCAAATGGAAAACCGCCCACAGCAACACCCGCTCCCCCCACTGCCAGCTCGATA CCCCGACCTCAAGCACAATCCACCGCATCCAAGAAACCCCCGGTCTCAACTGCAAGAACGTATGCAGGTACCGACAA GGATTCCCAGTCCCACTCACCTTATGCACAATCGCCAAGGCCAACACGAAAAAAGTCACTCAGTTCCTTGTATTCCGAA TCATCATACGCGGCCTCACAATCGACAAGTAGAACTACCCCACCTCCTTCGACACGAGGAGCATATAGCACCAAGGAT CCGGACAAGATTGTTATCAAAGGTGTATTCGCATTCAATAACGCATTCCACAAAACCCCCACATCTCAACTTCTATCTG GTGTCGGTTCTGTTACCGACGGACTAATATTAAGAATCACAACAGAGGGTCTCTTCATTGATGATGATGTACGAGGCGT CGCTCAACGAGAGTGGGATGTCAAAGCATGGACAATGAAACTCGTAGAGGTATGGTGCCCATCTTTCAGACAAGCATC GCGTGTTCCTCCCGCTACCACAGCGTTTAAAAATCCCGTTCGACGCCTTTGGGGTCTCGATAAAGAATTGGCAGCAAG TGAAGAAGAAAAAGATACTCTTCTAGTTAGTATGCTGCAACTCTGTCGGGATAATTGTCGCGCTCGTGCCATTTCTAGT TCTTCCACTGGGCATTCTGCTAGTGGTTCTGTCTATTCTGCCAGCTCTTATGCTTCATCTGATACTAGATCGTCTGTTTC ATCTGATTATGCTGATTCCATTGGGTCGTCTAATTCTCCTTATGGTGAGAAATCAAAGAGAACCACTAACCATAATGGC CAGACTGGTGAGAGTAGAACAGCCGGTCTGCATATTTTGAGGGCGAGCATTAGGGATCAAGAAGGCAAAAAGTATGT CTTTGTGGTTCAAGAAGGTGAGGCTTGGAAGGTAGCACTAGGATTGCAGAGGTTGAGGAGGGGAACTCAGGTGAGAA GTTTGGGTGTTAGTGGCATGAGTCCGAATGATGCAAAGGCTACACTGGATAACTTGGGATGGTTTTGAGAGTTGGGG GTGATGGGAAGATTTCAGAATCTCTGGAATACGCCATGGAATGTGGAGTTTGGAACGCGGAATCGTATCCCTCGGCG AAAAGGGATGCGAGGCGAATCATGAGTCCCGAAAGTCAAATCTAGCATTTACAACACAACGGAAGCATCAGCGATGGA GTTTTTTTTTTTTTTTTTTTTTGTCTTTTTGTTTAAGTTTTTGTGTTTGATACTACAGTATTTTCACTCATCTCAAGGAGTTTA TGTGTTTGTTTGCGCACGGGAGCTGTCGAGTTTTAGTTGGAACTTTCTTGTGGGAATTTAGAATGGAATTGGGTATCAG TACCTCTTCAATTTTCTGAGGTGTTTGGTTAGAGAGCGTATTGTATGTATCTTGAATACCCGGTTCTGTGCTAAAGTTTG TGGTTTGAAGTATGTTTGTGTGGAATGTTTGGTAATGAAATGGGATGGGGAGAGGGGGA BC1G_12627 SEQ ID NO: 69 ACTCGTGCGTCTACTGCCACTGCCACTGCTGCTACTTTGCTATTCAACTTCGCCTCGCCTTTCAATTAAGAATTGTCAC TTCGTCGCATCTGAGGCCGGAATGCTAATATCTTCTCGTCATCTTTGAAGCCAATCTCACTCGTTATCCCGTCCAATTC AGTCGATATATTAAGAGCCTTTGAAGTTCCGATCCAAGAAACCTTTCGTCTATCCATATCGCAAGAGTTCACTTCTTCAC AATGAAGTTCACCCCAGTTTCTGTTGCGCTTCTCAGCGTGGCCGGCGTTGCGATTGCGCAACCCCACAACCATCAACA CCGTCATCCAGTTCGAGCAAACAAGGTCGCACGCGACAATGCTGTTGTCTCTGTGACAGAGGTTATGCCAGGTCCAG TCGAGACAGTCTACATGCTTAACGGAAAGGATATCTCTTTGGCCGAAGTACAAGATGGTTTGAAATCTGGAAAATACGT TTTGGTGGGAGACGCTGTCGAAGACGCCCCTTCTGCTACTAACTGGTACACTGCACCCGTATCTGTTGCACCCACAAC ATCTGCCGCTACAACCTCTTCCGCAGCTACCTCCACCAGTTCGATCGTCAAGGCTGCTGCAGAGTTCATTGAGGTCTC CTCGTCTTCCACCAAAGCTGCGTACACTTGGAAATCAAGCGCTGCATCAAGCGCTGCATCATCCACTTCAGAATCAAG CTCGGTCGCCTCTGTCTCCTCTACCAGTTCTGCTGCTGCTTCTTCCTCCTCCGCCAGCAGCTCCACTTCCGCCGCAGC CAGCAGCTCTACTTCCTCCAGCAGCGCCGGCAATTGGGCCGACTTCCCAAGTGGCACAATCCCTTGTTCCACTTTCCC ATCTGAGTATGGCCCAATCGCTGTCGATTACCTTGGTTTAGATGGCTGGATCGGTATCCAAAGCACCCCTGGCTACAC CACTTCTGCTTCCTCGATCGTTACCATTAACACACTAACCAGCGGTGGATGTGTGAAAGGCGCTTTCTGCTCGTATGCA TGCCCAGCGGGATACCAGAAATCTCAATGGCCTAGCGCACAAGGAAGCACTGGTGAATCCATCGGCGGTCTTTACTG TAACTCCAAGGGAATGCTCGAGTTGTCCCGAACTACCACCAAGCAACTTTGCACTGCTGGATCTGGATCCGTCAAGGT TGAAAACAAGCTCAGCAGCATTGTTTCTGTTTGCCGTACTGATTACCCTGGTCTCGAGGCTGAAACGGTTCCATTGTCA ACCTCCCCTGGCCAAACCTATGACTTGACTTGCCCAGATGCCAGTAACTACTACTCATGGGAAGGACTTCCAACTTCC GCACAATACTACATCAACCCACAAGGAGCTTCTACCTCTGAAGCTTGCGTATGGGGTGAAGCAGGTAAAAACCTTGGT AACTGGGCTCCTGTCAATGCTGGTGTCGGCAAAGATGCCTCTGGTAACACTTGGTTGTCAATCATCCCTAACACCCCA ACCAACACATATGGTACCTTGGACTTCACCATCACTATCGAAGGTGATGTCTCCGGAAAATGCTCGTACTCATCTGGAA CATACTACAACAATGGTGTTGAGTCCTCAACAGGTTGCACCGTCTCTGTTCTCGCAGGCGGAACCGCTACATACGTCT TCTCATCATAGGCGCTTGAGTCTCGATTTTCCCTTTTACAAAATTTCCGGTGCACATATTGTTGTTTTCTTTCCGCGCGC ATATCCACAATTGCGGCTTATGATCGTTGTAGTCACTTTTTTTTTTTTCCTTTACACGCCCTCAAGTTATTCTAAGTCTCG GATGTTCGAACTCACGCTCGACTTGCAACGTTCAAACAAATTTGTCAATAAGATACCCCCTCCATCCGATCTCTGAATG TACTTCGTGTGGTAACTTTTCCTTTGTAATAAATGTCGCTAATGTTTTTACATTATTGAAGTGGAAGATATCTGGACGTTG GAATACTACGTTCCAGATGGTTGTTGTAAGCATGAATGGATTTCTTGAGGGGGTTGGGGCTGTTGGTAGAAAAAAAGG TTGTGTTCTCGGCAGATGAATGTTCATATGGCGAACGGGAAAGCTCTCTTTCCTTGAAGCGATCACCTTGGTTAACTCT TCTATGTATTCGTTACTCATTTTGAAGGAGACGTGCTCCTGGTACAGAGTGCCCCTCTATCCCTACGGCCTTTTTATCA ATTTGCCGCAGGCACTCTTGCATATGTTTTCACACTGGCTACAAATGTTTGGAAGGAGCGCGCACACGAAACAAAAATT ACCACCATGTCTCTTTTCTGAGGAGATTTGGTAGAGAGCTATAACACCTGTTGTATGTGGATGTGAATGGAAAATTTGA CGGCAGAGGCTGCAGAATATGGTGCATGTATCAATGTAAAGTAGTCTAGTCGGCACAACACAGACAGGGAAAGGGAG ATCAGTTACACTCTACTTATTCTACCTTTTCAAGAAGATGTTGAGAAATTTTTGAGAACAGAAAATTCCAAAAAAACAAAA ACAAAAAAACAAGTAAATGGAGCATTCAGATGAAGTGTGTGGCCTTTTTCGTGTATACAGATTAAAATCTCTTTTCGTAT CTTATAATTTCTTCATTTTTCTTTCCTGACGATGTTCACATACAACTAACTGTCTTTCTGAATCTGTGAATATGAATA BC1G_09656 SEQ ID NO: 70 GTCCTTTTGTTTCTTCATTCTTTCATTTCAAAATGTATTTTTCTTCTCATTCTCTCATTGCTTCCGTGCTCTTGGTCTCTGC CGTTCAAGCATACCCAGGAGTTCAAGCAGATCTTGTTGTTGATATACTAGCTACAGCGACATCTGCAATTGTTTTAGAG ACCCCTCCACCTTCGGAAGGGCTTCTTGACAATGTAGGGTTGTTCAAATTCTTCGCAAGAGCCGCGAAGAAGACAACA GCAAAAACCACTGCTAAAACCACTGCTAAAACAACAGAGGCTGCACCGACAACCCAGAAAACTACAGCTCCAGCAACA ACGCAAAAAACTACAGCCGTGGTGACTACACCCACAACTACCTCGGTGAAAACCACTGAAACACCTACTACCACTTCA ATCAAGACTACTTCCATCCCGACTACGTCATCTATATCCACGAAACCTACGTCTACGTCTACTTCAACGAGTTCGACTT CGGTTGTAGCACCAAGTAGTACGAGTACTATCTCCAAATCCTTGATTTCAAGCACCAGCTCAATTCCTACCTCGGTGGC TTCAATTCAGACATCTCAAGTCTCATCTTCCACTGTGTCTCCGATCTCTAGCTCGTCAACATCTAGCTCTTTGGTATCCA GTAAAAGTTCTACTTCTGTAGCTACGTCTTCTCAAATATCAACTTCTAAAACTGGTTCATTGTCCAGTGTTAGTGGAGTC TCCGGATCCATTGTCAGCACTGGCTCTTTATCATCCCCTACTGTCTCTACTTCGGCTGGTGGGTCTGTTTCTTCTGGAA TCAATTCAAAGACTAGTGAATCTCTCACCAGTACTGGATCAGCATCAACAAGAACCGGTTCCATAACGAGCACTGCTTC CGCTTCAGCGAGTGGATCCCTTTCATCTGGAACAGGTTCTATCACCAGTGGATCTCTCACCAGCACTGGGCCAGTATC ATCAGGAATCAGTTCGAGCTCGATCTCAGGGAGTGGAACTATAACTTCCTCCTCCCGCATCTCCTCCTCCAGCGGTTC CATCTCTTGTTCCGTCTCCAACACCGTAACAGACATAACCTACTTTGTTTCACCCGCCACCAACACCCTTGGTTCCGTA ACAAAACTTTCCACCATCTCCTCCACCGCCGTCAGAACCATCGGATGTTCTCTCAGCGCCAAAACCGCCACATCCACC GTCTCCTCCTCCGCATCTATCAGTAAAATCGTCATTCCAACCGGCTATGGAGATCCCATCATGAGCGCCGAAGCCAAA AATGCCGCTTTCTACAAAGCCGGCGTGGCGGGATACTCAAGCCAGCTGAGCGTTTACAGCGCAGCCTCGACGAGAAC AAGCGGGATGACCACAATGGCTTCTGCGACGGGGAGTGCGTCGGGCGTGCAAAGCGGTTCGGGTTCATCTAGTGCT TTGAGTGCCCCGAGTAGTCTTGCAAGTGGCACGACGAAGGAAAGTGTAAGTAGTGTTGCTACCACGGATGTTTCGAGT ACTACTAGTGCGCCGGCTACTTCTGAGACGGCTTCCGCCACGGGGTTTGTAGGGGAGATCTCTTCGCTTCTTAATATC TTTTAAGGGGGAGGTGTGGATATATGAGGGGGCTGGATATTAGCATGGGAATAGATTCA BC1G_07658 SEQ ID NO: 71 GGAATTGATTCATGTATGGGTCATCACCCTTTCCAAATCAAAATACCCTTGCGAGCAACAAATATATTACCAGTTACCGC CTTGCATACTTCTTTTGTTCATTCAAAATCATCCACAAACAGATTTGATCCAATCCGATCCAAGCTTTATGACGGGCATA AGCGTTGGATCATGTTTCTAGCCCTTTGGTGAATGCTCCCTTGACTGCCTCCAAAAGCAAAATCTGCTTGTTCGATTCG TGGATGACTGGGATATCTAGTTTCTTGTACACAGATTGAATCTCCACAACTAACCAGTTCATCTAATGGCACAGTGCTA GGTCCCATTCCCCAACTTTTGTATAAGTATCTTTCTCTTGGCCAGTTTGACTTCGAATTCTTCATCGTTCAAGCAAACGT TTCTTTCTTTACCCATCACATTCATTTACACAGTCCTCGGTGACTATCTACATTCATTACTTCATTGATTGAAGCTTATCA ACAACTTTTCAAATCCAACGCTCATTTTTTCCACCTCACGAAAAACTTCCAAACACTTTTTCCATCAAAATCATCAATCTC AAGATTTTATCATCAAAAATGTCTTTCTCCAAGATCGCCGTTGTGGCTGGTGCCGCTTTTATCTCTGGTGTTGCTGCTCA CGGACGTGTCCAAGGTATCACTGCTGATGGTGTTTGGTACGAGGGTTACAACCCAGCTTTCCAATACGAGCAAGTTGC ACCAGTCGTTGCTGGATGGTCCGACCCAACTGATCAATCGAACGGTTTCATTGCACCAGATGCTTATGGTACATCCGA CATCATCTGCCACTTGGCCGCTACCAATGCTCAAGGATACGTTAATGTCACTGCCGGAAGTGAGGTTAACTTGCAATG GACCACCTGGCCCGATTCGCATCACGGTCCAGTCATCGACTACCTTGCTGCCTGTACTGGAGGTGATTGCACAACTGT TGACAAGACCACCCTCGGATTCTTCAAGATCGATGGTGTAGGACTTATCGATGATTCCACCGTCCCAGGTACATGGGC ATCTGATCAGCTCATCGCCAACAACAACTCCTGGTCTGTTACCATCCCAGAGTCCTTGGCACCAGGTGGTTACGTTCT CCGCCACGAGATCATCGCACTCCACTCCGCTGAGCAAGCCGATGGAGCTCAAAACTACCCACAATGTATTAACCTTTG GGTTTCCGGCTCTGGATCTGCTGTTCCAGCTAGCGCAGATACCACTCTCGGTACGGCTCTTTACACCGAGACTGAAGC CGGTGTCAACGTCAACATCTACGCTTCCATTGCTTCATACGATGTCCCAGGTCCTACTCAATGGGCTTCCGCTACTGCT TCCGTTGCTCAAGGTACTTCCGGAGCAGTTGCCACCGGAGCCGCCGTCGTTTCTTCAGCTGCTTCTTCAGCCGCCGC CGTAGCTACCTCAAGCGCCGCTTCATCGGCCGCTGTTGTCGCCTCTTCCTCCGCTCAAACCAGCGCACAAGTTGCCG CCGTCAGTTCCGCTGCTCCAGTAGCCTCCTCCTCAGCTGTTGCCTCCAGCTCCGTTGCTAGCGTTGCTTCATCAGTTG TTGCCAGTTCCGCTGCATCAGTTGTTACCTCAGCCCCAGCTGTCACCTCGGCACCTTCAAACGTTGTCACTGATATGAT CACCGACTACGTCACTGTTACTGACGTCGTAACTGTCACCGTTACCGCTGCATAAATTCTGAACCTCTTTGGTTTAAAA TCAGCACCTCCTTTTGACTAAAAATCTTTTTGATGATATTTTGATGGTTTATTTTTGGATCTGATTCGGGCTATCGGGCAT AGCTTGGATGGAAAATTTATGAGCCGCATGATGAGTTGGATAGGCTTCATGTCACTTTCTTGTATATATTATGTCCTGTA TAAACAGAATTGAACATTTTTCGA BC1G_02429 SEQ ID NO: 72 GCTTCAAAAAAAGTCGCGTCTCTGCCAAAAAGTTATAAGTTATAAGCTTATTGTAAGCTTTAACTTCCTTTCTCTCCAAG AGCATTAAGCATTAAATTGCGCTCCTTCTTGATTTGCTACTACTCATCATCGAGAGTCTTTCTTTTCCCTTTCAATTTTAT TCCCCTCAGGACCTTGGAACGAATTGAAACCGGTCACAATGTCGCTCTTCGGGAACACGAATCAAAACAAGCCGTCGC TCTTTGGTGCACCGCAGACCACAGGAGCGTCTACAGGTGCTAGCACGGGAGGTCTTTTTGGTGGATTGGGAACGACT GCGACTAGCCAGGCTCCATCAACGGGAGGAATGTTCGGTGGAATGGGTGCTACAAGCCAACCCCAATCGACTGGCG GTCTTTTTGGAGCAACTACAAGCCAACCTCAATCAACCGGAGGCCTTTTTGGAGGAACGACTACAAGCCAACCTCAAT CAACCGGAGGCCTTTTTGGCGGAACAACTACAAGCCAACCTCAATCGACTGGCGGTCTTTTTGGAGCAGCCAAACCTC AACAACAATCAGGGACAGGATCCGGTGGTTTATTTGGAGGACTTGGAGCAACTCCAGCAGCAACCCAACCACAACAAA CAGGCGGTCTTTTTGGTGCGACTACACAACCCCAAACTACAAACAACACAACTGGAGGTCTCTTTGGTAATTCTTTGGC ACAACCACAACAGCAGCCGCAACAAAGTACTGGTGGGCTTTTTGGAAACACAACTACACAACCCAACCCTTCAGGATC AATGTTCGGTCCTACTCCACAAATCCAGCCTCTCTCGCAATCTCGACAACAAAATGGAACCAGCGGTGCCTATTTTGAT GCTATATTGGAGAAGAGTCGTAAGAGGGCACACGATGAGGATTCCTTGGGCTTACAATTAGGTTTGGGGGATATTCGA CAGCGCATGAAGAGGCTGGCTCCTAGTACCCAAGATGGCTCTGTCGATGGAAGAGCTCATTACCTATTGGCAGCTTCT GGCGTGGACCCAGGCGCTGCGCTCAGAGATTTGAATCTATTCACCGCTGCCACAGGAAGACTTGATAGGACAGCACC TGTAGAAGCACCCATTGATGCGGATGTCGAAGCATACCTTACACGTCTGGAAACCCAAACCACAATGAGCATGATATC TGAAGGGTTGGCACGATCCGTTCGAGATTTCGATGATTTCCTCGAGGAGAATGTTGCTATGGAATGGAGTGCACAGCG CAAGAGAATATATGAACATTTTGGAATTAAGCCCAGAAGAGAACAAACAACAGGGCCATCAGTGAGCTTTGCAGCTAC AGCTACAGAACCTATGGGCGGTTTTGGTCGATCAAGACGCGGCAAAGGACTCGCTCCTGGAGCATCTAAAGGGCCTG GAATCCCGCGGGCTAGCGTTTTTGGAAAATCAAGCATGCAGAGATCTGTTATAGGAGCTATTACTCCAGGAGGAACCG CAAACCGCACACTTTTTACTGATATAGAGAAAGCAGATACGAATGGGTCAGCACCAGGTCCAAGTGACCGATTCATTC GCGAGAAGCAGGCTCGATATATCGAGAAAGTCCAGAACCTAAATGGTGCTAGACTAAAGAACCTTCACTACCCAATTG CGAACGAATTCTCAGCTGTTGTAGCCCAAGGTAGCGAACAGCACTCTGCAGATGTTTACAGGGCATACAGATGCTTGA TGGAAATCGTTGGTGAAGATCCTGACCCGGACAGACTACAACTCCCTGGCGCGGTCAAACAGAGACAGTTTGCAGCC GCATACCTGGATGACAATACAAACTCAGCTCAAGCGGCCGATTTGAAAAAGCGGATACTCAGTGGATCACTTCGATTT CTTGAAAAGGAGTTTTTCGAGAATGTAGAAACTATTGTTGCCAAAAACCCCAGGGAAGCACTTGTGGGTGGTAAGCCT AGTCCTCTCACAAAGATCCAGGGTTATGTTCGTCTACGCTCAGCTCGTAAAGACCTTGCTACAGACATCTCCGCTCTAC AAATTGTTAATGACGATTACGTCTGGGCAGTAGTCTTTTATCTTCTGAGATCTGGCCACGTTGAGGAAGCCAATGCTTA TGTCCAAGAGAACAGGGAAGCATTCCGGGTAATTGACCGCAGCTTCATGTTTTACATCGCAGAATATGCCAATAGCCC AGACAGAAAATTAGGACATGACCTTCAAAATCGCATTCAAAGCGAATACAGTCAGCGAAATCGAATTTCCCCTGAGGGT TCTATAGATCCTTTCAGAATGGCATGCTACAAGATAATTGGTCGCTGCGAACTCCACGTTCGCGCTCTGGATCAAAACA TTGTCCAAAACCAGGATGACTTTGTCTGGATACAGTTTGTCCTTGCGCGCGAAGCCAACCGAGTCGATGAAATTGCCA GCGATGCATATGGACTCGCAAATGTACAAAAGACATTCAAAGATATTGGCGCCCGGATGTTTTCCAAGGGAAATGAAA ATAGTGGACCATTTAGTGTGTACTTTGTGCTGTTGGTACTTTCAGGCCTATTCGAAGACGCAATCGACCTTCTTTATCG CCATAGTATTTCTGATTGTGTTCATTTCGCCACGGCACTTGACTTTTACGGCCTGCTTCGAGTCTCAGATCCAGATGTT GCAGAGGGTGGATTCTTAAGTTACACAATAAGACAACAACCTCAGATAGCATTTGGATTAATGATGGGATTTTACACTG CAGAATTTAGAGCTGCAAATGTCAGCGCTGCCGTGGATTATCTCACCTTGATCTGCCTTAATAGTGACCTCAAAGGCG ATGCTGGCTCAAAACAAGTCGCATTGTGCCACGAAGCTCTCCAAGAGCTGATTTTGGAAAGCAGAGAATTTGCTTTGTT GCTTGGAGATATCAGACAAGACGGAAAGCGCCTAAAGGGAGTTATCGAAGAACGCCTGGAACTCATCAATCTCAGCA GCGCTGATGATTTCATGAGAACAGTGACGATACAGGCAGGAAGTGTCGCGGATGACAATGGGCGAACCACTGATGCA GTCCTACTTTATCATTTAGCAGAAGAGTATGACAACGTCGTTACTATCCTTAACAGAGCCCTTAGCGAAGCTATTGCCG TGCCTGTAGGCCATAGCCCGTTGCGATTACAACCACTCAAGCCAAGGCCTGGAGACAAATCCGGAAGAGAGGCCCAT ACCAGTCTCAGTCTTACCTCAATTGATGATCCTTTCGAATTGGCTACCATCATGACGAAGCTCTACTCAAATAATCGCAT GTATCTCAACAAGATCAAGCAAGAAAACCGCGCAGCTTGTGAGGCTTTGTTAAATATCTGCCGTGCTAAGGAATTTGTT GAAAATAGACAATGGGCTGAAGCATTAGATGTTGTGCAGAATCTTGACATTCTTCCCTTGAGCGCCGAGGGCAACCCA AGTGCAGTACGAAGTTATGCCACCAAATTTTCATCACTCTCCCAAGAGGTCGCAAACACTATCCCTAGTCTTTTGACAT GGACAGTCTTGTGTTGCAACAACCAAAGAACTTCCCTCATGAATGCCCAATACGGAGGTAATGAGGGTACCAGACGAC TGATGATTAATCAATTGAGACAACAAAACATGGACTTAACGACTTATACCAGTCAATTAAGATACAGATTCCCTGCGTCT CTTCATGAAGCTCTTGCGAGGGCTCAATCGGAGTAAGGGATGAACATATGACATGAGCTTATGAGCTTGAATGTATATT AGAACAGCACAGTGGGAAGAGATTAAAAGGGCATTTTGAGTTTTTATCTGGACGGAACGAAATGAAAACATTGGGGGT CTGTCTACTACTTTTGTAGTTGATTTTTACAGTTTCTCATGAACAAGTGCATAGATGAAGAATGTATTGTGTTGTCTATTA GAAGATTAATTATGAGTGGTTAATGAATACAGAATATCGAGATCTCGCTTCCA BC1G_09103 SEQ ID NO: 73 GCAATCAATCATCTAATCGCGACGACAACTTTCAACAATTACCATATTTCAACAATCATTTGGAATCTTCTGCGATATAC ATTGAGGAATAATAACGACCACAGTCTCCGGCTCATGATCGCAAGTAAATCTCAAGATGGCTGATCAACCACCAGCAA TGCAGCATGAGGACTCCATCAGTTCGCAAGATCCTCATTTACATGGCGACAAAGGAAAGACGAAGAGTAGACGGCCA GCAAATACGGCATTTAGACAACAAAGATTGAAGGCATGGCAACCGATCTTAACACCAAAAACCGTACTCCCATTATTCT TCGCCATCGGAATCATTTTCGCGCCAATTGGTGGAGGGTTGTTATATGCTAGTAGTGTGGTCCAAGAAATTGTACTCGA TTATTCGAAATGCCACACAGATGCGCCAATCTGCACGGACTACCTCGATACAGGCTCCCTGATGCCCGATGACAATGT TGAAATGTTTTTCAAAACACCTCACGTATATGATGGAACTCCTCCGCAATGGTGCAGACAAGATATCAACCAAACATAC TACAACGGCAGTGTTGCGCATGCTACTGTTCCCGCTGTACAATGCCGGCTCACATTCCCAATCAAATCCGAAATGGAG CCTCCTGTTTTATTCTATTATAAGCTCACCAACTTCTACCAAAATCATCGACGATATGCTAAGTCCTTCGATTCCGATCA GCTTTCCGGCAAAGCCGTTACCGCAAGTACCATACATTCTGGTGATTGTACGCCACTCACGACTGTAAATGATAATGGT GTCGACAAGCCATATTATCCTTGTGGTCTAGCACCAAACTCTGTGTTCAACGATACATTTTCAAGTCCATTCCTACAAAA TGTCGCAAACAGTACTTCAGGTGGCGTAGTCTATCCTATGAAGAACAACTCGGATGTATCATGGAGTAGTGATAGAGA GCTATATGGTCAAACAAAGTACAACTGGTCGGACGTCATTGTTCCTCCAAATTGGGTTGAGAGATATCCAAACAATTAT AGTGACGATTATCATCCCGATCTCGAGAACGATCAAGCATTCCAAGTTTGGATGAGACTGGCTGGTTTGCCAACATTTA GTAAACTGTTTCAGAGAAATGACGACGATACTATGACGACTGGACAATATCAAGTCAACATCACACATCTTTTCAATGTT ACCGAATATGGCGGTACTAAATCAATCGTTCTTTCAACCCGTACCGTTATGGGTGGTAAGAATCCTTTCCTAGGTATCG CCTATATCGTTGTTGGAGGTTTATGTATCCTACTCGGTGCACTTTTCACCGTCACTCATCTTATAAAACCAAGAAAATTG GGCGATCACACATATTTGAGTTGGAATAACGACAACCCTACAACGGCGACTACCAGTGGACGTGAAATGGGTGCGAG CATGGGATAGACGCTGGATCGATATCGAATCAAAAAAGGGGACGTGTAAAATAGTGATGGATGATGAGATATGAGGCA GGGTTGTTGTATTCGAACATTTTCTTCTACGTTACCAATGGGCAATATGGCGTCTAGGTATTATGAGCTTTTGATCTGTG CTGCTTTTGAAAAGCATTCTGCGATGCGAGGAAAAGTGGGTGGAGGGAATCTTTGGCTGGACTGGGGAATCAATGGG TGCTATGAATATTTTGTGCTCTTATTTTTTTGAATTAGAAAGAAACTTATAACTTTGAAATATACCACAGATGAAACTTGTA AAGGCGAATGGACTTCTGGTGTTCTCGAATAGCCAAACATA BC1G_02638 SEQ ID NO: 74 GGATGCATTTCAAGATTGGGATTCCATTCCATCTTCTAGGCAACTATTACGTCGACCCACCATATTTCCGGCTTTTTGAT GAGCAAGGTTATGTTTCCCGGTAAGAATATATCATTGCCGTCATGGCACCTCCAGCGAAGAGACGGAAGCGTAGTGC CATTGAATCCTCTCCCCATTCCTCTGAGAACGAGGATAATCAATCAATTCAGGTGAACAAGTTCAAAGGTCGATTGAGC AGTTTGGCACATTCTCCTCCACCAAGATCGAGCTCTTCTGAGCCTGCCCCAAGGTCTATGTCGCAGTCCAGTAATTCTA CGAGATCCTCTTCTTTTTTGAAACCTCCAGCAAAAGCGGCCATTCATCCTCACAATGCTGCCCCGGTCTACTTACCAAA CCACCGTAAGAAGTCCACTACAAAGAGTCCCAGCACAAGTCCAGAGAAACCAAGAAGTAAAGGAAGAGTTGAGGAAA AGCGGCAGAATGCAGATATTCATACGTTGTTTGCAAGACAATCACAGAGGCAGCAAGCACAAACGGAAGGCGAGACG ATACCCAAACAAAGAATCAAGGTTCTTAATTCGAGAGATATTCAGCAGGAGACCGATTTAATAGACGATTTAATATCAGA TGATGACGATGTGGGAGAGGGTCAAGCGCAAGCAATTAGCATTGTTGGGCAGGCCGCCAAACGGGGACTTGGAAAG AACGTATTCATAAATTCAGGTACAAACACACCCAGCGCCAGTCAAAGATTTGTAAGACCGTCTCAGGCTTCTACAATAG AACATATGGTCGAGGAAGAGGATATACGACCTTGGGCTGAACGCTTTGGGCCAAATAATCTGGAAGAGCTTGGGGTT CACAAGAAGAAAGTAATGGATGTTCGAACCTGGCTTGATAATGTTATAGGAGGGCGGATGAGACAACGGTTATTGATC TTAAAGGGTGCTGCCGGAACCGGAAAGACGACAACAGTGCAGCTATTAGCGAAAGATATGGGGTGTGATGTTCTAGA ATGGAGGAACCCTGTTGGATCAATCGATTCCTCAGACGGCTTTCAGTCAATGGCTGCACAATTTGAGGATTTCATGGG GCGGGGTGGAAAGTTTGGTCAACTAGATTTATTTTCCGACGATCATGGAGATATTCCAGCAGAAGCAGAAGTAAAACC GTTGGATCAAAGGAAGCAAATTATACTAGTCGAAGAATTTCCAAACACTTTCACGCGTTCTTCAAGTGCCTTGCAATCAT TTCGATCTGCGATACTTCAATACCTTGCATCTAATACTCCTCTTCTTTCAATGTCACACAATCCTCACTTTAAAAGTGATC CCATCACTCCTGTGGTAATGATTGTATCAGAAACATTGCTCACAACGACATCAGCGTCTGCAGACAGCTTCACTGCTCA TCGTCTTCTTGGGCCAGAGATTCTTCAGCACCCGGGAGTAGGAGTGATAGAATTCAATTCTATTGCCCCGACCATATT GGCAAAAGCTCTCGAGACTGTAGTACAAAAAGAGTCGAGAAAATCAGGCAGGAGAAAGACACCAGGACCCCAGGTAT TGAAAAAGCTTGGGGAGGTGGGCGATATTAGAAGTGCAATTGGCTCTTTGGAGTTTATGTGTCTAAGAGGGGATGTCG ATGACTGGGGAGGCAAAGTTGTTTTCGGCAAGGGAAAGAAAACAAGCAAAGATACATCTTTGACAAAAATGGAAGAGG AATCGCTGGAGCTGATCACTCGCCGCGAAGCTAGCTTGGGAATCTTCCATGCCGTTGGGAAGGTTGTTTACAACAAGC GCGAAGGAAAGGTATCAGGCGATGTGGAATCTTTGCCACACTTTATATCTCATCAATCACGTCCTAAGAAATCTGAAGT AGGCATAAACGAGCTTATCGACGAGACTGGCACCGACACACCAACCTTCATAGCTGCCCTTCATGAAAATTACATCCTT TCATGTGAAGCACCACCCTCTTCCTTCGAATTCTCATCTCTTGATCACGTCAATGGCTGCATCGATGCCCTCTCTGACA GTGACCTCCTCTGTCCCTCTTGGGACGGTTCCATCCAATCCTCCGGCTTCGGTGGTGGCATAACAGGAACCGGAGGC GACATTCTCCGCCAAGACGAAATGTCCTTTCAAATTGCCGTCCGCGGTATCCTTTTCTCACTCCCTCACCCCGTATCTC GTAAAGCACCTGCAGCAGCGGGGTTCAGAACTGGCAAAACAGGCGATGCGCATAAAATGTTCTATCCCACCAGTCTC AAACTCTGGCGCATGAAAGAGGAAATGGAAAGTACACTAGATCTCTGGGTTACACGATTAATAAAAGGAGAAATTGATC CCACGAGTACGCATGCGTCAAGTATTAAATCTGGCGCTGCAGTATTCGCTCGTCCTAAAGCTGGCACAGTCGAAAGCT GGAAAGTGAAAATCGCCGCACCATTGCCCTCGCAATCAAAATCCAAATCCAGCCTCAACACTCCAAAAGAAGAAGACA GCCCACCCCTCCTCACCCTCGGCGTCTCCGCTCGTACAGAAATGCTCCTCGAGCGTCTCCCCTACATGATCCAAATCT CCAAATCCAAATCATCCCACCAATCGCGCAACCCATTTTCTTCCTCCTCCTCCTCCTCCTCTTCCACTTCCGCCATCAC GAACTTCCAAAACAACCCCCTTCTCGCCTCCCTCTCTAAAATAACAACCTTCACTGGCATCGGTCCCGCGCAAACCTC CGACGACCCCGCCTCCCTTTCCGATGACGAATCTCCCAATCCCAATACTGAAAATTGGGCCACCGATAAACCAAACGG TAATGGTATGGATACACCTCGGAAGAAGAAGCAAGGCGGGAATATGGGGGTTTTTATGAAGAAGGGAATTGGTAATCA GAGAGCAATGCCCATGCAGCAGTTGGAGCAGAAATTTGTTTTGAGCGATGATGATATTGAGGATGATTGATTGATGATT GGAATCTGGATTGGGAGTGGGGCCTCAAACGCTTGATGAATATGGGGGTTTTGGGTGATATGCTTGAGGTGTTCGTG GATGAAAGGCATGTGTTTTTTATGATCCGGGATGAGATGGTTTGGTATTTACTTCTTTGTATTGTATTTTGAAAATCAAAA TTAACATCGAGTTTCACCGCGTTTCAATTCTTTTGCGCGTTGTCATTCTACAAAATATCAAACTACTTATTTCTATACACA BC1G_02869 SEQ ID NO: 75 GAAGCTCAGAAATTCATCTCACAATATTAATATGCCCTTAAATCGGTAACAATGAAGACGGAATTTAAGTTCTCCAATCT CTTAGGGACTGTTTACAGCCAAGGAAACCTTCTCTTCAGTCCAGATGGATCATGTCTATTTTCTCCAGTAGGGAACAGA GTCACAGTTTTTGATTTAGTAAATAATAAGTCACATACACTTCCATTCGCACATCGAAAGAATATAGCACGGTTGGGACT TGCGCCGCGAGGAAACTTATTGCTTTCAGTCGATGAAGATGGCCGCGCGATATTGACCAATGTACCGAGAAGGATTGT CCTTCACCACTTTTCTTTCAAATCAGCTGTATCCGCCATATCGTTTTCGCCATCTGGGCGCCATTTCGCTGTGGGAGTT GGACGAATGATCGAAGTATGGCATACACCCTCAACACCGGATACAAATTCAGAAGGGGAGTTAGAGTTTGCGCCATTT GTTAGACACAGAGTATATACCGGTCACTATGATACTGTTCAAAGCATCGAATGGTCGAGTGATTCTCGTTTTTTCCTTAG TGCAGCAAAAGATTTGACAGCCCGGATATGGAGCTTGGATCCAGAAGAAACCTTTATACCTACTACATTGGCGGGCCA CAGAGAAGGTGTTATGGGCGCATGGTTTTCGAAAGATCAGGAGACTATTTACACTTGTAGTAAGGACGGAGCAGTATT TCAATGGGCGTATATACGGAACCCCAATGCTCCTGAGCCAGAGGATGAGGATGAGGATATGGAAAATCCGGACGACG ACTCGCACATGCAATGGAGAATTACGGAGCGACATTACTTCCTACAGAACAACGCTAAGGTCAATTGTGTTGCATACCA TGCCGAAACGAATCTTTTGGTTGCAGGATTCTCGAATGGTGTATTTGGACTCTACGAAATGCCAGAATTCAACATGATC CATACCTTGAGTATCTCACAAAACGATATTGACTTCGTCACAATTAACAAGTCTGGAGAATGGCTCGCATTTGGAGCCT CAAAGCTGGGGCAACTCTTAGTTTGGGAATGGCAATCAGAATCATATATCTTGAAGCAACAAGGCCATTTCGATTCAAT GAATTCCTTGGTTTACTCCCCAGACGGACAAAAGATTATCACCACTGCTGACGACGGAAAGATAAAAGTTTGGGATGT GAATACTGGTTTCTGTATAGTCACTTTCACAGAACATACCAGTGGAGTCACGGCTTGTGAATTTGCCAAGAGAGGAAAT GTTCTTTTCACATCAAGTCTTGATGGGTCGATAAGAGCATGGGATTTGATAAGATATCGAAATTTCCGTACTTTTACAGC GCCCACTAGACTTTCATTCTCATCCTTAGCAGTTGATCCCAGTGGCGAAGTCGTTTGCGCGGGATCTTTAGATTCTTTC GATATCCATATTTGGTCGGTACAGACTGGTCAATTACTAGATAGATTATCAGGTCACGAGGGACCTGTATCATCACTAG CTTTTGCGCCAAATGGAGGTGTAGTAGTAAGTGGAAGTTGGGATCATACAGTTAGAATTTGGTCTATTTTTGACCGTAC ACAAACGAGCGAACCGCTTCAACTTCAAGCGGATGTATTAGATGTCGCATTCCGTCCCGATTCACTACAGCTTGCTGT CTCAACACTAGATGGACAGTTGACATTCTGGTCCGTTTCAGAAGCTGAACAACAGTCAGGTGTTGATGGCCGAAGAGA CGTTTCAGGTGGTCGAAAAATAACCGACCGAAGAACCGCCGCTAATGCTGCGGGCAACAAAAGTTTCGGGTCCCTTA GATATAGCGCAGACGGATCCTGTGTTCTTGCAGGTGGTAACAGTAAATACATATGTTTGTATTCTGTAGACTCCCTCGT CTTACTGAAGCGATTTACCGTCAGTGTCAACTTATCCCTATCCGGAACGCAAGAGTTCCTCAACAGCAAACTTTTGACC GAAGGTGGACCAGCCGGTCTTATCGATGAGCAAGGTGAAGCCTCTGACCTCGAAGACCGCATCGATCGATCTCTCCC CGGATCAACCCGCGGTGGAGATCCTTCCGTCCGCAAAAGACTCCCCGAAGTACGCGTTGCCGGCGTGGCTTTCTCTC CCACAGGAAGATCCTTCTGCGCAGCCTCAACAGAAGGACTCCTCATCTACAGTCTCGACACTATGCCCCTCTTCGACC CCATCGATCTCGATCTCGCCGTCACCCCCTCCTCCACTCTCCACGTCCTCAACATCGAAAAAGATTACCTCAAAGCTCT CGTCATGGCATTCCGTCTCAACGAAGCTCCGCTCCTCCGTCAAGTCTTCGAAGGTATCCCACACCCCAACATCGCGCT CGTAGTCGCTGAATTACCAGTCGTTTACATTCCTCGTCTGCTGCGTTTTGTAGCCATGCAAACGGAGGAATCCCCTCAT CTGGAATTTTGCTTACTCTGGGTCCAAGCGATACTCGTTTCCCATGGTCAATGGGTTGGCGAAAATAGAATTCTAGTGG ACTCAGAACTAAGAATTGTGGGGAGAGCAGTGGGCAGGATTAGAGACGATTTGAGAAGGCTGGCGGATGAAAATGTT TACATGATTGATTATCTACTTAATCAACCATTAGAAAAGGGAATCGAGGGTACAGATGCAGGGGAGAAGGATGTAGTG GTCAAAGATGTGGATATTAATGATGATGATGATGAGGCGGAATGGATTGGTCTAGATTAGGTTGTATCATATTATATGG AAGGAAAAAAAATTTAAGCTGGTTTTTGTACTCATTTTTGAAAACTTGGTTGTGTGTATTATTATTGTTGTTCTCGTTGTT GTTGTCGCCTCCCAATTTTGGAAGATCTTGTATATTCGTTGATCAATTATCAGGATGCATACTCTGTCTGCAAATCAACA TCAGTCTCGCCAAATTCTCTTTTGCATAAATATTTACATTCCCATCACAATCTTCACCCCTATCTCTATTCGATGCAGATC CTTCTCTTCTAGAATAAAAGGTCACTCACTATTAAAATATCATCAGCCGCTTTTTCTCATCGCTCACA BC1G_09169 SEQ ID NO: 76 GAATTCGAGTGTGATCAGTGCGAGAGTGCCGGCACAATGCAGGTGGGTGGGTGGTACGGAAGACGAAAAAGACACG GCCCGAGGTGAGGCTCATCACGACGCCAACAATTCCATACTGTTGTGAACCTCCAATAGATGTCTGGGCGTTGCGGT ATCCATACGTCCAACTTGCATCTGCGTACGAAGGAATCACATATGCATGAACATGAACATGAACATGAAGTGGCAAGAT GGTTGGATCGGGTCAATCAATGGCGCGCATCTATTGACTGTTGCTTGATACAACCGAAAGCCGACATTCTTTAGCGTA AGGGCTACCAAGGTCTGTGCATTGATGGGTACCTCTGGCCAGTCTCGAGCCAGTCCTCCGCATTGCGAATCCTCGCT GTGTCAAGTCGTTCATATGTAGACATCCGATGTTAACGTGGACTTGCTGTCGATTGACACAAATATATAAACACCTTGG ATCATGTGTCGTTCTATCGCCACGCATTTATATCGAGGGGATGTTATTTCCACATCCAAGCTTTGCGGCAGAAAAGAAG TGCTCCTGGCGCACCGAGTCAAGCGTCAGCAGAGTAAGCAGAGTCAGCAAGCAATGGATTATTCAATGGGAGTCTCG TGCGACCTTATCGGCTGCCAACTTATGCACGTCTTTTCTTCCGAGCAAATGGTTCGACAGGAGCCTTCCTTTTTGCGGA GGCGACAGCGAATGGCATTTGGGCGCAGTGTCTGCCTATCTGGTAAGCTGATGAAGACGGAGAGTGCAAGGCTGGA GAGTGATGGTGATTTAAGCATCCCATCGCCATGGTGATTTGACGTAAGAGATCGTTGCTTTCGTTTGATTATCGTTGGT CTTTTTTTCTTGCCTTTTCACTTTCGCAGACAATCATCAATCATCAAAGGTATCATGTCTTCTACGGCATCTTCAAGCGAT TCCGATAACAGTAGAAGACGACGCCGACAGGGTCCAAGACCCTCACCACCACCTCCTCCTCCGCCGTTTCAAGGGAA CAATAAGAAATCAAAGAAGAGGAACAAATACGTAGCCCCTCAAGATACGATCGATAAACTTTGGTCTCGATTCTCGGTA TCAAAATTTAGTAAAGCTACAAAAGTTTTACCAAATGCAGCACCTTTTGCGAAGGGCACATCTGCAAAGACCGTTATTGT TCCTCCACCTGGTCCGCAGAACCAGCTCGTTTCCGAAGACTTTGAAAGAGCGGTTCAAGAATGCAGAGCCAAAGTCAA GAAACTTGTTAAAGAATGTAGGCGCGTTAATATGCGGTTTCGCGACGCCAGCTTTGATATAGACTGGGACTTGAAATG GGAGAAAGGAAATTGTCTAAATACACTTGATGAAATAAGATTTGAAGTTTGCAAACAGGCTCTTCTCAATCCTACATCCT CCGGGCCGAAGGCCGTCAAGAGAGTTCACGAAATATTCGATAAGCCAACATTCTTAGGAGATAAAATTTCTCCTTCGG ATGTCAAACAAGGAAGTCTTGGGGATTGTTGGTTGATGGCTAGTTTGACAGCATTGGCAAATACAGACGACGGAATTC AAAGAATATGTGTTGAATGGGACACAAAAATTGGGATATATGGTTTTGTGTTCCATCGTGATGGTGAATGGATCATTTC GATCATCGATGACAAGCTCTATCTAAAATCGCCAGATTGGGATTCACCCTCGGTCCACAGGCATCTACTCGAGCAAAC TGACCGAGAGGATGTTGAAAAGGATTATCGAAAAACGTATCAAACCGGATCTCAGTCATTATTCTTCGCTCAATGTAAA GATCCAAATCAAACATGGCTTCCTCTTCTCGAAAAGGCTTACGCTAAAGCACACGGGGATTTCTTTTCTTTGAGTGGAG GATGGATAGGGGAGGGTCTTGAAGATTTGACAGGAGGCGTAACTACGGAACTTCTTACTTCGGATATTCTTGATACCG ATGAATTTTGGCATAATGAAATTCTCAAGGTCAATAAAGAATTCCTTTTTGGTTGCTCTACTGGTCTTCTCGATTACGGTT ATGGCAATAGAGATGGAATATCTGAAGGCCATGCATACGTTATTATGGAGGCTAGAGAGTTATCTACTGGCGAACGTC TCCTAAAATTACGGAATCCGTGGGGAAAGATCAAAAAAGGTAATTGGGAAGGTCCATGGTCAGATGGAAGCAAGGAAT TCACCCCTGAAGCTCAGATAGAGCTCAACCACAAATTTGGAAACGATAGTGTTTTCTGGATTTCATATCAGGATTTACTA CGCAAATATCAACATTTCGATCGCACTCGGTTGTTCATGGACAGTCCTGATTGGAGATTGACCCAAGACTGGGTCAGT GTAGAGGTGCCATGGAGATCCGAGTTTGAACAGAAGTTCACCATAACGCTTAAGAAGGAATCACCCATAGTTTTGGTT ATGAGTCAACTCGACGACAGGTACTTTATTGGTCTACATGGTCAATACAACTTCAGATTGCAGTTTCGGGTTCATGAGA TTAATTCACCCGATGAAGAAGATTATATCGTCCGAAGCCATGGGAATTATCTTATGAGGCGAAGTGTGGTTGCTGAATT GAAAAGTCTCTCCGCCGGAACATATACAGTATATATGATGGTCATAGCAGAAAGGGATAAGGATCGACAGAGTGTTGA AGATGTCGTTAAAGATGAATTGAGTCAAAGGGAAGATAATGAAAAATTAGCTAAAGTTGGTCTAGCTTACGATCTGGCT CACCAGAAAGGATTGTCTCATATGGAGTTAAGAATTAAATCCAGAAAGGCTCTAGATAAAGCAAAGGCCCGAGAATCC AGGATTGCTAAACGTAAAGTCCTTTGGGAGAAAAGACACATTGCGCGGGAGATACTAAGGAAGCAAAAGAAGAAGAAT TATGAGAAACGTGAAGGTAAAGCAGCAAAAGATACTGAGTGGGCAAAGGAACAAGAAGAACGTGAGCTAAAGGATCA AGGTGTTCAAACGGAAGATATTCCAGAAGTTCAAGTCGAGAAACAAGACAAGTCAATGCAAACCGAAGATCTCAATGA GGAGTCAATGAACACTACAGTTGATACACAACCCACAAATGAAAGGGACAAAGCAGTACAGACAGAAGGCTTTACACC ATCTTCTAATGAGTCCCAGACAACTCCCGTAACTCCAAAGAGTAATGGTTCATCTCCACGTTCACCGTATACGATGATC TCGAGATCCGGATCTAATCGCCGCAAATCACTACCTCCACCTCCAAGCTTTGTTAATCTTCGTAGAAATCCGAGTCGTC CACCAAATCATGGTCGAGGGCCTCCTCCTCCTTCTTCGAAACCAGGTCTATATGTTACTTCGGAGGGGGAGTCAAGTG CAAGTCCTCTTTCGGATTATGATATGTATAGTGACGATGATCCGACTCTTAAGCCACGAAATCAGTCAACCGAGCCGAA ACGCCCAAAGGAAAGGGAGGCTGGTGAAGATGAGCCAGAACCATGGAATGCGGTTTGTATCGTTGGCTTCAGGGTTT ACAGTAAGGATGAAGGACTAGTGCTTACTGTTTGCGAGGAGGGTATGGAGGAAGTGATTGAGTTGAAAGAGGATAGT GAAGCTGGTACTGATGGTGATGTGGAAGATGCTGAAGATGAAGATTGCCATGAGAAGAAAGGAGGAAATGGGGAAGA TTTGAAATTAAAAGATACTGCAGCAGGAAACGACTCAACACTTTCAGATGTCGCAATCAAAATTGAGCCTGACAAAGAT TTGAATGTCGCTATCTCCAATTCACCTTACGAGATTACTGGAACCTCTTCGTCAGTCAACAATGGCCTTGAAGAAATTC CTACCGAGAAGCAATCCCAAGAAGCCACCAAAATTTTGGAAATAGAGACAAACGGCGACGCTCAGCAGAAGTCGGCT CTTGGGATCTCGGAGGGTGCTACAGATGATATCGTGAAGGAATCAGATTCTCAATCCGGCATTGCAACATCAAGCGCT TCTTCGAACTGCACTTAAAGCTCACACTGATTTTTGTTCAGGTAACATTCAGTGTACAATTCATTCTTCAGATCAGTGCA CAATGAAAACAATTTCTCGTTTTTGGAAGCCCCATTTTGATCTTTCAAGCGATTCAGGCAGTCTAGGCGGTCTATGCGA GCTTCTCGGTTTTATCTTCAGCAAAATCTTCGAACCCGCATGTAGTTCTAGTAATTCTAGTGATTACATTCTCATGACTA ATGAAATTTTTCGTAATATCTGTAGGTAGATACAATGATGTTAGTATTATTCCCATCAATGAATATATTCAGACTACTCAA TCAACACAATTTTCATTGGCCCTTTCTCA BC1G_07037 SEQ ID NO: 77 GATCAACAATATCCATGAACGATATCCATGGAGAAGAGAAGAAAAGAACCTTGCCTCCACCACCACCACCTCCACTCTT CACATTGACTCCTCTTGAGTCTTGAGAGTCGAGACATGCGAGACATGGTCGGATAGACATTAAGCGAAACACCGATGG CGAAAAATTTGATTTTCACAAGCAAAAAACTAGTAAAAGTAGAGGGAAAGCCCAGACAAAATCCGAATTCGATCCGACC CTTTATCTTGAAAATCCTATGCAGAGTAATAGTTATTCCTATCTTACTAACAAATTCCATCTTCCTATAAGTTAACTATCTG ACTCTCCCTCCTTCTTGATTACTACCAACGAGACATCACACATCATCCTTTTGTTTTGTTTCTGCGATACAAGTACAATA GATCAATACATCAACACATCCCTACGATATCTTCTTACCCGTTCGAAGCTTCAAAAAAAGGGTCCAAATCTCCAACAAG CACACGACCAAAGGCACACGATCAAAATGAAGGTCTTTTCTAGCGACTGCAAATTCGATTATTCGTGGGAAGAGGTTT CGACTGCAAACTGGAGAAAGTACTGTCCATGGAATCATAAATCTACTCACGTTATCGCCGTCGATACATTATCCCGACA TGTAGATGCTGACACCGGAATTCTACGCACCGAACGTTTAATTACCTGCCAACAATCTGCTCCAAAATGGTTACAATCA CTCATGGGCGGCAAAGATACATCCCACGTCTTCGAAACCTCATATGTCGATCCGATTACCAAGAAAGTCACAATGACAT CTACCAATCTCACATTTTCCAACATCATCAATGTGCAAGAAACAGTTGTCTACCAACCCTTATCGGCAAACACAACACAA TTTGTCCAGGCGGCACAGATTACTGCATTATGTGGTGGATGGCAAAAAGTGAAGAATGCAGTTGAAGACGCGACAGTT ACTGCGTTTTCGGAAAATGCACGCAAAGGAAAGGAGGGATTCGAAGCAGTTTTGGCGATGAGCAGGAGGGTATTCAG TGAGGAGAAAATGAGACAACAACAAGCGGCTACCGTTACTGCATAAAGTTCGAAATTTCAAAGGCGTTTTGAAGAGGG GTTTCCGTGAAGATATTCCGGTTCGGTCCGAGATATACATGATGAGATTCATATCATTTGAATCTCCTCACATCACGACT GAAACGATTCCTCCCTTGTCCTTTTTCTTCACTTCACTTCAACCATCTCCTCACTTCATTTCGGCATTTACGAGTTTCACA TCATTTTAGGAGTTTGGGGATTTTTTATTACAAGTTCCGGTATACAAAAAAGTCCACTTTCGGAGTTCTAGAAGGCGAAA TTCTCGGTTGCGAATTCTATTTTAAGCGCGGCGTTAAAAAAGGATAAATGGGATATTTGGGTTAGGTTGGGTTTTGCTT CAAAAAGACGATTGTCTTTTGTTGTCTTTGAATGGAAAAGTTATGATATTCAAAGAAACTTTCATCCTCAACGCTGATGT GGGTTATTGTTACGATACAGATACCCCTTTTTTCCTTCTTTCTTTTTTTGCGGTGCTTTTTTTTTTTTCTTCTTTGAAGGGG GAGATAAAAATAGATGGATAGATGGGTTGATTTTATAGATGAGGCTGAATAGGGAGATGATGTAGATAGAGTGAGCGA GTCAGTGGGTGAGAGACTTGAAGAAAATAAATATTAGATTTTACTTTATA BC1G_10614 SEQ ID NO: 78 GATTAGCCTGGATATTTTGGAGTTGAATGCTTGGAGAAACTTGGACCCAAAATTTGACCCCTCCTTCTATCGACTTTTC CAATCACAAATTCACAAATATAAACCATTTCATTGCCAGCTATCGATTTTGTATGTTTAGAAATACAATCAAAATGGCAGA AACAGCAGCAAAAAGACTCAAGACCTCTCCCGTTACCATCGGTACTCATAATGGCCATTTTCACGCAGATGAAGCCTT GGCTGTTTACATGCTTCGCCTTCTTCCTACTTATCAATCTTCAGAGCTCATTCGAACTCGGGATCCCAAACTTCTAGAG ACTTGCCATACCGTGGTTGATGTGGGAGGTGAATACAACGACGAAACTAAGAGATATGATCACCATCAACGTACTTTC GATACCACATTCCCAAATCGTCCTACCAAGCTCTCTTCTGCGGGGTTAGTGTATATGCACTACGGCAAGGCGATTATC GCACAACATCTAGGTGTCGCCGAAGATGCGGAAGAAGTTGCCGTTATCTGGAGAAAGATTTACGAAAGCTTTATTGAA GCACTTGATGCTCACGATAACGGTATTTCAGTCTACGACCCAAAGGCCATTTCCGCCGCAGGCTTGGAGAAGAAGTTC AGCGACGGAGGTTTCTCATTAGGGGCTATGGTATCCAGATTGAACCCAAACTGGAATGACCCCACTCCATCTGATCCT GTCGAGGCTCAAAAGGCAGAAGATGAGAAATTCTTGGTAGCCAGCACTAGAATGGGTGAAGAATTCTCAAGAGATTTG GATTACTATACAAAATCGTGGTTACCAGCACGATCAATTGTCCAACAAGCATATGCCAAACGCCTACAATACGACTCGA AGGGAAGAATCTTGGTGTTCGACGGTCAATCTGTTCCATGGAAAGATCATCTCTACACACTGGAAGATCAAGAGAACA GCGAGAACAAAGTACTCTACGTTCTCTACCCTGAAAGCCCACGTCCAGATGCGAAATGGAGAATCCAATGTGTACCAG TCACCAAAGACTCTTTCCAAAGCAGAAAGCCATTGCCTGAGGCATGGAGAGGTTTCAGAGATGAGGAATTATCTCAAA TTACTGGTATTCCAGGAGGAGTATTCGTTCATGCAGCGGGATTCATTGGAGGAAACAAGACTTTCGATGGGGCAAGTA AGATGGCAGCAACAGCGGTTGATTTGTGATATCCACTAAAGTCATGAAAAACATTATTATGAGGCGTTGTTCGGTATCA AAAGCCAAAAGGTTAGATAGGTTCAAGAAATATAAAACCCAAATCGATGTGTTCATACACATCGGAATCTCAAAGACA

It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

Claims

1. A pathogen-resistant plant comprising:

(a) a heterologous expression construct comprising a promoter operably linked to a first polynucleotide that inhibits expression of a first target gene of a fungal pathogen and a second polynucleotide that inhibits expression of a second target gene of the fungal pathogen; or
(b) a first expression construct comprising a first promoter operably linked to the first polynucleotide that inhibits expression of the first target gene of the fungal pathogen; and a second expression construct comprising a second promoter operably linked to the second polynucleotide that inhibits expression of the second target gene of the fungal pathogen;
wherein the first and the second target gene are selected from the following three target genes of the fungal pathogen: a DCTN gene, a VPS51 gene, and a SAC1 gene; and wherein the plant has increased resistance to the fungal pathogen compared to a control plant lacking the expression construct of (a) or the first and second expression constructs of (b).

2. The pathogen-resistant plant of claim 1, wherein the fungal pathogen is Botrytis, Verticillium, or Sclerotinia.

3. The pathogen-resistant plant of claim 1, wherein the first polynucleotide comprises an antisense nucleic acid or inhibitory RNA (RNAi) that targets the first target gene; and/or the first polynucleotide comprises a nucleic acid having a sequence that is identical or complementary to at least 15 contiguous nucleotides of the first target gene; and the second polynucleotide comprises an antisense nucleic acid or inhibitory RNA (RNAi) that targets the second target gene; and/or the second polynucleotide comprises a nucleic acid having a sequence that is identical or complementary to at least 15 contiguous nucleotides of the second target gene.

4. The pathogen-resistant plant of claim 1, wherein:

the heterologous expression construct of (a) further comprises a third polynucleotide that inhibits expression of a third target gene of the fungal pathogen; or the plant further comprises a third expression construct, wherein the third expression construct comprises a promoter operably linked to the third polynucleotide; and
wherein the third target gene is the third of the three target genes.

5. A plurality of pathogen-resistant plants of claim 1.

6. An isolated nucleic acid comprising an expression construct comprising a promoter operably linked to a first polynucleotide that inhibits expression of a first target gene of a fungal pathogen and a second polynucleotide that inhibits expression of a second target gene of the fungal pathogen, wherein the first and the second target genes are selected from the following three target genes: a DCTN gene, a VPS51 gene, and a SAC1 gene.

7. A host cell comprising the nucleic acid of claim 6.

8. A method of making a pathogen-resistant plant, the method comprising:

(a) introducing an expression construct into a plant, wherein the expression construct comprises a promoter operably linked to a first polynucleotide that inhibits expression of a first target gene of a fungal pathogen and a second polynucleotide that inhibits expression of a second target gene of the fungal pathogen, or
(b) introducing a first expression construct and a second expression construct into the plant, wherein the first expression construct comprises a promoter operably linked to the first polynucleotide that inhibits expression of the first target gene of the fungal pathogen, and the second expression construction comprises a promoter operably linked to the second polynucleotide that inhibits expression of the second target gene of the fungal pathogen; and
wherein the first and the second target genes are selected from the following three target genes: a DCTN gene, a VPS51 gene, and a SAC1 gene, and wherein the plant has increased resistance to the fungal pathogen compared to a control plant lacking the first and the second polynucleotide.

9. The method of claim 8, wherein the fungal pathogen is Botrytis, Verticillium, or Sclerotinia.

10. The method of claim 8, wherein the first polynucleotide comprises an antisense nucleic acid or inhibitory RNA (RNAi) that targets the first target gene of the fungal pathogen; and/or the first polynucleotide comprises a nucleic acid having a sequence that is identical or complementary to at least 15 contiguous nucleotides of the first target gene of the fungal pathogen; and the second polynucleotide comprises an antisense nucleic acid or inhibitory RNA (RNAi) that targets the second target gene of the fungal pathogen; and/or the second polynucleotide comprises a nucleic acid having a sequence that is identical or complementary to at least 15 contiguous nucleotides of the second target gene of the fungal pathogen.

11. The method of claim 8, wherein the construct of (a) further comprises a third polynucleotide that inhibits expression of the third of the three target genes.

12. The method of claim 8, wherein (b) further comprises introducing into the plant a third construct comprising a promoter operably linked to a third polynucleotide that inhibits expression of the third of the three target genes.

13. A method of increasing pathogen resistance in a plant or a part of a plant, the method comprising:

contacting the plant or the part of the plant with dsRNA or RNA (sRNA) duplexes that target a first gene of a fungal pathogen, and dsRNA or RNA (sRNA) duplexes that target a second gene of the fungal pathogen, wherein the first and the second genes are selected from the following three target genes of the fungal pathogen: a DCTN gene, a VPS51 gene, and a SAC1 gene, and wherein the plant or the part of the plant has increased resistance to the fungal pathogen compared to a control plant or control plant part that has not been contacted with the dsRNAs or sRNA duplexes.

14. The method of claim 13, wherein the fungal pathogen is Botrytis, Verticillium, or Sclerotinia.

15. The method of claim 13, wherein the dsRNA or sRNA are contained within liposomes.

16. The method of claim 13, wherein the method further comprises contacting the plant or the part of the plant with dsRNA or sRNA duplexes that target the third of the three target genes.

17. The method of claim 13, wherein the method comprises contacting the plant or the part of the plant with dsRNAs or sRNA duplexes that target two or more fungal pathogen genes selected from a DCTN gene, a VPS51 gene, and a SAC1 gene from a first species of fungal pathogen and comprises contacting the plant or the part of the plant with dsRNAs or sRNA duplexes that target two or more target genes selected from a DCTN gene, a VPS51 gene, and a SAC1 gene from a second species of fungal pathogen.

18. The method of claim 13, wherein the dsRNA or sRNA duplexes are sprayed onto the plant or the part of the plant; and/or the part of the plant is a leaf, a root, a stem, a fruit, a vegetable, or a flower.

19. Isolated synthetic liposomes comprising dsRNA, sRNAs or sRNA duplexes that target two or more fungal pathogen genes selected from the following three fungal pathogen genes: a DCTN gene, a VPS51 gene, and a SAC1 gene.

20. The method of claim 16, wherein the method comprises spraying the plant or the part of the plant with dsRNA or sRNA duplexes that targets the third of the three fungal pathogen genes.

21. An isolated nucleic acid of claim 6, further comprising a third polynucleotide that inhibits expression of a third target gene of the fungal pathogen, wherein the third polynucleotide targets the third gene of the three target genes.

22. The isolated nucleic acid of claim 21, wherein the fungal pathogen is Botrytis, Verticillium, or Sclerotinia.

23. An expression construct comprising the isolated nucleic acid of claim 6, wherein the first and the second polynucleotide are operably linked to the same promoter.

24. An expression construct comprising the isolated nucleic acid of claim 21, wherein the first, the second, and the third polynucleotides are operably linked to the same promoter.

25. A plant comprising the expression construct of claim 23.

26. The isolated synthetic liposomes of claim 19, further comprising dsRNA, sRNAs or sRNA duplexes that target the third of the three fungal pathogen genes.

Referenced Cited
U.S. Patent Documents
20070009530 January 11, 2007 Altaba
20090188006 July 23, 2009 Schmidt
20110061129 March 10, 2011 Tumer
20150203865 July 23, 2015 Jin
20160032314 February 4, 2016 Jin
20160152994 June 2, 2016 Ren
Foreign Patent Documents
2298915 March 2011 EP
2016/176324 November 2016 WO
Other references
  • Koch et al 2016 PLOS Pathogens 1-22, provided by Applicant (Year: 2016).
  • Jurick and Rollins Fungal Genetics and Biology 44:521-530 (Year: 2007).
  • Koch, et al. “An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery.” PLoS pathogens 12, No. 10 (2016): e1005901.
  • Wang, et al. “Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection.” Nature plants 2, No. 10 (2016): 1-10.
  • Supplementary Partial European Search Report for European Patent Application No. 18867401.4, dated Jul. 21, 2021.
  • Li et al., “MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae,” PLoS Pathog, 13(6), Jun. 19, 2017, pp. 1-31.
Patent History
Patent number: 11746355
Type: Grant
Filed: Oct 4, 2018
Date of Patent: Sep 5, 2023
Patent Publication Number: 20200340003
Assignee: The Regents of The University of California (Oakland, CA)
Inventor: Hailing Jin (Oakland, CA)
Primary Examiner: Brent T Page
Application Number: 16/756,020
Classifications
Current U.S. Class: Cancer Cell (424/155.1)
International Classification: C12N 15/82 (20060101);