Inspection gauge for coordinate measuring apparatus and abnormality determination method
The inspection gauge is an inspection gauge for a coordinate measuring apparatus having a triangular pyramid shape, and includes a plurality of support members in which first ends are provided at positions corresponding to vertexes of the triangular pyramid and second ends are connected to each other in a region inside the triangular pyramid, and a plurality of spheres provided at positions corresponding to the vertexes of the triangular pyramid on the plurality of support members, and at least three support members of the plurality of support members have mutually different shapes.
Latest MITUTOYO CORPORATION Patents:
The present application claims priority to Japanese Patent Applications number 2021-121497, filed on Jul. 26, 2021. The contents of this applications are incorporated herein by reference in their entirety.
BACKGROUND OF THE DISCLOSUREConventionally, as an inspection gauge for a coordinate measuring apparatus, an inspection gauge in which spheres provided at positions corresponding to vertexes of a triangular pyramid are connected with rod members provided at positions corresponding to sides of the triangular pyramid has been known (for example, see German Patent No. 19720883).
When the coordinate measuring apparatus is inspected using a conventional inspection gauge, the positions of four spheres corresponding to the vertexes of the triangular pyramid of the inspection gauge are measured. When it is difficult to distinguish the four spheres in the inspection gauge, the inspection gauge may be placed on the coordinate measuring apparatus with different orientations for every inspection of the coordinate measuring apparatus. Since the positions of the four spheres in the inspection gauge are different depending on tolerances or variations in assembly of members forming the inspection gauge, measurement results may change due to placing the inspection gauge with different orientations. As described above, when the conventional inspection gauge is used, the accuracy of inspection is low since it is difficult to measure a plurality of spheres under a fixed condition for inspection of the coordinate measuring apparatus.
BRIEF SUMMARY OF THE DISCLOSUREThe present disclosure focuses on these points, and an object of the present disclosure is to improve the accuracy of inspection of the coordinate measuring apparatus using the inspection gauge.
An inspection gauge for a coordinate measuring apparatus according to the first embodiment of the present disclosure is an inspection gauge for a coordinate measuring apparatus having a triangular pyramid shape, the inspection gauge for the coordinate measuring apparatus includes a plurality of support members in which first ends are provided at positions corresponding to vertexes of a triangular pyramid and second ends are connected to each other in a region inside the triangular pyramid, and a plurality of spheres provided at positions corresponding to vertexes of the triangular pyramid on the plurality of support members, wherein at least three support members of the plurality of support members have mutually different shapes.
An inspection gauge for a coordinate measuring apparatus according to the second embodiment of the present disclosure is an inspection gauge for a coordinate measuring apparatus having a triangular pyramid shape, the inspection gauge for the coordinate measuring apparatus includes a plurality of support members provided such that first ends of the plurality of support members are at positions corresponding to vertexes of a triangular pyramid, a plurality of rod members in which first ends are coupled to positions corresponding to the vertexes of the triangular pyramid on the plurality of support members, and a plurality of spheres provided at second ends of the plurality of rod members, wherein the plurality of rod members are oriented in the same direction from the first ends to the second ends.
An abnormality determination method according to the third embodiment of the present disclosure includes the steps of placing an inspection gauge for a coordinate measuring apparatus on a coordinate measuring apparatus, wherein the inspection gauge for the coordinate measuring apparatus having a triangular pyramid shape includes i) a plurality of support members in which first ends are provided at positions corresponding to vertexes of a triangular pyramid and second ends are connected to each other in a region inside the triangular pyramid and ii) a plurality of spheres provided at positions corresponding to vertexes of the triangular pyramid on the plurality of support members, wherein the shapes of at least three support members of the plurality of support members are mutually different, measuring a distance to be measured which is a distance between a plurality of spheres of the inspection gauge for the coordinate measuring apparatus using the coordinate measuring apparatus, and determining an abnormality to determine the presence or absence of an abnormality in the coordinate measuring apparatus on the basis of whether or not the distance to be measured is included in an appropriate range determined to be appropriate.
Hereinafter, the present disclosure will be described through exemplary embodiments, but the following exemplary embodiments do not limit the invention according to the claims, and not all of the combinations of features described in the exemplary embodiments are necessarily essential to the solution means of the invention.
<Outline of Three-Dimensional Measuring Apparatus 1>
The first ends of the plurality of support members 21 are provided at positions corresponding to the vertexes of the triangular pyramid, and second ends of the plurality of support members 21 are connected to each other in a region inside the triangular pyramid. The first ends of the plurality of rod members 22 are coupled to positions corresponding to the vertexes of the triangular pyramid on the plurality of support members 21, and the sphere 23 is provided at the second end of each of the rod members 22. The plurality of rod members 22 are oriented in the same direction from the first ends to the second ends. The plurality of spheres 23 are to be brought into contact with the probe 17 for the three-dimensional measuring apparatus 1 to measure coordinates. The handle 24 is for the user of the three-dimensional measuring apparatus 1 to move the inspection gauge 20 to a predetermined position.
Referring back to
Specifically, the three-dimensional measuring apparatus 1 moves the probe 17 in the X-axis direction by moving the slider 15 in the X-axis direction along the beam 13. The three-dimensional measuring apparatus 1 moves the probe 17 in the Y-axis direction by causing the Y-axis direction driving part 14 to move a gate section including the column 11, the supporter 12, and the beam 13. The three-dimensional measuring apparatus 1 moves the probe 17 in the Z-axis direction by moving the Z-axis spindle 16 in the Z-axis direction with respect to the slider 15. The three-dimensional measuring apparatus 1 measures coordinates of a plurality of positions to be measured in each of the plurality of spheres 23 while moving the probe 17 in the X-axis direction, the Y-axis direction, and the Z-axis direction.
The control unit 18 has a communication part, and is connected to an information terminal, such as a computer used by the user of the three-dimensional measuring apparatus 1, via a network such as an intranet or the Internet, for example. The control unit 18 and the information terminal used by the user may be connected via a communication line, such as a Universal Serial Bus (USB). The control unit 18 outputs abnormality determination information indicating the presence or absence of an abnormality in the three-dimensional measuring apparatus 1, for example.
Hereinafter, a method of inspecting the three-dimensional measuring apparatus 1 using the inspection gauge 20 will be described with reference to
The inspection gauge 20 is placed in a state where a predetermined portion of the inspection gauge 20 is in contact with the positioning member 30. Although details will be described later, the inspection gauge 20 is configured such that the position of the sphere 23 is different when different portions of the inspection gauge 20 contact the positioning member 30. Therefore, the three-dimensional measuring apparatus 1 can detect that the orientation with which the inspection gauge 20 is placed is incorrect when measurement result of the position of the sphere 23 realized by the three-dimensional measuring apparatus 1 deviates greatly from a reference value.
The three-dimensional measuring apparatus 1 measures a position of at least any of the plurality of spheres 23. The three-dimensional measuring apparatus 1 measures the center position of the sphere 23a by bringing the probe 17 into contact with a plurality of locations on the surface of the sphere 23a, for example. The three-dimensional measuring apparatus 1 determines whether or not the inspection gauge 20 is placed with a correct orientation and in contact with the positioning member 30 at an appropriate position on the basis of the measured position of the sphere 23.
When the center position of the measured sphere 23a is within a predetermined range, the three-dimensional measuring apparatus 1 determines that the inspection gauge 20 is placed at the appropriate position with the correct orientation, for example. On the other hand, when the center position of the sphere 23a is out of the predetermined range, the three-dimensional measuring apparatus 1 determines that the inspection gauge 20 is not placed at the appropriate position with the correct orientation. The three-dimensional measuring apparatus 1 outputs position determination information indicating the determination result from the communication part included in the control unit 18.
The three-dimensional measuring apparatus 1 measures a distance to be measured which is the distance between the plurality of spheres 23 of the inspection gauge 20 when it is determined that the inspection gauge 20 is placed at the appropriate position with the correct orientation. The three-dimensional measuring apparatus 1 measures the distance between the plurality of spheres 23 by measuring the center positions of each of the plurality of spheres 23, for example. The three-dimensional measuring apparatus 1 does not measure the distance to be measured when it is determined that the inspection gauge 20 is not placed at the appropriate position with the correct orientation.
The three-dimensional measuring apparatus 1 determines the presence or absence of an abnormality in the three-dimensional measuring apparatus 1 on the basis of whether or not the measured distance is within an appropriate range determined to be appropriate. The three-dimensional measuring apparatus 1 determines that the three-dimensional measuring apparatus 1 is normal when the distance to be measured is included in the appropriate range, and the three-dimensional measuring apparatus 1 determines that the three-dimensional measuring apparatus 1 is abnormal when the distance to be measured is not included in the appropriate range, for example. The three-dimensional measuring apparatus 1 outputs abnormality determination information indicating the presence or absence of an abnormality from the communication part included in the control unit 18.
Thus, the user can place the inspection gauge 20 with the same orientation and at the same position in daily inspections, for example, and so the user can inspect the three-dimensional measuring apparatus 1 without changing measurement conditions. Further, as shown in
<Configuration of Inspection Gauge 20>
The first ends of the plurality of rod members 22 are coupled to positions corresponding to the vertexes of the triangular pyramid on the plurality of support members 21, and a sphere 23 is provided at each of the second ends. As shown in
Next, the support members 21 will be described in detail. The plurality of support members 21 are formed by one vertical support member which is in a vertical direction when the inspection gauge 20 is used, and three horizontal support members which are in a horizontal direction when the inspection gauge 20 is used, for example. The vertical support member is a support member 21a shown in
In the inspection gauge 20, at least three support members 21 of the plurality of support members 21 have mutually different shapes. In
Of the plurality of support members 21, the vertical support member, which is the one support member 21 oriented in a vertical direction when the inspection gauge 20 is used, has a different shape than the other plurality of support members 21 in the inspection gauge 20, for example. Specifically, as shown in
In the inspection gauge 20, one horizontal support member of the three horizontal support members has a different shape than the other two horizontal support members, for example. In the inspection gauge 20, a width of the one horizontal support member of the three horizontal support members in a direction orthogonal to a longitudinal direction is different from widths of the other two horizontal support members in directions orthogonal to longitudinal directions, for example. Specifically, in the inspection gauge 20, the width of the support member 21d shown in
In the inspection gauge 20, the shape of the tip of the one horizontal support member of the three horizontal support members on the side not connected to the other two horizontal support members may be different from the shapes of the tips of the other two horizontal support members on the sides not connected to the one horizontal support member.
Specifically, a flat surface orthogonal to the longitudinal direction of the support member 21d is formed at the tip of the support member 21d shown in
In addition, the three-dimensional measuring apparatus 1 may be provided with the positioning member 30 having a shape corresponding to the shapes of the tips of the support member 21b and the support member 21c, which are reference horizontal support members that contact the positioning member 30. In this case, the three-dimensional measuring apparatus 1 measures a position of at least any of the plurality of spheres 23, and determines whether or not the measured position is a position in a state where the reference horizontal support members are properly in contact with the positioning member 30. The three-dimensional measuring apparatus 1 determines the presence or absence of an abnormality in the three-dimensional measuring apparatus 1 on condition that the reference horizontal support members are determined to be at positions in contact with the positioning member 30.
If the user of the three-dimensional measuring apparatus 1 places the support member 21b and the support member 21c, which are the reference horizontal support members, to be in contact with the positioning member 30, the inspection gauge 20 comes into contact with the positioning member 30 properly. Since the inspection gauge 20 comes into contact with the positioning member 30 properly, the user of the three-dimensional measuring apparatus 1 can place the inspection gauge 20 at the same position for every inspection.
On the other hand,
In contrast, the shape of the tip of the reference horizontal support member provided to the inspection gauge 20 corresponds to the shape of the positioning member 30. Accordingly, since the shape of the tip of the support member 21 and the shape of the positioning member 30 are different, the user of the three-dimensional measuring apparatus 1 can easily determine that the inspection gauge 20 is not properly in contact with the positioning member 30. As a result, the user of the three-dimensional measuring apparatus 1 can reposition the inspection gauge 20 such that the inspection gauge 20 is properly in contact with the positioning member 30.
The three-dimensional measuring apparatus 1 may determine whether or not the inspection gauge 20 is properly in contact with the positioning member 30 by measuring the inspection gauge 20. The three-dimensional measuring apparatus 1 measures a position of at least any of the plurality of spheres 23 by moving the probe 17, and determines whether or not the inspection gauge 20 is properly in contact with the positioning member 30 on the basis of whether or not the measured position is within a predetermined range, for example. The predetermined range is determined on the basis of a position measured or calculated in advance as the position of the sphere 23 when the inspection gauge 20 is placed at the appropriate position with the correct orientation.
The three-dimensional measuring apparatus 1 measures coordinates of the center position of the sphere 23a, for example. When the measured coordinates of the sphere 23a are within the predetermined range, the three-dimensional measuring apparatus 1 determines that the inspection gauge 20 is properly in contact with the positioning member 30. On the other hand, when the measured coordinates of the sphere 23a are out of the predetermined range, the three-dimensional measuring apparatus 1 determines that the inspection gauge 20 is not properly in contact with the positioning member 30.
The three-dimensional measuring apparatus 1 can notify the user whether or not the inspection gauge 20 is properly in contact with the positioning member 30 by operating in this manner. As a result, when the inspection gauge 20 is not properly in contact with the positioning member 30, the user of the three-dimensional measuring apparatus 1 can reposition the inspection gauge 20 to be properly in contact with the positioning member 30. The three-dimensional measuring apparatus 1 can prevent the inspection gauge 20 from being measured in a state where the inspection gauge 20 is not properly in contact with the positioning member 30.
The three-dimensional measuring apparatus 1 may determine whether or not the inspection gauge 20 is properly in contact with the positioning member 30 on the basis of the distance between the center position of the sphere 23 and the positioning member 30 in the direction orthogonal to the longitudinal direction of the positioning member 30. When the measured distance is the distance D1 shown in
On a surface of one horizontal support member among the three horizontal support members on the side of the vertical support member in the inspection gauge 20, a convex portion or a concave portion having a different shape than the other two horizontal support members may be formed.
The three-dimensional measuring apparatus 1 measures the distance H1 which is a difference between the coordinates in the Z-axis direction of the center position of the sphere 23b and the coordinates in the Z-axis direction of the lower surface of the concave portion 25b, for example. The three-dimensional measuring apparatus 1 determines that the support member 21b is a reference horizontal support member to be in contact with the positioning member 30, on the basis of the measured distance H1. The three-dimensional measuring apparatus 1 measures the distance H2 which is a difference between the coordinates in the Z-axis direction of the center position of the sphere 23d and the coordinates in the Z-axis direction of the upper surface of the convex portion 26, for example. The three-dimensional measuring apparatus 1 determines that the support member 21d is a support member that does not come into contact with the positioning member 30, on the basis of the measured distance H2.
Since the inspection gauge 20 has such a configuration, the three-dimensional measuring apparatus 1 can determine whether or not the inspection gauge 20 is at a position in contact with the positioning member 30 by measuring the coordinates in the Z-axis direction of the plurality of spheres 23, the plurality of concave portions 25, and the convex portion 26. It should be noted that the plurality of concave portions 25 may be replaced with a plurality of convex portions, and the convex portion 26 may be replaced with a concave portion in the inspection gauge 20.
First Variation ExampleIn the above description, a case where the plurality of spheres 23 in the inspection gauge 20 are coupled to the plurality of rod members 22 has been exemplified, but the present disclosure is not limited thereto.
In the above description, a case where the shape of at least three support members 21 of the plurality of support members 21 in the inspection gauge 20 are different from each other has been exemplified, but the present disclosure is not limited thereto.
The plurality of support members 21 are provided such that first ends of the plurality of support members 21 are at positions corresponding to the vertexes of the triangular pyramid. The first ends of the plurality of rod members 22 are coupled to positions corresponding to the vertexes of the triangular pyramid on the plurality of support members 21, and a sphere 23 is provided at the second end of each of the plurality of rod members 22. The plurality of rod members 22 are oriented in the same direction from the first ends to the second ends.
The three-dimensional measuring apparatus 1 measures a distance to be measured which is the distance between the plurality of spheres of the inspection gauge 20 using the probe 17 in a state where the orientation of the probe 17 is the same as the orientation from the first ends to the second ends of the plurality of rod members 22. The three-dimensional measuring apparatus 1 determines the presence or absence of an abnormality in the three-dimensional measuring apparatus 1 on the basis of whether or not the distance to be measured is included in an appropriate range determined to be appropriate.
Since the inspection gauge 20 has such a configuration, the three-dimensional measuring apparatus 1 can measure a plurality of positions to be measured of the plurality of spheres 23 without changing the orientation of the probe 17. Further, the user of the three-dimensional measuring apparatus 1 can easily place the inspection gauge 20 at an appropriate position and with an appropriate orientation. As a result, the accuracy of measuring the inspection gauge 20 by the three-dimensional measuring apparatus 1 can be improved.
Third Variation ExampleIn the above description, a case where the sphere 23 is coupled to the first end of the support member 21 or above the first end of the rod member 22 has been exemplified, but the present disclosure is not limited thereto. The orientation with which the sphere 23 is coupled to the support member 21 or the rod member 22 is arbitrary. The sphere 23 may be coupled to a side surface or a lower surface of the support member 21 or the rod member 22, for example.
<Effect by Inspection Gauge 20>
As described above, the inspection gauge 20 includes i) the plurality of support members 21 in which first ends are provided at positions corresponding to the vertexes of the triangular pyramid and the second ends are connected to each other in a region inside the triangular pyramid and ii) the plurality of spheres 23 provided at positions corresponding to the vertexes of the triangular pyramid on the plurality of support members 21. Further, at least three support members 21 of the plurality of support members 21 have mutually different shapes.
Since the inspection gauge 20 has such a configuration, the user of the three-dimensional measuring apparatus 1 can easily place the inspection gauge 20 at an appropriate position on the table 10. Therefore, the three-dimensional measuring apparatus 1 can measure the plurality of positions to be measured of the plurality of spheres 23 without changing the orientation of the probe 17. As a result, the accuracy of measuring the inspection gauge 20 by the three-dimensional measuring apparatus 1 can be improved.
The present disclosure has been described above on the basis of the exemplary embodiments. The technical scope of the present disclosure is not limited to the scope explained in the above embodiments, and it is obvious to those skilled in the art that various changes and modifications within the scope of the invention may be made. An aspect to which such changes and modifications are added can be included in the technical scope of the present invention is obvious from the description of the claims.
Claims
1. An inspection gauge for a coordinate measuring apparatus having a triangular pyramid shape, the inspection gauge for the coordinate measuring apparatus comprising:
- a plurality of support members in which first ends are provided at positions corresponding to vertexes of a triangular pyramid and second ends are connected to each other in a region inside the triangular pyramid; and
- a plurality of spheres provided at positions corresponding to vertexes of the triangular pyramid on the plurality of support members, wherein
- at least three support members of the plurality of support members have mutually different shapes.
2. The inspection gauge for the coordinate measuring apparatus according to claim 1, wherein
- among the plurality of support members, one support member which is oriented in a vertical direction when the inspection gauge for the coordinate measuring apparatus is used has a different shape than the other plurality of support members.
3. The inspection gauge for the coordinate measuring apparatus according to claim 1, wherein
- the plurality of support members are formed by one vertical support member, which is oriented in a vertical direction when the inspection gauge for the coordinate measuring apparatus is used, and three horizontal support members, which are oriented in a horizontal direction when the inspection gauge for the coordinate measuring apparatus is used, and
- one horizontal support member among the three horizontal support members has a different shape than the other two horizontal support members.
4. The inspection gauge for the coordinate measuring apparatus according to claim 1, wherein
- the plurality of support members are formed by one vertical support member, which is oriented in a vertical direction when the inspection gauge for the coordinate measuring apparatus is used, and three horizontal support members, which are oriented in a horizontal direction when the inspection gauge for the coordinate measuring apparatus is used, and
- a width of one horizontal support member among the three horizontal support members in a direction orthogonal to a longitudinal direction is different from widths of the other two horizontal support members in directions orthogonal to longitudinal directions.
5. The inspection gauge for the coordinate measuring apparatus according to claim 3, wherein
- a convex portion or a concave portion having a different shape than the other two horizontal support members is formed on a surface of one horizontal support member of the three horizontal support members on the side of the vertical support member.
6. The inspection gauge for the coordinate measuring apparatus according to claim 3, wherein
- the shape of a tip of one horizontal support member among the three horizontal support members on the side not connected to the other two horizontal support members is different from the shapes of tips of the other two horizontal support members on the side not connected to the one horizontal support member.
7. The inspection gauge for the coordinate measuring apparatus according to claim 1, comprising:
- a plurality of rod members in which first ends are connected to positions corresponding to the vertexes of the triangular pyramid on the plurality of support members and second ends are provided with the spheres, wherein
- the plurality of rod members are oriented in the same direction from the first ends to the second ends.
8. An inspection gauge for a coordinate measuring apparatus having a triangular pyramid shape, the inspection gauge for the coordinate measuring apparatus comprising:
- a plurality of support members provided such that first ends of the plurality of support members are at positions corresponding to vertexes of a triangular pyramid;
- a plurality of rod members in which first ends are coupled to positions corresponding to the vertexes of the triangular pyramid on the plurality of support members; and
- a plurality of spheres provided at second ends of the plurality of rod members, wherein
- the plurality of rod members are oriented in the same direction from the first ends to the second ends.
9. An abnormality determination method comprising the steps of:
- placing an inspection gauge for a coordinate measuring apparatus on a coordinate measuring apparatus, wherein the inspection gauge for the coordinate measuring apparatus having a triangular pyramid shape includes i) a plurality of support members in which first ends are provided at positions corresponding to vertexes of a triangular pyramid and second ends are connected to each other in a region inside the triangular pyramid and ii) a plurality of spheres provided at positions corresponding to vertexes of the triangular pyramid on the plurality of support members, wherein the shapes of at least three support members of the plurality of support members are mutually different;
- measuring a distance to be measured which is a distance between a plurality of spheres of the inspection gauge for the coordinate measuring apparatus using the coordinate measuring apparatus; and
- determining an abnormality to determine the presence or absence of an abnormality in the coordinate measuring apparatus on the basis of whether or not the distance to be measured is included in an appropriate range determined to be appropriate.
10. The abnormality determination method according to claim 9, wherein
- the plurality of support members in the inspection gauge for the coordinate measuring apparatus are formed by one vertical support member, which is oriented in a vertical direction in a state where the inspection gauge for the coordinate measuring apparatus is used, and three horizontal support members, which are oriented in a horizontal direction in a state where the inspection gauge for the coordinate measuring apparatus is used, and the shape of a tip of one reference horizontal support member of the three horizontal support members on the side not connected to other two horizontal support members is different from the shapes of tips of the other two horizontal support members on the side not connected to the reference horizontal support member, and
- the coordinate measuring apparatus is provided with a positioning member having a shape corresponding to the shape of a tip of the reference horizontal support member,
- the abnormality determination method comprises the steps of:
- measuring a position of at least one of the plurality of spheres performed before the measuring the distance to be measured; and
- determining a position, performed between the measuring the position and the measuring the distance to be measured, to determine whether or not the position of at least one of the plurality of spheres is at a position in a state where the reference horizontal support member is in contact with the positioning member, wherein
- the determining the position includes performing the determining the abnormality on condition that the reference horizontal support member is determined to be at a position in contact with the positioning member.
11. The abnormality determination method according to claim 10, wherein
- the determining the position includes determining whether or not the inspection gauge for the coordinate measuring apparatus is properly in contact with the positioning member on the basis of whether or not the position of at least one of the plurality of spheres is within a predetermined range.
12. The abnormality determination method according to claim 10, wherein
- the determining the position includes determining whether or not the inspection gauge for the coordinate measuring apparatus is properly in contact with the positioning member on the basis of a distance between the center position of the sphere and the positioning member in a direction orthogonal to a longitudinal direction of the positioning member.
4962591 | October 16, 1990 | Zeller |
6505495 | January 14, 2003 | Blondeau |
7040033 | May 9, 2006 | Zhu |
7810248 | October 12, 2010 | McMurtry |
7841097 | November 30, 2010 | Evans |
7900367 | March 8, 2011 | Sutherland |
9683827 | June 20, 2017 | Wimmer |
9746303 | August 29, 2017 | Nakagawa |
10323927 | June 18, 2019 | Stigwall |
10648792 | May 12, 2020 | Held |
10845192 | November 24, 2020 | Lause |
11231273 | January 25, 2022 | Meuret |
11291425 | April 5, 2022 | Kishi |
11293745 | April 5, 2022 | Asanuma |
20050068523 | March 31, 2005 | Wang |
20050217127 | October 6, 2005 | Hermann |
20230136366 | May 4, 2023 | Inoue |
19720883 | November 1998 | DE |
Type: Grant
Filed: Jul 13, 2022
Date of Patent: Oct 3, 2023
Patent Publication Number: 20230024920
Assignee: MITUTOYO CORPORATION (Kanagawa)
Inventor: Shingo Kiyotani (Tochigi)
Primary Examiner: George B Bennett
Application Number: 17/864,012
International Classification: G01B 5/008 (20060101); G01B 5/00 (20060101);