Miniaturized electrical connector for compact electronic system

The present disclosure provides an electrical connector. The electrical connector comprises an insulative housing and a plurality of terminals disposed in the insulative housing. The insulative housing comprises a top face, a bottom face opposite to the top face, and a plurality of side faces extending between the top face and the bottom face. A corner portion between at least two adjacent side faces of the side faces is formed as a chamfered surface. Such a configuration reduces the dimension of the electrical connector, enables a more compact arrangement of components on the electronic system, and enables the dimension of the electronic system to be reduced, such that the entire assembly, including the electrical connector and the electronic system, can be manufactured at a lower cost and can be more compact and more lightweight.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

This application claims priority to and the benefit of Chinese Patent Application Serial No. 202021855660.5, filed on Aug. 31, 2020. The entire contents of this application are incorporated herein by reference in their entirety.

FIELD

This application relates to electrical connectors, and in particular to an electrical connector for providing an electrical connection between electronic systems, such as printed circuit boards (PCBs).

BACKGROUND

Electrical connectors may be used to electrically connect different electronic systems together. One typical electrical connector is a card edge connector that may be mounted onto a first electronic system, such as a motherboard, such that tail portions of terminals of the card edge connector may be electrically connected to conductive portions of the first electronic system by, for example, soldering. The card edge connector may also act as a female connector for interfacing directly with conductive portions on or near an edge of a PCB of a second electronic system, such as a daughter card, such that the conductive portions of the second electronic system are in contact with the contact portions of the corresponding terminals of the card edge connector. In this case, the PCB itself acts as a male connector for interfacing with the card edge connector, without the need for a separate male connector. In this way, the conductive portions of the second electronic system may be electrically connected to the corresponding conductive portions of the first electronic system via the terminals of the card edge connector, thereby establishing an electrical connection between the first electronic system and the second electronic system. This makes it possible to manufacture individual PCBs for a specific purpose and then electrically connect the individual PCBs together using the card edge connector(s) to form a desired system, rather than manufacturing the entire system as a single component.

BRIEF SUMMARY

Aspects of the present disclosure relate to miniaturized electrical connectors for compact electronic systems.

Some embodiments relate to an electrical connector. The electrical connector may include an insulative housing, and a plurality of terminals disposed in the insulative housing. The insulative housing may include a top face comprising a socket, a bottom face opposite to the top face, and a plurality of side faces extending between the top face and the bottom face, the plurality of side faces comprising first and second side faces extending perpendicularly to each other. Each of the plurality of terminals may include a contact portion and a tail portion, the contact portion being accessible through the socket of the insulative housing, and the tail portion protruding from the bottom face of the insulative housing. The insulative housing comprises a chamfered surface connecting one of the first side faces and one of the second side faces.

In some embodiments, the insulative housing may include a platform projecting outwardly at one end of the insulative housing that is proximate to the bottom face.

In some embodiments, the platform may include a corner portion comprising the chamfered surface.

In some embodiments, the chamfered surface may be a first chamfered surface. The platform may include a second chamfered surface such that the platform has a trapezoidal shape.

In some embodiments, the plurality of terminals may be arranged in two terminal rows mutually opposed and spaced apart in the insulative housing, with the terminals in each terminal row aligned therein.

In some embodiments, the electrical connector may include at least one retention mechanism for retaining the plurality of terminals in place relative to each other.

In some embodiments, the at least one retention mechanism may be overmolded around the plurality of terminals.

In some embodiments, the insulative housing may include the at least one retention mechanism.

In some embodiments, the at least one retention mechanism may be formed separately from the insulative housing and removably mounted into the insulative housing.

In some embodiments, the retention mechanism may include two halves having interlocking mechanisms. Each half may retain a terminal row formed by some of the plurality of terminals.

In some embodiments, the electrical connector may include a positioning mechanism for ensuring a proper positioning of the electrical connector on the electronic system when the electrical connector is mounted to an electronic system.

In some embodiments, the electrical connector may include a fixing mechanism for fixing the electrical connector to an electronic system.

In some embodiments, the electrical connector may be a vertical connector or a right angle connector.

In some embodiments, the electronic system may be a printed circuit board.

In some embodiments, the one of the first side faces may extend in a first plane. The one of the second side faces may extend in a second plane. The first plane and the second plane may cross each other along a line. The chamfered surface may be spaced from the line by a distance no less than 0.36 mm.

In some embodiments, the platform may include slots for receiving tabs.

Some embodiments relate to an electronic system. The electronic system may include a printed circuit board; and an electrical connector. The electrical connector may include an insulative housing and a plurality of terminals disposed in the insulative housing. The insulative housing may include a socket, a bottom face mounted against the printed circuit board, and a plurality of side faces extending perpendicular to the bottom face, the plurality of side faces comprising first and second side faces extending perpendicularly to each other. Each of the plurality of terminals may include a contact portion and a tail portion, the contact portion being accessible through the socket of the insulative housing, and the tail portion protruding from the bottom face of the insulative housing. The printed circuit board may include a first edge and a second edge and curved corner joining the first edge and the second edge. The electrical connector may be mounted to the printed circuit board with the first side face adjacent and parallel to the first edge and the second side face adjacent and parallel to the second edge. The insulative housing may include an angled surface connecting the first side face and the second side face. The angled surface may be mounted adjacent the curved corner.

In some embodiments, the insulative housing may include a socket portion including the socket and at least one platform extending from the socket portion in a direction parallel to the bottom face. The angled surface may include a surface of a platform of the at least one platform.

In some embodiments, the platform may be a first platform. The at least one platform may include a second platform, extending from the socket portion in a direction opposite the first platform. The angled surface may be a first angled surface. The second platform may include a second angled surface.

In some embodiments, the electronic system may include a plurality of fixing tabs extending through the first platform and the second platform and engaging the electrical connector to the printed circuit board

Some embodiments relate to an electrical connector. The electrical may include an insulative housing comprising a top face, a bottom face opposite to the top face and a plurality of side faces extending between the top face and the bottom face; and a plurality of terminals disposed in the insulative housing, each of the plurality of terminals comprising a contact portion and a tail portion, the contact portion being accessible through a socket in the insulative housing, and the tail portion protruding from the bottom face and configured to be mounted to an electronic system. A corner portion between at least two adjacent side faces of the side faces is formed as a chamfered surface.

In some embodiments, a portion of at least one end of the insulative housing that is proximate to the bottom face may project outwardly to form a platform.

In some embodiments, the chamfered surface may be formed at a corner portion of the platform.

In some embodiments, each of two corner portions of the platform may be formed as the chamfered surface such that the platform has a trapezoidal shape.

In some embodiments, the plurality of terminals may be arranged in two terminal rows mutually opposed and spaced apart in the insulative housing, with the terminals in each terminal row aligned therein.

In some embodiments, the electrical connector may include at least one retention mechanism for retaining the plurality of terminals in place relative to each other.

In some embodiments, the at least one retention mechanism may be overmolded around the plurality of terminals.

In some embodiments, the at least one retention mechanism may be provided by the insulative housing.

In some embodiments, the at least one retention mechanism may be formed separately from the insulative housing and removably mounted into the insulative housing.

In some embodiments, the retention mechanism may include two halves having interlocking mechanisms, each half retaining a terminal row formed by some of the plurality of terminals.

In some embodiments, the electrical connector may include a positioning mechanism provided on the insulative housing for ensuring a proper positioning of the electrical connector on the electronic system when the electrical connector is mounted to the electronic system.

In some embodiments, the electrical connector may include a fixing mechanism provided on the insulative housing for fixing the electrical connector to the electronic system.

In some embodiments, the electrical connector may be a vertical connector or a right angle connector.

In some embodiments, the electronic system may be a printed circuit board.

In some embodiments, the corner portion being formed as the chamfered surface may allow the corner portion to be indented inward by at least 0.36 mm, as compared to the case where the corner portion is not formed as the chamfered surface.

These techniques may be used alone or in any suitable combination. The foregoing summary is provided by way of illustration and is not intended to be limiting.

BRIEF DESCRIPTION OF DRAWINGS

The above and other aspects of the present disclosure will be more thoroughly understood and appreciated below when read in conjunction with the appended drawings. It should be noted that the appended drawings are only schematic and are not drawn to scale. In the appended drawings:

FIG. 1 is a top, side perspective view of a vertical connector, according to some embodiments.

FIG. 2 is a bottom, side perspective view of the vertical connector shown in FIG. 1.

FIG. 3 is an exploded view of the vertical connector shown in FIG. 1.

FIG. 4 is a front plan view of the vertical connector shown in FIG. 1.

FIG. 5A is a top plan view of the vertical connector shown in FIG. 1.

FIG. 5B is an enlarged view of the area A circled by the dashed line in FIG. 5A.

FIG. 5C is a top plan view of a printed circuit board mounted with a vertical connector that have conventional corner portions.

FIG. 5D is a top plan view of a printed circuit board mounted with the vertical connector of FIG. 1, which has chamfered corner portions.

FIG. 6 is a bottom plan view of the vertical connector shown in FIG. 1.

FIG. 7A is a front plan view of a set of three terminals that may be used in the vertical connector shown in FIG. 1.

FIG. 7B is a right side plan view of the set of three terminals shown in FIG. 7A.

FIG. 7C is a bottom plan view of the set of three terminals shown in FIG. 7A.

FIG. 7D is a perspective view of the set of three terminals shown in FIG. 7A.

FIG. 8A is a front plan view of a terminal row comprising nine sets of the three terminals shown in FIG. 7A and an additional ground terminal.

FIG. 8B is a bottom plan view of the terminal row shown in FIG. 8A.

FIG. 8C is a perspective view of the terminal row shown in FIG. 8A.

LIST OF REFERENCE NUMERALS

100 vertical connector

101 housing

103 top face

105 bottom face

107 front side face

109 rear side face

111 left side face

113 right side face

115 first retention mechanism

117 second retention mechanism

119 first socket

121 second socket

123 positioning protrusion

125 fixing tab

127 receiving slot

129 first platform

131 second platform

133 chamfered surface

200 terminals

201 tip portion

203 contact portion

205 body portion

207 tail portion

210 ground terminal

220 first signal terminal

230 second signal terminal

240 additional ground terminal

300 terminal row

400 printed circuit board

401 edge.

DETAILED DESCRIPTION

Disclosed herein is a miniaturized electrical connector. The electrical connector may include an insulative housing and a plurality of terminals disposed in the insulative housing. The insulative housing may include a top face, a bottom face opposite to the top face, and a plurality of side faces extending between the top face and the bottom face. Each of the plurality of terminals may include a contact portion and a tail portion. The contact portion may be accessible through a socket in the insulative housing, and the tail portion may protrude from the bottom face and may be capable of being mounted to an electronic system. A corner portion between at least two adjacent side faces of the side faces may be formed as a chamfered surface.

Such configuration may reduce the dimension of the electrical connector. For example, when the electrical connector is mounted to an electronic system such as a PCB, the electrical connector may occupy less space and be disposed closer to other components on the electronic system, enabling a more compact arrangement of the components on the electronic system. Alternatively or additionally, the electrical connector may be disposed closer to an edge of the electronic system, such that the space utilization on the electronic system can be optimized. These also enable the dimension of the electronic system to be reduced, such that the entire assembly, including the electrical connector and the electronic system, can be manufactured at a lower cost and can be more compact and more lightweight.

The electrical connectors of the present disclosure may be various types of card edge connectors, including but not limited to, vertical connectors and right angle connectors. Preferred embodiments of the present disclosure are described in detail below in conjunction with some examples. It should be appreciated by the skilled person in the art that these embodiments are not meant to form any limitation on the present disclosure.

The vertical connector 100 according to a preferred embodiment of the present disclosure will be described below in conjunction with FIGS. 1 to 8C. As shown in FIGS. 1 to 6, the vertical connector 100 may include a housing 101. The housing 101 may be partially or entirely formed of an insulative material. Examples of insulative materials that are suitable for forming the housing 101 include, but are not limited to, plastic, nylon, liquid crystal polymer (LCP), polyphenyline sulfide (PPS), high temperature nylon or polyphenylenoxide (PPO) or polypropylene (PP). The housing 101 may have a substantially bar shaped body and may include a top face 103, a bottom face 105 opposite to the top face 103 and a plurality of side faces extending between the top face 103 and the bottom face 105. In some examples, the housing 101 may include four side faces, i.e., wider front and rear side faces 107 and 109 and narrower left and right side faces 111 and 113.

The vertical connector 100 may further include a plurality of terminals 200 housed in the housing 101. Each of the plurality of terminals 200 may be formed of a conductive material. Conductive materials that are suitable for forming the terminals 200 may be a metal, such as copper, or a metal alloy. A set of three terminals 200 may be configured for transmitting differential signals between a first electronic device (e.g., a motherboard) and a second electronic device (e.g., a daughter board).

Turning to FIGS. 7A to 7D, FIGS. 7A to 7D illustrate in detail a set of three terminals 200 that may be used in the vertical connector 100, i.e., a ground terminal 210, a first signal terminal 220 and a second signal terminal 230. FIG. 7A is a front view of the set of three terminals 200. FIG. 7B is a right side view of the set of three terminals 200 shown in FIG. 7A, but only the second signal terminal 230 is visible because all of the three terminals have the same profiles when viewed from the right side thereof. FIG. 7C is a bottom view of the set of three terminals 200 shown in FIG. 7A. FIG. 7D is a perspective view of the set of three terminals 200 shown in FIG. 7A.

The first signal terminal 220 and the second signal terminal 230 may constitute a differential signaling pair. Each of the ground terminal 210, the first signal terminal 220 and the second signal terminal 230 includes a tip portion 201, a contact portion 203, a body portion 205 and a tail portion 207. The tail portion 207 may be configured for being connected to a first PCB (e.g., a motherboard). The contact portion 203 may be configured to establish an electrical contact with a conductive portion of another electronic system (e.g., another PCB).

In some examples, the distance D1 between the distal ends of the tip portion 201 of the first signal terminal 220 and the tip portion 201 of the second signal terminal 230 is equal to the distance D2 between the distal ends of the tip portion 201 of the first signal terminal 220 and the tip portion 201 of the ground terminal 210. In some examples, the distance D3 between the contact portion 203 of the first signal terminal 220 and the contact portion 203 of the second signal terminal 230 is equal to the distance D4 between the contact portion 203 of the first signal terminal 220 and the contact portion 203 of the ground terminal 210. In some examples, the distances D3 and D4 are less than the distances D1 and D2, respectively. As a non-limiting example, D1 and D2 may be equal to 0.6 mm, and D3 and D4 may be equal to 0.38 mm. The vertical connector 100 has a terminal pitch equal to D1. Thus, in the example where D1 is equal to 0.6 mm, the vertical connector 100 may be referred to as a 0.6 mm card edge connector.

A plurality of sets of three terminals 200 may be arranged in terminal rows, with the terminals in each terminal row aligned therein. FIG. 8A is a front view of a terminal row 300 formed by nine sets of three terminals and an additional ground terminal 240, according to some embodiments. FIG. 8B is a bottom view of the terminal row 300 shown in FIG. 8A. FIG. 8C is a perspective view of the terminal row 300 shown in FIG. 8A. A set of three terminals 200 is arranged such that the tip portion of each terminal in the terminal row 300 is the same distance from the tip portion of each adjacent terminal. For example, if the pitch of the tip portions of the terminals in a set of three terminals 200 is 0.6 mm, then the pitch between the tip portions of the terminals from an immediately adjacent set of three terminals 200 is also 0.6 mm. It should be appreciated that the plurality of terminals 200 may be in other suitable forms.

As shown in FIGS. 5A and 6, when the terminals 200 are received in the housing 101, the terminals 200 are arranged in two terminal rows mutually opposed and spaced apart, with the terminals in each terminal row aligned therein. The two terminal rows may be spaced apart in a manner that the terminals 200 are offset from each other or aligned with each other. Conductive portions of the second PCB (e.g., a daughter board) may be inserted between the two terminal rows, such that the conductive portions of the second PCB are disposed in contact with the contact portions 203 of the corresponding terminals 200.

In some embodiments, the vertical connector 100 may include at least one retention mechanism for retaining the plurality of terminals 200 in place relative to each other. The retention mechanism may be partially or entirely formed of an insulative material. Examples of insulative materials that are suitable for forming the retention mechanism include, but are not limited to, plastic, nylon, liquid crystal polymer (LCP), polyphenyline sulfide (PPS), high temperature nylon or polyphenylenoxide (PPO) or polypropylene (PP).

At least one retention mechanism may be overmolded around the plurality of terminals 200. In some examples, the at least one retention mechanism may be formed separately from the housing 101 and then removably mounted into the housing 101. Turning back to FIGS. 2, 3, 5A and 6, two retention mechanisms, i.e., a first retention mechanism 115 and a second retention mechanism 117, are shown in the figures. In some examples, each of the first retention mechanism 115 and the second retention mechanism 117 may be overmolded around a certain number of terminals 200 so as to retain the terminals in two terminal rows mutually opposed and spaced apart.

Then, the first retention mechanism 115 and the second retention mechanism 117 may be fitted into the housing 101, thereby retaining the terminal rows in the housing 101. In some examples, the first retention mechanism 115 and the second retention mechanism 117 may be provided with snap fit mechanisms for cooperating with corresponding mechanisms of the housing 101 so as to secure the retention mechanisms in the housing 101. In some examples, as shown in FIGS. 2, 3, 5A and 6, at least one of the first retention mechanism 115 and the second retention mechanism 117 may be a two-piece retention mechanism, which may include two halves having interlocking mechanisms, with each half retaining a terminal row formed by some of the plurality of terminals 200. Each half retains a terminal row and the two halves are locked in place relative to each other by the interlocking mechanisms. It should be appreciated that the vertical connector 100 may have other numbers and/or other forms of retention mechanisms. It should also be appreciated that the retention mechanism is not mandatory, but just optional. In some embodiments, the housing 101 may be overmolded directly around the terminal 200, without the need for a separate retention mechanism. That is, the housing 101 itself forms a retention mechanism.

As shown in FIGS. 2, 3, 5A and 6, when the terminals 200 are retained in the housing 101, the tail portions 207 of the terminals 200 may be arranged to protrude from the bottom face 105 of the housing 101 for connecting to the corresponding conductive portions of the first PCB (e.g., a motherboard). For example, each of the tail portions 207 may be bent in opposite directions relative to the body portion 205 so as to be connected to the first PCB. The connections may be achieved by soldering or other suitable means.

The top face 103 of the housing 101 of the vertical connector 100 may include at least one socket for allowing the contact portion 203 of each of the plurality of terminals 200 to be accessible therethrough. For example, the second PCB (e.g., a daughter board) may be inserted into the at least one socket, such that conductive portions (e.g., conductive traces) of the second PCB are arranged in contact with the contact portions 203 of the corresponding terminals 200. For example, the conductive portions of the second PCB may be received between two terminal rows mutually opposed and in contact with the contact portions 203 of the corresponding terminals 200. In this way, the conductive portions of the second PCB may be electrically connected to the corresponding conductive portions of the first PCB via the terminals 200, thereby establishing an electrical connection between the second PCB and the first PCB. The first PCB and the second PCB may communicate with each other by transmitting signals via the vertical connector 100 using a standardized protocol, such as a PCI protocol. Two sockets, i.e., a first socket 119 and a second socket 121, are shown in FIGS. 1 and 5A. The second socket 121 may receive a different portion of the same PCB being received by the first socket 119, or a different PCB. In some examples, the first socket 119 and the second socket 121 may be designed to provide access to a different number of terminals. For example, the first socket 119 may provide access to 68 (sixty eight) terminals and the second socket 121 may provide access to 56 (fifty six) terminals. In an aspect, this may allow the vertical connector to receive PCBs of different sizes. In another aspect, this may provide a dummy-proof design to prevent intentional or unintentional combinational or operational errors. It should be appreciated that the top face 103 of the housing 101 may have other numbers of sockets, such as one socket or more than two sockets. It should also be appreciated that the number of sockets may be the same as or different from that of retention mechanisms. For example, when the top face 103 of the housing 101 includes two sockets, the vertical connector 100 may include two retention mechanisms to allow the contact portions 203 of the plurality of terminals 200 to be accessible through the two sockets.

The vertical connector 100 may further include a positioning mechanism provided on the housing 101 for ensuring a proper positioning of the vertical connector 100 on the first PCB when the vertical connector 100 is mounted to the first PCB. For example, the positioning mechanism may be in the form of a positioning protrusion, with two positioning protrusions 123 shown in FIGS. 2 to 4 and 6. The two positioning protrusions 123 are provided on the bottom face 105 of the housing 101, near opposite ends of the vertical connector 100, respectively. However, it should be appreciated that the positioning protrusions 123 may be provided at other suitable locations on the bottom face 105. The positioning protrusions 123 may also be designed to provide a dummy-proof design to prevent the vertical connector 100 from being intentionally or unintentionally mounted to the first PCB in a wrong orientation. For example, when the vertical connector 100 is mounted to the first PCB, the positioning protrusions 123 may cooperate with corresponding positioning mechanisms (e.g., recesses or openings) in the first PCB to ensure a proper positioning of the vertical connector 100 on the first PCB. It should be appreciated that the vertical connector 100 may have other numbers and/or other forms of positioning mechanism.

The vertical connector 100 may further include a fixing mechanism for fixing the vertical connector 100 to the first PCB. For example, the fixing mechanism may be in the form of a fixing tab, with three fixing tabs 125 shown in FIGS. 2 to 4 and FIG. 6. The fixing tabs 125 may be formed of a metallic or non-metallic material. Receiving slots 127 may be formed in end portions of the housing 101 of the vertical connector 100 for receiving the fixing tabs 125. Each of the fixing tabs 125 may be received in the corresponding receiving slot 127 and protrude from the bottom face 105 of the connector 100, with the protruded portion of the fixing tab 125 received by a mating portion of the first PCB, whereby the vertical connector 100 may be securely fixed to the first PCB. In some examples, a portion of the fixing tab 125 protruding from the bottom face 105 of the connector 100 may be provided with a mounting hole. In some examples, each of the fixing tab may be T-shaped. It should be appreciated that the vertical connector 100 may have other numbers and/or other forms of fixing mechanisms.

In order to minimize a space occupied by the vertical connector 100 on the first PCB, a corner portion between at least two adjacent side faces of the side faces of the housing 101 may be formed as a chamfered surface 133 so as to reduce the space occupied by the housing 101 on the first PCB. In some examples, the corner portion between at least two adjacent side faces of the front side face 107, the rear side face 109, the left side face 111 and the right side face 113 of the housing 101 is formed as a chamfered surface 133. In some examples, all of the corner portions between adjacent side faces of the housing 101 are formed as chamfered surfaces 133. In some examples, the corner portions between adjacent side faces of the housing 101 proximate to an edge of the first PCB are each formed as a chamfered surface 133.

In conventional vertical connectors, the corner portions between adjacent side faces are typically formed as rounded or beveled portions. As compared with conventional vertical connectors, the corner portions between adjacent side faces of the vertical connector 100 being formed as chamfered surfaces may reduce a dimension of the vertical connector 100 and thus reduce the space occupied by the housing 101 on the first PCB. As such, the vertical connector 100 may be disposed closer to other components on the first PCB, thereby allowing for a more compact arrangement of components on the PCB. In addition, the vertical connector 100 may also be disposed closer to an edge of the first PCB, such that the space utilization on the first PCB may be optimized. These allow for reducing the dimension of the PCB, such that the entire assembly, including the vertical connector and PCB, may be manufactured at a lower cost, and may be more miniaturized and more lightweight.

FIG. 5B illustrate a comparison of the case where the corner portions between adjacent side faces of the vertical connector 100 are not formed as the chamfered surfaces 133 and the case where the corner portions are formed as the chamfered surfaces 133, wherein the dashed line B represents a general profile of the corner portions between adjacent side faces of the vertical connector 100 in the case where the corner portions are not formed as the chamfered surfaces 133. As compared to the case where the corner portions between adjacent side faces of the vertical connector 100 are not formed as the chamfered faces 133, the corner portions between adjacent side faces of the vertical connector 100 being formed as chamfered face 133 allows the corner portions to be indented inward by a distance S, wherein the distance S is a vertical distance from an intersection line of planes in which the adjacent side faces of the vertical connector 100 are located to the corresponding chamfered face 133. For some small size vertical connectors 100 (e.g., the 0.6 mm card edge connector as described above), the corner portions between adjacent side faces being formed as chamfered surfaces 133 allows the corner portions to be indented inward by at least 0.36 mm, as compared to the case where the corner portions are not formed as the chamfered surfaces 133.

FIGS. 5C and 5D schematically illustrate the arrangements of the vertical connector 100 relative to an edge 401 of the printed circuit board 400 in the cases where the corner portions of the vertical connector 100 are not formed as the chamfered surfaces 133 and are formed as the chamfered surfaces 133, respectively, wherein FIG. 5C schematically illustrates a general profile of the corner portions between adjacent side faces of the vertical connector 100 in the case where the corner portions of the vertical connector 100 are not formed as the chamfered surfaces 133. In some examples, the printed circuit board 400 may have curved edges. As can be seen from FIGS. 5C and 5D, the corner portions between adjacent side faces of the vertical connector 100 being formed as the chamfered surfaces 133 allows the corner portions to be indented inwardly such that the vertical connector 100 can be disposed closer to an edge 401 of the printed circuit board 400 when mounted on the printed circuit board 400, as compared to the case where the corner portions are not formed as the chamfered surfaces 133. This allows the space utilization on the printed circuit board 400 to be optimized, thereby allowing for reducing a dimension of the printed circuit board 400, which in turn allows the entire assembly, including the vertical connector 100 and the printed circuit board 400, to be manufactured at a lower cost, and to be more miniaturized and more lightweight.

In some embodiments, portions of opposite ends of the housing 101 that are proximate to the bottom face 105 may protrude outward to form a platform. As shown in FIGS. 1 to 6, portions of the left and right ends of the housing 101 that are proximate to the bottom face 105 protrude outwardly to form a first platform 129 and a second platform 131, respectively. The first platform 129 and the second platform 131 may be configured to provide additional mechanical support to the vertical connector 100 when the vertical connector 100 is mounted to the first PCB. In some examples, the receiving slots 127 for receiving the fixing tabs 125 may be formed in the first platform 129 and the second platform 131. In some examples, the receiving slots 127 for receiving the fixing tabs 125 may be formed through the first platform 129 and the second platform 131. In this case, the fixing tabs 125 may be fitted into the receiving slot 127 from a side of the first platform 129 and the second platform 131 opposite to the bottom face 105 and then protrude partially from the bottom face 105. It should be appreciated that the housing 101 may have only one platform.

As shown in FIGS. 1 to 6, the chamfered surfaces 133 may be formed in corner portions of the first platform 129 and the second platform 131, respectively, to reduce the space occupied by the platform on the first PCB, thereby reducing the space occupied by the housing 101 on the first PCB. In some examples, as shown in FIGS. 4 to 6, the chamfered surfaces 133 may be formed in the two corner portions of each of the first platform 129 and the second platform 131, such that the first platform 129 and the second platform 131 each tapers outwardly, resulting in that each of the first platform 129 and the second platform 131 has a substantially trapezoidal shape. In this way, it is possible to allow the vertical connector 100 to occupy less space and to be disposed closer to other components on the first PCB, thereby allowing for a more compact arrangement for the components on the PCB. In addition, the vertical connector 100 may also be disposed closer to an edge of the first PCB such that the space utilization on the first PCB may be optimized. These allow for reducing a dimension of the PCB, such that the entire assembly, including the vertical connector and PCB, may be manufactured at a lower cost, and may be more miniaturized and more lightweight. It should be appreciated that the housing 101 of the vertical connector 100 may have one platform or more than two platforms.

Although the present disclosure is described in detail above in connection with a vertical connector, it should be appreciated that the present disclosure is also applicable to right angle connectors. Unlike the vertical connector 100, in a right angle connector, a socket is formed in a side face of the insulative housing, rather than a top face thereof, and terminals of the right angle connector are configured such that contact portions of the terminals are accessible via the socket. For example, the right angle connector may be used to connect a mezzanine card to a mother board. In some examples, the right angle connector may be configured to be mounted to a first PCB (such as a motherboard), such that the tail portions of the terminals of the right angle connector are electrically connected to the conductive portions (for example, conductive traces) of the first PCB. A second PCB (such as a mezzanine card) may be inserted into the socket such that the conductive portions of the second PCB are disposed in contact with the contact portions of the corresponding terminals. In this way, the conductive portions of the second PCB may be electrically connected to the corresponding conductive portions of the first PCB via the terminals of the right angle connector, thereby establishing an electrical connection between the second PCB and the first PCB. The first PCB and the second PCB may communicate with each other by transmitting signals using the right angle connector using a standardized protocol, such as a PCI protocol.

It should also be appreciated that the terms “first” and “second” are only used to distinguish an element or component from another element or component, and that these elements and/or components should not be limited by the terms.

The present disclosure has been described in detail in conjunction with specific embodiments. Obviously, the above description and the embodiments shown in the appended drawings should be understood to be exemplary and do not constitute a limitation on the present disclosure. For the person skilled in the art, various variations or modifications falling within the scope of the present disclosure can be made without departing from the spirit of the present disclosure.

Claims

1. An electrical connector, comprising:

an insulative housing comprising a top face comprising a socket, a bottom face opposite to the top face, and a plurality of side faces extending between the top face and the bottom face, the plurality of side faces comprising a first side face, a second side face extending perpendicularly to the first side face, a third side face extending perpendicular to the first side face, and a fourth side face extending perpendicular to the second side face; and
a plurality of terminals disposed in the insulative housing, each of the plurality of terminals comprising a contact portion and a tail portion, the contact portion being accessible through the socket of the insulative housing, and the tail portion protruding from the bottom face of the insulative housing;
wherein the insulative housing comprises a first chamfered surface connecting the first side face and the second side face, a second chamfered surface connecting the second side face and the fourth side face, and a third chamfered surface connecting the third side face and the fourth side face.

2. An electrical connector, comprising:

an insulative housing comprising a top face comprising a socket, a bottom face opposite to the top face, and a plurality of side faces extending between the top face and the bottom face, the plurality of side faces comprising a first side face, a second side face extending perpendicularly to the first side face, and a third side face extending perpendicular to the first side face; and
a plurality of terminals disposed in the insulative housing, each of the plurality of terminals comprising a contact portion and a tail portion, the contact portion being accessible through the socket of the insulative housing, and the tail portion protruding from the bottom face of the insulative housing, wherein:
the insulative housing comprises a platform projecting outwardly at one end of the insulative housing that is proximate to the bottom face and comprising the second side face; and
the insulative housing comprises a first chamfered surface connecting the first side face and the first side face, and a second chamfered surface connecting the second side face and the fourth side face.

3. The electrical connector of claim 1, wherein:

the insulative housing comprises first and second platforms projecting outwardly at opposite ends of the insulative housing, respectively;
the first platform comprises the second side face; and
the second platform comprises the third side face.

4. The electrical connector of claim 3, wherein:

the first platform comprises the first chamfered surface and the second chamfered surface such that the first platform has a trapezoidal shape; and
the second platform comprises the third chamfered surface and the fourth chamfered surface such that the second platform has a trapezoidal shape.

5. The electrical connector of claim 1, wherein the plurality of terminals are arranged in two terminal rows mutually opposed and spaced apart in the insulative housing, with the terminals in each terminal row aligned therein.

6. The electrical connector of claim 1, further comprising:

at least one retention mechanism for retaining the plurality of terminals in place relative to each other.

7. The electrical connector of claim 6, wherein the at least one retention mechanism is overmolded around the plurality of terminals.

8. The electrical connector of claim 6, wherein the insulative housing comprises the at least one retention mechanism.

9. The electrical connector of claim 6, wherein the at least one retention mechanism is formed separately from the insulative housing and removably mounted into the insulative housing.

10. The electrical connector of claim 9, wherein the retention mechanism comprises two halves having interlocking mechanisms, each half retaining a terminal row formed by some of the plurality of terminals.

11. The electrical connector of claim 1, further comprising:

a positioning mechanism for ensuring a proper positioning of the electrical connector on an electronic system when the electrical connector is mounted to the electronic system.

12. The electrical connector of claim 1, further comprising:

a fixing mechanism for fixing the electrical connector to an electronic system.

13. The electrical connector of claim 1, wherein the electrical connector is a vertical connector or a right angle connector.

14. The electrical connector of claim 12, wherein the electronic system is a printed circuit board.

15. The electrical connector of claim 1, wherein:

the first side face extends in a first plane,
the second side face extends in a second plane,
the first plane and the second plane cross each other along a line, and
the first chamfered surface is spaced from the line by a distance no less than 0.36 mm.

16. The electrical connector of claim 2, wherein:

the platform comprises slots for receiving tabs.

17. An electronic system, comprising:

a printed circuit board; and
an electrical connector comprising: an insulative housing comprising a socket, a bottom face mounted against the printed circuit board, and a plurality of side faces extending perpendicular to the bottom face, the plurality of side faces comprising first and second side faces extending perpendicularly to each other; and a plurality of terminals disposed in the insulative housing, each of the plurality of terminals comprising a contact portion and a tail portion, the contact portion being accessible through the socket of the insulative housing, and the tail portion protruding from the bottom face of the insulative housing;
wherein: the printed circuit board comprises a first edge and a second edge and curved corner joining the first edge and the second edge; the electrical connector is mounted to the printed circuit board with the first side face adjacent and parallel to the first edge and the second side face adjacent and parallel to the second edge; and the insulative housing comprises an angled surface connecting the first side face and the second side face, the angled surface being mounted adjacent to the curved corner.

18. The electronic system of claim 17, wherein:

the insulative housing comprises a socket portion including the socket and at least one platform extending from the socket portion in a direction parallel to the bottom face; and
the angled surface comprises a surface of a platform of the at least one platform.

19. The electronic system of claim 18, wherein:

the platform is a first platform;
the at least one platform comprises a second platform, extending from the socket portion in a direction opposite the first platform;
the angled surface is a first angled surface; and
the second platform comprises a second angled surface.

20. The electronic system of claim 19, further comprising:

a plurality of fixing tabs extending through the first platform and the second platform and engaging the electrical connector to the printed circuit board.
Referenced Cited
U.S. Patent Documents
2996710 August 1961 Pratt
3002162 September 1961 Garstang
3134950 May 1964 Cook
3322885 May 1967 May et al.
3530422 September 1970 Goodman
3573706 April 1971 Haberlen
3631381 December 1971 Pittman
3786372 January 1974 Epis et al.
3825874 July 1974 Peverill
3863181 January 1975 Glance et al.
3970353 July 20, 1976 Kaufman
3977757 August 31, 1976 Yurtin
4155613 May 22, 1979 Brandeau
4195272 March 25, 1980 Boutros
4276523 June 30, 1981 Boutros et al.
4286837 September 1, 1981 Yasutake et al.
4371742 February 1, 1983 Manly
4408255 October 4, 1983 Adkins
4447105 May 8, 1984 Ruehl
4471015 September 11, 1984 Ebneth et al.
4484159 November 20, 1984 Whitley
4487468 December 11, 1984 Fedder et al.
4490283 December 25, 1984 Kleiner
4518651 May 21, 1985 Wolfe, Jr.
4519664 May 28, 1985 Tillotson
4519665 May 28, 1985 Althouse et al.
4632476 December 30, 1986 Schell
4636752 January 13, 1987 Saito
4682129 July 21, 1987 Bakermans et al.
4687267 August 18, 1987 Header et al.
4728762 March 1, 1988 Roth et al.
4751479 June 14, 1988 Parr
4761147 August 2, 1988 Gauthier
4787548 November 29, 1988 Abbagnaro et al.
4806107 February 21, 1989 Arnold et al.
4846724 July 11, 1989 Sasaki et al.
4846727 July 11, 1989 Glover et al.
4871316 October 3, 1989 Herrell et al.
4878155 October 31, 1989 Conley
4948922 August 14, 1990 Varadan et al.
4970354 November 13, 1990 Iwasa et al.
4975084 December 4, 1990 Fedder et al.
4992060 February 12, 1991 Meyer
5000700 March 19, 1991 Masubuchi et al.
5066236 November 19, 1991 Broeksteeg
5141454 August 25, 1992 Garrett et al.
5150086 September 22, 1992 Ito
5166527 November 24, 1992 Solymar
5168252 December 1, 1992 Naito
5168432 December 1, 1992 Murphy et al.
5171161 December 15, 1992 Kachlic
5176538 January 5, 1993 Hansell, III et al.
5266055 November 30, 1993 Naito et al.
5280257 January 18, 1994 Cravens et al.
5287076 February 15, 1994 Johnescu et al.
5334050 August 2, 1994 Andrews
5340334 August 23, 1994 Nguyen
5346410 September 13, 1994 Moore, Jr.
5393247 February 28, 1995 DiOrazio et al.
5429520 July 4, 1995 Morlion et al.
5429521 July 4, 1995 Morlion et al.
5433617 July 18, 1995 Morlion et al.
5433618 July 18, 1995 Morlion et al.
5456619 October 10, 1995 Belopolsky et al.
5461392 October 24, 1995 Mott et al.
5474472 December 12, 1995 Niwa et al.
5484310 January 16, 1996 McNamara et al.
5496183 March 5, 1996 Soes et al.
5499935 March 19, 1996 Powell
5551893 September 3, 1996 Johnson
5562497 October 8, 1996 Yagi et al.
5597328 January 28, 1997 Mouissie
5651702 July 29, 1997 Hanning et al.
5669789 September 23, 1997 Law
5796323 August 18, 1998 Uchikoba et al.
5810623 September 22, 1998 Regnier
5831491 November 3, 1998 Buer et al.
5885088 March 23, 1999 Brennan et al.
5924899 July 20, 1999 Paagman
5981869 November 9, 1999 Kroger
5982253 November 9, 1999 Perrin et al.
5993259 November 30, 1999 Stokoe et al.
6019616 February 1, 2000 Yagi et al.
6152747 November 28, 2000 McNamara
6168469 January 2, 2001 Lu
6174202 January 16, 2001 Mitra
6174203 January 16, 2001 Asao
6174944 January 16, 2001 Chiba et al.
6217372 April 17, 2001 Reed
6293827 September 25, 2001 Stokoe
6296491 October 2, 2001 Pickles
6296496 October 2, 2001 Trammel
6299438 October 9, 2001 Sahagian et al.
6299483 October 9, 2001 Cohen et al.
6315615 November 13, 2001 Raistrick
6322395 November 27, 2001 Nishio et al.
6328601 December 11, 2001 Yip et al.
6347962 February 19, 2002 Kline
6350134 February 26, 2002 Fogg et al.
6361363 March 26, 2002 Hwang
6364711 April 2, 2002 Berg et al.
6375510 April 23, 2002 Asao
6379188 April 30, 2002 Cohen et al.
6394842 May 28, 2002 Sakurai et al.
6398588 June 4, 2002 Bickford
6409543 June 25, 2002 Astbury, Jr. et al.
6447170 September 10, 2002 Takahashi et al.
6482017 November 19, 2002 Van Doorn
6503103 January 7, 2003 Cohen et al.
6506076 January 14, 2003 Cohen et al.
6517360 February 11, 2003 Cohen
6530790 March 11, 2003 McNamara et al.
6537087 March 25, 2003 McNamara et al.
6540559 April 1, 2003 Kemmick et al.
6551140 April 22, 2003 Billman et al.
6554647 April 29, 2003 Cohen et al.
6565387 May 20, 2003 Cohen
6565390 May 20, 2003 Wu
6579116 June 17, 2003 Brennan et al.
6582244 June 24, 2003 Fogg et al.
6592381 July 15, 2003 Cohen et al.
6595801 July 22, 2003 Leonard et al.
6595802 July 22, 2003 Watanabe et al.
6602095 August 5, 2003 Astbury, Jr. et al.
6607402 August 19, 2003 Cohen et al.
6609922 August 26, 2003 Torii
6616864 September 9, 2003 Jiang et al.
6638105 October 28, 2003 Wu
6648682 November 18, 2003 Wu
6652318 November 25, 2003 Winings et al.
6652319 November 25, 2003 Billman
6655966 December 2, 2003 Rothermel et al.
6709294 March 23, 2004 Cohen et al.
6713672 March 30, 2004 Stickney
6726492 April 27, 2004 Yu
6743057 June 1, 2004 Davis et al.
6749463 June 15, 2004 Fan
6776659 August 17, 2004 Stokoe et al.
6786771 September 7, 2004 Gailus
6808420 October 26, 2004 Whiteman, Jr. et al.
6814619 November 9, 2004 Stokoe et al.
6830489 December 14, 2004 Aoyama
6872085 March 29, 2005 Cohen et al.
6875031 April 5, 2005 Korsunsky et al.
6932649 August 23, 2005 Rothermel et al.
6979202 December 27, 2005 Benham et al.
6979226 December 27, 2005 Otsu et al.
6986681 January 17, 2006 Tsai
7008250 March 7, 2006 Shuey et al.
7008267 March 7, 2006 Fan
7044794 May 16, 2006 Consoli et al.
7057570 June 6, 2006 Irion, II et al.
7074067 July 11, 2006 Yang et al.
7074086 July 11, 2006 Cohen et al.
7086872 August 8, 2006 Myer et al.
7094102 August 22, 2006 Cohen et al.
7104842 September 12, 2006 Huang et al.
7108556 September 19, 2006 Cohen et al.
7156672 January 2, 2007 Fromm et al.
7163421 January 16, 2007 Cohen et al.
7232344 June 19, 2007 Gillespie et al.
7285018 October 23, 2007 Kenny et al.
7316585 January 8, 2008 Smith et al.
7318740 January 15, 2008 Henry et al.
7320614 January 22, 2008 Toda et al.
7322845 January 29, 2008 Regnier et al.
7331822 February 19, 2008 Chen n
7335063 February 26, 2008 Cohen et al.
7364464 April 29, 2008 Iino et al.
7371117 May 13, 2008 Gailus
7407413 August 5, 2008 Minich
7467977 December 23, 2008 Yi et al.
7473124 January 6, 2009 Briant et al.
7494383 February 24, 2009 Cohen et al.
7540781 June 2, 2009 Kenny et al.
7581990 September 1, 2009 Kirk et al.
7588464 September 15, 2009 Kim
7604502 October 20, 2009 Pan
7637783 December 29, 2009 Sasaoka et al.
7645165 January 12, 2010 Wu et al.
7677907 March 16, 2010 Guan et al.
7690946 April 6, 2010 Knaub et al.
7699644 April 20, 2010 Szczesny et al.
7722401 May 25, 2010 Kirk et al.
7727027 June 1, 2010 Chiang et al.
7727028 June 1, 2010 Zhang et al.
7731537 June 8, 2010 Amleshi et al.
7731541 June 8, 2010 Lee
7753731 July 13, 2010 Cohen et al.
7771233 August 10, 2010 Gailus
7789676 September 7, 2010 Morgan et al.
7794240 September 14, 2010 Cohen et al.
7794278 September 14, 2010 Cohen et al.
7806729 October 5, 2010 Nguyen et al.
7824192 November 2, 2010 Lin et al.
7871296 January 18, 2011 Fowler et al.
7874873 January 25, 2011 Do et al.
7883369 February 8, 2011 Sun et al.
7887371 February 15, 2011 Kenny et al.
7887379 February 15, 2011 Kirk
7892006 February 22, 2011 Guan et al.
7906730 March 15, 2011 Atkinson et al.
7914304 March 29, 2011 Cartier et al.
7946889 May 24, 2011 Mizumura
7972171 July 5, 2011 Teh
7985097 July 26, 2011 Gulla
7993147 August 9, 2011 Cole et al.
8018733 September 13, 2011 Jia
8083553 December 27, 2011 Manter et al.
8123544 February 28, 2012 Kobayashi
8142207 March 27, 2012 Ljubijankic
8182289 May 22, 2012 Stokoe et al.
8187031 May 29, 2012 Li et al.
8215968 July 10, 2012 Cartier et al.
8216001 July 10, 2012 Kirk
8262411 September 11, 2012 Kondo
8272877 September 25, 2012 Stokoe et al.
8337247 December 25, 2012 Zhu
8348701 January 8, 2013 Lan et al.
8371875 February 12, 2013 Gailus
8382524 February 26, 2013 Khilchenko et al.
8403689 March 26, 2013 Li et al.
8440637 May 14, 2013 Elmen
8480432 July 9, 2013 Wu
8506319 August 13, 2013 Ritter et al.
8506331 August 13, 2013 Wu
8535077 September 17, 2013 Shen et al.
8545253 October 1, 2013 Amidon et al.
8550861 October 8, 2013 Cohen et al.
8597051 December 3, 2013 Yang et al.
8657627 February 25, 2014 McNamara et al.
8715003 May 6, 2014 Buck et al.
8715005 May 6, 2014 Pan
8740637 June 3, 2014 Wang et al.
8764492 July 1, 2014 Chiang
8771016 July 8, 2014 Atkinson et al.
8864506 October 21, 2014 Little
8864521 October 21, 2014 Atkinson et al.
8905777 December 9, 2014 Zhu et al.
8926377 January 6, 2015 Kirk et al.
8944831 February 3, 2015 Stoner et al.
8968034 March 3, 2015 Hsu
8998642 April 7, 2015 Manter et al.
9004942 April 14, 2015 Paniauqa
9011177 April 21, 2015 Lloyd et al.
9022806 May 5, 2015 Cartier, Jr. et al.
9028281 May 12, 2015 Kirk et al.
9065230 June 23, 2015 Milbrand, Jr.
9124009 September 1, 2015 Atkinson et al.
9166317 October 20, 2015 Briant
9219335 December 22, 2015 Atkinson et al.
9225085 December 29, 2015 Cartier, Jr. et al.
9246253 January 26, 2016 Defibaugh et al.
9257778 February 9, 2016 Buck et al.
9257794 February 9, 2016 Wanha et al.
9263835 February 16, 2016 Guo
9281590 March 8, 2016 Liu et al.
9287668 March 15, 2016 Chen et al.
9300074 March 29, 2016 Gailus
9337585 May 10, 2016 Yang
9350095 May 24, 2016 Arichika et al.
9431734 August 30, 2016 Guo
9450344 September 20, 2016 Cartier, Jr. et al.
9484674 November 1, 2016 Cartier, Jr. et al.
9509101 November 29, 2016 Cartier, Jr. et al.
9520686 December 13, 2016 Hu et al.
9520689 December 13, 2016 Cartier, Jr. et al.
9537250 January 3, 2017 Kao et al.
9640915 May 2, 2017 Phillips
9692183 June 27, 2017 Phillips
9742132 August 22, 2017 Hsueh
9831605 November 28, 2017 Buck et al.
9843135 December 12, 2017 Guetig et al.
9887485 February 6, 2018 Lambie
9935385 April 3, 2018 Phillips et al.
9972945 May 15, 2018 Huang et al.
9997853 June 12, 2018 Little et al.
9997871 June 12, 2018 Zhong
10103476 October 16, 2018 Qiu et al.
10122129 November 6, 2018 Milbrand, Jr. et al.
10135165 November 20, 2018 Zuo
10135197 November 20, 2018 Little et al.
10211577 February 19, 2019 Milbrand, Jr. et al.
10224653 March 5, 2019 Niu et al.
10243304 March 26, 2019 Kirk et al.
10270191 April 23, 2019 Li et al.
10276995 April 30, 2019 Little
10283910 May 7, 2019 Chen et al.
10320102 June 11, 2019 Phillips et al.
10320125 June 11, 2019 Ju et al.
10348040 July 9, 2019 Cartier, Jr. et al.
10381767 August 13, 2019 Milbrand, Jr. et al.
10431936 October 1, 2019 Horning et al.
10439311 October 8, 2019 Phillips et al.
10511128 December 17, 2019 Kirk et al.
10541482 January 21, 2020 Sasame et al.
10573987 February 25, 2020 Osaki et al.
10601181 March 24, 2020 Lu et al.
10680387 June 9, 2020 Cheng et al.
10714875 July 14, 2020 Wan et al.
10741944 August 11, 2020 Long
10777921 September 15, 2020 Lu et al.
10797446 October 6, 2020 Liu et al.
10826214 November 3, 2020 Phillips et al.
10833437 November 10, 2020 Huang et al.
10840622 November 17, 2020 Sasame et al.
10855020 December 1, 2020 Phillips
10916894 February 9, 2021 Kirk
10965064 March 30, 2021 Hsu et al.
11146025 October 12, 2021 Lu et al.
11189971 November 30, 2021 Lu
11264755 March 1, 2022 Te
11381015 July 5, 2022 Lu
20010012730 August 9, 2001 Ramey et al.
20010042632 November 22, 2001 Manov et al.
20010046810 November 29, 2001 Cohen et al.
20020042223 April 11, 2002 Belopolsky et al.
20020061671 May 23, 2002 Torii
20020089464 July 11, 2002 Joshi
20020098738 July 25, 2002 Astbury et al.
20020111068 August 15, 2002 Cohen et al.
20020111069 August 15, 2002 Astbury et al.
20020123266 September 5, 2002 Ramey et al.
20020132518 September 19, 2002 Kobayashi
20020146926 October 10, 2002 Fogg et al.
20030119360 June 26, 2003 Jiang et al.
20030220018 November 27, 2003 Winings et al.
20040005815 January 8, 2004 Mizumura et al.
20040020674 February 5, 2004 McFadden et al.
20040058572 March 25, 2004 Fromm et al.
20040115968 June 17, 2004 Cohen
20040121652 June 24, 2004 Gailus
20040171305 September 2, 2004 McGowan et al.
20040196112 October 7, 2004 Welbon et al.
20040235352 November 25, 2004 Takemasa
20040259419 December 23, 2004 Payne et al.
20050042928 February 24, 2005 Yi
20050048818 March 3, 2005 Pan
20050048838 March 3, 2005 Korsunsky et al.
20050048842 March 3, 2005 Benham et al.
20050070160 March 31, 2005 Cohen et al.
20050133245 June 23, 2005 Katsuyama et al.
20050176835 August 11, 2005 Kobayashi et al.
20050233610 October 20, 2005 Tutt et al.
20050283974 December 29, 2005 Richard et al.
20050287869 December 29, 2005 Kenny et al.
20060019525 January 26, 2006 Lloyd et al.
20060068640 March 30, 2006 Gailus
20060166560 July 27, 2006 Shuey et al.
20060255876 November 16, 2006 Kushta et al.
20060276082 December 7, 2006 Hung et al.
20060292932 December 28, 2006 Benham et al.
20070004282 January 4, 2007 Cohen et al.
20070004828 January 4, 2007 Khabbaz
20070021000 January 25, 2007 Laurx
20070021001 January 25, 2007 Laurx et al.
20070021002 January 25, 2007 Laurx et al.
20070021003 January 25, 2007 Laurx et al.
20070021004 January 25, 2007 Laurx et al.
20070037419 February 15, 2007 Sparrowhawk
20070042639 February 22, 2007 Manter et al.
20070054554 March 8, 2007 Do et al.
20070059961 March 15, 2007 Cartier et al.
20070155241 July 5, 2007 Lappohn
20070173118 July 26, 2007 Chen
20070197063 August 23, 2007 Ngo et al.
20070218765 September 20, 2007 Cohen et al.
20070243764 October 18, 2007 Liu et al.
20070293084 December 20, 2007 Ngo
20080020640 January 24, 2008 Zhang et al.
20080194146 August 14, 2008 Gailus
20080246555 October 9, 2008 Kirk et al.
20080248658 October 9, 2008 Cohen et al.
20080248659 October 9, 2008 Cohen et al.
20080248660 October 9, 2008 Kirk et al.
20090011641 January 8, 2009 Cohen et al.
20090011645 January 8, 2009 Laurx et al.
20090035955 February 5, 2009 McNamara
20090061661 March 5, 2009 Shuey et al.
20090117386 May 7, 2009 Vacant et al.
20090203259 August 13, 2009 Nguyen et al.
20090239395 September 24, 2009 Cohen et al.
20090258516 October 15, 2009 Hiew et al.
20090291593 November 26, 2009 Atkinson et al.
20090305530 December 10, 2009 Ito et al.
20090305533 December 10, 2009 Feldman et al.
20090305553 December 10, 2009 Thomas et al.
20100048058 February 25, 2010 Morgan et al.
20100068934 March 18, 2010 Li et al.
20100075538 March 25, 2010 Ohshida
20100081302 April 1, 2010 Atkinson et al.
20100112846 May 6, 2010 Kotaka
20100124851 May 20, 2010 Xiong et al.
20100144167 June 10, 2010 Fedder et al.
20100203772 August 12, 2010 Mao et al.
20100291806 November 18, 2010 Minich et al.
20100294530 November 25, 2010 Atkinson et al.
20110003509 January 6, 2011 Gailus
20110065297 March 17, 2011 Guan et al.
20110067237 March 24, 2011 Cohen et al.
20110104948 May 5, 2011 Girard, Jr. et al.
20110130038 June 2, 2011 Cohen et al.
20110136388 June 9, 2011 Fu
20110143605 June 16, 2011 Pepe
20110212649 September 1, 2011 Stokoe et al.
20110212650 September 1, 2011 Amleshi et al.
20110230095 September 22, 2011 Atkinson et al.
20110230096 September 22, 2011 Atkinson et al.
20110256739 October 20, 2011 Toshiyuki et al.
20110275238 November 10, 2011 Iijima et al.
20110287663 November 24, 2011 Gailus et al.
20120094536 April 19, 2012 Khilchenko et al.
20120156929 June 21, 2012 Manter et al.
20120178274 July 12, 2012 Manickam
20120184145 July 19, 2012 Zeng
20120184154 July 19, 2012 Frank et al.
20120202363 August 9, 2012 McNamara et al.
20120202386 August 9, 2012 McNamara et al.
20120202387 August 9, 2012 McNamara
20120214344 August 23, 2012 Cohen et al.
20130012038 January 10, 2013 Kirk et al.
20130017733 January 17, 2013 Kirk et al.
20130065454 March 14, 2013 Milbrand Jr.
20130078870 March 28, 2013 Milbrand, Jr.
20130078871 March 28, 2013 Milbrand, Jr.
20130090001 April 11, 2013 Kagotani
20130109232 May 2, 2013 Paniaqua
20130143442 June 6, 2013 Cohen et al.
20130196553 August 1, 2013 Gailus
20130217263 August 22, 2013 Pan
20130225006 August 29, 2013 Khilchenko et al.
20130237100 September 12, 2013 Affeltranger
20130280926 October 24, 2013 Ono
20130316590 November 28, 2013 Hon
20140004724 January 2, 2014 Cartier, Jr. et al.
20140004726 January 2, 2014 Cartier, Jr. et al.
20140004746 January 2, 2014 Cartier, Jr. et al.
20140024263 January 23, 2014 Dong et al.
20140057498 February 27, 2014 Cohen
20140113487 April 24, 2014 Chen et al.
20140273557 September 18, 2014 Cartier, Jr. et al.
20140273627 September 18, 2014 Cartier, Jr. et al.
20140370729 December 18, 2014 Wang
20140377992 December 25, 2014 Chang et al.
20150056856 February 26, 2015 Atkinson et al.
20150072546 March 12, 2015 Li
20150099408 April 9, 2015 Myer et al.
20150111401 April 23, 2015 Guo
20150111427 April 23, 2015 Foxconn
20150126068 May 7, 2015 Fang
20150140866 May 21, 2015 Tsai et al.
20150214673 July 30, 2015 Gao et al.
20150236451 August 20, 2015 Cartier, Jr. et al.
20150236452 August 20, 2015 Cartier, Jr. et al.
20150255904 September 10, 2015 Ito
20150255926 September 10, 2015 Paniagua
20150340798 November 26, 2015 Kao et al.
20160118736 April 28, 2016 Hoyack
20160149343 May 26, 2016 Atkinson et al.
20160268744 September 15, 2016 Little et al.
20170077654 March 16, 2017 Yao et al.
20170302031 October 19, 2017 Cheng
20170352970 December 7, 2017 Liang et al.
20180062323 March 1, 2018 Kirk et al.
20180076555 March 15, 2018 Scholeno et al.
20180145438 May 24, 2018 Cohen
20180198220 July 12, 2018 Sasame
20180205177 July 19, 2018 Zhou et al.
20180212376 July 26, 2018 Wang et al.
20180212385 July 26, 2018 Little
20180219331 August 2, 2018 Cartier, Jr. et al.
20180241156 August 23, 2018 Huang et al.
20180269607 September 20, 2018 Wu et al.
20180331444 November 15, 2018 Ono
20190006778 January 3, 2019 Fan et al.
20190044284 February 7, 2019 Dunham
20190052019 February 14, 2019 Huang et al.
20190067854 February 28, 2019 Ju et al.
20190165518 May 30, 2019 Hsu
20190173209 June 6, 2019 Lu
20190173232 June 6, 2019 Lu
20190199023 June 27, 2019 Soh
20190214755 July 11, 2019 Manickam
20190334292 October 31, 2019 Cartier, Jr. et al.
20200021052 January 16, 2020 Milbrand, Jr. et al.
20200076131 March 5, 2020 Hu
20200076135 March 5, 2020 Tang
20200153134 May 14, 2020 Sasame et al.
20200161811 May 21, 2020 Lu
20200203865 June 25, 2020 Wu et al.
20200203867 June 25, 2020 Lu
20200203886 June 25, 2020 Wu et al.
20200235529 July 23, 2020 Kirk et al.
20200259294 August 13, 2020 Lu
20200266584 August 20, 2020 Lu
20200335914 October 22, 2020 Hsu et al.
20200358226 November 12, 2020 Lu et al.
20200395698 December 17, 2020 Hou et al.
20200403350 December 24, 2020 Hsu
20210036452 February 4, 2021 Phillips et al.
20210050683 February 18, 2021 Sasame et al.
20210135389 May 6, 2021 Jiang
20210135403 May 6, 2021 Yang et al.
20210135404 May 6, 2021 Jiang
20210203104 July 1, 2021 Chen
20210218195 July 15, 2021 Hsu et al.
20210288423 September 16, 2021 Guo et al.
20210351529 November 11, 2021 Yang
20210376508 December 2, 2021 Hu
20210399449 December 23, 2021 Guo et al.
20220037828 February 3, 2022 Hu et al.
20220059954 February 24, 2022 Yue
20220181811 June 9, 2022 Liu et al.
Foreign Patent Documents
1175101 March 1998 CN
1192068 September 1998 CN
1275825 December 2000 CN
2519434 October 2002 CN
1179448 December 2004 CN
1650479 August 2005 CN
1799290 July 2006 CN
2896615 May 2007 CN
1996678 July 2007 CN
2930006 August 2007 CN
101019277 August 2007 CN
101176389 May 2008 CN
101208837 June 2008 CN
101312275 November 2008 CN
201323275 October 2009 CN
101600293 December 2009 CN
201374434 December 2009 CN
101752700 June 2010 CN
101790818 July 2010 CN
101120490 November 2010 CN
101926055 December 2010 CN
201846527 May 2011 CN
102106041 June 2011 CN
201868621 June 2011 CN
102195173 September 2011 CN
102224640 October 2011 CN
102232259 November 2011 CN
102239605 November 2011 CN
102292881 December 2011 CN
101600293 May 2012 CN
102456990 May 2012 CN
102487166 June 2012 CN
102593661 July 2012 CN
102598430 July 2012 CN
202395248 August 2012 CN
102694318 September 2012 CN
102738621 October 2012 CN
202633554 December 2012 CN
102859805 January 2013 CN
202695788 January 2013 CN
202695861 January 2013 CN
203445304 February 2014 CN
103840285 June 2014 CN
203660106 June 2014 CN
203690614 July 2014 CN
204030057 December 2014 CN
204167554 February 2015 CN
104409906 March 2015 CN
104577577 April 2015 CN
104659573 May 2015 CN
204349140 May 2015 CN
204577746 August 2015 CN
204696287 October 2015 CN
105633660 June 2016 CN
105703103 June 2016 CN
106099546 November 2016 CN
107069281 August 2017 CN
304240766 August 2017 CN
304245430 August 2017 CN
206712072 December 2017 CN
206712089 December 2017 CN
107706632 February 2018 CN
207677189 July 2018 CN
108539464 September 2018 CN
208078300 November 2018 CN
208209042 December 2018 CN
208797273 April 2019 CN
210326355 April 2020 CN
112072400 December 2020 CN
107706675 April 2021 CN
212874843 April 2021 CN
113517619 October 2021 CN
214505858 October 2021 CN
60216728 November 2007 DE
0 560 551 September 1993 EP
0 820 124 January 1998 EP
1 018 784 July 2000 EP
1 779 472 May 2007 EP
2 169 770 March 2010 EP
2 405 537 January 2012 EP
227943 January 1925 GB
1049435 November 1966 GB
1272347 April 1972 GB
H3-156761 July 1991 JP
H07-302649 November 1995 JP
2001-510627 July 2001 JP
2002-151190 May 2002 JP
2006-344524 December 2006 JP
2010-129173 June 2010 JP
9907324 August 2000 MX
200835073 August 2008 TW
M357771 May 2009 TW
M474278 March 2014 TW
M475740 April 2014 TW
M502979 June 2015 TW
I535129 May 2016 TW
M534922 January 2017 TW
I596840 August 2017 TW
M558481 April 2018 TW
M558482 April 2018 TW
M558483 April 2018 TW
M559006 April 2018 TW
M559007 April 2018 TW
M560138 May 2018 TW
M562507 June 2018 TW
M565894 August 2018 TW
M565895 August 2018 TW
M565899 August 2018 TW
M565900 August 2018 TW
M565901 August 2018 TW
M605564 December 2020 TW
WO 88/05218 July 1988 WO
WO 98/35409 August 1998 WO
WO 02/073819 September 2002 WO
WO 2004/059794 July 2004 WO
WO 2004/059801 July 2004 WO
WO 2006/039277 April 2006 WO
WO 2007/005597 January 2007 WO
WO 2007/005599 January 2007 WO
WO 2008/124052 October 2008 WO
WO 2008/124054 October 2008 WO
WO 2008/124057 October 2008 WO
WO 2008/124101 October 2008 WO
WO 2010/030622 March 2010 WO
WO 2010/039188 April 2010 WO
WO 2011/100740 August 2011 WO
WO 2017/007429 January 2017 WO
Other references
  • Taiwanese Office Action dated Jun. 16, 2022 for Taiwan Application No. 107138468.
  • [No Author Listed], DDR5 Memory Module Sockets (SMT). Storage & Server IO. Amphenol ICC. 2022. 2 pages. URL:https://cdn.amphenol-cs.com/media/wysiwyg/files/documentation/datasheet/ssio/ssio_ddr5_smt.pdf [last accessed Mar. 22, 2022].
  • [No Author Listed], DDR5 SDRAM—Wikipedia. Aug. 8, 2021. 6 pages. URL:https://en.wikipedia.org/wiki/DDR5_SDRAM [last accessed on Aug. 16, 2021].
  • Armasu, What We Know About DDR5 So Far. Jun. 7, 2019. 20 pages. URL:https://www.tomshardware.com/news/what-we-know-ddr5-ram,39079.html [last accessed Jul. 21, 2022].
  • Hsu, Compact Electrical Connector, U.S. Appl. No. 17/867,067, filed Jul. 18, 2022.
  • Lu et al., Robust, Miniaturized Card Edge Connector, U.S. Appl. No. 17/856,507, filed Jul. 1, 2022.
  • Chinese communication for Chinese Application No. 201580014851.4, dated Jun. 1, 2020.
  • Chinese Office Action for Chinese Application No. 201580014851.4 dated Sep. 4, 2019.
  • Chinese Office Action for Application No. 201680051491.X dated Apr. 30, 2019.
  • Chinese Office Action for Chinese Application No. 201780064531.9 dated Jan. 2, 2020.
  • Chinese Office Action for Chinese Application No. 201780097919.9, dated Dec. 3, 2021.
  • Chinese Office Action for Chinese Application No. 201780097919.9, dated Mar. 10, 2021.
  • Chinese Office Action dated Jan. 18, 2021 in connection with Chinese Application No. 202010031395.7.
  • Extended European Search Report for European Application No. EP 11166820.8 dated Jan. 24, 2012.
  • Extended European Search Report dated May 19, 2021 in connection with European Application No. 17930428.2.
  • International Search Report and Written Opinion for International Application No. PCT/CN2017/108344 dated Aug. 1, 2018.
  • International Preliminary Report on Patentability Chapter II for International Application No. PCT/CN2017/108344 dated Mar. 6, 2020.
  • International Preliminary Report on Patentability for International Application No. PCT/SG2016/050317 dated Jan. 18, 2018.
  • International Search Report and Written Opinion for International Application No. PCT/SG2016/050317 dated Oct. 18, 2016.
  • International Search Report with Written Opinion for International Application No. PCT/US2006/025562 dated Oct. 31, 2007.
  • International Search Report and Written Opinion for International Application No. PCT/US2005/034605 dated Jan. 26, 2006.
  • International Preliminary Report on Patentability for International Application No. PCT/US2010/056482 dated May 24, 2012.
  • International Search Report and Written Opinion for International Application No. PCT/US2010/056482 dated Mar. 14, 2011.
  • International Preliminary Report on Patentability for International Application No. PCT/US2011/026139 dated Sep. 7, 2012.
  • International Search Report and Written Opinion for International Application No. PCT/US2011/026139 dated Nov. 22, 2011.
  • International Search Report and Written Opinion for International Application No. PCT/US2011/034747 dated Jul. 28, 2011.
  • International Preliminary Report on Patentability for International Application No. PCT/US2012/023689 dated Aug. 15, 2013.
  • International Search Report and Written Opinion for International Application No. PCT/US2012/023689 dated Sep. 12, 2012.
  • International Search Report and Written Opinion for International Application No. PCT/US2012/060610 dated Mar. 29, 2013.
  • International Search Report and Written Opinion for International Application No. PCT/US2015/012463 dated May 13, 2015.
  • International Search Report and Written Opinion for International Application No. PCT/US2017/047905 dated Dec. 4, 2017.
  • International Search Report and Written Opinion dated Nov. 29, 2021 for International Application No. PCT/CN2021/114671.
  • International Search Report and Written Opinion dated Jul. 18, 2019 for International Application No. PCT/CN2018/118798.
  • [No Author Listed], Mini Cool Edge IO—The Ideal Solution to Transmit Next Generation High-Speed Signal to Designated Area in Your System. Jul. 25, 2018. 2 pages. URL:https://www.amphenol-icc.com/connect/mini-cool-edge-io-the-ideal-solution-to-transmit-next-generation-high-speedsignal.html [retrieved on Apr. 11, 2022].
  • [No Author Listed], Mini Cool Edge IO Connector. Commercial IO. Amphenol ICC. 5 pages. URL:https://cdn.amphenol-icc.com/media/wysiwyg/files/documentation/datasheet/inputoutput/io_mini_cool_edge_io.pdf [retrieved on Apr. 11, 2022].
  • [No Author Listed], MCIO 124pos 85ohm. Amphenol Assembletech. 1 page. URL:http://www.amphenol-ast.com/v3/en/overview.aspx?classId=234 [retrieved on Apr. 11, 2022].
  • [No Author Listed], Carbon Nanotubes for Electromagnetic Interference Shielding. SBIR/STTR. Award Information. Program Year 2001. Fiscal Year 2001. Materials Research Institute, LLC. Chu et al. Available at http://sbir.gov/sbirsearch/detail/225895. Last accessed Sep. 19, 2013.
  • [No Author Listed], High Speed Backplane Connectors. Tyco Electronics. Product Catalog No. 1773095. Revised Dec. 2008. 1-40 pages.
  • [No Author Listed], Military Fibre Channel High Speed Cable Assembly, www.gore.com. 2008. [last accessed Aug. 2, 2012 via Internet Archive: Wayback Machine http://web.archive.org] Link archived: http://www.gore.com/en.sub.--xx/products/cables/copper/networking/militar-y/military.sub.--fibre . . . Last archive date Apr. 6, 2008.
  • [No Author Listed], SFF-TA-1016 Specification for Internal Unshielded High Speed Connector System. Rev 0.0.1. SNIA SFF TWG Technology Affiliate. Nov. 15, 2019. 40 pages.
  • Beaman, High Performance Mainframe Computer Cables. 1997 Electronic Components and Technology Conference. 1997;911-7.
  • Reich et al., Microwave Theory and Techniques. Boston Technical Publishers, Inc. 1965;182-91.
  • Shi et al. Improving Signal Integrity in Circuit Boards by Incorporating Absorbing Materials. 2001 Proceedings. 51st Electronic Components and Technology Conference, Orlando FL. 2001:1451-56.
Patent History
Patent number: 11817639
Type: Grant
Filed: Aug 13, 2021
Date of Patent: Nov 14, 2023
Patent Publication Number: 20220069496
Assignee: Amphenol Commercial Products (Chengdu) Co., Ltd. (Chengdu)
Inventors: Luyun Yi (Chengdu), Jing Wang (Chengdu)
Primary Examiner: Marcus E Harcum
Application Number: 17/402,255
Classifications
Current U.S. Class: Strip Of Detachable Contacts (439/885)
International Classification: H01R 12/72 (20110101); H01R 12/73 (20110101);