Automatic detection of tooth type and eruption status

- Align Technology, Inc.

Provided herein are systems and methods for detecting the eruption state (e.g., tooth type and/or eruption status) of a target tooth. A patient's dentition may be scanned and/or segmented. A target tooth may be identified. Dental features, principal component analysis (PCA) features, and/or other features may be extracted and compared to those of other teeth, such as those obtained through automated machine learning systems. A detector can identify and/or output the eruption state of the target tooth, such as whether the target tooth is a fully erupted primary tooth, a permanent partially erupted/un-erupted tooth, or a fully erupted permanent tooth.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This patent application claims priority to U.S. Provisional Patent Application No. 62/521,166, titled “AUTOMATIC DETECTION OF TOOTH TYPE AND ERUPTION STATUS,” filed on Jun. 16, 2017, which is herein incorporated by reference in its entirety.

INCORPORATION BY REFERENCE

All publications and patent applications mentioned in this specification are incorporated herein by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

BACKGROUND

In pediatric cases, orthodontic aligners are often used before all of the patient's permanent teeth have erupted. Detection of erupting teeth may help prevent the aligner from impinging on or contacting erupting teeth, which can stop eruption of the tooth or injure the patient.

In many existing techniques, a medical professional manually determines the eruption status and tooth type of a patient's teeth. This may require a physical inspection of the teeth or of images/scans of the teeth, and a judgment by the medical professional as to the eruption status and tooth type, adding time and expense.

SUMMARY OF THE DISCLOSURE

Implementations address the need to provide an automated tooth detection eruption detection system to automatically, effectively, and accurately predict tooth type and eruption status in dental patients, with a high degree of accuracy. The present application addresses these and other technical problems by providing technical solutions and/or automated agents that automatically detecting tooth type and eruption status in dental patients. Automatic detection of tooth state (e.g., tooth type and/or eruption status) may provide the basis for implementation of automated orthodontic treatment plans, design and/or manufacture of orthodontic aligners (including series of polymeric orthodontic aligners that provide forces to correct malocclusions in patients' teeth).

In general, example apparatuses (e.g., devices, systems, etc.) and/or methods described herein may receive a representation of a patient's teeth, and in some cases clinical information about the patient, to determine one or more tooth eruption indicators related to a patient's teeth. A “tooth eruption indicator,” as used herein, may include an indicator of a tooth related to eruption. Examples of tooth eruption indicators include eruption states of a tooth. Examples of eruption states include eruption statuses (e.g., whether a tooth has fully erupted, partially erupted, or not erupted at all) and eruption permanentness statuses ((e.g., whether a tooth is a primary/baby tooth or a permanent tooth). In some implementations, the eruption status, tooth type (e.g., primary, permanent, etc.), and/or other features related to the patient's teeth may be determined. These apparatuses and/or methods may present the tooth eruption indicators, and may provide or modify a treatment plan, including an orthodontic treatment plan. The apparatuses and/or methods described herein may provide instructions to generate and/or may generate a set or series of aligners, and/or orthodontic treatment plans using orthodontic aligners that incorporate the eruption status and primary/permanent tooth type. The apparatuses and/or methods described herein may provide a visual representation of the patient's teeth including the eruption status and primary/permanent tooth type.

A “patient,” as used herein, may be any subject (e.g., human, non-human, adult, child, etc.) and may be alternatively and equivalently referred to herein as a “patient” or a “subject.” A “patient,” as used herein, may but need not be a medical patient. A “patient,” as used herein, may include a person who receives orthodontic treatment, including orthodontic treatment with a series of orthodontic aligners.

Any of the apparatuses and/or methods described herein may be part of a distal tooth scanning apparatus or method, or may be configured to work with a digital scanning apparatus or method.

As will be described in greater detail herein, automatically determining the eruption status and/or primary or permanent tooth type of a target tooth (e.g., for each of a patient's teeth) may include collecting a 3D scan of the patient's teeth. Collecting the 3D scan may include taking the 3D scan, including scanning the patient's dental arch directly (e.g., using an intraoral scanner) or indirectly (e.g., scanning an impression of the patient's teeth), receiving the 3D scan information from a separate device and/or third party, receiving the 3D scan from a memory, or the like.

Additional information may be collected with the 3D scan, including patient information (e.g., age, gender, etc.).

The 3D scan information may be standardized and/or normalized. Standardizing the scan may include converting the 3D scan into a standard format (e.g., a tooth surface mesh), and/or expressing the 3D scan as a number of angles (e.g., vector angles) from a center point of each tooth, etc. In some variations, standardizing may include normalizing the 3D scan using another tooth, including stored tooth values.

The standardized 3D scan information may then be processed to extract one or more features that may be used to automatically determine if a tooth is erupted, partially erupted, or un-erupted and/or the type of tooth; specifically, if the tooth is a primary tooth or a permanent tooth. This information may be used to automatically and accurately label the teeth of the 3D model, e.g., by numbering the teeth in a standard tooth numbering.

For example, a method of automatically determining the eruption status and primary or permanent tooth type of a target tooth may include: gathering, in a computing device, a three-dimensional (3D) model of the patient's teeth including the target tooth; standardizing the 3D model of the target tooth; applying, in the computing device, a principal component analysis (PCA) of the dental features of the target tooth to obtain PCA features; determining an eruption status and primary or permanent tooth type of the target tooth based on the PCA features; and outputting the eruption status and primary or permanent tooth type of the target tooth.

Note that although there are examples provided herein using PCA, other eigenvector-based multivariate analyses may be used. PCA is proposed because it may be automatically performed using know techniques including computing PCA using a correlation technique and/or a covariance technique, iterative methods including but not limited to non-linear iterative partial least squares techniques.

Standardizing may include identifying a predetermined number of angles relative to a center point of the target tooth. Any appropriate method may be used to determine the center of the tooth. For example, the center of the tooth may be determined from a mesh point representation of each tooth (e.g., from a segmented version of the 3D scan representing a digital model of the patient's teeth) by determining the geometric center of the mesh points for each tooth, by determining the center of gravity of the segmented tooth, etc. The same method for determining the center of each tooth may be consistently applied between the teeth and any teeth used to form (e.g., train) the systems described herein.

Standardizing may be distinct from normalizing. As used herein, standardizing may involve regularizing numerical and/or other description(s) of a tooth. For example, standardizing may involve regularizing the order and/or number of angles (from the center of the tooth) used to describe the teeth. The sizes of the teeth from the original 3D scan may be maintained.

Any of the methods and systems described herein may be determine for each tooth in a dental arch if that tooth is a primary tooth or a permanent tooth and/or if the tooth is erupted, un-erupted or partially erupted. Thus, any of these methods may determining for one or more (e.g., all) of the patient's teeth in the 3D scan of the patient's arch if the tooth is a primary erupted, permanent partially erupted/un-erupted, and/or permanent erupted tooth. In any of these methods and systems, the system may use this information to label a digital model of the patient's teeth with an indicator for each tooth for which the eruption status and/or primary/permanent description has been determined. For example, the apparatuses and/or methods described herein may output (by display, transmission, etc.) a 3D model of the patient's teeth labeling each tooth as one of: primary erupted (or just “primary”), permanent partially erupted/un-erupted, and/or permanent erupted tooth (or just “permanent”).

The 3D scan of the patient's teeth may be collected in any appropriate manner that permits it to be later manipulated by the method or apparatus for standardization, feature extraction and determining eruption status and/or permanent/primary status. For example, gathering may include taking the 3D model of the patient's teeth directly or indirectly form the patient's teeth. For example, gathering may include receiving a 3D model of the patient's teeth from an intraoral scanner. Gathering may include receiving the 3D model from a scan of a mold of the patient's teeth.

Any of the apparatuses and/or methods described herein may include gathering patient information about the patient, wherein the patient information includes one or more of: patient age, eruption sequence, measured space available for eruption, and patient gender; further wherein determining an eruption status and primary or permanent tooth type of the target tooth is also based on the patient information. Patient information may be taken directly or indirectly from the patient, including by asking and/or receiving patient questionnaire information, extracting patient information for a patient's electronic records, etc.

Any appropriate features may be extracted from the prepared (e.g., standardized and/or normalized) teeth. For example, in some variations, features may include a principal component analysis (PCA) for each of the teeth in the dental arch being examined. Additional features (e.g., geometric descriptions of the patient's teeth) may not be necessary (e.g., PCA alone may be used) or it may be used to supplement the PCA of each tooth. PCA may be performed on the standardized teeth automatically using any appropriate technique, as discussed above, including using modules from existing software environments such C++ and C# (e.g., ALGLIB library that implements PCA and truncated PCA, MLPACK), Java (e.g., KNIME, Weka, etc.), Mathematica, MATLAB (e.g., MATLAB Statistics Toolbox, etc.), python (e.g., Matplotlib python library, Scikit-learn, etc.), GNU Octave, etc.

In any of the methods an apparatuses described herein the eruption status and primary or permanent tooth type may be determined automatically (e.g., using one or more processors) based on information extracted from the standardized 3D scan. Before or as part of the standardizing process, the 3D model of the patient's tooth may be segmented into individual teeth and/or normalized. For example, the 3D scan of the patient's arch may be transmitted to and processed by a segmentation engine that divides the 3D scan into individual teeth and/or gingiva.

For example, the method and/or apparatus may determine an eruption status and primary or permanent tooth type of the target tooth based on the PCA features by applying machine learning algorithms selected from the group consisting of Decision Tree, Random Forest, Logistic Regression, Support Vector Machine, AdaBOOST, K-Nearest Neighbor (KNN), Quadratic Discriminant Analysis, and Neural Network. For example, machine learning techniques may be used to form and apply a trained network (neural network). Alternatively or additionally, a logistic regression may be used.

A system (e.g., a system for determining the eruption status and primary or permanent tooth type) may include: one or more processors; memory coupled to the one or more processors, the memory configured to store computer-program instructions, that, when executed by the one or more processors, implement a computer-implemented method, the computer-implemented method comprising: gather a three-dimensional (3D) model of a patient's teeth including a target tooth; standardize the 3D model of the target tooth; apply a principal component analysis (PCA) of the dental features of the target tooth to obtain PCA features; determine an eruption status and primary or permanent tooth type of the target tooth based on the PCA features; and output the eruption status and primary or permanent tooth type of the target tooth. Any of these systems may include a memory for storing the results (e.g., the labeled 3D model of the teeth). Any of these systems may also include an output (e.g., monitor, printer, transmitter, including wireless transmitter), etc.

The apparatuses and/or methods described herein may also be performed using one or more set of reference teeth for normalization. For example, the methods described herein may include a method of automatically determining the eruption status and primary or permanent tooth type of a target tooth. The method may include: receiving, in a computing device, a three-dimensional (3D) model of the patient's teeth including the target tooth, determining, in the computing device, tooth shape features of the target tooth from the 3D model of the patient's teeth, determining, in the computing device, tooth shape features of one or more reference teeth from the 3D model of the patient's teeth, normalizing, in the computing device, at least some of the tooth shape features of the target tooth using the tooth shape features of the one or more reference teeth, applying the normalized tooth shape features to a classifier of the computing device, and outputting from the computing device the eruption status and primary or permanent tooth type of the target tooth.

In any of the apparatuses and/or methods described herein automatically determining eruption status may be performed using an apparatus (e.g., computing device) without human control or direction, particularly in the steps of receiving, determining tooth shape features, normalizing, etc. Alternatively or additionally, any of these steps may be performed partially automatically (e.g., semi-autonomously) or manually.

A computing device may receive a three-dimensional (3D) model of the patient's teeth including the target tooth either directly (e.g., as part of a scanning apparatus or system), or indirectly, including transfer from a previously taken model. The computing device may be a dedicated device or part of a dedicated device (e.g., scanner) or it may be wired or wirelessly connected to a scanning device or a memory storing scanning information. Alternatively or additionally, the computing device may receive the 3D model from a remote (e.g., internet, cloud, etc.) source.

In any of the apparatuses and/or methods described herein a target tooth may be user-selected. Alternatively or additionally, all of the teeth in a 3D model of the teeth may be selected as targets; the apparatus and methods may sequentially or concurrently determine the eruption status and primary or permanent tooth status for each of the plurality of target teeth (including for all of the teeth).

In any of the apparatuses and/or methods described herein, an output may be provided that includes outputting one of: primary erupted, partially erupted permanent (including permanent un-erupted, referred to generically herein as permanent partially erupted/un-erupted), and permanent erupted. Outputting may include fabricating an orthodontic and/or dental appliance based on the determined tooth status (e.g., primary erupted, permanent partially erupted or un-erupted, and permanent erupted). A predicted spacing may be performed based on the primary erupted, permanent partially erupted or un-erupted, and permanent erupted status determined. This spacing may be determined based on the existing and adjacent tooth models (the 3D model) and/or empirical tooth information from the specific patient or a similar patient population. The eruption status information and/or spacing may be used to determine a model (3D model, including digital and non-digital models, such a physical models) that may be fabricated and/or used in the fabrication of a dental and/or orthodontic device.

The methods described herein may also include taking the 3D model of the patient's teeth. The 3D model may be received from a three-dimensional scanner. Alternatively or additionally, the 3D model may be received from a mold of the patient's teeth.

The methods described herein may include getting patient information, wherein the patient information includes one or more of: patient age, eruption sequence, measured space available for eruption, and patient gender; further wherein applying the normalized tooth shape features to the classifier comprises applying the patient information to the classifier with the normalized tooth shape features.

Determining the tooth shape features of the target tooth may comprise determining one or more of: mesial-distal width, buccal-lingual width, crown height, crown center, and number of cusps. Determining the number of cusps can comprise determining the number of cusps in one or more of the arch direction surfaces including: buccal-mesial, buccal-distal, lingual-mesial, and lingual-distal.

Determining the tooth shape features of one or more reference teeth may comprise determining the tooth shape features of one reference tooth. The one or more reference teeth may comprise a molar. Determining the tooth shape features of one or more reference teeth may comprise determining the tooth shape features of two reference teeth. Any appropriate tooth shape feature (morphological feature(s)) may be determined. For example, determining the tooth shape features of one or more reference teeth may comprise determining, for each of the one or more reference teeth, one or more of: mesial-distal width, buccal-lingual width and crown center.

Normalizing at least some of the tooth shape features of the target tooth using the tooth shape features of the one or more reference teeth may comprise normalizing one or more of the mesial-distal width, buccal-lingual width, crown height, and crown center to the one or more reference teeth. Normalizing may further comprise determining a total number of cusps in each of the arch direction surfaces including: buccal-mesial, buccal-distal, lingual-mesial, and lingual-distal.

Any of these methods may also include applying the normalized tooth shape features to the classifier comprises applying either a first level binary classifier or a first level binary classifier and a second level binary classifier to the normalized tooth shape features. Applying the normalized tooth shape features to the classifier may comprise applying a first level binary classifier to a first subset of the normalized tooth shape features and either indicating the eruption status and primary or permanent tooth type of the target tooth based on the first level binary classifier or applying a second level binary classifier to a second subset of the normalized tooth shape features and indicating the eruption status and primary or permanent tooth type of the target tooth based on the second level binary classifier.

Any of these methods can further comprise outputting the eruption status comprises outputting an indication of a percentage of eruption.

Any of the methods of automatically determining the eruption status and primary or permanent tooth type of a target tooth may include: receiving, in a computing device, a three-dimensional (3D) model of the patient's teeth including the target tooth, determining, in the computing device, tooth shape features of the target tooth from the 3D model of the patient's teeth, determining, in the computing device, tooth shape features of one or more reference teeth from the 3D model of the patient's teeth, normalizing, in the computing device, at least some of the tooth shape features of the target tooth using the tooth shape features of the one or more reference teeth, applying the normalized tooth shape features to a classifier of the computing device, wherein applying the normalized tooth shape features to the classifier comprises applying a first level binary classifier and, depending on an output of the first level binary classifier, either outputting the eruption status and primary or permanent tooth type of the target tooth, or applying a second level binary classifier to the normalized tooth shape features and then outputting the eruption status and primary or permanent tooth type of the target tooth.

A method of automatically determining the eruption status and primary or permanent tooth type of a target tooth may include: receiving a three-dimensional model of the patient's teeth including the target tooth, normalizing at least one dimension of the target tooth based on one or more reference teeth, inputting into a first binary classifier tooth shape features including the at least one dimension to determine if the target tooth is a fully erupted permanent tooth, inputting into a second binary classifier the tooth shape features if the first binary classifier determines that the target tooth is not a fully erupted permanent tooth, to determine if the target tooth is a permanent partially erupted/un-erupted tooth or a primary tooth, and outputting that the target tooth is a fully erupted permanent tooth, a permanent partially erupted/un-erupted tooth, or a primary tooth.

Also described herein are apparatuses for performing any of the methods described herein (including software, firmware and/or hardware configured to control the apparatus to perform and/or coordinate the performance of these methods). For example, described herein are non-transitory computing device readable medium having instructions stored thereon for determining the status of a patient's target tooth. The instructions may be executable by a processor to cause a computing device to receive a three-dimensional (3D) model of the patient's teeth including the target tooth, determine tooth shape features of the target tooth from the 3D model of the patient's teeth, determine tooth shape features of one or more reference teeth from the 3D model of the patient's teeth, normalize at least some of the tooth shape features of the target tooth using the tooth shape features of the one or more reference teeth, apply the normalized tooth shape features to a classifier of the computing device; and output the eruption status and primary or permanent tooth type of the target tooth.

The instructions may be further configured so that the output is one of: primary erupted, permanent partially erupted or un-erupted, and permanent erupted.

The instructions may be further configured to receive the 3D model from a three-dimensional scanner. The instructions may be configured to get patient information, wherein the patient information includes one or more of: patient age, eruption sequence, measured space available for eruption, and patient gender; further wherein the instructions are configured to include the patient information with the normalized tooth shape features applied to the classifier.

The instructions may be further configured to determine as part of the tooth shape features one or more of: mesial-distal width, buccal-lingual width, crown height, crown center, and number of cusps.

In any of these apparatuses, the instructions may be further configured to determine the number of cusps by determining the number of cusps in one or more of the arch direction surfaces including: buccal-mesial, buccal-distal, lingual-mesial, and lingual-distal.

The instructions may be configured to determine the tooth shape features of the one or more reference teeth from one reference tooth. The one reference tooth may comprise a molar.

The instructions may be configured to determine the tooth shape features of the one or more reference teeth from two reference teeth.

The instructions may be further configured to determine the tooth shape features of the one or more reference teeth for one or more of: mesial-distal width, buccal-lingual width and crown center.

The instructions may be further configured to normalize the at least some of the tooth shape features of the target tooth using the tooth shape features of the one or more reference teeth by normalizing one or more of the mesial-distal width, buccal-lingual width, crown height, and crown center to the one or more reference teeth.

The instructions may be further configured to normalize the at least some of the tooth shape features of the target tooth by determining a total number of cusps in each of the arch direction surfaces including: buccal-mesial, buccal-distal, lingual-mesial, and lingual-distal.

The instructions may be further configured to apply the normalized tooth shape features to the classifier by applying either a first level binary classifier or a first level binary classifier and a second level binary classifier to the normalized tooth shape features.

The instructions may be further configured to apply a first level binary classifier to a first subset of the normalized tooth shape features and either indicate the eruption status and primary or permanent tooth type of the target tooth based on the first level binary classifier or to apply a second level binary classifier to a second subset of the normalized tooth shape features and indicate the eruption status and primary or permanent tooth type of the target tooth based on the second level binary classifier.

In any of the apparatuses described herein, the instructions may be further configured to output an indication of a percentage of eruption. In general, the output may be visual and/or digital and/or printed.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

FIG. 1A is a diagram showing an example of a computing environment configured to digitally scan a dental arch and determine a tooth type and/or eruption status of a target tooth.

FIG. 1B is a diagram showing an example of segmentation engine(s).

FIG. 1C is a diagram showing an example of a feature extraction engine(s).

FIG. 1D is a diagram showing another example of a feature extraction engine(s).

FIG. 1E is a diagram showing an example of detector engine(s).

FIG. 1F is an example of a method of automatically determining the eruption status and/or tooth type of a target tooth.

FIG. 2A is an example of a method of automatically determining the eruption status and tooth type of a target tooth.

FIG. 2B is an example of a method of automatically determining the eruption status and tooth type of a target tooth.

FIGS. 2C-2D are flowcharts describing a detector that uses first and second binary classifiers to determine an eruption status and tooth type of a target tooth. The detector receives normalized features of a target tooth to determine the eruption status and tooth type.

FIG. 3A is a flowchart describing a method of extracting and generating data to be passed into a tooth status classification detector.

FIG. 3B is a flowchart describing a tooth status classification detector used to determine the eruption status and tooth type of a target tooth with the data from the flowchart of FIG. 3A.

FIG. 3C is a flowchart describing a classifier of the tooth status classification detector that determines an eruption status and tooth type of a target tooth.

FIG. 4 shows a distribution of mesial-distal width for Tooth 4.

FIG. 5A shows a distribution of crown height for Tooth 6.

FIG. 5B shows a distribution of buccal-lingual width for Tooth 6.

FIG. 6 shows a distribution of crown height for Tooth 5.

FIG. 7 shows examples of tooth shape by detention type and eruption status, including 1) Permanent, Fully Erupted, 2) Permanent, Partially Erupted, and 3) Primary.

FIG. 8 is a simplified block diagram of a data processing system that may perform the methods described herein.

DETAILED DESCRIPTION

Described herein are apparatuses (e.g., systems, computing device readable media, devices, etc.) and methods for detecting eruption state (e.g., eruption status and tooth type) of a target tooth. Currently, some of the most often heard clinical barriers for teen utilization of orthodontic aligners are the challenges due to un-erupted or erupting teeth. One object of the present disclosure is to use machine learning technology to provide an automatic detector that can distinguish between three tooth type/eruption status for premolars and canines: 1) permanent partially erupted/un-erupted tooth, 2) fully erupted permanent tooth, or 3) fully erupted primary tooth. The detector can make this determination based upon data including patient demographics, tooth measurements, tooth surface mesh, and historical patient data. These methods and apparatus can use this information to provide output to a patient, physician, dental technician, or the like. These apparatuses and/or methods may be further configured to use the determined tooth type and eruption status in forming one or more orthodontic devices (e.g., one or more, including a set, of aligners), treatment plans, or some combination of these.

For example, described herein are apparatuses and/or methods, e.g., systems, including systems to automatically implement processes that incorporate an automatic tooth detector. When the system is triggered by a detection request for a certain tooth, the system can retrieve relevant tooth/patient information from a local or remote database, process the information, and convert the information into representative features. The features can then be passed into an eruption status and tooth type detector, which may use machine learning technology (e.g., Decision Tree, Random Forest, Logistic Regression, Support Vector Machine, AdaBOOST, K-Nearest Neighbor (KNN), Quadratic Discriminant Analysis, Neural Network, etc.) to return a target tooth status classification identifying the eruption status and tooth type of the target tooth. The parameters inputted into the eruption status and tooth type detector can be optimized with historic data. The eruption status and tooth detector may be used to determine the eruption status and permanent/primary tooth type identification on a single tooth (e.g., a single target tooth) or one all of the teeth (or a subset of teeth) in a digital representation of the patient's dental arch. The results may be provided on demand and/or may be stored in a memory (e.g., database) for later use. In some variations the results may be used to modify the labels associated with each tooth reflective of the results (e.g., reflecting the eruption status, such as erupted, partially erupted, un-erupted, and/or primary/permanent status of the teeth).

The apparatuses and/or methods described herein may be useful in planning and fabrication of dental appliances, including elastic polymeric positioning appliances, is described in detail in U.S. Pat. No. 5,975,893, and in published PCT application WO 98/58596, which is herein incorporated by reference for all purposes. Systems of dental appliances employing technology described in U.S. Pat. No. 5,975,893 are commercially available from Align Technology, Inc., Santa Clara, Calif., under the tradename, Invisalign System.

Throughout the body of the Description of Embodiments, the use of the terms “orthodontic aligner”, “aligner”, or “dental aligner” is synonymous with the use of the terms “appliance” and “dental appliance” in terms of dental applications. For purposes of clarity, embodiments are hereinafter described within the context of the use and application of appliances, and more specifically “dental appliances.”

The apparatuses and/or methods (e.g., systems, devices, etc.) described below can be used with and/or integrated into an orthodontic treatment plan. The apparatuses and/or methods described herein may be used to segment a patient's teeth from a two-dimensional image and this segmentation information may be used to simulate, modify and/or choose between various orthodontic treatment plans. Segmenting the patient's teeth can be done automatically (e.g., using a computing device). For example, segmentation can be performed by a computing system automatically by evaluating data (such as three-dimensional scan, or a dental impression) of the patient's teeth or arch.

As described herein, an intraoral scanner may image a patient's dental arch and generate a virtual three-dimensional model of that dental arch. During an intraoral scan procedure (also referred to as a scan session), a user (e.g., a dental practitioner) of an intraoral scanner may generate multiple different images (also referred to as scans or medical images) of a dental site, model of a dental site, or other object. The images may be discrete images (e.g., point-and-shoot images) or frames from a video (e.g., a continuous scan). The three-dimensional scan can generate a 3D mesh of points representing the patient's arch, including the patient's teeth and gums. Further computer processing can segment or separate the 3D mesh of points into individual teeth and gums.

An automated tooth detection system, as used herein, may include a system that uses automated agents to identify and/or number individual teeth and/or dental features of virtual representations of teeth, such as teeth represented in a three-dimensional dental mesh model resulting from a digital scan.

The present disclosure presents one or more novel processes for identifying and segmenting a patient's teeth during an identification process. Some implementations herein may solve technical problems related to optimizing and/or increasing the accuracy of digital dental scanning technologies. The tooth detection processes described herein advantageously may: provide fully automatic tooth detection with no human intervention needed; compensate for errors generated by machine learning detectors; quickly and efficiently identify teeth types and/or eruption status; and/or implement any machine learning detectors.

FIG. 1A is a diagram showing an example of a computing environment 100A configured to facilitate gathering digital scans of a dental arch with teeth therein. The environment 100A includes a computer-readable medium 152, a scanning system 154, a dentition display system 156, and a 3D mesh processing system 158. One or more of the modules in the computing environment 100A may be coupled to one another or to modules not explicitly shown.

The computer-readable medium 152 and other computer readable media discussed herein are intended to represent a variety of potentially applicable technologies. For example, the computer-readable medium 152 can be used to form a network or part of a network. Where two components are co-located on a device, the computer-readable medium 152 can include a bus or other data conduit or plane. Where a first component is co-located on one device and a second component is located on a different device, the computer-readable medium 152 can include a wireless or wired back-end network or LAN. The computer-readable medium 152 can also encompass a relevant portion of a WAN or other network, if applicable.

The scanning system 154 may include a computer system configured to scan a patient's dental arch. A “dental arch,” as used herein, may include at least a portion of a patient's dentition formed by the patient's maxillary and/or mandibular teeth, when viewed from an occlusal perspective. A dental arch may include one or more maxillary or mandibular teeth of a patient, such as all teeth on the maxilla or mandible or a patient. The scanning system 154 may include memory, one or more processors, and/or sensors to detect contours on a patient's dental arch. The scanning system 154 may be implemented as a camera, an intraoral scanner, an x-ray device, an infrared device, etc. The scanning system 154 may include a system configured to provide a virtual representation of a physical mold of patient's dental arch. The scanning system 154 may be used as part of an orthodontic treatment plan. In some implementations, the scanning system 154 is configured to capture a patient's dental arch at a beginning stage, an intermediate stage, etc. of an orthodontic treatment plan.

The dentition display system 156 may include a computer system configured to display at least a portion of a dentition of a patient. The dentition display system 154 may include memory, one or more processors, and a display device to display the patient's dentition. The dentition display system 156 may be implemented as part of a computer system, a display of a dedicated intraoral scanner, etc. In some implementations, the dentition display system 156 facilitates display of a patient's dentition using scans that are taken at an earlier date and/or at a remote location. It is noted the dentition display system 156 may facilitate display of scans taken contemporaneously and/or locally to it as well. As noted herein, the dentition display system 156 may be configured to display the intended or actual results of an orthodontic treatment plan applied to a dental arch scanned by the scanning system 154. The results may include 3D virtual representations of the dental arch, 2D images or renditions of the dental arch, etc.

The 3D mesh processing system 158 may include a computer system configured to process 3D scans or meshes of a patient's dentition taken by the scanning system 154. As noted herein, the 3D mesh processing system 158 may be configured to process scans of teeth in a dental arch. The 3D mesh processing system 158 may include segmentation engine(s) 160, feature extraction engine(s) 162, and detector engine(s) 164. One or more of the modules of the image processing system 158 may be coupled to each other or to modules not shown.

As used herein, any “engine” may include one or more processors or a portion thereof. A portion of one or more processors can include some portion of hardware less than all of the hardware comprising any given one or more processors, such as a subset of registers, the portion of the processor dedicated to one or more threads of a multi-threaded processor, a time slice during which the processor is wholly or partially dedicated to carrying out part of the engine's functionality, or the like. As such, a first engine and a second engine can have one or more dedicated processors or a first engine and a second engine can share one or more processors with one another or other engines. Depending upon implementation-specific or other considerations, an engine can be centralized or its functionality distributed. An engine can include hardware, firmware, or software embodied in a computer-readable medium for execution by the processor. The processor transforms data into new data using implemented data structures and methods, such as is described with reference to the figures herein.

The engines described herein, or the engines through which the systems and devices described herein can be implemented, can be cloud-based engines. As used herein, a cloud-based engine is an engine that can run applications and/or functionalities using a cloud-based computing system. All or portions of the applications and/or functionalities can be distributed across multiple computing devices, and need not be restricted to only one computing device. In some embodiments, the cloud-based engines can execute functionalities and/or modules that end users access through a web browser or container application without having the functionalities and/or modules installed locally on the end-users' computing devices.

As used herein, “datastores” may include repositories having any applicable organization of data, including tables, comma-separated values (CSV) files, traditional databases (e.g., SQL), or other applicable known or convenient organizational formats. Datastores can be implemented, for example, as software embodied in a physical computer-readable medium on a specific-purpose machine, in firmware, in hardware, in a combination thereof, or in an applicable known or convenient device or system. Datastore-associated components, such as database interfaces, can be considered “part of” a datastore, part of some other system component, or a combination thereof, though the physical location and other characteristics of datastore-associated components is not critical for an understanding of the techniques described herein.

Datastores can include data structures. As used herein, a data structure is associated with a particular way of storing and organizing data in a computer so that it can be used efficiently within a given context. Data structures are generally based on the ability of a computer to fetch and store data at any place in its memory, specified by an address, a bit string that can be itself stored in memory and manipulated by the program. Thus, some data structures are based on computing the addresses of data items with arithmetic operations; while other data structures are based on storing addresses of data items within the structure itself. Many data structures use both principles, sometimes combined in non-trivial ways. The implementation of a data structure usually entails writing a set of procedures that create and manipulate instances of that structure. The datastores, described herein, can be cloud-based datastores. A cloud-based datastore is a datastore that is compatible with cloud-based computing systems and engines.

The segmentation engine(s) 160 may be configured to implement one or more automated agents configured to process tooth scans from the scanning system 154. The segmentation engine(s) 160 may include graphics engines to process images or scans of a dental arch. In some implementations, the segmentation engine(s) 160 format scan data from an scan of a dental arch into a dental mesh model (e.g., a 3D dental mesh model) of the dental arch. The segmentation engine(s) 160 may also be configured to segment the 3D dental mesh model of the dental arch into individual dental components, including segmenting the 3D dental mesh model into 3D mesh models of individual teeth. The 3D dental mesh models of the dental arch and/or the individual teeth may comprise geometric point clouds or polyhedral objects that depict teeth and/or other elements of the dental arch in a format that can be rendered on the dentition display system 156. The segmentation engine(s) 160 may provide 3D dental mesh models and/or other data to other modules of the 3D mesh processing system 158.

The feature extraction engine(s) 162 may implement one or more automated agents configured to extract dental features. A “dental feature,” as used herein, may include data points from the 3D dental mesh model that correlate to edges, contours, vertices, vectors, or surfaces of the patient's teeth. A “dental feature” may be based on patient demographics and/or tooth measurements. A dental feature may be related to “PCA features,” e.g., those dental features derived from a principal component analysis of a tooth. In some implementations, the feature extraction engine(s) 162 is configured to analyze 3D dental mesh models from the segmentation engine(s) 160 to extract the dental features. The feature extraction engine(s) 162 may implement principal component analysis (PCA) to obtain the dental features. In one implementation, the 3D dental mesh model of individual teeth comprises a scatter plot of points representing a patient's tooth, and PCA can be applied to the scatter plot to obtain vectors along the biggest distribution of scatter plots. The feature extraction engine(s) can then project from the center of the scatter plot to find vectors that intersect the tooth shape at each angle.

The detector engine(s) 164 may implement one or more automated agents configured to predict tooth state (e.g., tooth type and/or eruption status) of a target tooth using extracted dental features. In some implementations, the detector engine(s) 164 assign physical and/or geometrical properties to a 3D dental mesh model that are related to physical/geometrical properties of dental arches or teeth. The detector engine(s) 164 may receive dental features from the feature extraction engine(s) 162 and apply machine learning algorithms to predict tooth type and/or eruption status of a target tooth using extracted dental features. In some implementations, the detector engine(s) 164 use a trained convolutional neural network and/or trained classifiers to classify a target tooth into one or more identified categories of teeth type, eruption status, tooth number, etc. Examples of machine learning systems implemented by the detector engine(s) 164 may include Decision Tree, Random Forest, Logistic Regression, Support Vector Machine, AdaBOOST, K-Nearest Neighbor (KNN), Quadratic Discriminant Analysis, Neural Network, etc., to determine a tooth type (e.g., incisor, canine, pre-molar, molar, etc.), eruption status (e.g., permanent, permanent erupting, primary), and/or tooth number of the target tooth. The detector engine(s) 164 can incorporate predicted tooth type and/or eruption status into a final segmentation result. The detector engine(s) 164 may also output a final segmentation result to other modules, for example, the optional treatment modeling engine(s) 166. As an example, the detector engine(s) 164 may implement one or more automated segmentation agents that assign tooth identifiers (e.g., universal tooth numbers, tooth type, or eruption status) to specific portions of a 3D dental mesh model.

The optional treatment modeling engine(s) 166 may be configured to store and/or provide instructions to implement orthodontic treatment plans and/or the results of orthodontic treatment plans. The optional treatment modeling engine(s) 166 may provide the results of orthodontic treatment plans on a 3D dental mesh model. The optional treatment modeling engine(s) 166 may model the results of application of orthodontic aligners to the patient's dental arch over the course of an orthodontic treatment plan.

FIG. 1B is a diagram showing an example of the segmentation engine(s) 160a. The segmentation engine(s) 160a may include an arch scanning engine 168 and an individual tooth segmentation datastore 170. One or more of the modules of the segmentation engine(s) 160a may be coupled to each other or to modules not shown.

The arch scanning engine 168 may implement one or more automated agents configured to scan a 3D dental mesh model for individual tooth segmentation data. “Individual tooth segmentation data,” as used herein, may include positions, geometrical properties (contours, etc.), and/or other data that can form the basis of segmenting individual teeth from 3D dental mesh models of a patient's dental arch. The arch scanning engine 168 may implement automated agents to separate dental mesh data for individual teeth from a 3D dental mesh model of the dental arch. The arch scanning engine 168 may further implement automated agents to number the individual teeth.

The individual tooth segmentation datastore 170 may be configured to store data related to model dental arches, including model dental arches that have been segmented into individual teeth. The model dental arch data may comprise data related to segmented individual teeth, including tooth identifiers of the individual teeth such as tooth types, tooth numbers, and eruption status(es).

FIG. 1C is a diagram showing an example of the feature extraction engine(s) 162a. The feature extraction engine(s) 162a may include principal component analysis engine 172, a center projection engine 174, and a tooth feature datastore 170. One or more of the modules of the feature extraction engine(s) 162a may be coupled to each other or to modules not shown.

The principal component analysis engine 172 may implement one or more automated agents configured to apply PCA to the individual tooth segmentation data. The principal component analysis engine 172 may implement one or more automated agents configured to apply PCA to the individual tooth segmentation data to obtain vectors along the biggest distribution of scatter plots. These vectors may represent a point in 3D space where the vectors intersect the tooth shape. The principal component analysis engine 172 may obtain, for example, a limited or specific number of vectors at known angles in 3D space (e.g., 2500 known angles from the 3D mesh model). The principal component analysis engine 172 can communicate the vector data to the center projection engine 174 and to the tooth feature datastore 176.

The center projection engine 174 may implement one or more automated agents configured to find the appropriate center of the individual tooth segmentation data. The center projection engine 174 may, for example, apply various techniques such as geometric center, weighted center, etc., to find the center of the individual tooth segmentation data. The center projection engine 174 can store the center data in the tooth feature datastore 176.

The tooth feature datastore 176 may be configured to store data related to teeth features, including vectors representing the tooth shape and center data representing the center of the individual tooth segmentation data. In some implementations, only a subset of the total tooth features, such as the vectors representing tooth shape, are stored in the tooth feature datastore.

FIG. 1D is a diagram showing an alternative example of a feature extraction engine(s) 162b. The feature extraction engine(s) 162b may include tooth comparison engine 178, normalization engine 180, and a tooth feature datastore 184. One or more of the modules of the feature extraction engine(s) 162a may be coupled to each other or to modules not shown.

The tooth comparison engine 178 may implement one or more automated agents configured to determine tooth shape features from the individual tooth segmentation data. The tooth shape features may comprise, for example, length and/or width of the target tooth, such as mesial-distal width, buccal-lingual width, and crown height, and may additionally include the crown center of the target tooth or the number of cusps of the target tooth. The tooth comparison engine 178 may implement one or more automated agents configured to compare the tooth shape features to one or more reference teeth. The tooth comparison engine 178 can communicate the tooth shape features and comparison data to the tooth feature datastore 182.

The normalization engine 180 may implement one or more automated agents configured to normalize the tooth shape features of the individual tooth segmentation data by taking into consideration individual heterogeneity in tooth size. The normalization engine 180 can communicate the normalization data to the tooth feature datastore 182.

The tooth feature datastore 182 may be configured to store data related to tooth shape features and normalization data from the modules described above.

FIG. 1E is a diagram showing an example of the detector engine(s) 164a. The detector engine(s) 164a may receive teeth features, tooth shape features, or normalization data from either the feature extraction engine(s) 162a or 162b described above. The detector engine(s) 164a may include a machine learning detector engine 184, a tooth type datastore 186, and an eruption status datastore 188.

The machine learning detector engine 184 may implement one or more automated agents configured to use machine learning techniques to classify a tooth eruption state of a target tooth with extracted dental features associated with the target tooth. In some implementations, the machine learning detector engine 184 may receive dental features such as tooth features, tooth shape features, or normalization data from the feature extraction engine(s) 162a or 162b. Using a trained classifier, the machine learning detector engine 184 may provide an identifier (e.g., a statistical or other score) that associates the target tooth with a specified category of tooth. As examples, the machine learning detector engine 184 may use a classifier trained to correlate various dental features with whether a tooth is a partially erupted permanent tooth, a fully erupted permanent tooth, or a fully erupted primary tooth. The machine learning detector engine 184 may use a classifier trained to correlate various dental features with tooth type(s) (e.g., incisor, canine, pre-molar, molar, etc.), eruption status(es) (permanent, permanent erupting, primary), and/or tooth number(s). The machine learning detector engine 184 may incorporate one or more machine learning techniques. Examples of such techniques include Decision Tree, Random Forest, Logistic Regression, Support Vector Machine, AdaBOOST, K-Nearest Neighbor (KNN), Quadratic Discriminant Analysis, Neural Network, etc. . . .

The tooth type datastore 186 may be configured to store data relating dental features to tooth type(s) (e.g., incisor, canine, pre-molar, molar, etc., and/or a tooth number(s) (e.g., a universal tooth number). In some implementations, the data relating dental features to tooth type(s) and/or tooth number(s) may have been stored by the machine learning detector engine 184 during a training phase. The eruption status datastore 188 may be configured to store data relating dental features eruption status(es) (e.g., permanent, permanent erupting, primary). In some implementations, the data relating dental features to eruption status(es) may have been stored by the machine learning detector engine 184 during a training phase.

FIG. 1F illustrates one example of a method for automatically determining the eruption state (e.g., eruption status and/or primary/permanent tooth type) for one or more teeth of a patient's dental arch. This method may be automatically implemented by a system, such as one or more of the systems in the computing environment 100A, shown in FIG. 1A. At an operation 190, the system may automatically collect a three-dimensional (3D) scan of the patient's dental arch. The 3D scan may be collected directly from the patient (e.g., using an intraoral scanner) or indirectly (e.g., by scanning a mold of the patient's dentition and/or be receiving a digital model of the patient taken by another, etc.). Optionally, at an operation 191, additional information about the patient may be collected (directly or indirectly), such as the patient's age, gender, etc.

The 3D scan may be prepared for further processing. For example, the 3D scan may be expressed as a digital mesh and/or segmented into individual teeth (and non-teeth elements, such as gingiva, arch, etc.). At an operation 192, the 3D scan may be standardized and/or normalized. For example, in some variations the 3D model may be standardized by expressing each tooth as a set of vectors from a center point of that tooth to a surface point on the tooth. The number and order of the vectors may be preset. For example, over x angles (e.g., over 1000 angles, over 1500 angles, over 2000 angles, over 2500 angles, etc.) may be taken in three dimensional space for each tooth. Alternatively or additionally, as will be described below, the teeth or features extracted from the teeth, may be normalized using database of reference teeth.

At an operation 193, dental features may be extracted from the standardized/normalized 3D model of the patient's teeth (and in some variations from additional data about the patient or the patient's teeth), e.g., using a feature extraction engine. For example, in some variations extraction of features may include automatically performing principle component analysis (PCA) on the teeth (e.g., on each segmented tooth) and the resulting first n terms of the PCA may be used as extracted features (e.g., where n is 10 or more, 15 or more, 20 or more, 30 or more, 40 or more, 50 or more, 60 or more, 70 or more, etc.). Although standardization and normalization are shown together in FIG. 1F (see operation 192) and shown before an operation of feature extraction (see operation 193), in some variations, the operation of normalization (e.g., operation 192) may be performed separately and/or concurrently or after extracting tooth features (e.g., operation 193).

At an operation 194, extracted dental features (e.g., extracted PCA features) may be used exclusively or in combination with any other extracted feature described herein. The extracted dental features may be provided to the detector engine to determine the primary or permanent tooth type and/or eruption status (un-erupted, partially erupted, erupted) for one or more of the patient's teeth 194.

At an operation 195, the eruption state (e.g., primary/permanent tooth type and/or eruption status) for the one or more teeth of the patient's dental arch may then be output. In some variations this information is used to modify a model (e.g., a 3D digital model) of the patient's teeth (e.g., dental arch). For example, each tooth may be labeled and/or referenced by a name or number (or other alphanumeric) that corresponds to the tooth eruption status and/or primary/permanent tooth type. For example, the tooth may be automatically and accurately labeled using these methods and systems in a numbering standard (e.g., a universal number system or a modified universal numbering system) that further indicates primary/permanent teeth. For example, uppercase letters A through T may be used for primary teeth and the numbers 1-32 may be used for permanent teeth, as would be understood by those of skill in the dental/orthodontic art. Alternative standard dental numbering systems may be used (e.g., FDI World Dental Federation notation, Palmer notation, etc.).

FIG. 2A shows an example of a flowchart describing a method of automatically determining the eruption status and tooth type of a target tooth of a patient with a detection system. At step 200 of the flowchart in FIG. 2A, a three-dimensional (3D) model of the patient's teeth can be collected. The 3D models may include surface features or surface features and internal features. In some embodiments, the 3D model can be generated with an intraoral scanner that can be hand-held by an operator (e.g., dentist, dental hygienist, technician, etc.) and moved over a patient's tooth or teeth to scan both surface and (optionally) internal structures. In general, any appropriate technique may be used to form the 3D models of the tooth including the surface and internal structures from the intraoral scanner. In another embodiment, the 3D model can be generated from a mold of the patient's teeth.

At step 202 of the flowchart of FIG. 2A, patient info can be (optionally) acquired, such as the patient's age, gender, eruption sequence, measured space available for eruption, etc. Age, eruption sequence, and gender can be useful as supporting factors for prediction. For example, if the patient's 1st bicuspid (tooth 4) is erupting earlier than the canine in the upper jaw (tooth 3) or the 2nd bicuspid in the upper jaw (tooth 5), then historical eruption sequence data indicates that both teeth 3 and 5 are likely to be primary teeth. Similarly, if tooth 3 is erupting, tooth 4 is likely to be fully erupted, especially for males. This information, if acquired, can be later used by the detection system to aid in determining the eruption status and tooth type of the target tooth. The eruption sequence is not always the same, however it may provide another factor for consideration as described herein. For example, a typical eruption sequence for the upper teeth may be: 6-1-2-4-5-3-7-8, or 6-1-2-4-3-5-7-8. A typical eruption sequence for the lower teeth may be: 6-1-2-3-4-5-7-8.

At step 204 of the flowchart of FIG. 2A, the 3D model of each tooth may be standardized. The detection system can obtain 3D mesh data for each individual tooth from the patient's arch. In some examples, the detection system can implement automated agents to scan and segment the 3D model data of the patient's arch from step 200 into 3D model data of the individual teeth. The 3D model data of the individual teeth can include surface features or surface features and internal features representing the shape of each tooth.

At step 206 of the flowchart of FIG. 2A, a PCA of the standardized 3D model for each tooth may be taken in order to obtain PCA features for the tooth. In some implementations, the detection system can receive or determine tooth or dental features for a target tooth of the patient. These tooth or dental features may include data points from the 3D dental mesh model that correlate to edges, contours, vertices, vectors, or surfaces of the patient's teeth. In one embodiment, the tooth or dental features can be received or determined from the 3D model of the patient's teeth or individual teeth, or alternatively from a clinical evaluation of the patient.

At step 208 of the flowchart of FIG. 2B, the dental features from step 206 to determine the tooth type (e.g., if the target tooth is a primary tooth or a permanent tooth), the tooth number (e.g., the universal tooth number), and/or the eruption status (e.g., if the target tooth is fully erupted or partially erupted). This can be achieved by passing the tooth or dental features and optional patient info (e.g., patient age/gender, eruption sequence, measured space available for eruption) to a machine learning detector. The machine learning detector can apply machine learning algorithms, including Decision Tree, Random Forest, Logistic Regression, Support Vector Machine, AdaBOOST, K-Nearest Neighbor (KNN), Quadratic Discriminant Analysis, Neural Network, etc., to determine a tooth type (e.g., incisor, canine, pre-molar, molar, etc.), eruption status (permanent, permanent erupting, primary), and/or tooth number of the target tooth by comparing the dental or tooth features and optional patient data to reference dental or tooth features (while accounting for optional patient data).

At step 210 of the flowchart of FIG. 2A, the detection system can receive the tooth type and eruption status, and can output the target tooth type and eruption status. The output can comprise 1) primary tooth type and fully erupted, 2) permanent tooth type and un-erupted/erupting, or 3) permanent tooth type and fully erupted. The output can optionally include the eruption percentage, etc.

FIG. 2B is a flowchart describing a method of automatically determining the eruption status and tooth type of a target tooth of a patient with a detection system. At step 201 of FIG. 1A, a three-dimensional (3D) model of the patient's teeth can be (optionally) taken. The 3D models may include surface features or surface features and internal features. In some embodiments, the 3D model can be generated with an intraoral scanner that can be hand-held by an operator (e.g., dentist, dental hygienist, technician, etc.) and moved over a patient's tooth or teeth to scan both surface and (optionally) internal structures. In general, any appropriate technique may be used to form the 3D models of the tooth including the surface and internal structures from the intraoral scanner. In another embodiment, the 3D model can be generated from a mold of the patient's teeth.

At step 203 of FIG. 2B, patient info can be (optionally) acquired, such as the patient's age, gender, eruption sequence, measured space available for eruption, etc. Age, eruption sequence, and gender can be useful as supporting factors for prediction. For example, if the patient's 1st bicuspid (tooth 4) is erupting earlier than the canine in the upper jaw (tooth 3) or the 2nd bicuspid in the upper jaw (tooth 5), then historical eruption sequence data indicates that both teeth 3 and 5 are likely to be primary teeth. Similarly, if tooth 3 is erupting, tooth 4 is likely to be fully erupted, especially for males. This information, if acquired, can be later used by the detection system to aid in determining the eruption status and tooth type of the target tooth. The eruption sequence is not always the same, however it may provide another factor for consideration as described herein. For example, a typical eruption sequence for the upper teeth may be: 6-1-2-4-5-3-7-8, or 6-1-2-4-3-5-7-8. A typical eruption sequence for the lower teeth may be: 6-1-2-3-4-5-7-8.

At step 205 of FIG. 2B, the detection system can receive or determine features of tooth shape for a target tooth of the patient. These tooth shape features can include, for example, length and/or width of the target tooth, such as mesial-distal width, buccal-lingual width, and crown height; crown center of the target tooth; and number of cusps of the target tooth, such as buccal-mesial, buccal-distal, lingual-mesial, and lingual-distal. In one embodiment, the features of tooth shape can be received or determined from the 3D model of the patient's teeth, or alternatively from a clinical evaluation of the patient.

At step 207 of FIG. 2B, the detection system can receive or determine features of one or more reference tooth/teeth shape from the patient. The reference tooth/teeth shape features can include, for example, length and/or width of the target tooth/teeth, including mesial-distal width and buccal-lingual width, and can also include crown center of the reference tooth or teeth. In one embodiment, the features of the reference tooth/teeth shape can be received or determined from the 3D model of the patient's teeth, or alternatively from a clinical evaluation of the patient.

Table 1

TABLE 1 Data Source Variable Clinical 3D Symbol Definition Eval Model Tooth i WBL,i Buccal-lingual X width (Real Geometry) WMD,i Mesial-distal X width (RG) hi Crown height X X (RG) (fully (partially erupted) erupted) Zi Crown center Z X nBM,i, nBD,i, Number of cusps at X nLM,i, nLD,i different surface and arch direction Patient a Age X 1st molars WBL,SSM, Buccal-lingual X in same WBL,OSM width jaw WMD,SSM, Mesial-distal X WMD,OSM width zSSM, zOSM Crown center Z X Central zSS1 Crown center Z X incisors in same jaw Subscript notations: B = buccal, L = lingual, M = mesial, D = distal SSM = same-side 1st molar, OSM = opposite-side 1st molar SSI = same-side central incisor, OSI = opposite-side central incisor

Table 1 above lists the variables that can be evaluated by the detection system to determine the eruption status and tooth type of a target tooth i. Table 1 also provides the data source for each variable, e.g., whether the data came from a clinical evaluation or from the 3D model.

At step 209 of FIG. 2B, the features of the target tooth can be normalized to take into consideration individual heterogeneity in tooth size. The normalization of features can include any of the steps 211, 213, or 215 of FIG. 2B. In one embodiment, at step 211, the target tooth can be normalized with respect to the width (e.g., buccal-lingual width or mesial-distal width) of a reference tooth or teeth comprising 1st molars in the same jaw as the target tooth. In another embodiment, at step 213, the target tooth can be normalized with respect to the crown center of a reference tooth or teeth comprising 1st molars in the same jaw as the target tooth, or comprising central incisors in the same jaw as the target tooth. The reference tooth or teeth should be either 1st molars or central incisors, which generally erupt at an early age (6-8 years) and therefore widely available in a typical patient. In another embodiment, at step 215, the total number of cusps of the target tooth can be determined.

Referring back to step 211, for the buccal-lingual width, the normalized value is:

w ^ BL , i = w BL , i / ( w BL , SSM + w BL , OSM 2 )

If either of the two 1st molars is missing, the detection system can use the existing 1st molar to do normalization. If both 1st molars are missing, the value of ŵBL,i can be set as “not a number” (NaN). A similar approach applies to normalizing a value for the mesial-distal width.

Referring back to step 213, the position of the crown center for the target tooth in the Z direction can be computed relative to a reference tooth or teeth with the following formula:
{circumflex over (z)}i=zi−zref

For premolars, the reference tooth can be the 1st molar on the same side of the same jaw, i.e.:
zref=zSSM

While for canines, the reference tooth can be the central incisor on the same side of the same jaw, i.e.:
zref=zSSI

If zref is missing, the value of {circumflex over (z)}i should be set as NaN.

Referring back to step 215, the total number of cusps of the target tooth can also be used for eruption status/tooth type detection. The total number of cusps can be computed with:
ni=nBM,inBD,i+nLM,i+nLD,i

If any of nBM,i, nBD,i, nLM,i, nLD,i is missing, its value can be imputed as 0, with one exception: if all of them are missing, the value of ni should be set as NaN.

At step 217 of FIG. 2B, the detection system can use the normalized features from step 209 to determine the tooth type (e.g., if the target tooth is a primary tooth or a permanent tooth) and the eruption status (e.g., if the target tooth is fully erupted or partially erupted). This can be achieved by passing the normalized features and optional patient info (e.g., patient age/gender, eruption sequence, measured space available for eruption) to a detector as further described in FIGS. 2C and 2D.

Table 2 provides a list of the normalized features and optional patient info that can be used by the detectors of FIGS. 2C and 2D to return the target tooth status classification. As mentioned above, the level-1 classifier can use a first set of normalized features and the level-2 classifier can use a second set of normalized features.

TABLE 2 list of normalized features and patient info used by detector Symbol Definition ŵBL,i Normalized buccal-lingual width ŵMD,i Normalized mesial-distal width hi Crown height {circumflex over (z)}i Relative crown center Z ni Total number of cusps a Patient age

The detectors of FIGS. 2C and 2D can determine a target tooth status classification from three groups, shown below in Table 3. The classification includes information both on the tooth type (permanent vs. primary) as well as the eruption status (partially erupted vs. fully erupted).

TABLE 3 classification groups Category Label Eruption Status Tooth Type y = 0 Partially erupted Permanent y = 1 Fully erupted Permanent y = 2 Fully erupted Primary

The detector (either FIG. 2C or FIG. 2D) used at step 217 depends on the tooth type of the target tooth. Thus, one classification structure is used when the target tooth is a 2nd premolar, and another classification structure is used when the target tooth is a 1st premolar or canine. For 2nd premolars, primary teeth differ from permanent teeth significantly in mesial-distal width (see FIG. 4, for example). However, for canines, fully erupted permanent teeth differ from the other two types of teeth significantly in crown height and buccal-lingual width (see FIGS. 5A-4B, for example). A similar pattern can be observed for crown height for 1st premolars (see FIG. 6, for example). Therefore, if the target tooth comprises a 2nd premolar, then the normalized features and patient info are passed to the detector of FIG. 2C. If the target tooth comprises a 1st premolar or canine, then the normalized features and patient info are passed to the detector of FIG. 2D.

Finally, at step 219 of FIG. 2B, the detection system can receive the tooth type and eruption status from the detector, and can output the target tooth type and eruption status. The output can comprise 1) primary tooth type and fully erupted, 2) permanent tooth type and un-erupted/erupting, or 3) permanent tooth type and fully erupted. The output can optionally include the eruption percentage, etc.

FIG. 2C is a flowchart describing a detector that uses first and second binary classifiers to determine an eruption status and tooth type of a target tooth. As described above, the detector of FIG. 2C is used when the target tooth comprises a 2nd premolar. The flowchart of FIG. 2C describes the detector from step 217 of FIG. 2B that is used to determine the target tooth type and eruption status.

The detector of FIG. 2C uses a hierarchical structure to convert multi-class classification problems into a cascading binary classification problem. The detector uses a level-1 classifier (at step 151 of FIG. 2C) to address a first (and relatively easier) classification task followed by, if necessary, a level-2 classifier (at step 155 of FIG. 2C) to complete the classification of the target tooth. The level-1 classifier can use a first set of normalized features, and optionally patient info, to address the first classification task, and the level 2 classifier can use a second set of normalized features, and optionally patient info, to address the second classification task.

Referring to step 251 of FIG. 2C, the detector uses a first set of normalized features (and, optionally patient info) in a level-1 classifier to determine a first binary classification of the target tooth comprising a 2nd premolar. The level-1 classifier of the detector can implement various machine learning algorithms, including Decision Tree, Random Forest, Logistic Regression, Support Vector Machine, AdaBOOST, K-Nearest Neighbor (KNN), Quadratic Discriminant Analysis, Neural Network, etc. At step 253, the level-1 classifier can determine if the target tooth is a fully erupted primary tooth based on the first set of normalized features and optionally the patient info. If the level-1 classifier at step 253 determines that the target tooth is a fully erupted primary tooth, then the detector can return the target tooth status classification of “fully erupted primary tooth” at step 261.

However, if the level-1 classifier determines that the target tooth is not a fully erupted primary tooth, then at step 255 of FIG. 2C, the detector uses a second set of normalized features (and, optionally patient info) in a level-2 classifier to determine a second binary classification of the target tooth. The level-2 classifier of the detector can also implement the same various machine learning algorithms as the level-1 classifier. At step 257, the level-2 classifier can determine if the target tooth is a fully erupted permanent tooth based on the second set of normalized features and optionally the patient info. If the level-2 classifier at step 257 determines that the target tooth is a fully erupted permanent tooth, then the detector can return the target tooth status classification of “fully erupted permanent tooth” at step 261. If the level-2 classifier determines that the target tooth is not a fully erupted permanent tooth at step 257, then the level-2 classifier determines at step 259 that the target tooth is a permanent partially erupted/un-erupted tooth, and the detector can then return the target tooth status classification of “permanent partially erupted/un-erupted tooth” at step 261.

Table 4 describes the classifier design when the target tooth comprises a 2nd premolar, including the input (normalized) features, and the output options at each stage of the detector. This classifier design is used for the detector of FIG. 2C.

TABLE 4 classifier design when target tooth comprises 2nd premolar Output classifier Input features positive negative Level-1 ŵBL,i, ŵMD,i, hi, ni y = 2 y = 1 or y = 0 Level-2 ŵBL,i, ŵMD,i, hi, {circumflex over (z)}i y = 1 y = 0

Thus, according to Table 4, when the target tooth is a 2nd premolar, the normalized features used by the level-1 classifier include normalized buccal-lingual width, normalized mesial-distal width, crown height, and total number of cusps. The normalized features used by the level-2 classifier include normalized buccal-lingual width, normalized mesial-distal width, crown height, and relative crown center Z. The level-1 classifier can return a positive output of a fully erupted primary tooth, and the level-2 classifier can return a positive output of a fully erupted permanent tooth.

FIG. 2D is a flowchart describing a detector that uses first and second binary classifiers to determine an eruption status and tooth type of a target tooth. As described above, the detector of FIG. 2D is used when the target tooth comprises a 1st premolar or canine. The detector of FIG. 2D is similar to the detector of FIG. 2C, except the classification determinations are in a slightly different order.

The flowchart of FIG. 2D describes the detector from step 217 of FIG. 2B that is used to determine the target tooth type and eruption status. Similar to above, the detector of FIG. 2D uses a hierarchical structure to convert multi-class classification problems into a cascading binary classification problem. The detector uses a level-1 classifier (at step 271 of FIG. 2D) to address a first (and relatively easier) classification task followed by, if necessary, a level-2 classifier (at step 275 of FIG. 2D) to complete the classification of the target tooth. The level-1 classifier can use a first set of normalized features, and optionally patient info, to address the first classification task, and the level 2 classifier can use a second set of normalized features, and optionally patient info, to address the second classification task.

Referring to step 271 of FIG. 2D, the detector uses a first set of normalized features (and, optionally patient info) in a level-1 classifier to determine a first binary classification of the target tooth comprising a 1st premolar or canine. The level-1 classifier of the detector can implement various machine learning algorithms, including Decision Tree, Random Forest, Logistic Regression, Support Vector Machine, AdaBOOST, K-Nearest Neighbor (KNN), Quadratic Discriminant Analysis, Neural Network, etc. At step 273, the level-1 classifier can determine if the target tooth is a fully erupted permanent tooth based on the first set of normalized features and optionally the patient info. If the level-1 classifier at step 273 determines that the target tooth is a fully erupted permanent tooth, then the detector can return the target tooth status classification of “fully erupted permanent tooth” at step 281.

However, if the level-1 classifier determines that the target tooth is not a fully erupted permanent tooth, then at step 275 of FIG. 2D, the detector uses a second set of normalized features (and, optionally patient info) in a level-2 classifier to determine a second binary classification of the target tooth. The level-2 classifier of the detector can also implement the same various machine learning algorithms as the level-1 classifier. At step 277, the level-2 classifier can determine if the target tooth is a fully erupted primary tooth based on the second set of normalized features and optionally the patient info. If the level-2 classifier at step 277 determines that the target tooth is a fully erupted primary tooth, then the detector can return the target tooth status classification of “fully erupted primary tooth” at step 281. If the level-2 classifier determines that the target tooth is not a fully erupted primary tooth at step 277, then the level-2 classifier determines at step 279 that the target tooth is a permanent partially erupted/un-erupted tooth, and the detector can then return the target tooth status classification of “permanent partially erupted/un-erupted tooth” at step 281.

Table 5 describes the classifier design when the target tooth comprises a 1st premolar or canine, including the input (normalized) features, and the output options at each stage of the detector. This classifier design is used for the detector of FIG. 2D.

TABLE 5 classifier design when target tooth comprises 1st premolar or canine Output classifier Input features positive negative Level-1 ŵBL,i, ŵMD,i, hi y = 1 y = 2 or y = 0 Level-2 ŵBL,i, ŵMD,i, hi, {circumflex over (z)}i, ni, a y = 2 y = 0

Thus, according to Table 5, when the target tooth is a 1st premolar or canine, the normalized features used by the level-1 classifier include normalized buccal-lingual width, normalized mesial-distal width, and crown height. The normalized features used by the level-2 classifier include normalized buccal-lingual width, normalized mesial-distal width, crown height, relative crown center Z, total number of cusps, and optionally patient age. The level-1 classifier can return a positive output of a fully erupted permanent tooth, and the level-2 classifier can return a positive output of a fully erupted primary tooth.

FIGS. 3A-3C are another set of flowcharts that show the overall detection system described above. FIG. 3A is a flowchart describing a method of extracting and generating data to be passed into a tooth status classification detector. These steps generally correspond to method steps 201-217 of FIG. 2B above.

At step 300 of FIG. 3A, data can be extracted for use by the detection system. The data can include patient teeth data (e.g., 3D model/scanning of teeth) as well as clinical data about the patient (e.g., patient age, gender, eruption sequence, measured space available for eruption etc.). Next, at step 302 of FIG. 3A, the detection system can generate features from the extracted data. This takes into account variance in the patient's teeth to normalize the data set, as described above. Finally, at step 304 of FIG. 3A, the normalized features can be passed into the detector of FIG. 3B.

FIG. 3B is a flowchart describing a tooth status classification detector used to determine the eruption status and tooth type of a target tooth with the data from the flowchart of FIG. 3A. At step 306 of FIG. 3B, the detector can confirm that the requisite normalized features were passed to the detector. At step 308, if any of the normalized features include a NaN (“not a number”) or error message, an alert can be raised at step 310 and the detection process can be ended. If all the normalized features are present, then the normalized features can be passed on to the level-1 classifier at step 312. The level-1 classifier is further illustrated in FIG. 3C.

If the level-1 classifier at step 312 returns a positive result, then the positive result can be converted to a label at step 314 and output back to the system at step 316. The same labels can be used as described above for the FIGS. 2C and 2D detectors. Thus, a positive result at step 312 for a 2nd premolar target tooth can be converted at step 314 to a “fully erupted, primary” label, and a positive result at step 312 for a 1st premolar or canine target tooth can be converted at step 314 to a “fully erupted, permanent” label.

If the level-1 classifier at step 312 returns a negative result, then the normalized features are further passed on to the level-2 classifier at step 313. This level-2 classifier is also illustrated in FIG. 3C. The level-2 classifier similarly returns either a positive or negative result. Thus, a positive result at step 313 from the level-2 classifier for a 2nd premolar target tooth can be converted at step 314 to a “fully erupted, permanent” label, and a positive result at step 313 for a 1st premolar or canine target tooth can be converted at step 314 to a “fully erupted, primary” label. A negative result at step 313 from the level-2 classifier for a 2nd premolar target tooth can be converted at step 314 to a “partially erupted, permanent” label, and a negative result at step 313 for a 1st premolar or canine target tooth can be converted at step 214 to a “partially erupted, permanent” label.

FIG. 3C is a flowchart describing a detector of the detection system that determines an eruption status and tooth type of a target tooth. At step 318, the features are standardized. Feature standardization is a common pre-processing procedure in machine learning and statistics. Next, at step 320, the detector of FIG. 3C makes a prediction, as described above. The prediction can be based on the set of normalized features passed to the detector. The prediction is binarized at step 322, and the passed back to the detection system for output.

FIG. 7 shows examples of tooth shape by detention type and eruption status. FIG. 6 shows the different tooth types and eruption status for the upper left 2nd bicuspid, including 1) Permanent, Fully Erupted, 2) Permanent, Partially Erupted, and 3) Primary.

The methods described herein may be performed by an apparatus, such as a data processing system, which may include hardware, software, and/or firmware for performing many of these steps described above. For example, FIG. 8 is a simplified block diagram of a data processing system 500. Data processing system 500 typically includes at least one processor 502 which communicates with a number of peripheral devices over bus subsystem 504. These peripheral devices typically include a storage subsystem 506 (memory subsystem 508 and file storage subsystem 514), a set of user interface input and output devices 518, and an interface to outside networks 516, including the public switched telephone network. This interface is shown schematically as “Modems and Network Interface” block 516, and is coupled to corresponding interface devices in other data processing systems over communication network interface 524. Data processing system 500 may include a terminal or a low-end personal computer or a high-end personal computer, workstation or mainframe.

The user interface input devices typically include a keyboard and may further include a pointing device and a scanner. The pointing device may be an indirect pointing device such as a mouse, trackball, touchpad, or graphics tablet, or a direct pointing device such as a touchscreen incorporated into the display. Other types of user interface input devices, such as voice recognition systems, may be used.

User interface output devices may include a printer and a display subsystem, which includes a display controller and a display device coupled to the controller. The display device may be a cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD), or a projection device. The display subsystem may also provide nonvisual display such as audio output.

Storage subsystem 506 maintains the basic programming and data constructs that provide the functionality of the present invention. The software modules discussed above are typically stored in storage subsystem 506. Storage subsystem 506 typically comprises memory subsystem 508 and file storage subsystem 514.

Memory subsystem 508 typically includes a number of memories including a main random access memory (RAM) 510 for storage of instructions and data during program execution and a read only memory (ROM) 512 in which fixed instructions are stored. In the case of Macintosh-compatible personal computers the ROM would include portions of the operating system; in the case of IBM-compatible personal computers, this would include the BIOS (basic input/output system).

File storage subsystem 514 provides persistent (nonvolatile) storage for program and data files, and typically includes at least one hard disk drive and at least one floppy disk drive (with associated removable media). There may also be other devices such as a CD-ROM drive and optical drives (all with their associated removable media). Additionally, the system may include drives of the type with removable media cartridges. The removable media cartridges may, for example be hard disk cartridges, such as those marketed by Syquest and others, and flexible disk cartridges, such as those marketed by Iomega. One or more of the drives may be located at a remote location, such as in a server on a local area network or at a site on the Internet's World Wide Web.

In this context, the term “bus subsystem” is used generically so as to include any mechanism for letting the various components and subsystems communicate with each other as intended. With the exception of the input devices and the display, the other components need not be at the same physical location. Thus, for example, portions of the file storage system could be connected over various local-area or wide-area network media, including telephone lines. Similarly, the input devices and display need not be at the same location as the processor, although it is anticipated that the present invention will most often be implemented in the context of PCS and workstations.

Bus subsystem 504 is shown schematically as a single bus, but a typical system has a number of buses such as a local bus and one or more expansion buses (e.g., ADB, SCSI, ISA, EISA, MCA, NuBus, or PCI), as well as serial and parallel ports. Network connections are usually established through a device such as a network adapter on one of these expansion buses or a modem on a serial port. The client computer may be a desktop system or a portable system.

Scanner 520 is responsible for scanning casts of the patient's teeth obtained either from the patient or from an orthodontist and providing the scanned digital data set information to data processing system 500 for further processing. In a distributed environment, scanner 520 may be located at a remote location and communicate scanned digital data set information to data processing system 500 over network interface 524.

Fabrication machine 522 fabricates dental appliances based on intermediate and final data set information received from data processing system 500. In a distributed environment, fabrication machine 522 may be located at a remote location and receive data set information from data processing system 500 over network interface 524.

Various alternatives, modifications, and equivalents may be used in lieu of the above components. Although the final position of the teeth may be determined using computer-aided techniques, a user may move the teeth into their final positions by independently manipulating one or more teeth while satisfying the constraints of the prescription.

Additionally, the techniques described here may be implemented in hardware or software, or a combination of the two. The techniques may be implemented in computer programs executing on programmable computers that each includes a processor, a storage medium readable by the processor (including volatile and nonvolatile memory and/or storage elements), and suitable input and output devices. Program code is applied to data entered using an input device to perform the functions described and to generate output information. The output information is applied to one or more output devices.

Each program can be implemented in a high level procedural or object-oriented programming language to operate in conjunction with a computer system. However, the programs can be implemented in assembly or machine language, if desired. In any case, the language may be a compiled or interpreted language.

Each such computer program can be stored on a storage medium or device (e.g., CD-ROM, hard disk or magnetic diskette) that is readable by a general or special purpose programmable computer for configuring and operating the computer when the storage medium or device is read by the computer to perform the procedures described. The system also may be implemented as a computer-readable storage medium, configured with a computer program, where the storage medium so configured causes a computer to operate in a specific and predefined manner.

Thus, any of the methods (including user interfaces) described herein may be implemented as software, hardware or firmware, and may be described as a non-transitory computer-readable storage medium storing a set of instructions capable of being executed by a processor (e.g., computer, tablet, smartphone, etc.), that when executed by the processor causes the processor to control perform any of the steps, including but not limited to: displaying, communicating with the user, analyzing, modifying parameters (including timing, frequency, intensity, etc.), determining, alerting, or the like.

While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. Numerous different combinations of embodiments described herein are possible, and such combinations are considered part of the present disclosure. In addition, all features discussed in connection with any one embodiment herein can be readily adapted for use in other embodiments herein. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.

Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.

Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.

Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.

In general, any of the apparatuses and/or methods described herein should be understood to be inclusive, but all or a sub-set of the components and/or steps may alternatively be exclusive, and may be expressed as “consisting of” or alternatively “consisting essentially of” the various components, steps, sub-components or sub-steps.

As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.

Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.

The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the patient matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive patient matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.

Claims

1. A method comprising:

scanning a patient's dentition with an intraoral scanner to gather an initial three-dimensional (3D) model of the patient's dentition;
identifying a portion of the initial 3D model of the patient's dentition corresponding to a target tooth, the portion of the initial 3D model of the patient's dentition being associated with one or more visual attributes of the target tooth;
standardizing the initial 3D model of the patient's dentition by expressing at least the portion of the initial 3D model corresponding to the target tooth as vectors from a center point of the target tooth;
identifying one or more principal component analysis (PCA) features of the portion of the standardized initial 3D model corresponding to the target tooth, the one or more PCA features being correlated with the one or more visual attributes of the target tooth, wherein identifying the one or more PCA features comprises determining whether the vectors intersect a tooth shape of the target tooth and obtaining a limited number of the vectors at known angles in 3D space;
determining one or more tooth eruption indicators of the target tooth using the one or more PCA features, the one or more tooth eruption indicators providing a basis to identify an eruption state of the target tooth, wherein determining the one or more tooth eruption indicators of the target tooth comprises using a machine-trained classifier to recognize one or more of an eruption status and a tooth type of the target tooth based on one or more PCA features of a 3D model of one or more representative teeth;
predicting a spacing in the patient's dentition for accommodating eruption of the target tooth based on the one or more tooth eruption indicators;
using the predicted space to generate an orthodontic treatment plan for the patient's dentition; and
using the orthodontic treatment plan to fabricate a series of orthodontic aligners for treating the patient's dentition.

2. The method of claim 1, wherein the one or more tooth eruption indicators comprises one of: a primary erupted tooth, a permanent partially erupted or un-erupted tooth, and a permanent erupted tooth.

3. The method of claim 1, wherein the eruption state comprises one or more of the eruption status and a permanentness status of the target tooth.

4. The method of claim 3, wherein the permanentness status designates whether the target tooth is a permanent tooth or a primary tooth.

5. The method of claim 1, wherein determining the one or more tooth eruption indicators of the target tooth is based, at least in part on one or more of patient age, eruption sequence and patient gender.

6. The method of claim 1, wherein determining the one or more tooth eruption indicators comprises comparing the one or more PCA features with the one or more PCA features of the 3D model of the one or more representative teeth.

7. The method of claim 1, wherein determining the one or more tooth eruption indicators of the target tooth based on the PCA features comprises applying machine learning algorithms selected from the group consisting of Decision Tree, Random Forest, Logistic Regression, Support Vector Machine, AdaBOOST, K-Nearest Neighbor (KNN), Quadratic Discriminant Analysis, and Neural Network.

8. The method of claim 1, wherein the machine-trained classifier implements a convolutional neural network.

9. The method of claim 1, further comprising outputting a modified version of the initial 3D model of the patient's dentition to include tooth numbering based at least in part on the eruption state of the target tooth.

10. The method of claim 1, further comprising receiving a request to identify the one or more tooth eruption indicators of the target tooth; and wherein identifying one or more principal components is performed in response to the request.

11. The method of claim 1, wherein the orthodontic treatment plan comprises a pediatric orthodontic treatment plan for a pediatric patient.

12. The method of claim 1, further comprising outputting the one or more tooth eruption indicators, wherein outputting the one or more tooth eruption indicators comprises providing one or more tooth eruption indicator labels corresponding to the one or more tooth eruption indicators.

13. The method of claim 1, wherein identifying the portion of the standardized initial 3D model is part of an operation of segmenting the standardized initial 3D model of the patient's dentition.

14. The method of claim 1, wherein the series of orthodontic aligners apply forces to the patient's teeth according to a series of treatment stages, wherein one or more of the series of treatment stages is configured to accommodate the eruption of the target tooth based on the predicted spacing.

15. The method of claim 1, further comprising providing a visual representation of the patient's teeth including the one or more tooth eruption indicators.

16. A computer-implemented method of determining an orthodontic treatment plan for a patient's dentition, the method comprising:

converting, in a computing device, scan data from an intraoral scan of the patient's teeth into an initial three-dimensional (3D) model of the patient's teeth including a target tooth, wherein the initial 3D model is a digital mesh model;
segmenting the initial 3D model to obtain segmented tooth data representing a tooth shape of the target tooth;
determining, in the computing device, tooth shape features of the target tooth from the initial 3D model of the patient's teeth;
determining, in the computing device, tooth shape features of one or more reference teeth from the initial 3D model of the patient's teeth;
normalizing, in the computing device, at least some of the tooth shape features of the target tooth using the tooth shape features of the one or more reference teeth, wherein normalizing includes normalizing one or more of a mesial-distal width, a buccal-lingual width, a crown height, and a crown center of a 3D model of the target tooth to the one or more reference teeth;
applying a principal component analysis (PCA) on the normalized target tooth shape features to obtain one or more PCA features, wherein obtaining the PCA features comprises applying the PCA to the segmented tooth data to obtain a limited number of vectors that intersect the tooth shape of the target tooth at known angles in 3D space;
applying the PCA features to a machine-trained classifier of the computing device to determine an eruption status and an eruption permanentness status of the target tooth, wherein determining the eruption status includes determining whether the target tooth is fully erupted, partially erupted or un-erupted, wherein determining the eruption status and the eruption permanentness status includes determining whether the target tooth is a primary tooth or a permanent tooth;
predicting a spacing in the patient's dentition for accommodating eruption of the target tooth based on the eruption status and the eruption permanentness status;
using the predicted space to generate the orthodontic treatment plan for the patient's dentition; and
using the orthodontic treatment plan to fabricate a series of orthodontic aligners for treating the patient's dentition.

17. The computer-implemented method of claim 16, wherein normalizing includes determining a total number of cusps in buccal-mesial, buccal-distal, lingual-mesial, and lingual-distal arch direction surfaces.

18. The computer-implemented method of claim 16, further comprising collecting patient information including one or more of the patient's age, the patient's gender and tooth eruption sequence, wherein the patient information is used as supporting factors for predicting the eruption status and the eruption permanentness status of the target tooth.

19. The computer-implemented method of claim 16, wherein the one or more reference teeth includes one or more of a same-side first molar, opposite-side first molar, same-side central incisor, and opposite-side central incisor of the patient.

20. The computer-implemented method of claim 16, further comprising:

detecting whether a first molar or a central incisor of the patient is missing; and
normalizing based on an existing first molar or an existing central incisor of the patient.

21. The computer-implemented method of claim 16, further comprising using one or more tooth eruption indicators of the target tooth to segment the 3D model of the patient's dentition.

22. The computer-implemented method of claim 16, further comprising standardizing the initial 3D model of the patient's dentition by expressing at least a portion of the initial 3D model corresponding to the target tooth as vectors from a center point of the target tooth.

23. The computer-implemented method of claim 16, wherein converting the scan data into the 3D model comprises representing the patient's teeth as geometric point clouds or polyhedral objects in a format that can be rendered on a display.

Referenced Cited
U.S. Patent Documents
2171695 September 1939 Harper
2467432 April 1949 Kesling
2531222 November 1950 Kesling
3379193 April 1968 Monsghan
3385291 May 1968 Martin
3407500 October 1968 Kesling
3478742 November 1969 Bohlmann
3496936 February 1970 Gores
3533163 October 1970 Kirschenbaum
3556093 January 1971 Quick
3600808 August 1971 Reeve
3660900 May 1972 Andrews
3683502 August 1972 Wallshein
3738005 June 1973 Cohen et al.
3860803 January 1975 Levine
3885310 May 1975 Northcutt
3916526 November 1975 Schudy
3922786 December 1975 Lavin
3949477 April 13, 1976 Cohen et al.
3950851 April 20, 1976 Bergersen
3983628 October 5, 1976 Acevedo
4014096 March 29, 1977 Dellinger
4117596 October 3, 1978 Wallshein
4183141 January 15, 1980 Dellinger
4195046 March 25, 1980 Kesling
4253828 March 3, 1981 Coles et al.
4255138 March 10, 1981 Frohn
4299568 November 10, 1981 Crowley
4324546 April 13, 1982 Heitlinger et al.
4324547 April 13, 1982 Arcan et al.
4348178 September 7, 1982 Kurz
4419992 December 13, 1983 Chorbajian
4433956 February 28, 1984 Witzig
4439154 March 27, 1984 Mayclin
4449928 May 22, 1984 von Weissenfluh
4478580 October 23, 1984 Barrut
4500294 February 19, 1985 Lewis
4505673 March 19, 1985 Yoshii
4519386 May 28, 1985 Sullivan
4526540 July 2, 1985 Dellinger
4553936 November 19, 1985 Wang
4575330 March 11, 1986 Hull
4575805 March 11, 1986 Moermann et al.
4591341 May 27, 1986 Andrews
4608021 August 26, 1986 Barrett
4609349 September 2, 1986 Cain
4611288 September 9, 1986 Duret et al.
4629424 December 16, 1986 Lauks et al.
4638145 January 20, 1987 Sakuma et al.
4656860 April 14, 1987 Orthuber et al.
4663720 May 5, 1987 Duret et al.
4664626 May 12, 1987 Kesling
4665621 May 19, 1987 Ackerman et al.
4676747 June 30, 1987 Kesling
4755139 July 5, 1988 Abbatte et al.
4757824 July 19, 1988 Chaumet
4763791 August 16, 1988 Halverson et al.
4764111 August 16, 1988 Knierim
4790752 December 13, 1988 Cheslak
4793803 December 27, 1988 Martz
4798534 January 17, 1989 Breads
4836778 June 6, 1989 Baumrind et al.
4837732 June 6, 1989 Brandestini et al.
4850864 July 25, 1989 Diamond
4850865 July 25, 1989 Napolitano
4856991 August 15, 1989 Breads et al.
4877398 October 31, 1989 Kesling
4880380 November 14, 1989 Martz
4886451 December 12, 1989 Cetlin
4889238 December 26, 1989 Batchelor
4890608 January 2, 1990 Steer
4935635 June 19, 1990 O'Harra
4936862 June 26, 1990 Walker et al.
4937928 July 3, 1990 van der Zel
4941826 July 17, 1990 Loran et al.
4952928 August 28, 1990 Carroll et al.
4964770 October 23, 1990 Steinbichler et al.
4975052 December 4, 1990 Spencer et al.
4983334 January 8, 1991 Adell
4997369 March 5, 1991 Shafir
5002485 March 26, 1991 Aagesen
5011405 April 30, 1991 Lemchen
5017133 May 21, 1991 Miura
5027281 June 25, 1991 Rekow et al.
5035613 July 30, 1991 Breads et al.
5037295 August 6, 1991 Bergersen
5055039 October 8, 1991 Abbatte et al.
5061839 October 29, 1991 Matsuno et al.
5083919 January 28, 1992 Quach
5100316 March 31, 1992 Wildman
5103838 April 14, 1992 Yousif
5121333 June 9, 1992 Riley et al.
5123425 June 23, 1992 Shannon et al.
5128870 July 7, 1992 Erdman et al.
5130064 July 14, 1992 Smalley et al.
5131843 July 21, 1992 Hilgers et al.
5131844 July 21, 1992 Marinaccio et al.
5139419 August 18, 1992 Andreiko et al.
5145364 September 8, 1992 Martz et al.
5176517 January 5, 1993 Truax
5194003 March 16, 1993 Garay et al.
5204670 April 20, 1993 Stinton
5222499 June 29, 1993 Allen et al.
5224049 June 29, 1993 Mushabac
5242304 September 7, 1993 Truax et al.
5245592 September 14, 1993 Kuemmel et al.
5257203 October 26, 1993 Riley
5273429 December 28, 1993 Rekow et al.
5278756 January 11, 1994 Lemchen et al.
5306144 April 26, 1994 Hibst et al.
5328362 July 12, 1994 Watson et al.
5335657 August 9, 1994 Terry et al.
5338198 August 16, 1994 Wu et al.
5340309 August 23, 1994 Robertson
5342202 August 30, 1994 Deshayes
5368478 November 29, 1994 Andreiko et al.
5372502 December 13, 1994 Massen et al.
D354355 January 10, 1995 Hilgers
5382164 January 17, 1995 Stern
5395238 March 7, 1995 Andreiko et al.
5431562 July 11, 1995 Andreiko
5440326 August 8, 1995 Quinn
5440496 August 8, 1995 Andersson et al.
5447432 September 5, 1995 Andreiko et al.
5452219 September 19, 1995 Dehoff et al.
5454717 October 3, 1995 Andreiko et al.
5456600 October 10, 1995 Andreiko et al.
5474448 December 12, 1995 Andreiko et al.
5487662 January 30, 1996 Kipke et al.
RE35169 March 5, 1996 Lemchen et al.
5499633 March 19, 1996 Fenton
5522725 June 4, 1996 Jordan et al.
5528735 June 18, 1996 Strasnick et al.
5533895 July 9, 1996 Andreiko et al.
5540732 July 30, 1996 Testerman
5542842 August 6, 1996 Andreiko et al.
5543780 August 6, 1996 McAuley et al.
5549476 August 27, 1996 Stern
5562448 October 8, 1996 Mushabac
5570182 October 29, 1996 Nathel et al.
5583977 December 10, 1996 Seidl
5587912 December 24, 1996 Andersson et al.
5588098 December 24, 1996 Chen et al.
5605459 February 25, 1997 Kuroda et al.
5607305 March 4, 1997 Andersson et al.
5614075 March 25, 1997 Andre
5621648 April 15, 1997 Crump
5626537 May 6, 1997 Danyo et al.
5645420 July 8, 1997 Bergersen
5645421 July 8, 1997 Slootsky
5651671 July 29, 1997 Seay et al.
5655653 August 12, 1997 Chester
5659420 August 19, 1997 Wakai et al.
5683243 November 4, 1997 Andreiko et al.
5683244 November 4, 1997 Truax
5691539 November 25, 1997 Pfeiffer
5692894 December 2, 1997 Schwartz et al.
5711665 January 27, 1998 Adam et al.
5725376 March 10, 1998 Poirier
5725378 March 10, 1998 Wang
5730151 March 24, 1998 Summer et al.
5737084 April 7, 1998 Ishihara
5740267 April 14, 1998 Echerer et al.
5742700 April 21, 1998 Yoon
5769631 June 23, 1998 Williams
5774425 June 30, 1998 Ivanov et al.
5790242 August 4, 1998 Stern et al.
5799100 August 25, 1998 Clarke et al.
5800174 September 1, 1998 Andersson
5813854 September 29, 1998 Nikodem
5816800 October 6, 1998 Brehm et al.
5818587 October 6, 1998 Devaraj et al.
5823778 October 20, 1998 Schmitt et al.
5848115 December 8, 1998 Little et al.
5857853 January 12, 1999 van Nifterick et al.
5866058 February 2, 1999 Batchelder et al.
5879158 March 9, 1999 Doyle et al.
5880961 March 9, 1999 Crump
5880962 March 9, 1999 Andersson et al.
5882192 March 16, 1999 Bergersen
5886702 March 23, 1999 Migdal et al.
5890896 April 6, 1999 Padial
5904479 May 18, 1999 Staples
5934288 August 10, 1999 Avila et al.
5957686 September 28, 1999 Anthony
5964587 October 12, 1999 Sato
5971754 October 26, 1999 Sondhi et al.
5975893 November 2, 1999 Chishti et al.
5975906 November 2, 1999 Knutson
5980246 November 9, 1999 Ramsay et al.
5989023 November 23, 1999 Summer et al.
6002706 December 14, 1999 Staver et al.
6015289 January 18, 2000 Andreiko
6044309 March 28, 2000 Honda
6049743 April 11, 2000 Baba
6053731 April 25, 2000 Heckenberger
6068482 May 30, 2000 Snow
6070140 May 30, 2000 Tran
6099303 August 8, 2000 Gibbs et al.
6099314 August 8, 2000 Kopelman et al.
6123544 September 26, 2000 Cleary
6152731 November 28, 2000 Jordan et al.
6154676 November 28, 2000 Levine
6183248 February 6, 2001 Chishti et al.
6183249 February 6, 2001 Brennan et al.
6186780 February 13, 2001 Hibst et al.
6190165 February 20, 2001 Andreiko et al.
6200133 March 13, 2001 Kittelsen
6201880 March 13, 2001 Elbaum et al.
6212435 April 3, 2001 Lattner et al.
6217334 April 17, 2001 Hultgren
6227850 May 8, 2001 Chishti et al.
6231338 May 15, 2001 de Josselin de Jong et al.
6239705 May 29, 2001 Glen
6243601 June 5, 2001 Wist
6263234 July 17, 2001 Engelhardt et al.
6283761 September 4, 2001 Joao
6299438 October 9, 2001 Sahagian et al.
6309215 October 30, 2001 Phan et al.
6313432 November 6, 2001 Nagata et al.
6315553 November 13, 2001 Sachdeva et al.
6328745 December 11, 2001 Ascherman
6334073 December 25, 2001 Levine
6350120 February 26, 2002 Sachdeva et al.
6364660 April 2, 2002 Durbin et al.
6382975 May 7, 2002 Poirier
6386878 May 14, 2002 Pavlovskaia et al.
6402510 June 11, 2002 Williams
6402707 June 11, 2002 Ernst
6405729 June 18, 2002 Thornton
6406292 June 18, 2002 Chishti et al.
6409504 June 25, 2002 Jones et al.
6413086 July 2, 2002 Womack
6414264 July 2, 2002 von Falkenhausen
6414708 July 2, 2002 Carmeli et al.
6436058 August 20, 2002 Krahner et al.
6450167 September 17, 2002 David et al.
6450807 September 17, 2002 Chishti et al.
6462301 October 8, 2002 Scott et al.
6471511 October 29, 2002 Chishti et al.
6471512 October 29, 2002 Sachdeva et al.
6471970 October 29, 2002 Fanara et al.
6482002 November 19, 2002 Jordan et al.
6482298 November 19, 2002 Bhatnagar
6496814 December 17, 2002 Busche
6496816 December 17, 2002 Thiesson et al.
6499026 December 24, 2002 Rivette et al.
6499995 December 31, 2002 Schwartz
6507832 January 14, 2003 Evans et al.
6514074 February 4, 2003 Chishti et al.
6515593 February 4, 2003 Stark et al.
6516288 February 4, 2003 Bagne
6516805 February 11, 2003 Thornton
6520772 February 18, 2003 Williams
6523019 February 18, 2003 Borthwick
6524101 February 25, 2003 Phan et al.
6526168 February 25, 2003 Ornes et al.
6529891 March 4, 2003 Heckerman
6529902 March 4, 2003 Kanevsky et al.
6532455 March 11, 2003 Martin et al.
6535865 March 18, 2003 Skaaning et al.
6540512 April 1, 2003 Sachdeva et al.
6540707 April 1, 2003 Stark et al.
6542593 April 1, 2003 Bowman Amuah
6542881 April 1, 2003 Meidan et al.
6542894 April 1, 2003 Lee et al.
6542903 April 1, 2003 Hull et al.
6551243 April 22, 2003 Bocionek et al.
6556659 April 29, 2003 Bowman Amuah
6556977 April 29, 2003 Lapointe et al.
6560592 May 6, 2003 Reid et al.
6564209 May 13, 2003 Dempski et al.
6567814 May 20, 2003 Bankier et al.
6571227 May 27, 2003 Agrafiotis et al.
6572372 June 3, 2003 Phan et al.
6573998 June 3, 2003 Cohen Sabban
6574561 June 3, 2003 Alexander et al.
6578003 June 10, 2003 Camarda et al.
6580948 June 17, 2003 Haupert et al.
6582225 June 24, 2003 Bergersen
6587529 July 1, 2003 Staszewski et al.
6587828 July 1, 2003 Sachdeva
6594539 July 15, 2003 Geng
6595342 July 22, 2003 Maritzen et al.
6597934 July 22, 2003 de Jong et al.
6598043 July 22, 2003 Baclawski
6599250 July 29, 2003 Webb et al.
6602070 August 5, 2003 Miller et al.
6604527 August 12, 2003 Palmisano
6606744 August 12, 2003 Mikurak
6607382 August 19, 2003 Kuo et al.
6611783 August 26, 2003 Kelly et al.
6611867 August 26, 2003 Bowman Amuah
6613001 September 2, 2003 Dworkin
6615158 September 2, 2003 Wenzel et al.
6616447 September 9, 2003 Rizoiu et al.
6616579 September 9, 2003 Reinbold et al.
6621491 September 16, 2003 Baumrind et al.
6623698 September 23, 2003 Kuo
6624752 September 23, 2003 Klitsgaard et al.
6626180 September 30, 2003 Kittelsen et al.
6626569 September 30, 2003 Reinstein et al.
6626669 September 30, 2003 Zegarelli
6633772 October 14, 2003 Ford et al.
6640128 October 28, 2003 Vilsmeier et al.
6643646 November 4, 2003 Su et al.
6647383 November 11, 2003 August et al.
6650944 November 18, 2003 Goedeke et al.
6671818 December 30, 2003 Mikurak
6675104 January 6, 2004 Paulse et al.
6678669 January 13, 2004 Lapointe et al.
6685469 February 3, 2004 Chishti et al.
6689055 February 10, 2004 Mullen et al.
6690761 February 10, 2004 Lang et al.
6691110 February 10, 2004 Wang et al.
6694234 February 17, 2004 Lockwood et al.
6697164 February 24, 2004 Babayoff et al.
6697793 February 24, 2004 McGreevy
6702765 March 9, 2004 Robbins et al.
6702804 March 9, 2004 Ritter et al.
6705863 March 16, 2004 Phan et al.
6729876 May 4, 2004 Chishti et al.
6733289 May 11, 2004 Manemann et al.
6739869 May 25, 2004 Taub et al.
6744932 June 1, 2004 Rubbert et al.
6749414 June 15, 2004 Hanson et al.
6790036 September 14, 2004 Graham
6830450 December 14, 2004 Knopp et al.
6832912 December 21, 2004 Mao
6845175 January 18, 2005 Kopelman et al.
6885464 April 26, 2005 Pfeiffer et al.
6890285 May 10, 2005 Rahman et al.
6951254 October 4, 2005 Morrison
6984128 January 10, 2006 Breining et al.
7036514 May 2, 2006 Heck
7040896 May 9, 2006 Pavlovskaia et al.
7106233 September 12, 2006 Schroeder et al.
7112065 September 26, 2006 Kopelman et al.
7121825 October 17, 2006 Chishti et al.
7134874 November 14, 2006 Chishti et al.
7137812 November 21, 2006 Cleary et al.
7138640 November 21, 2006 Delgado et al.
7140877 November 28, 2006 Kaza
7142312 November 28, 2006 Quadling et al.
7155373 December 26, 2006 Jordan et al.
7156655 January 2, 2007 Sachdeva et al.
7156661 January 2, 2007 Choi et al.
7166063 January 23, 2007 Rahman et al.
7184150 February 27, 2007 Quadling et al.
7192273 March 20, 2007 McSurdy
7220122 May 22, 2007 Chishti
7220124 May 22, 2007 Taub et al.
7234937 June 26, 2007 Sachdeva et al.
7241142 July 10, 2007 Abolfathi et al.
7244230 July 17, 2007 Duggirala et al.
7257136 August 14, 2007 Mori et al.
7286954 October 23, 2007 Kopelman et al.
7292759 November 6, 2007 Boutoussov et al.
7302842 December 4, 2007 Biester et al.
7328706 February 12, 2008 Barach et al.
7329122 February 12, 2008 Scott
7338327 March 4, 2008 Sticker et al.
D565509 April 1, 2008 Fechner et al.
7351116 April 1, 2008 Dold
7357637 April 15, 2008 Liechtung
7435083 October 14, 2008 Chishti et al.
7450231 November 11, 2008 Johs et al.
7458810 December 2, 2008 Bergersen
7460230 December 2, 2008 Johs et al.
7462076 December 9, 2008 Walter et al.
7463929 December 9, 2008 Simmons
7476100 January 13, 2009 Kuo
7500851 March 10, 2009 Williams
D594413 June 16, 2009 Palka et al.
7544103 June 9, 2009 Walter et al.
7553157 June 30, 2009 Abolfathi et al.
7561273 July 14, 2009 Stautmeister et al.
7577284 August 18, 2009 Wong et al.
7596253 September 29, 2009 Wong et al.
7597594 October 6, 2009 Stadler et al.
7609875 October 27, 2009 Liu et al.
D603796 November 10, 2009 Sticker et al.
7616319 November 10, 2009 Woollam et al.
7626705 December 1, 2009 Altendorf
7632216 December 15, 2009 Rahman et al.
7633625 December 15, 2009 Woollam et al.
7637262 December 29, 2009 Bailey
7668355 February 23, 2010 Wong et al.
7670179 March 2, 2010 Müller
7695327 April 13, 2010 Bäuerle et al.
7698068 April 13, 2010 Babayoff
7711447 May 4, 2010 Lu et al.
7724378 May 25, 2010 Babayoff
D618619 June 29, 2010 Walter
7728848 June 1, 2010 Petrov et al.
7731508 June 8, 2010 Borst
7735217 June 15, 2010 Borst
7746339 June 29, 2010 Matov et al.
7780460 August 24, 2010 Walter
7787132 August 31, 2010 Körner et al.
7791810 September 7, 2010 Powell
7796243 September 14, 2010 Choo-Smith et al.
7806687 October 5, 2010 Minagi et al.
7806727 October 5, 2010 Dold et al.
7813787 October 12, 2010 de Josselin de Jong et al.
7824180 November 2, 2010 Abolfathi et al.
7828601 November 9, 2010 Pyczak
7845969 December 7, 2010 Stadler et al.
7854609 December 21, 2010 Chen et al.
7862336 January 4, 2011 Kopelman et al.
7872760 January 18, 2011 Ertl
7874836 January 25, 2011 McSurdy
7874849 January 25, 2011 Sticker et al.
7878801 February 1, 2011 Abolfathi et al.
7880751 February 1, 2011 Kuo et al.
7892474 February 22, 2011 Shkolnik et al.
7904308 March 8, 2011 Arnone et al.
7907280 March 15, 2011 Johs et al.
7929151 April 19, 2011 Liang et al.
7930189 April 19, 2011 Kuo
7947508 May 24, 2011 Tricca et al.
7959308 June 14, 2011 Freeman et al.
7963766 June 21, 2011 Cronauer
7986415 July 26, 2011 Thiel et al.
7987099 July 26, 2011 Kuo et al.
7991485 August 2, 2011 Zakim
8017891 September 13, 2011 Nevin
8026916 September 27, 2011 Wen
8027709 September 27, 2011 Arnone et al.
8038444 October 18, 2011 Kitching et al.
8045772 October 25, 2011 Kosuge et al.
8054556 November 8, 2011 Chen et al.
8070490 December 6, 2011 Roetzer et al.
8077949 December 13, 2011 Liang et al.
8083556 December 27, 2011 Stadler et al.
D652799 January 24, 2012 Mueller
8099305 January 17, 2012 Kuo et al.
8118592 February 21, 2012 Tortorici
8126025 February 28, 2012 Takeda
8144954 March 27, 2012 Quadling et al.
8160334 April 17, 2012 Thiel et al.
8172569 May 8, 2012 Matty et al.
8201560 June 19, 2012 Dembro
8215312 July 10, 2012 Garabadian et al.
8240018 August 14, 2012 Walter et al.
8279450 October 2, 2012 Oota et al.
8292617 October 23, 2012 Brandt et al.
8294657 October 23, 2012 Kim et al.
8296952 October 30, 2012 Greenberg
8297286 October 30, 2012 Smernoff
8306608 November 6, 2012 Mandelis et al.
8314764 November 20, 2012 Kim et al.
8332015 December 11, 2012 Ertl
8354588 January 15, 2013 Sticker et al.
8366479 February 5, 2013 Borst et al.
8433083 April 30, 2013 Abolfathi et al.
8465280 June 18, 2013 Sachdeva et al.
8477320 July 2, 2013 Stock et al.
8488113 July 16, 2013 Thiel et al.
8520922 August 27, 2013 Wang et al.
8520925 August 27, 2013 Duret et al.
8523565 September 3, 2013 Matty et al.
8556625 October 15, 2013 Lovely
8570530 October 29, 2013 Liang
8573224 November 5, 2013 Thornton
8577212 November 5, 2013 Thiel
8601925 December 10, 2013 Coto
8639477 January 28, 2014 Chelnokov et al.
8650586 February 11, 2014 Lee et al.
8675706 March 18, 2014 Seurin et al.
8723029 May 13, 2014 Pyczak et al.
8743923 June 3, 2014 Geske et al.
8767270 July 1, 2014 Curry et al.
8768016 July 1, 2014 Pan et al.
8771149 July 8, 2014 Rahman et al.
8839476 September 23, 2014 Adachi
8843381 September 23, 2014 Kuo et al.
8856053 October 7, 2014 Mah
8870566 October 28, 2014 Bergersen
8874452 October 28, 2014 Kuo
8878905 November 4, 2014 Fisker et al.
8899976 December 2, 2014 Chen et al.
8936463 January 20, 2015 Mason et al.
8948482 February 3, 2015 Levin
8956058 February 17, 2015 Rösch
8992216 March 31, 2015 Karazivan
9022792 May 5, 2015 Sticker et al.
9039418 May 26, 2015 Rubbert
9084535 July 21, 2015 Girkin et al.
9084657 July 21, 2015 Matty et al.
9108338 August 18, 2015 Sirovskiy et al.
9144512 September 29, 2015 Wagner
9192305 November 24, 2015 Levin
9204952 December 8, 2015 Lampalzer
9214014 December 15, 2015 Levin
9241774 January 26, 2016 Li et al.
9242118 January 26, 2016 Brawn
9261358 February 16, 2016 Atiya et al.
9336336 May 10, 2016 Deichmann et al.
9351810 May 31, 2016 Moon
9375300 June 28, 2016 Matov et al.
9403238 August 2, 2016 Culp
9408743 August 9, 2016 Wagner
9414897 August 16, 2016 Wu et al.
9433476 September 6, 2016 Khardekar et al.
9439568 September 13, 2016 Atiya et al.
9444981 September 13, 2016 Bellis et al.
9463287 October 11, 2016 Lorberbaum et al.
9500635 November 22, 2016 Islam
9506808 November 29, 2016 Jeon et al.
9510918 December 6, 2016 Sanchez
9545331 January 17, 2017 Ingemarsson-Matzen
9584771 February 28, 2017 Mandelis et al.
9589329 March 7, 2017 Levin
9675430 June 13, 2017 Verker et al.
9693839 July 4, 2017 Atiya et al.
9744006 August 29, 2017 Ross
9830688 November 28, 2017 Levin
9861451 January 9, 2018 Davis
9936186 April 3, 2018 Jesenko et al.
10159541 December 25, 2018 Bindayel
10195690 February 5, 2019 Culp
10231801 March 19, 2019 Korytov et al.
10238472 March 26, 2019 Levin
10258432 April 16, 2019 Webber
10390913 August 27, 2019 Sabina et al.
10421152 September 24, 2019 Culp
10517482 December 31, 2019 Sato
20010002310 May 31, 2001 Chishti et al.
20010038705 November 8, 2001 Rubbert et al.
20010041320 November 15, 2001 Phan et al.
20020010568 January 24, 2002 Rubbert et al.
20020015934 February 7, 2002 Rubbert et al.
20020025503 February 28, 2002 Chapoulaud et al.
20020026105 February 28, 2002 Drazen
20020028417 March 7, 2002 Chapoulaud et al.
20020064752 May 30, 2002 Durbin et al.
20020064759 May 30, 2002 Durbin et al.
20020107853 August 8, 2002 Hofmann et al.
20020180760 December 5, 2002 Rubbert
20020188478 December 12, 2002 Breeland et al.
20030000927 January 2, 2003 Kanaya et al.
20030009252 January 9, 2003 Pavlovskaia et al.
20030019848 January 30, 2003 Nicholas et al.
20030021453 January 30, 2003 Weise et al.
20030035061 February 20, 2003 Iwaki et al.
20030049581 March 13, 2003 Deluke
20030057192 March 27, 2003 Patel
20030068598 April 10, 2003 Vallittu et al.
20030095697 May 22, 2003 Wood et al.
20030138752 July 24, 2003 Bergersen
20030139834 July 24, 2003 Nikolskiy et al.
20030172043 September 11, 2003 Guyon et al.
20030190575 October 9, 2003 Hilliard
20030192867 October 16, 2003 Yamazaki et al.
20030207224 November 6, 2003 Lotte
20030215764 November 20, 2003 Kopelman et al.
20030224311 December 4, 2003 Cronauer
20030224314 December 4, 2003 Bergersen
20040009449 January 15, 2004 Mah et al.
20040019262 January 29, 2004 Perelgut
20040029068 February 12, 2004 Sachdeva
20040038168 February 26, 2004 Choi et al.
20040054304 March 18, 2004 Raby
20040054358 March 18, 2004 Cox et al.
20040058295 March 25, 2004 Bergersen
20040068199 April 8, 2004 Echauz et al.
20040078222 April 22, 2004 Khan et al.
20040094165 May 20, 2004 Cook
20040133083 July 8, 2004 Comaniciu et al.
20040158194 August 12, 2004 Wolff et al.
20040167646 August 26, 2004 Jelonek et al.
20040193036 September 30, 2004 Zhou et al.
20040197728 October 7, 2004 Abolfathi et al.
20040214128 October 28, 2004 Sachdeva et al.
20040220691 November 4, 2004 Hofmeister et al.
20040259049 December 23, 2004 Kopelman et al.
20050003318 January 6, 2005 Choi et al.
20050023356 February 3, 2005 Wiklof et al.
20050031196 February 10, 2005 Moghaddam et al.
20050037312 February 17, 2005 Uchida
20050038669 February 17, 2005 Sachdeva et al.
20050048433 March 3, 2005 Hilliard
20050074717 April 7, 2005 Cleary et al.
20050100333 May 12, 2005 Kerschbaumer et al.
20050108052 May 19, 2005 Omaboe
20050171594 August 4, 2005 Machan et al.
20050171630 August 4, 2005 Dinauer et al.
20050181333 August 18, 2005 Karazivan et al.
20050186524 August 25, 2005 Abolfathi et al.
20050186526 August 25, 2005 Stewart et al.
20050233276 October 20, 2005 Kopelman et al.
20050239013 October 27, 2005 Sachdeva
20050244781 November 3, 2005 Abels et al.
20050271996 December 8, 2005 Sporbert et al.
20060056670 March 16, 2006 Hamadeh
20060057533 March 16, 2006 McGann
20060063135 March 23, 2006 Mehl
20060078842 April 13, 2006 Sachdeva et al.
20060084024 April 20, 2006 Farrell
20060098007 May 11, 2006 Rouet et al.
20060099546 May 11, 2006 Bergersen
20060111631 May 25, 2006 Kelliher et al.
20060115785 June 1, 2006 Li et al.
20060137813 June 29, 2006 Robrecht et al.
20060147872 July 6, 2006 Andreiko
20060154198 July 13, 2006 Durbin et al.
20060179020 August 10, 2006 Bradski
20060188834 August 24, 2006 Hilliard
20060199153 September 7, 2006 Liu et al.
20060223022 October 5, 2006 Solomon
20060223032 October 5, 2006 Fried et al.
20060223342 October 5, 2006 Borst et al.
20060234179 October 19, 2006 Wen et al.
20060257815 November 16, 2006 De Dominicis
20060275729 December 7, 2006 Fornoff
20060275736 December 7, 2006 Wen et al.
20060290693 December 28, 2006 Zhou et al.
20070031775 February 8, 2007 Andreiko
20070036441 February 15, 2007 Handley et al.
20070046865 March 1, 2007 Umeda et al.
20070053048 March 8, 2007 Kumar et al.
20070087300 April 19, 2007 Willison et al.
20070106138 May 10, 2007 Beiski et al.
20070141526 June 21, 2007 Eisenberg et al.
20070168152 July 19, 2007 Matov et al.
20070172112 July 26, 2007 Paley et al.
20070184402 August 9, 2007 Boutoussov et al.
20070199929 August 30, 2007 Rippl et al.
20070215582 September 20, 2007 Roeper et al.
20070231765 October 4, 2007 Phan et al.
20070238065 October 11, 2007 Sherwood et al.
20070239488 October 11, 2007 DeRosso
20080020350 January 24, 2008 Matov et al.
20080045053 February 21, 2008 Stadler et al.
20080057461 March 6, 2008 Cheng et al.
20080057479 March 6, 2008 Grenness
20080090208 April 17, 2008 Rubbert
20080094389 April 24, 2008 Rouet et al.
20080115791 May 22, 2008 Heine
20080171934 July 17, 2008 Greenan et al.
20080176448 July 24, 2008 Muller et al.
20080233530 September 25, 2008 Cinader
20080242144 October 2, 2008 Dietz
20080268400 October 30, 2008 Moss et al.
20090030290 January 29, 2009 Kozuch et al.
20090030347 January 29, 2009 Cao
20090040740 February 12, 2009 Muller et al.
20090061379 March 5, 2009 Yamamoto et al.
20090061381 March 5, 2009 Durbin et al.
20090075228 March 19, 2009 Kumada et al.
20090087050 April 2, 2009 Gandyra
20090098502 April 16, 2009 Andreiko
20090103579 April 23, 2009 Ushimaru et al.
20090105523 April 23, 2009 Kassayan et al.
20090130620 May 21, 2009 Yazdi et al.
20090136890 May 28, 2009 Kang et al.
20090136893 May 28, 2009 Zegarelli
20090148809 June 11, 2009 Kuo et al.
20090181346 July 16, 2009 Orth
20090210032 August 20, 2009 Beiski et al.
20090218514 September 3, 2009 Klunder et al.
20090246726 October 1, 2009 Chelnokov
20090281433 November 12, 2009 Saadat et al.
20090286195 November 19, 2009 Sears et al.
20090298017 December 3, 2009 Boerjes et al.
20090305540 December 10, 2009 Stadler et al.
20090317757 December 24, 2009 Lemchen
20100019170 January 28, 2010 Hart et al.
20100045902 February 25, 2010 Ikeda et al.
20100068676 March 18, 2010 Mason et al.
20100086890 April 8, 2010 Kuo
20100142789 June 10, 2010 Chang et al.
20100145664 June 10, 2010 Hultgren et al.
20100145898 June 10, 2010 Malfliet et al.
20100152599 June 17, 2010 DuHamel et al.
20100165275 July 1, 2010 Tsukamoto et al.
20100167225 July 1, 2010 Kuo
20100193482 August 5, 2010 Ow et al.
20100216085 August 26, 2010 Kopelman
20100231577 September 16, 2010 Kim et al.
20100268363 October 21, 2010 Karim et al.
20100268515 October 21, 2010 Vogt et al.
20100280798 November 4, 2010 Pattijn
20100281370 November 4, 2010 Rohaly et al.
20100303316 December 2, 2010 Bullis et al.
20100312484 December 9, 2010 DuHamel et al.
20100327461 December 30, 2010 Co et al.
20110007920 January 13, 2011 Abolfathi et al.
20110012901 January 20, 2011 Kaplanyan
20110040706 February 17, 2011 Sen et al.
20110045428 February 24, 2011 Boltunov et al.
20110056350 March 10, 2011 Gale et al.
20110081625 April 7, 2011 Fuh
20110091832 April 21, 2011 Kim et al.
20110102549 May 5, 2011 Takahashi
20110102566 May 5, 2011 Zakian et al.
20110104630 May 5, 2011 Matov et al.
20110136072 June 9, 2011 Li et al.
20110143300 June 16, 2011 Villaalba
20110143673 June 16, 2011 Landesman et al.
20110159452 June 30, 2011 Huang
20110164810 July 7, 2011 Zang et al.
20110220623 September 15, 2011 Beutler
20110235045 September 29, 2011 Koerner et al.
20110269092 November 3, 2011 Kuo et al.
20110316994 December 29, 2011 Lemchen
20120029883 February 2, 2012 Heinz et al.
20120040311 February 16, 2012 Nilsson
20120081786 April 5, 2012 Mizuyama et al.
20120086681 April 12, 2012 Kim et al.
20120115107 May 10, 2012 Adams
20120129117 May 24, 2012 McCance
20120147912 June 14, 2012 Moench et al.
20120172678 July 5, 2012 Logan et al.
20120281293 November 8, 2012 Gronenborn et al.
20120295216 November 22, 2012 Dykes et al.
20120322025 December 20, 2012 Ozawa et al.
20130029284 January 31, 2013 Teasdale
20130081272 April 4, 2013 Johnson et al.
20130089828 April 11, 2013 Borovinskih et al.
20130095446 April 18, 2013 Andreiko et al.
20130103176 April 25, 2013 Kopelman et al.
20130110469 May 2, 2013 Kopelman
20130163627 June 27, 2013 Seurin et al.
20130201488 August 8, 2013 Ishihara
20130209952 August 15, 2013 Kuo et al.
20130235165 September 12, 2013 Gharib et al.
20130252195 September 26, 2013 Popat
20130266326 October 10, 2013 Joseph et al.
20130278396 October 24, 2013 Kimmel
20130280671 October 24, 2013 Brawn et al.
20130286174 October 31, 2013 Urakabe
20130293824 November 7, 2013 Yoneyama et al.
20130323664 December 5, 2013 Parker
20130323671 December 5, 2013 Dillon et al.
20130323674 December 5, 2013 Hakomori et al.
20130337412 December 19, 2013 Kwon
20140037180 February 6, 2014 Wang
20140061974 March 6, 2014 Tyler
20140081091 March 20, 2014 Abolfathi et al.
20140093160 April 3, 2014 Porikli et al.
20140106289 April 17, 2014 Kozlowski
20140122027 May 1, 2014 Andreiko et al.
20140142902 May 22, 2014 Chelnokov et al.
20140265034 September 18, 2014 Dudley
20140272774 September 18, 2014 Dillon et al.
20140294273 October 2, 2014 Jaisson
20140313299 October 23, 2014 Gebhardt et al.
20140329194 November 6, 2014 Sachdeva et al.
20140350354 November 27, 2014 Stenzler et al.
20140363778 December 11, 2014 Parker
20150002649 January 1, 2015 Nowak et al.
20150021210 January 22, 2015 Kesling
20150079531 March 19, 2015 Heine
20150094564 April 2, 2015 Tashman et al.
20150097315 April 9, 2015 DeSimone et al.
20150097316 April 9, 2015 DeSimone et al.
20150102532 April 16, 2015 DeSimone et al.
20150132708 May 14, 2015 Kuo
20150140502 May 21, 2015 Brawn et al.
20150150501 June 4, 2015 George et al.
20150164335 June 18, 2015 Van Der Poel et al.
20150173856 June 25, 2015 Lowe et al.
20150216626 August 6, 2015 Ranjbar
20150230885 August 20, 2015 Wucher
20150238280 August 27, 2015 Wu et al.
20150238283 August 27, 2015 Tanugula et al.
20150306486 October 29, 2015 Logan et al.
20150320320 November 12, 2015 Kopelman et al.
20150320532 November 12, 2015 Matty et al.
20150325044 November 12, 2015 Lebovitz
20150338209 November 26, 2015 Knüttel
20150342545 December 3, 2015 Bergersen
20150374469 December 31, 2015 Konno et al.
20160000332 January 7, 2016 Atiya et al.
20160003610 January 7, 2016 Lampert et al.
20160042509 February 11, 2016 Andreiko et al.
20160051345 February 25, 2016 Levin
20160064898 March 3, 2016 Atiya et al.
20160067013 March 10, 2016 Morton et al.
20160081768 March 24, 2016 Kopelman et al.
20160081769 March 24, 2016 Kimura et al.
20160095668 April 7, 2016 Kuo et al.
20160120621 May 5, 2016 Li et al.
20160135924 May 19, 2016 Choi
20160135925 May 19, 2016 Mason et al.
20160163115 June 9, 2016 Furst
20160217708 July 28, 2016 Levin et al.
20160225151 August 4, 2016 Cocco et al.
20160228213 August 11, 2016 Tod et al.
20160242871 August 25, 2016 Morton et al.
20160246936 August 25, 2016 Kahn
20160287358 October 6, 2016 Nowak et al.
20160296303 October 13, 2016 Parker
20160328843 November 10, 2016 Graham et al.
20160338799 November 24, 2016 Wu et al.
20160346063 December 1, 2016 Schulhof et al.
20170007365 January 12, 2017 Kopelman et al.
20170007366 January 12, 2017 Kopelman et al.
20170007367 January 12, 2017 Li et al.
20170007368 January 12, 2017 Boronkay
20170020633 January 26, 2017 Stone-Collonge et al.
20170049311 February 23, 2017 Borovinskih et al.
20170049326 February 23, 2017 Alfano et al.
20170056131 March 2, 2017 Alauddin et al.
20170071705 March 16, 2017 Kuo
20170100209 April 13, 2017 Wen
20170100212 April 13, 2017 Sherwood et al.
20170100213 April 13, 2017 Kuo
20170100214 April 13, 2017 Wen
20170105815 April 20, 2017 Matov et al.
20170135792 May 18, 2017 Webber
20170135793 May 18, 2017 Webber et al.
20170156821 June 8, 2017 Kopelman et al.
20170165032 June 15, 2017 Webber et al.
20170169562 June 15, 2017 Somasundaram
20170215739 August 3, 2017 Miyasato
20170251954 September 7, 2017 Lotan et al.
20170265970 September 21, 2017 Verker
20170319054 November 9, 2017 Miller et al.
20170319296 November 9, 2017 Webber et al.
20170325689 November 16, 2017 Salah
20170325690 November 16, 2017 Salah et al.
20170340411 November 30, 2017 Akselrod
20180000563 January 4, 2018 Shanjani et al.
20180000565 January 4, 2018 Shanjani et al.
20180028063 February 1, 2018 Elbaz et al.
20180028064 February 1, 2018 Elbaz et al.
20180028065 February 1, 2018 Elbaz et al.
20180055602 March 1, 2018 Kopelman et al.
20180071054 March 15, 2018 Ha
20180085059 March 29, 2018 Lee
20180096465 April 5, 2018 Levin
20180125610 May 10, 2018 Carrier et al.
20180153648 June 7, 2018 Shanjani et al.
20180153649 June 7, 2018 Wu et al.
20180153733 June 7, 2018 Kuo
20180168788 June 21, 2018 Fernie
20180192877 July 12, 2018 Atiya et al.
20190026599 January 24, 2019 Salah
20190046297 February 14, 2019 Kopelman et al.
20190076216 March 14, 2019 Moss et al.
20190090983 March 28, 2019 Webber et al.
20190125494 May 2, 2019 Li et al.
20190152152 May 23, 2019 O'Leary et al.
20190192259 June 27, 2019 Kopleman et al.
20190231477 August 1, 2019 Shanjani et al.
20190231491 August 1, 2019 Sabina et al.
20190231492 August 1, 2019 Sabina et al.
20190240771 August 8, 2019 Culp
20190269482 September 5, 2019 Shanjani et al.
20200085548 March 19, 2020 Reynard
Foreign Patent Documents
517102 November 1977 AU
3031677 November 1977 AU
5598894 June 1994 AU
1121955 April 1982 CA
102017658 April 2011 CN
105496575 April 2016 CN
105997274 October 2016 CN
2749802 May 1978 DE
4207169 September 1993 DE
69327661 July 2000 DE
102005043627 March 2007 DE
202010017014 March 2011 DE
102011051443 January 2013 DE
102014225457 June 2016 DE
0428152 May 1991 EP
490848 June 1992 EP
541500 May 1993 EP
714632 May 1997 EP
774933 December 2000 EP
731673 May 2001 EP
1941843 July 2008 EP
2437027 April 2012 EP
2447754 May 2012 EP
1989764 July 2012 EP
2332221 November 2012 EP
2596553 December 2013 EP
2612300 February 2015 EP
2848229 March 2015 EP
463897 January 1980 ES
2455066 April 2014 ES
2369828 June 1978 FR
2867377 September 2005 FR
2930334 October 2009 FR
1550777 August 1979 GB
53-058191 May 1978 JP
4028359 January 1992 JP
08-508174 September 1996 JP
09-19443 January 1997 JP
2000339468 September 2004 JP
2006043121 February 2006 JP
2007260158 October 2007 JP
2008067732 March 2008 JP
2008523370 July 2008 JP
04184427 November 2008 JP
2009000412 January 2009 JP
2009018173 January 2009 JP
2009059123 March 2009 JP
2009078133 April 2009 JP
2009101386 May 2009 JP
2009205330 September 2009 JP
2010017726 January 2010 JP
2011087733 May 2011 JP
2012045143 March 2012 JP
2013007645 January 2013 JP
2013192865 September 2013 JP
201735173 February 2017 JP
2017035173 February 2017 JP
10-20020062793 July 2002 KR
10-20090065778 June 2009 KR
20130006030 January 2013 KR
10-1266966 May 2013 KR
10-2016-041632 April 2016 KR
10-2016-0071127 June 2016 KR
10-1675089 November 2016 KR
WO91/004713 April 1991 WO
WO94/010935 May 1994 WO
WO98/032394 July 1998 WO
WO98/044865 October 1998 WO
WO02/017776 March 2002 WO
WO02/062252 August 2002 WO
WO02/095475 November 2002 WO
WO03/003932 January 2003 WO
WO2006/096558 September 2006 WO
WO2006/100700 September 2006 WO
WO2006/133548 December 2006 WO
WO2007/071341 June 2007 WO
WO2008/115654 September 2008 WO
WO2009/016645 February 2009 WO
WO2009/085752 July 2009 WO
WO2009/089129 July 2009 WO
WO2009/146788 December 2009 WO
WO2009/146789 December 2009 WO
WO2010/123892 October 2010 WO
WO2012/007003 January 2012 WO
WO2012/064684 May 2012 WO
WO2012/074304 June 2012 WO
WO2012/083968 June 2012 WO
WO2012/140021 October 2012 WO
WO2013/058879 April 2013 WO
WO2014/068107 May 2014 WO
WO2014/091865 June 2014 WO
WO2015/015289 February 2015 WO
WO2015/063032 May 2015 WO
WO2015/112638 July 2015 WO
WO2015/176004 November 2015 WO
WO2016/004415 January 2016 WO
WO2016/042393 March 2016 WO
WO2016/061279 April 2016 WO
WO2016/084066 June 2016 WO
WO2016/099471 June 2016 WO
WO2016/113745 July 2016 WO
WO2016/116874 July 2016 WO
WO2017/006176 January 2017 WO
WO2017/182654 October 2017 WO
WO-2017220619 December 2017 WO
WO2018/057547 March 2018 WO
WO2018/085718 May 2018 WO
WO2018/232113 December 2018 WO
WO2019/018784 January 2019 WO
Other references
  • US 8,553,966 B1, 10/2013, Alpern et al. (withdrawn)
  • Farooq et al.; Relationship between tooth dimensions and malocclusion; JPMA: The Journal of the Pakistan Medical Association; 64(6); pp. 670-674; Jun. 2014.
  • Newcombe; DTAM: Dense tracking and mapping in real-time; 8 pages; retrieved from the internet (http://www.doc.ic.ac.uk/?ajd/Publications/newcombe_etal_iccv2011.pdf; on Dec. 2011.
  • ormco.com; Increasing clinical performance with 3D interactive treatment planning and patient-specific appliances; 8 pages; retrieved from the internet (http://www.konsident.com/wp-content/files_mf/1295385693http_ormco.com_index_cmsfilesystemaction_fileOrmcoPDF_whitepapers.pdf) on Feb. 27, 2019.
  • Arakawa et al; Mouthguard biosensor with telemetry system for monitoring of saliva glucose: A novel cavitas sensor; Biosensors and Bioelectronics; 84; pp. 106-111; Oct. 2016.
  • Sirona Dental Systems GmbH, CEREC 3D, Manuel utilisateur, Version 2.0X (in French); 114 pages; (English translation of table of contents included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2003.
  • AADR. American Association for Dental Research; Summary of Activities; Los Angeles, CA; p. 195; Mar. 20-23,(year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
  • Alcaniz et aL; An Advanced System for the Simulation and Planning of Orthodontic Treatments; Karl Heinz Hohne and Ron Kikinis (eds.); Visualization in Biomedical Computing, 4th Intl. Conf, VBC '96, Hamburg, Germany; Springer-Verlag; pp. 511-520; Sep. 22-25, 1996.
  • Alexander et al.; The DigiGraph Work Station Part 2 Clinical Management; J. Clin. Orthod.; pp. 402-407; (Author Manuscript); Jul. 1990.
  • Align Technology; Align technology announces new teen solution with introduction of invisalign teen with mandibular advancement; 2 pages; retrieved from the internet (http://investor.aligntech.com/static-files/eb4fa6bb-3e62-404f-b74d-32059366a01b); Mar. 6, 2017.
  • Allesee Orthodontic Appliance: Important Tip About Wearing the Red White & Blue Active Clear Retainer System; Allesee Orthodontic Appliances—Pro Lab; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1998.
  • Allesee Orthodontic Appliances: DuraClearTM; Product information; 1 page; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1997.
  • Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; ( product information for doctors); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/doctorhtml); 5 pages on May 19, 2003.
  • Allesee Orthodontic Appliances; The Choice Is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment; (product information), 6 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2003.
  • Allesee Orthodontic Appliances; The Choice is Clear: Red, White & Blue . . . The Simple, Affordable, No-Braces Treatment;(Patient Information); retrieved from the internet (http://ormco.com/aoa/appliancesservices/RWB/patients.html); 2 pages on May 19, 2003.
  • Allesee Orthodontic Appliances; The Red, White & Blue Way to Improve Your Smile; (information for patients), 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
  • Allesee Orthodontic Appliances; You may be a candidate for this invisible no-braces treatment; product information for patients; 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
  • Altschuler et al.; Analysis of 3-D Data for Comparative 3-D Serial Growth Pattern Studies of Oral-Facial Structures; AADR Abstracts, Program and Abstracts of Papers, 57th General Session, IADR Annual Session, Mar. 29, 1979-Apr. 1, 1979, New Orleans Marriot; Journal of Dental Research; vol. 58, Special Issue A, p. 221; Jan. 1979.
  • Altschuler et al.; Laser Electro-Optic System for Rapid Three-Dimensional (3D) Topographic Mapping of Surfaces; Optical Engineering; 20(6); pp. 953-961; Dec. 1981.
  • Altschuler et al.; Measuring Surfaces Space-Coded by a Laser-Projected Dot Matrix; SPIE Imaging q Applications for Automated Industrial Inspection and Assembly; vol. 182; pp. 187-191; Oct. 10, 1979.
  • Altschuler; 3D Mapping of Maxillo-Facial Prosthesis; AADR Abstract #607; 2 pages total, (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1980.
  • Alves et al.; New trends in food allergens detection: toward biosensing strategies; Critical Reviews in Food Science and Nutrition; 56(14); pp. 2304-2319; doi: 10.1080/10408398.2013.831026; Oct. 2016.
  • Andersson et al.; Clinical Results with Titanium Crowns Fabricated with Machine Duplication and Spark Erosion; Acta Odontologica Scandinavica; 47(5); pp. 279-286; Oct. 1989.
  • Andrews, The Six Keys to Optimal Occlusion Straight Wire, Chapter 3, L.A. Wells; pp. 13-24; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1989.
  • Barone et al.; Creation of 3D multi-body orthodontic models by using independent imaging sensors; Sensors; 13(2); pp. 2033-2050; Feb. 5, 2013.
  • Bartels et al.; An Introduction to Splines for Use in Computer Graphics and Geometric Modeling; Morgan Kaufmann Publishers; pp. 422-425 Jan. 1, 1987.
  • Baumrind et al, “Mapping the Skull in 3-D,” reprinted from J. Calif. Dent. Assoc, 48(2), 11 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Fall Issue 1972.
  • Baumrind et al.; A Stereophotogrammetric System for the Detection of Prosthesis Loosening in Total Hip Arthroplasty; NATO Symposium on Applications of Human Biostereometrics; SPIE; vol. 166; pp. 112-123; Jul. 9-13, 1978.
  • Baumrind; A System for Cranio facial Mapping Through the Integration of Data from Stereo X-Ray Films and Stereo Photographs; an invited paper submitted to the 1975 American Society of Photogram Symposium on Close-Range Photogram Systems; University of Illinois; pp. 142-166; Aug. 26-30, 1975.
  • Baumrind; Integrated Three-Dimensional Craniofacial Mapping: Background, Principles, and Perspectives; Seminars in Orthodontics; 7(4); pp. 223-232; Dec. 2001.
  • Begole et al.; A Computer System for the Analysis of Dental Casts; The Angle Orthodontist; 51(3); pp. 252-258; Jul. 1981.
  • Bernard et al; Computerized Diagnosis in Orthodontics for Epidemiological Studies: A ProgressReport; (Abstract Only), J. Dental Res. Special Issue, vol. 67, p. 169, paper presented at International Association for Dental Research 66th General Session, Montreal Canada; Mar. 9-13, 1988.
  • Bhatia et al.; A Computer-Aided Design for Orthognathic Surgery; British Journal of Oral and Maxillofacial Surgery; 22(4); pp. 237-253; Aug. 1, 1984.
  • Biggerstaff et al.; Computerized Analysis of Occlusion in the Postcanine Dentition; American Journal of Orthodontics; 61(3); pp. 245-254; Mar. 1972.
  • Biggerstaff; Computerized Diagnostic Setups and Simulations; Angle Orthodontist; 40(I); pp. 28-36; Jan. 1970.
  • Biostar Operation & Training Manual. Great Lakes Orthodontics, Ltd. 199 Fire Tower Drive, Tonawanda, New York. 14150-5890, 20 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
  • Blu et al.; Linear interpolation revitalized; IEEE Transactions on Image Processing; 13(5); pp. 710-719; May 2004.
  • Bourke, Coordinate System Transformation; 1 page; retrived from the internet (http://astronomy.swin.edu.au/{grave over ( )} pbourke/prolection/coords) on Nov. 5, 2004; Jun. 1996.
  • Boyd et al.; Three Dimensional Diagnosis and Orthodontic Treatment of Complex Malocclusions With the Invisalipn Appliance; Seminars in Orthodontics; 7(4); pp. 274-293; Dec. 2001.
  • Brandestini et al.; Computer Machined Ceramic Inlays: In Vitro Marginal Adaptation; J. Dent. Res. Special Issue; (Abstract 305); vol. 64; p. 208; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1985.
  • Brook et al.; An Image Analysis System for the Determination of Tooth Dimensions from Study Casts: Comparison with Manual Measurements of Mesio-distal Diameter; Journal of Dental Research; 65(3); pp. 428-431; Mar. 1986.
  • Burstone et al.; Precision Adjustment of the Transpalatal Lingual Arch: Computer Arch Form Predetermination; American Journal of Orthodontics; 79(2);pp. 115-133; Feb. 1981.
  • Burstone; Dr. Charles J. Burstone on the Uses of the Computer in Orthodontic Practice (Part 1); Journal of Clinical Orthodontics; 13(7); pp. 442-453; (interview); Jul. 1979.
  • Burstone; Dr. Charles J. Burstone on the Uses of the Computer in Orthodontic Practice (Part 2); journal of Clinical Orthodontics; 13(8); pp. 539-551 (interview); Aug. 1979.
  • Cardinal Industrial Finishes; Powder Coatings; 6 pages; retrieved from the internet (http://www.cardinalpaint.com) on Aug. 25, 2000.
  • Carnaghan, An Alternative to Holograms for the Portrayal of Human Teeth; 4th Int'l. Conf. on Holographic Systems, Components and Applications; pp. 228-231; Sep. 15, 1993.
  • Chaconas et al,; The DigiGraph Work Station, Part 1, Basic Concepts; Journal of Clinical Orthodontics; 24(6); pp. 360-367; (Author Manuscript); Jun. 1990.
  • Chafetz et al.; Subsidence of the Femoral Prosthesis, A Stereophotogrammetric Evaluation; Clinical Orthopaedics and Related Research; No. 201; pp. 60-67; Dec. 1985.
  • Chiappone; Constructing the Gnathologic Setup and Positioner; Journal of Clinical Orthodontics; 14(2); pp. 121-133; Feb. 1980.
  • Chishti et al.; U.S. Appl. No. 60/050,342 entitled “Procedure for moving teeth using a seires of retainers,” filed Jun. 20, 1997.
  • CSI Computerized Scanning and Imaging Facility; What is a maximum/minimum intensity projection (MIP/MinIP); 1 page; retrived from the internet (http://csi.whoi.edu/content/what-maximumminimum-intensity-projection-mipminip); Jan. 4, 2010.
  • Cottingham; Gnathologic Clear Plastic Positioner; American Journal of Orthodontics; 55(1); pp. 23-31; Jan. 1969.
  • Crawford; CAD/CAM in the Dental Office: Does It Work?; Canadian Dental Journal; 57(2); pp. 121-123 Feb. 1991.
  • Crawford; Computers in Dentistry: Part 1: CAD/CAM: The Computer Moves Chairside, Part 2: F. Duret {grave over ( )} A Man With a Vision, Part 3: The Computer Gives New Vision—Literally, Part 4: Bytes 'N Bites The Computer Moves From the Front Desk to the Operatory; Canadian Dental Journal; 54(9); pp. 661-666 Sep. 1988.
  • Crooks; CAD/CAM Comes to USC; USC Dentistry; pp. 14-17; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) Spring 1990.
  • Cureton; Correcting Malaligned Mandibular Incisors with Removable Retainers; Journal of Clinical Orthodontics; 30(7); pp. 390-395; Jul. 1996.
  • Curry et al.; Integrated Three-Dimensional Craniofacial Mapping at the Craniofacial Research InstrumentationLaboratory/University of the Pacific; Seminars in Orthodontics; 7(4); pp. 258-265; Dec. 2001.
  • Cutting et al.; Three-Dimensional Computer-Assisted Design of Craniofacial Surgical Procedures: Optimization and Interaction with Cephalometric and CT-Based Models; Plastic and Reconstructive Surgery; 77(6); pp. 877-885; Jun. 1986.
  • DCS Dental AG; The CAD/CAM ‘DCS Titan System’ for Production of Crowns/Bridges; DSC Production; pp. 1-7; Jan. 1992.
  • Defranco et al.; Three-Dimensional Large Displacement Analysis of Orthodontic Appliances; Journal of Biomechanics; 9(12); pp. 793-801; Jan. 1976.
  • Dental Institute University of Zurich Switzerland; Program for International Symposium on Computer Restorations: State of the Art of the CEREC—Method; 2 pages; May 1991.
  • Dentrac Corporation; Dentrac document; pp. 4-13; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1992.
  • Dent-X; Dentsim . . . Dent-x's virtual reality 3-D training simulator . . . A revolution in dental education; 6 pages; retrieved from the internet (http://www.dent-x.com/DentSim.htm); on Sep. 24, 1998.
  • Di Muzio et al.; Minimum intensity projection (MinIP); 6 pages; retrieved from the internet (https://radiopaedia.org/articles/minimum-intensity-projection-minip) on Sep. 6, 2018.
  • Doruk et al.; The role of the headgear timer in extraoral co-operation; European Journal of Orthodontics; 26; pp. 289-291; Jun. 1, 2004.
  • Doyle; Digital Dentistry; Computer Graphics World; pp. 50-52 andp. 54; Oct. 2000.
  • Dummer et al.; Computed Radiography Imaging Based on High-Density 670 nm VCSEL Arrays; International Society for Optics and Photonics; vol. 7557; p. 75570H; 7 pages; (Author Manuscript); Feb. 24, 2010.
  • Duret et al.; CAD/CAM Imaging in Dentistry; Current Opinion in Dentistry; 1(2); pp. 150-154; Apr. 1991.
  • Duret et al; CAD-CAM in Dentistry; Journal of the American Dental Association; 117(6); pp. 715-720; Nov. 1988.
  • Duret; The Dental CAD/CAM, General Description of the Project; Hennson International Product Brochure, 18 pages; Jan. 1986.
  • Duret; Vers Une Prosthese Informatisee; Tonus; 75(15); pp. 55-57; (English translation attached); 23 pages; Nov. 15, 1985.
  • Economides; The Microcomputer in the Orthodontic Office; Journal of Clinical Orthodontics; 13(11); pp. 767-772; Nov. 1979.
  • Ellias et al.; Proteomic analysis of saliva identifies potential biomarkers for orthodontic tooth movement; The Scientific World Journal; vol. 2012; Article ID 647240; dio:10.1100/2012/647240; 7 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2012.
  • Elsasser; Some Observations on the History and Uses of the Kesling Positioner; American Journal of Orthodontics; 36(5); pp. 368-374; May 1, 1950.
  • English translation of Japanese Laid-Open Publication No. 63-11148 to inventor T. Ozukuri (Laid-Open on Jan. 18, 1998) pp. 1-7.
  • Faber et al.; Computerized Interactive Orthodontic Treatment Planning; American Journal of Orthodontics; 73(1); pp. 36-46; Jan. 1978.
  • Felton et al.; A Computerized Analysis of the Shape and Stability of Mandibular Arch Form; American Journal of Orthodontics and Dentofacial Orthopedics; 92(6); pp. 478-483; Dec. 1987.
  • Florez-Moreno; Time-related changes in salivary levels of the osteotropic factors sRANKL and OPG through orthodontic tooth movement; American Journal of Orthodontics and Dentofacial Orthopedics; 143(1); pp. 92-100; Jan. 2013.
  • Friede et al.; Accuracy of Cephalometric Prediction in Orthognathic Surgery; Journal of Oral and Maxillofacial Surgery; 45(9); pp. 754-760; Sep. 1987.
  • Friedrich et al; Measuring system for in vivo recording of force systems in orthodontic treatment—concept and analysis of accuracy; J. Biomech.; 32(1); pp. 81-85; (Abstract Only) Jan. 1999.
  • Futterling et al.; Automated Finite Element Modeling of a Human Mandible with Dental Implants; JS WSCG '98—Conference Program; 8 pages; retrieved from the Internet (https://dspace5.zcu.cz/bitstream/11025/15851/1/Strasser_98.pdf); on Aug. 21, 2018.
  • Gao et al.; 3-D element Generation for Multi-Connected Complex Dental and Mandibular Structure; IEEE Proceedings International Workshop in Medical Imaging and Augmented Reality; pp. 267-271; Jun. 12, 2001.
  • Gim-Alldent Deutschland, “Das DUX System: Die Technik,” 3 pages; (English Translation Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2002.
  • Gottleib et al.; JCO Interviews Dr. James A. McNamura, Jr., on the Frankel Appliance: Part 2: Clinical 1-1 Management; Journal of Clinical Orthodontics; 16(6); pp. 390-407; retrieved from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1982&Month=06&ArticleNum+); 21 pages; Jun. 1982.
  • Grayson; New Methods for Three Dimensional Analysis of Craniofacial Deformity, Symposium: Computerized Facial Imaging in Oral and Maxillofacial Surgery; American Association of Oral and Maxillofacial Surgeons; 48(8) suppl 1; pp. 5-6; Sep. 13, 1990.
  • Grest, Daniel; Marker-Free Human Motion Capture in Dynamic Cluttered Environments from a Single View-Point, PhD Thesis; 171 pages; Dec. 2007.
  • Guess et al.; Computer Treatment Estimates in Orthodontics and Orthognathic Surgery; Journal of Clinical Orthodontics; 23(4); pp. 262-268; 11 pages; (Author Manuscript); Apr. 1989.
  • Heaven et al.; Computer-Based Image Analysis of Artificial Root Surface Caries; Abstracts of Papers #2094; Journal of Dental Research; 70:528; (Abstract Only); Apr. 17-21, 1991.
  • Highbeam Research; Simulating stress put on jaw. (ANSYS Inc.'s finite element analysis software); 2 pages; retrieved from the Internet (http://static.highbeam.eom/t/toolingampproduction/november011996/simulatingstressputonfa . . . ); on Nov. 5, 2004.
  • Hikage; Integrated Orthodontic Management System for Virtual Three-Dimensional Computer Graphic Simulation and Optical Video Image Database for Diagnosis and Treatment Planning; Journal of Japan KA Orthodontic Society; 46(2); pp. 248-269; 56 pages; (English Translation Included); Feb. 1987.
  • Hoffmann et al.; Role of Cephalometry for Planning of Jaw Orthopedics and Jaw Surgery Procedures; Informatbnen, pp. 375-396; (English Abstract Included); Mar. 1991.
  • Hojjatie et al.; Three-Dimensional Finite Element Analysis of Glass-Ceramic Dental Crowns; Journal of Biomechanics; 23(11); pp. 1157-1166; Jan. 1990.
  • Huckins; CAD-CAM Generated Mandibular Model Prototype from MRI Data; AAOMS, p. 96; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1999.
  • Invisalign; You were made to move. There's never been a better time to straighten your teeth with the most advanced clear aligner in the world; Product webpage; 2 pages; retrieved from the internet (www.invisalign.com/) on Dec. 28, 2017.
  • JCO Interviews; Craig Andreiko , DDS, MS on the Elan and Orthos Systems; Interview by Dr. Larry W. White; Journal of Clinical Orthodontics; 28(8); pp. 459-468; 14 pages; (Author Manuscript); Aug. 1994.
  • JCO Interviews; Dr. Homer W. Phillips on Computers in Orthodontic Practice, Part 2; Journal of Clinical Orthodontics; 17(12); pp. 819-831; 19 pages; (Author Manuscript); Dec. 1983.
  • Jerrold; The Problem, Electronic Data Transmission and the Law; American Journal of Orthodontics and Dentofacial Orthopedics; 113(4); pp. 478-479; 5 pages; (Author Manuscript); Apr. 1998.
  • Jones et al.; An Assessment of the Fit of a Parabolic Curve to Pre- and Post-Treatment Dental Arches; British Journal of Orthodontics; 16(2); pp. 85-93; May 1989.
  • Kamada et.al.; Case Reports on Tooth Positioners Using LTV Vinyl Silicone Rubber; J. Nihon University School of Dentistry; 26(1); pp. 11-29; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1984.
  • Kamada et.al.; Construction of Tooth Positioners with LTV Vinyl Silicone Rubber and Some Case KJ Reports; J. Nihon University School of Dentistry; 24(1); pp. 1-27; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1982.
  • Kanazawa et al.; Three-Dimensional Measurements of the Occlusal Surfaces of Upper Molars in a Dutch Population; Journal of Dental Research; 63(11); pp. 1298-1301; Nov. 1984.
  • Kesling et al.; The Philosophy of the Tooth Positioning Appliance; American Journal of Orthodontics and Oral surgery; 31(6); pp. 297-304; Jun. 1945.
  • Kesling; Coordinating the Predetermined Pattern and Tooth Positioner with Conventional Treatment; American Journal of Orthodontics and Oral Surgery; 32(5); pp. 285-293; May 1946.
  • Kleeman et al.; The Speed Positioner; J. Clin. Orthod .; 30(12); pp. 673-680; Dec. 1996.
  • Kochanek; Interpolating Splines with Local Tension, Continuity and Bias Control; Computer Graphics; 18(3); pp. 33-41; Jan. 1, 1984.
  • Kumar et al.; Rapid maxillary expansion: A unique treatment modality in dentistry; J. Clin. Diagn. Res.; 5(4); pp. 906-911; Aug. 2011.
  • Kunii et al.; Articulation Simulation for an Intelligent Dental Care System; Displays; 15(3); pp. 181-188; Jul. 1994.
  • Kuroda et al.; Three-Dimensional Dental Cast Analyzing System Using Laser Scanning; American Journal of Orthodontics and Dentofacial Orthopedics; 110(4); pp. 365-369; Oct. 1996.
  • Laurendeau et al.; A Computer-Vision Technique for the Acquisition and Processing of 3-D Profiles of 7 Dental Imprints: An Application in Orthodontics; IEEE Transactions on Medical Imaging; 10(3); pp. 453-461; Sep. 1991.
  • Leinfelder et al.; A New Method for Generating Ceramic Restorations: a CAD-CAM System; Journal of the American Dental Association; 118(6); pp. 703-707; Jun. 1989.
  • Manetti et al.; Computer-Aided Cefalometry and New Mechanics in Orthodontics; Fortschr Kieferorthop; 44; pp. 370-376; 8 pages; (English Article Summary Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1983.
  • Mccann; Inside the ADA; J. Amer. Dent. Assoc, 118:286-294; Mar. 1989.
  • Mcnamara et al.; Invisible Retainers; J. Clin Orthod.; pp. 570-578; 11 pages; (Author Manuscript); Aug. 1985.
  • Mcnamara et al.; Orthodontic and Orthopedic Treatment in the Mixed Dentition; Needham Press; pp. 347-353; Jan. 1993.
  • Moermann et al, Computer Machined Adhesive Porcelain Inlays: Margin Adaptation after Fatigue Stress; IADR Abstract 339; J. Dent. Res.; 66(a):763; (Abstract Only); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1987.
  • Moles; Correcting Mild Malalignments—As Easy as One, Two, Three; AOA/Pro Corner; 11(2); 2 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2002.
  • Mormann et al.; Marginale Adaptation von adhasuven Porzellaninlays in vitro; Separatdruck aus:Schweiz. Mschr. Zahnmed.; 95; pp. 1118-1129; 8 pages; (Machine Translated English Abstract); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1985.
  • Nahoum; The Vacuum Formed Dental Contour Appliance; N. Y. State Dent. J.; 30(9); pp. 385-390; Nov. 1964.
  • Nash; CEREC CAD/CAM Inlays: Aesthetics and Durability in a Single Appointment; Dentistry Today; 9(8); pp. 20, 22-23 and 54; Oct. 1990.
  • Nedelcu et al.; “Scanning Accuracy and Precision in 4 Intraoral Scanners: An In Vitro Comparison Based on 3-Dimensional Analysis”; J. Prosthet. Dent.; 112(6); pp. 1461-1471; Dec. 2014.
  • Nishiyama et al.; A New Construction of Tooth Repositioner by LTV Vinyl Silicone Rubber; The Journal of Nihon University School of Dentistry; 19(2); pp. 93-102 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1977.
  • Ogawa et al.; Mapping, profiling and clustering of pressure pain threshold (PPT) in edentulous oral muscosa; Journal of Dentistry; 32(3); pp. 219-228; Mar. 2004.
  • Ogimoto et al.; Pressure-pain threshold determination in the oral mucosa; Journal of Oral Rehabilitation; 29(7); pp. 620-626; Jul. 2002.
  • Paul et al.; Digital Documentation of Individual Human Jaw and Tooth Forms for Applications in Orthodontics; Oral Surgery and Forensic Medicine Proc. of the 24th Annual Conf. of the IEEE Industrial Electronics Society (IECON '98); vol. 4; pp. 2415-2418; Sep. 4, 1998.
  • Pinkham; Foolish Concept Propels Technology; Dentist, 3 pages , Jan./Feb. 1989.
  • Pinkham; Inventor's CAD/CAM May Transform Dentistry; Dentist; pp. 1 and 35, Sep. 1990.
  • Ponitz; Invisible retainers; Am. J. Orthod.; 59(3); pp. 266-272; Mar. 1971.
  • Procera Research Projects; Procera Research Projects 1993 {grave over ( )} Abstract Collection; 23 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1993.
  • Proffit et al.; The first stage of comprehensive treatment alignment and leveling; Contemporary Orthodontics, 3rd Ed.; Chapter 16; Mosby Inc.; pp. 534-537; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2000.
  • Proffit et al.; The first stage of comprehensive treatment: alignment and leveling; Contemporary Orthodontics; (Second Ed.); Chapter 15, MosbyYear Book; St. Louis, Missouri; pp. 470-533 Oct. 1993.
  • Raintree Essix & ARS Materials, Inc., Raintree Essix, Technical Magazine Table of contents and Essix Appliances, 7 pages; retrieved from the internet (http://www.essix.com/magazine/defaulthtml) on Aug. 13, 1997.
  • Redmond et al.; Clinical Implications of Digital Orthodontics; American Journal of Orthodontics and Dentofacial Orthopedics; 117(2); pp. 240-242; Feb. 2000.
  • Rekow et al.; CAD/CAM for Dental Restorations—Some of the Curious Challenges; IEEE Transactions on Biomedical Engineering; 38(4); pp. 314-318; Apr. 1991.
  • Rekow et al.; Comparison of Three Data Acquisition Techniques for 3-D Tooth Surface Mapping; Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 13(1); pp. 344-345 (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1991.
  • Rekow; A Review of the Developments in Dental CAD/CAM Systems; Current Opinion in Dentistry; 2; pp. 25-33; Jun. 1992.
  • Rekow; CAD/CAM in Dentistry: A Historical Perspective and View of the Future; Journal Canadian Dental Association; 58(4); pp. 283, 287-288; Apr. 1992.
  • Rekow; Computer-Aided Design and Manufacturing in Dentistry: A Review of the State of the Art; Journal of Prosthetic Dentistry; 58(4); pp. 512-516; Dec. 1987.
  • Rekow; Dental CAD-CAM Systems: What is the State of the Art?; The Journal of the American Dental Association; 122(12); pp. 43-48; Dec. 1991.
  • Rekow; Feasibility of an Automated System for Production of Dental Restorations, Ph.D. Thesis; Univ. of Minnesota, 250 pages, Nov. 1988.
  • Richmond et al.; The Development of the PAR Index (Peer Assessment Rating): Reliability and Validity.; The European Journal of Orthodontics; 14(2); pp. 125-139; Apr. 1992.
  • Richmond et al.; The Development of a 3D Cast Analysis System; British Journal of Orthodontics; 13(1); pp. 53-54; Jan. 1986.
  • Richmond; Recording The Dental Cast in Three Dimensions; American Journal of Orthodontics and Dentofacial Orthopedics; 92(3); pp. 199-206; Sep. 1987.
  • Rudge; Dental Arch Analysis: Arch Form, A Review of the Literature; The European Journal of Orthodontics; 3(4); pp. 279-284; Jan. 1981.
  • Sahm et al.; “Micro-Electronic Monitoring of Functional Appliance Wear”; Eur J Orthod.; 12(3); pp. 297-301; Aug. 1990.
  • Sahm; Presentation of a wear timer for the clarification of scientific questions in orthodontic orthopedics; Fortschritte der Kieferorthopadie; 51 (4); pp. 243-247; (Translation Included) Jul. 1990.
  • Sakuda et al.; Integrated Information-Processing System In Clinical Orthodontics: An Approach with Use of a Computer Network System; American Journal of Orthodontics and Dentofacial Orthopedics; 101(3); pp. 210-220; 20 pages; (Author Manuscript) Mar. 1992.
  • Schafer et al.; “Quantifying patient adherence during active orthodontic treatment with removable appliances using microelectronic wear-time documentation”; Eur J Orthod.; 37(1)pp. 1-8; doi:10.1093/ejo/cju012; Jul. 3, 2014.
  • Schellhas et al.; Three-Dimensional Computed Tomography in Maxillofacial Surgical Planning; Archives of Otolaryngology—Head and Neck Surgery; 114(4); pp. 438-442; Apr. 1988.
  • Schroeder et al; Eds. The Visual Toolkit, Prentice Hall PTR, New Jersey; Chapters 6, 8 & 9, (pp. 153-210,309-354, and 355-428; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1998.
  • Shilliday; Minimizing finishing problems with the mini-positioner; American Journal of Orthodontics; 59(6); pp. 596-599; Jun. 1971.
  • Shimada et al.; Application of optical coherence tomography (OCT) for diagnosis of caries, cracks, and defects of restorations; Current Oral Health Reports; 2(2); pp. 73-80; Jun. 2015.
  • Siemens; CEREC—Computer-Reconstruction, High Tech in der Zahnmedizin; 15 pagesl; (Includes Machine Translation); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 2004.
  • Sinclair; The Readers' Corner; Journal of Clinical Orthodontics; 26(6); pp. 369-372; 5 pages; retrived from the internet (http://www.jco-online.com/archive/print_article.asp?Year=1992&Month=06&ArticleNum=); Jun. 1992.
  • Stoll et al.; Computer-aided Technologies in Dentistry; Dtsch Zahna'rztl Z 45, pp. 314-322; (English Abstract Included); (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1990.
  • Sturman; Interactive Keyframe Animation of 3-D Articulated Models; Proceedings Graphics Interface '84; vol. 86; pp. 35-40; May-Jun. 1984.
  • The American Heritage, Stedman's Medical Dictionary; Gingiva; 3 pages; retrieved from the interent (http://reference.com/search/search?q=gingiva) on Nov. 5, 2004.
  • The Dental Company Sirona: Cerc omnicam and cerec bluecam brochure: The first choice in every case; 8 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 2014.
  • Thera Mon; “Microsensor”; 2 pages; retrieved from the internet (www.english.thera-mon.com/the-product/transponder/index.html); on Sep. 19, 2016.
  • Thorlabs; Pellin broca prisms; 1 page; retrieved from the internet (www.thorlabs.com); Nov. 30, 2012.
  • Tiziani et al.; Confocal principle for macro and microscopic surface and defect analysis; Optical Engineering; 39(1); pp. 32-39; Jan. 1, 2000.
  • Truax; Truax Clasp-Less(TM) Appliance System; The Functional Orthodontist; 9(5); pp. 22-24, 26-28; Sep.-Oct. 1992.
  • Tru-Tatn Orthodontic & Dental Supplies, Product Brochure, Rochester, Minnesota 55902, 16 pages; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date) 1996.
  • U.S. Department of Commerce, National Technical Information Service, Holodontography: An Introduction to Dental Laser Holography; School of Aerospace Medicine Brooks AFB Tex; Mar. 1973, 40 pages; Mar. 1973.
  • U.S. Department of Commerce, National Technical Information Service; Automated Crown Replication Using Solid Photography SM; Solid Photography Inc., Melville NY,; 20 pages; Oct. 1977.
  • Vadapalli; Minimum intensity projection (MinIP) is a data visualization; 7 pages; retrieved from the internet (https://prezi.com/tdmttnmv2knw/minimum-intensity-projection-minip-is-a-data-visualization/) on Sep. 6, 2018.
  • Van Der Linden et al.; Three-Dimensional Analysis of Dental Casts by Means of the Optocom; Journal of Dental Research; 51(4); p. 1100; Jul.-Aug. 1972.
  • Van Der Linden; A New Method to Determine Tooth Positions and Dental Arch Dimensions; Journal of Dental Research; 51(4); p. 1104; Jul.-Aug. 1972.
  • Van Der Zel; Ceramic-Fused-to-Metal Restorations with a New CAD/CAM System; Quintessence International; 24(A); pp. 769-778; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1993.
  • Van Hilsen et al.; Comparing potential early caries assessment methods for teledentistry; BMC Oral Health; 13(16); doi: 10.1186/1472-6831-13-16; 9 pages; Mar. 2013.
  • Varady et al.; Reverse Engineering of Geometric Models An Introduction; Computer-Aided Design; 29(4); pp. 255-268; 20 pages; (Author Manuscript); Apr. 1997.
  • Verstreken et al.; An Image-Guided Planning System for Endosseous Oral Implants; IEEE Transactions on Medical Imaging; 17(5); pp. 842-852; Oct. 1998.
  • Warunek et al.; Physical and Mechanical Properties of Elastomers in Orthodonic Positioners; American Journal of Orthodontics and Dentofacial Orthopedics; 95(5); pp. 388-400; 21 pages; (Author Manuscript); May 1989.
  • Warunek et.al.; Clinical Use of Silicone Elastomer Applicances; JCO; 23(10); pp. 694-700; Oct. 1989.
  • Watson et al.; Pressures recorded at te denture base-mucosal surface interface in complete denture wearers; Journal of Oral Rehabilitation 14(6); pp. 575-589; Nov. 1987.
  • Wells; Application of the Positioner Appliance in Orthodontic Treatment; American Journal of Orthodontics; 58(4); pp. 351-366; Oct. 1970.
  • Wikipedia; Palatal expansion; 3 pages; retrieved from the internet (https://en.wikipedia.org/wiki/Palatal_expansion) on Mar. 5, 2018.
  • Williams; Dentistry and CAD/CAM: Another French Revolution; J. Dent. Practice Admin.; 4(1); pp. 2-5 Jan./Mar. 1987.
  • Williams; The Switzerland and Minnesota Developments in CAD/CAM; Journal of Dental Practice Administration; 4(2); pp. 50-55; Apr./Jun. 1987.
  • Wireless Sensor Networks Magazine; Embedded Teeth for Oral Activity Recognition; 2 pages; retrieved on Sep. 19, 2016 from the internet (www.wsnmagazine.com/embedded-teeth/); Jul. 29, 2013.
  • Wishan; New Advances in Personal Computer Applications for Cephalometric Analysis, Growth Prediction, Surgical Treatment Planning and Imaging Processing; Symposium: Computerized Facial Imaging in Oral and Maxilofacial Surgery; p. 5; Presented on Sep. 13, 1990.
  • Witt et al.; The wear-timing measuring device in orthodontics-cui bono? Reflections on the state-of-the-art in wear-timing measurement and compliance research in orthodontics; Fortschr Kieferorthop.; 52(3); pp. 117-125; (Translation Included) Jun. 1991.
  • Wolf; Three-dimensional structure determination of semi-transparent objects from holographic data; Optics Communications; 1(4); pp. 153-156; Sep. 1969.
  • WSCG'98—Conference Program, The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98; pp. 1-7; retrieved from the Internet on Nov. 5, 2004, (http://wscg.zcu.cz/wscg98/wscg98.htm); Feb. 9-13, 1998.
  • Xia et al.; Three-Dimensional Virtual-Reality Surgical Planning and Soft-Tissue Prediction for Orthognathic Surgery; IEEE Transactions on Information Technology in Biomedicine; 5(2); pp. 97-107; Jun. 2001.
  • Yamada et al.; Simulation of fan-beam type optical computed-tomography imaging of strongly scattering and weakly absorbing media; Applied Optics; 32(25); pp. 4808-4814; Sep. 1, 1993.
  • Yamamoto et al.; Optical Measurement of Dental Cast Profile and Application to Analysis of Three-Dimensional Tooth Movement in Orthodontics; Front. Med. Biol. Eng., 1(2); pp. 119-130; (year of pub. sufficiently earlier than effective US filing date and any foreign priority date); 1988.
  • Yamamoto et al.; Three-Dimensional Measurement of Dental Cast Profiles and Its Applications to Orthodontics; Conf. Proc. IEEE Eng. Med. Biol. Soc.; 12(5); pp. 2052-2053; Nov. 1990.
  • Yamany et al.; A System for Human Jaw Modeling Using Intra-Oral Images; Proc. of the 20th Annual Conf. of the IEEE Engineering in Medicine and Biology Society; vol. 2; pp. 563-566; Oct. 1998.
  • Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); 111. The General Concept of the D.P. Method and Its Therapeutic Effect, Part 1, Dental and Functional Reversed Occlusion Case Reports; Nippon Dental Review; 457; pp. 146-164; 43 pages; (Author Manuscript); Nov. 1980.
  • Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); I. The D.P. Concept and Implementation of Transparent Silicone Resin (Orthocon); Nippon Dental Review; 452; pp. 61-74; 32 pages; (Author Manuscript); Jun. 1980.
  • Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); II. The D.P. Manufacturing Procedure and Clinical Applications; Nippon Dental Review; 454; pp. 107-130; 48 pages; (Author Manuscript); Aug. 1980.
  • Yoshii; Research on a New Orthodontic Appliance: The Dynamic Positioner (D.P.); III—The General Concept of the D.P. Method and Its Therapeutic Effect, Part 2. Skeletal Reversed Occlusion Case Reports; Nippon Dental Review; 458; pp. 112-129; 40 pages; (Author Manuscript); Dec. 1980.
  • Grove et al.; U.S. Appl. No. 15/726,243 entitled “Interproximal reduction templates,” filed Oct. 5, 2017.
  • Cramer; U.S. Appl. No. 15/937,569 entitled “Apparatuses and methods assisting in dental therapies,” filed Mar. 27, 2018.
  • Cramer et al.; U.S. Appl. No. 15/942,341 entitled “Orthodontic appliances including at least partially un-erupted teeth and method of forming them,” filed Mar. 30, 2018.
  • Shanjani et al.; U.S. Appl. No. 16/019,037 entitled “Biosensor performance indicator for intraoral appliances,” filed Jun. 26, 2018.
  • Riley et al.; U.S. Appl. No. 16/003,841 entitled Palatal expander with skeletal anchorage devices, filed Jun. 8, 2018.
  • Sato et al.; U.S. Appl. No. 16/041,606 entitled “Palatal contour anchorage,” filed Jul. 20, 2018.
  • Sato et al.; U.S. Appl. No. 16/048,054 entitled “Optical coherence tomography for orthodontic aligners,” filed Jul. 27, 2018.
  • Miller et al.; U.S. Appl. No. 16/038,088 entitled “Method and apparatuses for interactive ordering of dental aligners,” filed Jul. 17, 2018.
  • Moalem et al.; U.S. Appl. No. 16/046,897 entitled Tooth shading, transparency and glazing, filed Jul. 26, 2018.
  • Nyukhtikov et al.; U.S. Appl. No. 15/998,883 entitled “Buccal corridor assessment and computation,” filed Aug. 15, 2018.
  • Bandodkar et al.; All-printed magnetically self-healing electrochemical devices; Science Advances; 2(11); 11 pages; e1601465; Nov. 2016.
  • Bandodkar et al.; Self-healing inks for autonomous repair of printable electrochemical devices; Advanced Electronic Materials; 1(12); 5 pages; 1500289; Dec. 2015.
  • Bandodkar et al.; Wearable biofuel cells: a review; Electroanalysis; 28(6); pp. 1188-1200; Jun. 2016.
  • Bandodkar et al.; Wearable chemical sensors: present challenges and future prospects; Acs Sensors; 1(5); pp. 464-482; May 11, 2016.
  • Imani et al.; A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring; Nature Communications; 7; 11650. doi 1038/ncomms11650; 7 pages; May 23, 2016.
  • Jia et al.; Epidermal biofuel cells: energy harvesting from human perspiration; Angewandle Chemie International Edition; 52(28); pp. 7233-7236; Jul. 8, 2013.
  • Jia et al.; Wearable textile biofuel cells for powering electronics; Journal of Materials Chemistry A; 2(43); pp. 18184-18189; Oct. 14, 2014.
  • Jeerapan et al.; Stretchable biofuel cells as wearable textile-based self-powered sensors; Journal of Materials Chemistry A; 4(47); pp. 18342-18353; Dec. 21, 2016.
  • Kim et al.; Advanced materials for printed wearable electrochemical devices: A review; Advanced Electronic Materials; 3(1); 15 pages; 1600260; Jan. 2017.
  • Kim et al.; Noninvasive alcohol monitoring using a wearable tatto-based iontophoretic-biosensing system; Acs Sensors; 1(8); pp. 1011-1019; Jul. 22, 2016.
  • Kim et al.; Non-invasive mouthguard biosensor for continuous salivary monitoring of metabolites; Analyst; 139(7); pp. 1632-1636; Apr. 7, 2014.
  • Kim et al.; A wearable fingernail chemical sensing platform: pH sensing at your fingertips; Talanta; 150; pp. 622-628; Apr. 2016.
  • Kim et al.; Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics; Biosensors and Bioelectronics; 74; pp. 1061-1068; 19 pages; (Author Manuscript); Dec. 2015.
  • Kumar et al.; All-printed, stretchable Zn—Ag2o rechargeable battery via, hyperelastic binder for self-powering wearable electronics; Advanced Energy Materials; 7(8); 8 pages; 1602096; Apr. 2017.
  • Kumar et al.; Biomarkers in orthodontic tooth movement; Journal of Pharmacy Bioallied Sciences; 7(Suppl 2); pp. S325-S330; 12 pages; (Author Manuscript); Aug. 2015.
  • Parrilla et al.; A textile-based stretchable multi-ion potentiometric sensor; Advanced Healthcare Materials; 5(9); pp. 996-1001; May 2016.
  • Windmiller et al.; Wearable electrochemical sensors and biosensors: a review; Electroanalysis; 25(1); pp. 29-46; Jan. 2013.
  • Zhou et al.; Bio-logic analysis of injury biomarker patterns in human serum samples; Talanta; 83(3); pp. 955-959; Jan. 15, 2011.
  • Zhou et al.; Biofuel cells for self-powered electrochemical biosensing and logic biosensing: A review; Electroanalysis; 24(2); pp. 197-209; Feb. 2012.
  • Kopelman et al.; U.S. Appl. No. 16/152,281 entitled “Intraoral appliances for sampling soft-tissue,” filed Oct. 4, 2018.
  • Morton et al.; U.S. Appl. No. 16/177,067 entitled “Dental appliance having selective occlusal loading and controlled intercuspation,” filed Oct. 31, 2018.
  • Akopov et al.; U.S. Appl. No. 16/178,491 entitled “Automatic treatment planning,” filed Nov. 1, 2018.
  • Elbaz et al.; U.S. Appl. No. 16/198,488 entitled “Intraoral scanner with dental diagnostics capabilities,” filed Nov. 21, 2018.
  • Elbaz et al.; U.S. Appl. No. 16/188,262 entitled “Intraoral scanner with dental diagnostics capabilities,” filed Nov. 12, 2018.
  • DICOM to surgical guides; (Screenshot)1 page; retrieved from the internet at YouTube (https://youtu.be/47KtOmCEFQk); Published Apr. 4, 2016.
Patent History
Patent number: 11996181
Type: Grant
Filed: Jun 15, 2018
Date of Patent: May 28, 2024
Patent Publication Number: 20180360567
Assignee: Align Technology, Inc. (San Jose, CA)
Inventors: Ya Xue (Chapel Hill, NC), Jeeyoung Choi (Sunnyvale, CA), Justin B. Moore (Raleigh, NC), Anton Spiridonov (Cary, NC)
Primary Examiner: Jacqueline T Johanas
Assistant Examiner: Shannel Nicole Belk
Application Number: 16/010,087
Classifications
Current U.S. Class: 3-d Sculpturing Using Nontracing Prototype Sensor (700/163)
International Classification: A61C 7/00 (20060101); A61C 7/08 (20060101); A61C 9/00 (20060101); G06F 18/21 (20230101); G06F 18/2413 (20230101); G06F 18/243 (20230101); G06T 7/10 (20170101); G06T 7/66 (20170101); G16H 30/40 (20180101); G06N 3/08 (20230101); G16H 50/20 (20180101); G16H 50/50 (20180101);