Human semaphorin L (H-SemaL) and corresponding semaphorins in other species

Human semaphorin L (H-SemaL) and corresponding semaphorins in other species.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

[0001] This application claims priority to German Application Nos. 19729211.9 and 19805371.1, filed Jul. 9, 1997 and Feb. 11, 1998 respectively, each incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The invention relates to novel semaphorins which are distinguished by a particular domain structure and derivatives thereof, nucleic acids (DNA, RNA, cDNA) which code for these semaphorins, and derivatives thereof, and the preparation and use thereof.

[0004] 2. Description of the Related Art

[0005] The publications which are referenced in this application describe the state of the art to which this invention pertains. These references are incorporated herein by references.

[0006] Semaphorins were described for the first time by Kolodkin {Kolodkin et al. (1993) Cell 75:1389-1399} as members of a conserved gene family.

[0007] The genes or parts of the genes of other semaphorins have now been cloned and, in some cases, characterized. To date, a total of 5 human (H-Sema III, H-Sema V, H-Sema IV, H-SemaB and H-SemaE) {Kolodkin et al. (1993); Roche et al. (1996) Onkogene 12:1289-1297; Sekido et al. (1996) Proc. Natl. Acad. Sci. USA 93:41204125; Xiang et al. (1996) Genomics 32:39-48; Hall et al. (1996) Proc. Natl. Acad. Sci. USA 39:11780-11785; Yamada et al. (1997) (GenBank Accession No. AB000220)}, 8 murine (mouse genes; M-Sema A to M-Sema-H) {Püschel et al. (1995) Neuron 14:941-948; Messerschmidt et al. (1995) Neuron 14:949-959; Inigaki et al. (1995) FEBS Letters 370:269-272; Adams et al. (1996) Mech. Dev. 57:33-45; Christensen et al. (1996) (GenBank Accession No. Z80941, Z93948)}, 5 galline (chicken) (collapsin-1 to -5) {Luo et al. (1993); Luo et al. (1995) Neuron 14:1131-1140), and genes from rats (R-Sema-III) {Giger et al. (1996) J. Comp. Neurol. 375:378-392}, zebra fish, insects (fruit fly (Drosophila melanogaster: D-Sema I and D-Sema II), beetles (Tribolium confusum: T-Sema-I), grasshoppers (Schistocerca americana: G-Sema-I)) {Kolodkin et al. (1993)}, and nematodes (C.elegans: Ce-Sema) {Roy et al. (1994) (GenBank Accession No. U15667)} have been disclosed. In addition, two poxviruses (vaccinia (ORF-A39) and variola (ORFA39-homologous)) {Kolodkin et al. (1993)} and alcelaphine herpesvirus Type 1 (AHV-1) (AHV-Sema) {Ensser and Fleckenstein (1995) Gen. Virol. 76:1063-1067} have genes homologous to semaphorins.

[0008] Table 1 summarizes the semaphorins identified to date in various species. Table 1 indicates the names of the semaphorins (column 1), the synonyms used (column 2), the species from which the particular semaphorin has been isolated (column 3) and, where known, data on the domain structure of the encoded protein and on the chromosomal location (column 4 in Table 1), the accession number under which the sequence of the gene is stored in gene databanks (for example in an EST (expressed sequence tags) databank, EMBL (European Molecular Biology Laboratory, Heidelberg) or NCBI (National Center for Biotechnology Information, Maryland, USA), and the corresponding reference under which these data have been published (column 5 in Table 1).

[0009] All the gene products (encoded semaphorins) of the semaphorin genes disclosed to date have an N-terminal signal peptide which has at its C-terminal end a characteristic Sema domain with a length of about 450 to 500 amino acids. Highly conserved amino acid motifs and a number of highly conserved cysteine residues are located within the Sema domains. The gene products (semaphorins) differ in the C-terminal sequences which follow the Sema domains and are composed of one or more domains. They have, for example, in these C-terminal amino acid sequences transmembrane domains (TM), immunoglobulin-like domains (Ig) (constant part of the immunoglobulin), cytoplasmic sequences (CP), processing signals (P) (for example having the consensus sequence (RXR) where R is the amino acid arginine and X is any amino acid) and/or hydrophilic C termini (HPC). The semaphorins disclosed to date can be divided on the basis of the differences in the domain structure in the C terminus into 5 different subgroups (I to V):

[0010] I Secreted, without other domains (for example ORF-A49)

[0011] II Ig Secreted (without transmembrane domain) for example AHV-Sema)

[0012] III Ig, TM, CP Membrane-anchored with cytoplasmic sequence (for example CD100)

[0013] IV Ig, (P), HPC Secreted with hydrophilic C terminus (for example H-Sema III, M-SemaD, collapsin-1)

[0014] V Ig, TM, CP Membrane-anchored with C-terminal 7 thrombospondin motif (for example M-SemaF and G)

[0015] A receptor or extracellular ligand for semaphorins has not been described to date. Intracellular, heterotrimeric GTP-binding protein complexes have been described in connection with semaphorin-mediated effects. One component of these protein complexes which has been identified in chickens is called CRMP (collapsin response mediator protein) and is presumed to be a component of the semaphorin-induced intracellular signal cascade (Goshima et al. (1995) Nature 376: 509-514). CRMP62, for example, has homology with unc-33, a nematode protein which is essential for directed growth of axons. A human protein with 98% amino acid identity with CRMP62 is likewise known (Hamajima et al. (1996) Gene 180: 157-163). Several CRMP-related genes have likewise been described in rats (Wang et al. (1996) Neurosci. 16: 6197-6207).

[0016] The secreted or transmembrane semaphorins convey repulsive signals for growing nerve buds. They play a part in the development of the central nervous system (CNS) and are expressed in particular in muscle and nerve tissues (Kolodkin et al. (1993); Luo et al. (1993) Cell 75:217-227).

[0017] Pronounced expression of M-SemaG has been observed not only in the CNS but also in cells of the lymphatic and hematopoietic systems, in contrast to the closely related M-SemaF {Furuyima et al. (1996) J. Biol. Chem. 271: 33376-33381}.

[0018] Recently, two other human semaphorins have been identified, H-Sema IV and H-Sema V, specifically in a region on chromosome 3p21.3, whose deletion is associated with various types of bronchial carcinomas. H-Sema IV {Roche et al. (1996), Xiang et al. (1996), Sekido et al. (1996)} is about 50% identical at the amino acid level with M-SemaE, whereas H-Sema V {Sekido et al. (1996)} is the direct homolog of M-SemaA (86% amino acid identity). Since these genes (H-Sema IV and V) were found during DNA sequencing projects on the deleted 3p21.3 loci, the complex intron-exon structure of these two genes is known. Both genes are expressed in various neuronal and non-neuronal tissues.

[0019] Likewise only recently, the cellular surface molecule CD100 (human), expressed and induced on activated T cells, has been identified as a semaphorin (likewise listed in Table 1). It assists interaction with B cells via the CD40 receptor and the corresponding ligand CD40L. CD100 is a membrane-anchored glycoprotein dimer of 150 kd (kilodaltons). An association of the intracytoplasmic C-terminus of CD100 with an as yet unknown kinase has been described {Hall et al. (1996)}. This means that CD100 is the first and to date only semaphorin whose expression in cells of the immune system has been demonstrated.

[0020] In the “transforming genes of rhadinoviruses” project, the complete genome of alcelaphine herpesvirus Type 1 (AHV-1) has been cloned and sequenced {Ensser et al. (1995)}. AHV-1 is the causative agent of malignant catarrhal fever, a disease of various ruminants which is associated with a lymphoproliferative syndrome and is usually fatal. On analysis, an open reading frame was found, at one end of the viral genome, having remote but significant homology with a gene of vaccinia-virus (ORF-A39 corresponds to VAC-A39 in Ensser et al. (1995) J. Gen. Virol. 76:1063-1067) which has been assigned to the semaphorin gene family. Whereas the AHV-1 semaphorin (AHV-Sema) has a well-conserved semaphorin structure, the poxvirus genes (ORF-A39 and ORF-A39-homologous, see Table 1) have C-terminal truncations, i.e. the conserved Sema domain is present in them only incompletely.

[0021] Databank comparison of the found AHV-Sema with dbEST (EST (expressed sequence tags) databank (db)) provided in each case 2 EST sequences from 2 independent cDNA clones from human placenta (accession numbers H02902, H03806 (clone 151129), accession numbers R33439 and R33537 (clone 135941)). These display distinctly greater homology with AHV-1 semaphorin than with the neuronal semaphorins hitherto described.

SUMMARY OF THE INVENTION

[0022] The present invention relates to semaphorins which have a novel, as yet undisclosed and unexpected domain structure and which possess a biochemical function in the immune system (immunomodulating semaphorins). The novel semaphorins are referred to as type L semaphorins (SemaL). They comprise an N-terminal signal peptide, a characteristic Sema domain and, in the C-terminal region of the protein, an immunoglobulin-like domain and a hydrophobic domain which represents a potential transmembrane domain.

[0023] The amino acid sequence of the signal peptide may have fewer than 70, preferably fewer than 60 amino acids and more than 20, preferably more than 30 amino acids, and a particularly preferred length is of about 40 to 50 amino acids. In a specific embodiment of the invention, the signal peptide has a length of 44 amino acids, i.e. a cleavage site for a signal peptidase is located between amino acids 44 and 45.

[0024] The Sema domain may have a length of from 300 to 700 or more, preferably of about 400 to 600, amino acids. Preferred Sema domains have a length of 450 to 550 amino acids, preferably of about 500 amino acids. In a preferred embodiment of the invention, the Sema domain is joined to the signal peptide, in which case the Sema domain preferably extends up to amino acid 545.

[0025] The immunoglobulin-like domain may have a length of about 30 to 110 or more amino acids, and preferred lengths are between 50 and 90, particularly preferably about 70, amino acids.

[0026] The transmembrane domain may have a length of about 10 to 35, preferably of about 15 to 30, particularly preferably of about 20 to 25, amino acids.

[0027] The invention relates to type L semaphorins from various species, in particular from vertebrates, for example from birds and/or fishes, preferably from mammals, for example from primates, rat, rabbit, dog, cat, sheep, goat, cow, horse, pig, particularly preferably from human and mouse. The invention also relates to corresponding semaphorins from microorganisms, especially from pathogenic microorganisms, for example from bacteria, yeasts and/or viruses, for example from retroviruses, especially from human-pathogenic microorganisms.

BRIEF DECEPTION OF THE DRAWING

[0028] The invention will be described in greater detail with the aid of the following figures:

[0029] FIG. 1 is a Multiple tissue Northern blot for the tissue-specific expression of H-SemaL.

[0030] FIG. 2 is a diagrammic representation of the cloning of the H-SemaL cDNA and of the genomic organization of the H-SemaL encoding sequence.

[0031] FIG. 3 is a phylogenetic tree.

[0032] FIG. 4 is a FACS analysis of H-SEMAL expression in various cell lines.

[0033] FIG. 5 is a comparative analysis of CD 100 and H-SemaL expression.

[0034] FIG. 6 is the expression of secretable human SEMA-L (H-SemaL) in HiFive and SC3 cells.

[0035] FIG. 7 depicts the specificity of the antiserum.

[0036] FIG. 8 is a plasmid map of pMelBacA-H-SEMAL.

DETAILED DESCRIPTION OF THE INVENTION

[0037] One embodiment of the invention is a corresponding human semaphorin (H-SemaL) which has a signal peptide, a Sema domain, an immunoglobulin-like domain and a transmembrane domain. A specific embodiment is the semaphorin which is given by the amino acid sequence shown in Table 4.

[0038] Another embodiment of the invention comprises corresponding semaphorins in other species which have, in the region of the Sema domain, an amino acid identity greater than 40%, preferably greater than 50%, particularly preferably greater than 60%, in relation to the Sema domain of H-SemaL (amino acids 45 to 545 of the sequence in Table 4). The corresponding semaphorins from closely related species (for example primates, mouse) may perfectly well have amino acid identities of greater than 70%, preferably greater than 80%, particularly preferably greater than 90%. Percentage homologies can be determined or calculated for example using the GAP program (GCG program package, Genetic Computer Group (1991)).

[0039] Such an embodiment of the invention is a corresponding mouse semaphorin (murine semaphorin (M-SemaL)). This contains, for example, the partial amino acid sequence shown in Table 5 (murine semaphorin (M-SemaL)).

[0040] The invention also relates to corresponding semaphorins which have an amino acid identity (considered over the entire length of the amino acid sequence of the protein) of only about 15 to 20% in the case of less related species (very remote from one another phylogenetically), preferably 25 to 30%, particularly preferably 35 to 40%, or a higher identity in relation to the complete amino acid sequence of H-SemaL shown in Table 4.

[0041] The genes which code for type L semaphorins have a complex exon-intron structure. These genes may have, for example, between 10 and 20 exons, preferably about 11 to 18, particularly preferably 12 to 16, exons and a corresponding number of introns. However, they may also have the same number of exons and introns as does the gene of H-SemaL (13 or 15 exons, preferably 14 exons). A particular embodiment of the invention relates to the gene of H-SemaL. This gene preferably has a length of 8888 to 10,000 or more nucleotides. The human semaphorin gene preferably contains the nucleotide sequence given in Table 14 or the nucleotide sequence which has been deposited at the GenBank® databank under accession number AF030697. These nucleotide sequences contain at least 13 introns. In addition, the human semaphorin gene has at the 5′ end an additional sequence region. This region contains, where appropriate, further coding and uncoding sequences, for example one or two further introns or exons.

[0042] Attempts to locate the human type L semaphorin on the chromosome revealed that the corresponding gene is located at position 15q22.3-23. The gene for M-SemaL has correspondingly been located at position 9A3.3-B.

[0043] As a consequence of the complex intron-exon structure, the splicing of the primary transcript of the semaphorin mRNA may vary, resulting in different splicing variants of the semaphorins. The proteins translated from these splicing variants are derivatives of the semaphorins according to the invention. They correspond in their amino acid sequence and also substantially in their domain structure to the described type L semaphorins according to the invention, but are truncated by comparison with the latter where appropriate. For example, splicing variants wholly or partly lacking the transmembrane domain may be formed. A semaphorin derivative which contains an incomplete, or no, transmembrane domain, but contains a signal peptide, may be secreted and in this way have effects outside the cell, locally or else over relatively large distances, for example on other cells. Another splicing variant may, for example, no longer contain a sequence which codes for a signal peptide and, where appropriate, also no sequence which codes for a hydrophobic amino acid sequence representing a potential transmembrane domain. One consequence would be that this semaphorin derivative is neither incorporated into the membrane nor secreted (unless through secretory vesicles). Such a semaphorin derivative may be involved in intracellular processes, for example in signal transduction processes. It is possible in this way for a wide variety of intra- and extracellular processes to be controlled and/or harmonized with the same basic molecule (type L semaphorins) and the derivatives derived therefrom (for example splicing variants).

[0044] A particular embodiment of the invention relates to semaphorin derivatives which are derived from the type L semaphorins according to the invention but which contain an incomplete, or no, transmembrane domain.

[0045] Another embodiment of the invention relates to semaphorin derivatives which are derived from the type L semaphorins according to the invention but which contain no signal peptide.

[0046] The signal peptide may also undergo post-translational elimination. This forms a membrane-bound (with TM domain) or a secreted (splicing variant without TM domain) semaphorin derivative with truncated domain structure. A semaphorin derivative which has undergone post-translational processing in this way now contains only Sema domain, Ig domain and, where appropriate, transmembrane domain. A signal peptide cleavage site can be located, for example, right at the end of the signal peptide, but it may, for example, be located 40 to 50 amino acids or more away from the amino terminus.

[0047] A “truncated” (i.e. containing fewer domains) semaphorin L derivative can be distinguished from other semaphorins which are not derived from type L semaphorins in that there is a very great (>90%) amino acid identity or an identical amino acid sequence with the type L semaphorins in the domains which are present.

[0048] The semaphorins according to the invention may also have undergone post-translational modification in other ways. For example, they may be glycosylated (N- and/or O-glycosylated) once, twice, three, four, five, six, seven, eight, nine, ten or more times. The amino acid sequences of the semaphorins may then have an equal number of or more consensus sequences for potential glycosylation sites, preferably five such sites. One embodiment of the invention relates to semaphorins in which the glycosylation sites are located at positions which correspond to positions 105, 157, 258, 330 and 602 of the H-SemaL amino acid sequence (Table 4).

[0049] In addition, the semaphorins may be in the form of their phosphorylated derivatives. Semaphorins may be the substrates of various kinases, for example the amino acid sequences may have consensus sequences for protein kinase C, tyrosine kinase and/or creatine kinases. In addition, the amino acid sequences of the semaphorins may have consensus sequences for potential myristylation sites. Corresponding semaphorin derivatives may be esterified with myristic acid at these sites.

[0050] The type L semaphorins according to the invention and their derivatives may be in the form of monomers, dimers and/or multimers, for example two or more semaphorins or their derivatives can be linked together by intermolecular disulfide bridges. It is also possible for intramolecular disulfide bridges to be formed.

[0051] Further derivatives of the semaphorins according to the invention are fusion proteins. A fusion protein of this type contains, on the one hand, a type L semaphorin or parts thereof and, in addition, another peptide or protein or a part thereof. Peptides or proteins or parts thereof may be, for example, epitope tags (for example His tag (6×histidine), Myc tag, flu tag) which can be used, for example, for purifying the fusion proteins, or those which can be used for labeling the fusion proteins, for example GFP (green fluorescent protein). Examples of derivatives of the type L semaphorins are given for example by the constructs described in the examples. The sequences of these constructs can be found in Tables 7 to 15, where appropriate taking account of the annotations relating to the plasmids.

[0052] The invention further relates to nucleic acid sequences, preferably DNA and RNA sequences, which code for the type L semaphorins according to the invention and/or their derivatives, for example the corresponding genes, the various splicing variants of the mRNA, the cDNAs corresponding thereto, and derivatives thereof, for example salts of the DNA or RNA. Derivatives for the purpose of the inventions are sequences or parts thereof which have been modified, for example, by methods of molecular biology and adapted to the particular requirements, for example truncated genes or parts of genes (for example promoter sequences, terminator sequences), cDNAs or chimeras thereof, constructs for expression and cloning and salts thereof.

[0053] One embodiment relates to the genomic sequences (genes) of the type L semaphorins. The invention relates to the intron and exon sequences and gene-regulatory sequences, for example promoter, enhancer and silencer sequences.

[0054] This embodiment relates on the one hand to the gene of H-SemaL or its derivatives. The invention relates on the one hand to a gene which comprises the nucleotide sequence given in Table 14. The invention further relates to the gene which comprises the nucleotide sequence which is deposited in the GenBank® databank under accession number AF030697.

[0055] This embodiment further relates to the gene of M-SemaL and its derivatives.

[0056] The invention further relates to the cDNA of H-SemaL or its derivatives (for example parts of the cDNA). A particular embodiment is the cDNA of H-SemaL according to the nucleotide sequence in Table 2. The invention further relates to the cDNA of H-SemaL which is deposited in the GenBank® databank under accession number AF030698. The invention also relates to the mRNAs corresponding to these cDNAs, or parts thereof.

[0057] The invention further relates to the cDNA of M-SemaL or its derivatives (for example parts of the cDNA). A particular embodiment is the partial cDNA sequence of M-SemaL shown in Table 3, and cDNA sequences which comprise this partial cDNA sequence. Another embodiment of the invention relates to the cDNA of M-SemaL which is deposited in the GenBank databank under accession number AF030699. The invention also relates to the mRNAs corresponding to these cDNAs, or parts thereof.

[0058] The invention also comprises alleles and/or individual expression forms of the genes/mRNAs/cDNAs which differ only slightly from the semaphorin sequences described herein and code for an identical or only slightly modified protein (difference in the amino acid sequence less than or equal to 10%) (further example of derivatives). Further examples of the derivatives are given by the constructs indicated in the examples. The sequences of these constructs are depicted in Tables 7 to 14 and can be interpreted taking account of the annotation for plasmids.

[0059] The invention further relates to plasmids which comprise DNA which codes for the type L semaphorins or derivatives thereof. Plasmids of this type may be, for example, plasmids with high replication rates suitable for amplification of the DNA, for example in E. coli.

[0060] A specific embodiment comprises expression plasmids with which the semaphorins or parts thereof or their derivatives can be expressed in prokaryotic and/or eukaryotic expression systems. Both constitutive expression plasmids and those containing inducible promoters are suitable.

[0061] The invention also relates to processes for preparing nucleic acids which code for type L semaphorins or derivatives thereof.

[0062] These nucleic acids, for example DNA or RNA, can be synthesized, for example, by chemical means. In particular, it is possible for these nucleic acids, for example the corresponding genes or cDNAs or parts thereof, to be amplified by PCR using specific primers and suitable starting material as template. (For example cDNA from a suitable tissue or genomic DNA).

[0063] A specific process for preparing semaphorin L cDNA and the H-SemaL gene is described in the examples.

[0064] The invention also relates to processes for preparing type L semaphorins. For example, a semaphorin L or a derivative thereof can be prepared by cloning a corresponding nucleic acid sequence which codes for a type L semaphorin or a derivative thereof into an expression vector and using the latter recombinant vector to transform a suitable cell. It is possible to use, for example, prokaryotic or eukaryotic cells. The type L semaphorins or derivatives thereof may also, where appropriate, be prepared by chemical means.

[0065] In addition, the type L semaphorins and derivatives thereof can be expressed as fusion proteins, for example with proteins or peptides which permit detection of the expressed fusion protein, for example as fusion protein with GFP (green fluorescent protein). The semaphorins may also be expressed as fusion proteins with one, two, three or more epitope tags, for example with Myc and/or His (6×histidine) and/or flu tags. It is correspondingly possible to use or prepare plasmids which comprise DNA sequences which code for these fusion proteins. For example, semaphorin-encoding sequences can be cloned into plasmids which contain DNA sequences which code for GFP and/or epitope tags, for example Myc tag, His tag, flu tag. Specific examples thereof are given by the examples and the sequences listed in the tables, where appropriate with the assistance of the annotation relating to the plasmids.

[0066] The invention further relates to antibodies which specifically bind or recognize the type L semaphorins, derivatives thereof or parts thereof. Possible examples thereof are polyclonal or monoclonal antibodies which can be produced, for example, in mouse, rabbit, goat, sheep, chicken etc.

[0067] A particular embodiment of this subject-matter of the invention comprises antibodies directed against the epitopes which correspond to the amino acid sequences from position 179 to 378 or 480 to 666 of the H-SemaL sequence shown in Table 4. The invention also relates to a process for preparing specific anti-semaphorin L antibodies, using for the preparation antigens comprising said epitopes.

[0068] The invention also relates to processes for preparing the antibodies, preferably using for this purpose a fusion protein consisting of a characteristic semaphorin epitope and an epitope tag which can be used for the subsequent purification of the recombinant fusion protein. The purified fusion protein can subsequently be used for the immunization. To prepare the recombinant fusion protein, a corresponding recombinant expression vector is prepared and used to transform a suitable cell. The recombinant fusion protein can be isolated from this cell. The procedure can be, for example, like that described in Example 8.

[0069] These antibodies can be used, for example, for purifying the corresponding semaphorins, for example H-SemaL and its derivatives, for example on affinity columns, or for the immunological detection of the proteins, for example in an ELISA, in a Western blot and/or in immunohistochemistry. The antibodies can also be used to analyze the expression of H-SemaL, for example in various cell types or cell lines.

[0070] The cDNA of H-SemaL has a length of 2636 nucleotides (Table 2). The gene product of the H-SemaL cDNA has a length of about 666 amino acids (Table 4) and displays the typical domain structure of a type L semaphorin. The gene product has an N-terminal signal peptide (amino acids 1 to 44), Sema domain (amino acid 45 to approximately amino acid 545), and Ig (immunoglobulin) domain (approximately amino acids 550 to 620) and, at the C-terminal end, a hydrophobic amino acid sequence which represents a potential transmembrane domain. This domain structure has never previously been described for semaphorins. It relates to a membrane-associated glycoprotein which is probably located on the cell surface and belongs to a new subgroup. On the basis of this previously unknown domain structure, the semaphorins can now be divided into VI subgroups:

[0071] I Secreted, without other domains (for example ORF-A49)

[0072] II Ig Secreted (without transmembrane domain) (for example AHV-Sema)

[0073] III Ig, TM, CP Membrane-anchored with cytoplasmic sequence (for example CD100)

[0074] IV Ig, (P), HPC Secreted with hydrophilic C terminus (for example H-Sema-III, M-SemaD, collapsin-1)

[0075] V Ig, TM, CP Membrane-anchored with C-terminal 7 thrombospondin motif (for example M-SemaF and G)

[0076] VI Ig, TM Membrane-anchored (for example H-SemaL, M-SemaL)

[0077] The unglycosylated, unprocessed form of H-SemaL has a calculated molecular weight of about 74.8 kd (74823 dalton) (calculated using Peptide-Sort, GCG program package). The isoelectric point is calculated to be pH=7.56.

[0078] A possible signal peptide cleavage site is located between amino acids 44 and 45 (Table 3; calculated with SignalP (http.//www.cbs.dtu.dk/services/Signal P), a program based on neural networks for analyzing signal sequences {Nielsen H. et. al. (1997) Protein Engineering 10:1-6}). This gives for the processed protein (without signal peptide) a molecular weight (MW) of 70.3 kd (70323 dalton) and an isoelectric point of pH=7.01.

[0079] The genomic structure is likewise substantially elucidated. The H-SemaL gene has 13 or 15 or more exons, preferably 14 exons, and 12 or 14 introns, preferably 13 introns. Because of this complex exon-intron structure, various splicing variants are possible. The mRNA of the transcribed H-SemaL gene is found in the Northern blot particularly in placenta, gonads, thymus and spleen. No mRNA has been detected in neuronal tissue or in muscle tissue. There is evidence of specifically regulated expression in endothelial cells.

[0080] Alternative splicing may also result in forms of H-SemaL with intracytoplasmic sequences which are involved in intracellular signal transduction, similar to, for example, CD100. It would likewise be possible for alternative splicing to result in secreted forms of H-SemaL, analogous to viral AHV-Sema.

[0081] Nucleotide and amino acid sequence analyses were performed with the aid of the GCG program package (Genetics Computer Group (1991) Program manual for the GCG package, Version 7, 575 Science Drive, Wisconsin, USA 53711), FASTA (Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85, 2444-2448) and BLAST program (Gish and States (1993) Nat. Genet.3, 266-272; Altschul et al. (1990) J. Mol. Biol. 215, 403410). These programs were also used for sequence comparisons with GenBank (Version 102.0) and Swiss Prot (Version 34.0).

[0082] Post-translational modifications such as glycosylation and myristylation of H-SemaL are likewise possible. Consensus sequences for N-glycosylation sites were found with the aid of the Prosite program (GCG program package) at positions 105, 157, 258, 330 and 602 of the amino acid sequence of H-SemaL (shown in Table 4), and those for myristylation were found at positions 114, 139, 271, 498, 499, 502 and 654 (consensus sequence: G˜(E, D, R, K, H, P, F, Y, W)×(S, T, A, G, C, N)˜(P)). In addition, the amino acid sequence of H-SemaL contains several consensus sequences for potential phosphorylation sites for various kinases. It can therefore be assumed that H-SemaL can be the substrate of various kinases, for example phosphorylation sites for creatine kinase 2, protein kinase C and tyrosine kinase.

[0083] Predicted creatine kinase 2 phosphorylation sites (consensus sequence Ck2: (S,T)×2(D,E)) (Prosite, GCG) at positions 119, 131, 173, 338, 419 and 481 of the amino acid sequence.

[0084] Predicted protein kinase C phosphorylation sites (consensus sequence PkC: (S,T)×(R,K)) (Prosite, GCG) at positions 107, 115, 190, 296, 350, 431, 524 and 576 of the amino acid sequence.

[0085] Predicted tyrosine kinase phosphorylation site (consensus sequence: (R,K)×{2,3}(D,E)×{2,3}Y) (Prosite, GCG) at position 205 of the amino acid sequence.

[0086] The consensus sequences are indicated in the single letter code for amino acids.

[0087] An “RGD” motif (arginine-glycine-aspartic acid) characteristic of integrins is located at position 267.

[0088] The glycosylation sites are highly conserved between viral AHV-Sema, H-SemaL and (as far as is known) M-SemaL.

[0089] Di- or multimerization of H-SemaL is possible and has been described for other semaphorins such as CD100 {Hall et al. (1996)}. The CD100 molecule is likewise a membrane-anchored glycoprotein dimer of 150 kd. However, CD100 is not closely related to the human semaphorin (H-SemaL) according to the invention.

[0090] The partial cDNA sequence of M-SemaL has a length of 1195 nucleotides. This sequence codes for a protein having 394 amino acids. These 394 amino acids correspond to amino acids 1 to 396 of H-SemaL. The signal peptide in M-SemaL extends over amino acids 1 to 44 (exactly as in H-SemaL). The Sema domain starts at amino acid 45 and extends up to the end or probably beyond the end of the sequence shown in Table 4.

[0091] Multiple alignments were carried out using the Clustal W program (Thompson et al. (1994)). These alignments were processed further manually using SEAVIEW (Galtier et al. (1996) Comput. Appl. Biosci 12, 543-548). The phylogenetic distances were determined using Clustal W (Thompson et al. (1994)).

[0092] Comparison of the protein sequences of the known and of the novel semaphorins and phylogenetic analysis of these sequences shows that the genes can be categorized according to their phylogenetic relationship. The C-terminal domain structure of the corresponding semaphorin subtypes is, of course, involved in this as a factor deciding why semaphorins in the same subgroups are, as a rule, also more closely related phylogenetically than are semaphorins in different subgroups. The species from which the semaphorin was isolated also has an influence, i.e. whether the corresponding species are phylogenetically closely related to one another or not.

[0093] A phylogenetic analysis (compare FIG. 3) of the known semaphorin amino acid sequences (complete sequences and/or part-sequences, using the amino acid sequences for H-SemaL and M-SemaL shown in Tables 4 and 5 and for all other sequences the sequences stored under the accession numbers or the encoded amino acid sequences derived from these sequences) using the CLUSTAL W program {Thompson J. D. et al. (1994) Nucleic Acids Res. 22:4673-4680} shows that the amino acid sequences of H-SemaL and M-SemaL are phylogenetically closely related to one another and form a separate phylogenetic group. H-SemaL and M-SemaL in turn are phylogenetically most closely related to AHV-Sema and Vac-A39. The are distinctly more closely related to one another than to any other previously disclosed semaphorin. The analysis also shows that other semaphorins are also phylogenetically closely related to one another and form separate groups within the semaphorins. For example, the semaphorins which are secreted, for example H-Sema III, -IV, -V and -E belong in one phylogenetic group. Their homologs in other species also belong to this subfamily, whereas the human (transmembrane) CD100 belongs in one phylogenetic group together with the corresponding mouse homolog (M-SemaG2) and with Collapsin-4.

[0094] In relation to the complete amino acid sequences, the observed homologies within the phylogenetic groups are between about 90% and 80% amino acid identity in relation to very closely related genes such as, for example, H- and M-SemaE or -III/D and somewhat less than 40% in the case of less related genes of the semaphorins. Within the Sema domain, the observed amino acid identity is a few percent higher, and, owing to its great contribution to the total protein (50-80% of the protein belong to the Sema domain) of the amino acid sequence, this considerably influences the overall identity.

[0095] H-SemaL is, calculated for the complete protein, 46% identical with AHV-Sema, but if the Sema domain is considered on its own, then the amino acid identity is 53%. This is higher than, for example, between the related M-Sema-B and -C (37% identity in relation to the complete protein, 43% identity in relation to the Sema domain), similar to M-SemaA and -E (43% complete protein, 53% Sema domain). The amino acid identity between the partial M-SemaL sequence (Table 6) and H-SemaL (Table 5) in the region of the Sema domain is 93% so that it can be assumed that the correspondingly homologous mouse gene is involved.

[0096] Semaphorins corresponding to H-SemaL and M-SemaL in other species may have an amino acid identity within the Sema domain of more than 40% in relation to H-SemaL. In closely related vertebrates (mammals, birds) amino acid identities above 70% may even be found.

[0097] The semaphorins belong to a new subfamily with greater amino acid identity to the viral AHV-Sema than to the previously disclosed human and murine semaphorins, and with a C-terminal structure not previously disclosed for human semaphorins. These novel semaphorins (members of the subfamily) are distinguished by belonging, because of their domain structure, to subgroup IV and/or to the same phylogenetic group as H-SemaL and M-SemaL and/or have, in relation to the complete amino acid sequence, an amino acid identity of at least 30 to 40%, preferably 50 to 60%, particularly preferably 70 to 80%, or a greater identity, to H-SemaL and/or have, in relation to the Sema domain, an amino acid identity of at least 70%, preferably greater than 80%, particularly preferably greater than 90%, to H-SemaL.

[0098] The type L semaphorins also have a different type of biochemical function. One novel function of these semaphorins is modulation of the immune system.

[0099] The closest relative of H-SemaL is the viral AHV semaphorin (AHV-Sema). The latter has a similar size but, in contrast to H-SemaL, has no transmembrane domain. AHV-Sema is presumably secreted by virus-infected cells in order to block the H-SemaL equivalent receptor (type L semaphorin in the blue wildebeest) in the natural host (blue wildebeest) and thus elude the attack of the immune system. It is also conceivable that there is a function as repulsive agent (chemorepellant) for cells of the immune system.

[0100] The biochemical function of the novel type L semaphorins and derivatives thereof is to be regarded as generally immunomodulating and/or inflammation-modulating. They are able on the one hand

[0101] A) as molecules inhibiting the immune response to display their effect as chemorepellant and/or immunosuppressant either locally, for example as transmembrane protein on the surface of cells, or else over larger distances, for example if they are secreted due to processing (for example proteases) or alternative splicing, for example by diffusion in the tissue.

[0102]  For example, expression of these novel type L semaphorins for example on the surface of the cells of the vascular endothelium can prevent leukocyte attachment and migration thereof through the vessel wall. The novel semaphorins may play a part in maintenance of barrier effects, for example to prevent infections in particularly “important” or exposed organs, for example to maintain the blood-brain barrier, the placental circulation and/or other immunologically privileged locations (for example pancreatic islets) and/or in prevention of autoimmune diseases. In addition, the novel semaphorins and/or their derivatives may also be involved in repulsive signals in various tissues, for example for cells of the immune system (for example leukocytes) to prevent inadvertent activation of defense mechanisms.

[0103] B) In addition, the novel semaphorins and/or derivatives thereof may have functions as accessory molecules. Expressed on the cell surface, they may, for example, be involved in the interaction with cells of the immune system as part of the activation of defense mechanisms, for example in cases of virus infection.

[0104] This reveals several possible uses of the novel type L semaphorins and derivatives thereof, and the nucleic acids coding for these proteins.

[0105] Function A): This comprises an immunosuppressant and/or anti-inflammatory principle: there are numerous potential possibilities of use in the areas of organ transplantation, therapy of inflammations, immunotherapy and gene therapy.

[0106] For example, nonhuman, transgenic animals can be produced with the aid of the semaphorin-encoding DNA or derivatives thereof.

[0107] One possible use of these animals is in the inhibition of transplant rejection in transgenic models of organ transplantations. For example, transgenic animal organs protected against rejection can be produced for xenotransplantations. This ought to be possible for example also together with other transgenes (for example complement regulators such as DAF or CD59). Another use is in the production of nonhuman knock-out animals, for example knock-out mice (“Laboratory Protocols for Gene-Targeting”, Torres and Kühn (1997) Oxford University Press, ISBN 0-19-963677-X): It is possible by knocking out the mouse M-SemaL gene for example to find other functions of the gene. They also represent potential model systems for inflammatory diseases if the mice can survive without semaphorin gene. If M-SemaL is important for immunomodulation, a plurality of such mice is to be expected. In addition, nonhuman knock-in animals, for example mice, can be produced. This entails, for example, replacing M-SemaL by normal/modified H-SemaL or modified M-SemaL (for example integration of the novel semaphorin subtypes under the control of constitutive and/or inducible promoters). Animals of this type can be used, for example, for looking for further functions of the novel semaphorins, for example functions of the human gene or derivatives of these genes, or be used for identifying and characterizing immunomodulating agents.

[0108] Use of, for example, nucleic acids which code for type L semaphorins or derivatives thereof for producing, for example, recombinant immunosuppressants, other soluble proteins or peptides derived from the amino acid sequence of type L semaphorins, for example from H-SemaL or the corresponding nucleic acids, for example genes. It is also possible in a similar way to produce agonists with structural similarity. These immunosuppressant agents or agonists may be used for autoimmune diseases and inflammatory disorders and/or organ transplantations too.

[0109] Gene therapy with type L semaphorins, for example with nucleic acids which code for H-SemaL or derivatives thereof, for example using viral or nonviral methods. Use in autoimmune diseases and inflammatory disorders, the transduction of organs and before/during/after transplantations to prevent transplant rejection.

[0110] It is particularly possible to employ the novel semaphorins and/or the nucleic acids coding for these semaphorins, and derivatives thereof, in particular H-SemaL, DNA coding for H-SemaL, and derivatives thereof, in a method for screening for agents, in particular for identifying and characterizing immunomodulating agents.

[0111] Function B): H-SemaL is an accessory molecule which is expressed on the cell surface and is involved in the interaction with cells, for example of the immune system, for example as accessory molecule in the activation of signal pathways. A viral gene or the gene product of a viral or other pathogenic gene, for example of microbiological origin, might act, for example, as competitive inhibitor of this accessory molecule. One use of the novel semaphorins with this function is likewise in the area of organ transplantation, therapy of inflammation, immunotherapy and/or gene therapy.

[0112] For example, the novel semaphorins can be used in a method for screening for antagonistic agents or inhibitors. Agents identified in this way can then be employed, for example, for blocking the semaphorin receptor. Soluble and/or secreted H-SemaL antagonists or inhibitors may be, for example, chemical substances or the novel semaphorins or derivatives thereof themselves (for example parts/truncated forms thereof, for example without membrane domain or as Ig fusion proteins or peptides derived from the latter, which are suitable for blocking the corresponding receptor). Specific antagonists and/or inhibitors identified in this way may, for example, have competitive effects and be employed for inhibiting rejection, for example in transgenic models of organ transplantations and for autoimmune diseases, inflammatory disorders and organ transplantations. Nucleic acids, for example DNA, which code for the novel semaphorins, or derivatives thereof produced with the aid of methods of molecular biology, may be used, for example, for producing nonhuman transgenic animals. Overexpression of H-SemaL in these transgenic animals may lead to increased susceptibility to autoimmune diseases and/or inflammatory disorders. Such transgenic animals are thus suitable for screening for novel specific immunomodulating agents.

[0113] Such nucleic acids can likewise be used to produce nonhuman knock-out animals, for example knock-out mice in which the mouse M-SemaL gene is switched off. Such knock-out animals can be employed to search for further biochemical functions of the gene. They also represent potential model systems for inflammatory disorders if the mice are able to survive without the M-SemaL gene.

[0114] This DNA can likewise be used to produce nonhuman knock-in animals, for example mice. This entails the M-SemaL gene being replaced by a modified M-SemaL gene/cDNA or an optionally modified, for example mutated, type L semaphorin gene/cDNA of another species, for example H-SemaL. Such transgenic animals can be used to look for further functions of the semaphorins according to the invention.

[0115] The invention also relates to the use of the type L semaphorins and derivatives thereof, and of the nucleic acids coding for these proteins, for example genes/cDNAs and derivatives thereof and/or agents identified with the aid of these semaphorins for producing pharmaceuticals. It is possible, for example, to produce pharmaceuticals which can be used in gene therapy and which comprise agonists and/or antagonists of the expression of the type L semaphorins, for example of H-SemaL. It is possible to use for this purpose, for example, viral and/or nonviral methods. These pharmaceuticals can be employed, for example, for autoimmune diseases and inflammatory disorders, organ transplantations before and/or during and/or after the transplantation to prevent rejection.

[0116] The nucleic acids coding for the novel semaphorins, for example genes, cDNAs and derivatives thereof, can also be employed as aids in molecular biology.

[0117] In addition, the novel semaphorins, especially H-SemaL and nucleic acids, for example genes/cDNAs thereof can be employed in methods for screening for novel agents. Modified proteins and/or peptides derived, for example, from H-SemaL and/or M-SemaL can be used to look for the corresponding receptor and/or its antagonists or agonist in functional assays, for example using expression constructs of H-SemaL and homologs.

[0118] The invention also relates to the use of a type L semaphorin or a nucleic acid sequence which codes for a type L semaphorin in a method for identifying pharmacological agents, especially immunomodulating agents.

[0119] The invention also relates to methods for identifying agents employing a type L semaphorin or a derivative thereof or a nucleic acid sequence which codes for a type L semaphorin, or a derivative thereof, in order to identify pharmacological agents, for example immunomodulating agents. The invention relates, for example, to a method in which a type L semaphorin is incubated under defined conditions with an agent to be investigated and, in parallel, a second batch is carried out without the agent to be investigated but under conditions which are otherwise the same, and then the inhibiting or activating effect of the agent to be investigated is determined.

[0120] The invention also relates, for example, to methods for identifying agents where a nucleic acid sequence which codes for a type L semaphorin or a derivative thereof is expressed under defined conditions in the presence of an agent to be investigated, and the extent of the expression is determined. It is also possible, where appropriate, in such a method to carry out two or more batches in parallel under the same conditions but with the batches containing different amounts of the agent to be investigated.

[0121] For example, the agent to be investigated may inhibit or activate transcription and/or translation.

[0122] The type L semaphorin can, like its viral homologs, bind to the newly described receptor molecule VESPR (Comeau et al, (1998) Immunity, Vol. 8, 473-482) and in monocytes can presumably cause induction of cell adhesion molecules such as ICAM-1 and cytokines such as interleukin-6 and interleukin-8. This may lead to activation thereof and to cell aggregation. The expression pattern of the VESPR receptor shows some interesting parallels with H-SemaL, for example strong expression in placenta and pronounced expression in spleen tissue. Interactions with other as yet unknown receptors of the plexin family or other receptors are possible. It may also interact with itself or other semaphorin-like molecules. Interaction of the type L semaphorins may take place in particular via a conserved domain in the C-terminal region of the Sema domain.

[0123] Concerning the Annotation on Plasmids:

[0124] pMelBacA-H-SemaL (6622 bp) in pMelBacA (Invitrogen, De Schelp, NL) (SEQ ID NO.42). Nucleotide 96-98 ATG—start codon, nucleotide 96-168 mellitin signal sequence, nucleotide 168-173 BamHI cleavage site (PCR/cloning), nucleotide 171-1998 reading frame SEMA-L amino acids 42-649 (without own signal sequence and without transmembrane sequence), nucleotide 1993-1998 EcoRI cleavage site (PCR/cloning) and nucleotide 1992-1994 stop codon.

[0125] Plasmid pCDNA3.1-H-SemaL-MychisA (7475 bp) (SEQ ID NO. 35): nucleotide 954-959 BamHI cleavage site (cloning), nucleotide 968-970 ATG SEMAL, nucleotide 968-2965 reading frame SEMAL, nucleotide 2963-2968 Pml I cleavage site, nucleotide 2969-2974 HindIII cleavage site, nucleotide 2981-3013 Myc tag, nucleotide 3026-3033 6×His tag, nucleotide 3034-3036 stop codon,

[0126] Plasmid pCDNA3.1-H-SemaL-EGFP-MychisA (8192 bp):(SEQ ID NO. 36): nucleotide 954-959 BamHI cleavage site (cloning), nucleotide 968-970 ATG SEMA-L, nucleotide 968-2965 reading frame SEMA-L, nucleotide 2963-2965 half Pml I cleavage site, nucleotide 2966-3682 reading frame EGFP (cloned in Pml I), nucleotide 3683-3685 half Pml I cleavage site, nucleotide 3685-3691 HindIII, nucleotide 3698-3730 Myc tag, nucleotide 3743-3760 6×His tag, and nucleotide 3761-3763 stop codon.

[0127] Plasmid pIND-H-SemaL-EA (7108 bp) in vector pIND (Invitrogen, De Schelp, NL) (SEQ ID No. 38): nucleotide 533-538 BamHI cleavage site (cloning), nucleotide 546-548 ATG SEMA-L, nucleotide 546—reading frame SEMA-L, nucleotide 2542-2547 Pml I cleavage site, nucleotide 2548-2553 HindIII cleavage site and nucleotide 2563-2565 stop codon.

[0128] Plasmid pIND-H-SemaL-EE (total length 7102 bp) in vector pIND (Invitrogen, De Schelp, NL) (SEQ ID No. 37): nucleotide 533-538 BamHI cleavage site (cloning), nucleotide 546-548 ATG SEMA-L, nucleotide 546-reading frame SEMA-L, nucleotide 2542-2547 Pml I cleavage site, nucleotide 2548-2553 HindIII cleavage site, nucleotide 2560-2592 Myc tag, nucleotide 2605-2622 6×His tag and nucleotide 2623-2625 stop codon.

[0129] Plasmid pQE30-H-SemaL-179-378.seq (4019 bp) in vector pQE30 (Qiagen, Hilden) corresponds to pQE30-H-SemaLBH (SEQ ID No. 39): nucleotide 115-117 ATG, nucleotide 127-144 6×His tag, nucleotide 145-750 BamHI-HindIII PCR fragment SEMA-L amino acids (aa) 179-378 and nucleotide 758-760 stop codon.

[0130] Plasmid pQE31-H-SemaL-(SH (3999 bp) in vector pQE31 (Qiagen, Hilden) (SEQ ID No. 40): nucleotide 115-117 ATG, nucleotide 127-144 6×His tag, nucleotide (147-152 BamHI), nucleotide 159-729 Saci-HindIII fragment SEMA-L (C-terminal) aa480-666 and nucleotide 734-736 stop codon.

EXAMPLES

[0131] Experimental Conditions used in the Examples: 1 PCR programs used: Taq52-60 (with Ampli-TaqR polymerase, Perkin Elmer, Weil der Stadt, Germany) 96° C./60s  1 cycle 96° C./15s-52° C./20s-70° C./60s 40 cycles 70° C./60s  1 cycle Taq60-30 96° C./60s  1 cycle 96° C./15s-60° C./20s-70° C./30s 35 cycles 70° C./60s  1 cycle Taq60-60 96° C./60s  1 cycle 96° C./15s-60° C./20s-70° C./60s 35 cycles 70° C./60s  1 cycle Taq62-40 96° C./60s  1 cycle 96° C./15s-62° C./20s-70° C./40s 35 cycles 70° C./60s  1 cycle

[0132] Reaction Conditions used for PCR with Taq Polymerase:

[0133] 50&mgr;l reaction mixtures with 100-200 ng of template, 200 &mgr;M dNTP, 0.2-0.4 &mgr;M each primer, 2.5 U of Ampli-TaqR, 5 &mgr;l of the 10× reaction buffer supplied

[0134] Programs used for: 2 XL62-6 (with expand-long template PCR SystemR, Boehringer Mannheim, Germany) 94° C./60s  1 cycle 94° C./15s-62° C./30s-68° C./6 min 10 cycles 94° C./15s-62° C./30s-68° C./(6 min + 15s/cycle) 25 cycles 68° C./7 min  1 cycle XL62-12 (with expand-long template PCR System Boehringer Mannheim, Germany) 94° C./60s  1 cycle 94° C./15s-62° C./30s-68° C./12 min 10 cycles 94° C./15s-62° C./30s-68° C./(12 min + 15s/cycle) 25 cycles 68° C./7 min  1 cycle

[0135] Reaction Conditions for PCR with Expand-long Template PCR System

[0136] 50 &mgr;l reaction mixtures with 100-200 ng of template, 500 &mgr;M dNTP, 0.2-0.4 &mgr;M each primer, 0.75 &mgr;l of enzyme mix, 5 &mgr;l of the 10× reaction buffer No. 2 supplied.

Example 1

[0137] Starting from AHV-Sema sequences (Ensser & Fleckenstein (1995), J. General Virol. 76: 1063-1067), PCRs and RACE-PCRs were carried out. The starting material used for this was human cDNA from placental tissue onto which adaptors had been ligated for the RACE amplification (Marathon™-cDNA Amplification Kit, Clontech Laboratories GmbH, Tullastra&bgr;e 4, 69126 Heidelberg, Germany). Firstly specific primers (No.121234+No. 121236, Table 6) were used to amplify a PCR fragment with a length of about 800 bp (base pairs) (PCR program: (Taq60-60)). This was cloned and sequenced (Taq dye-deoxy terminator sequencing kit, Applied Biosystems, Foster City, Calif., USA/Brunnenweg 13, Weil der Stadt). Sequencing of the PCR product revealed a sequence which has a high degree of homology with the DNA sequence of AHV-Sema, identical to the sequence of the two ESTs.

[0138] A PCR fragment of 600 bp was identified using the primer pair (No. 121237+No. 121239, Table 6). It emerged that they were clones with DNA sequences from the same gene.

Example 2

[0139] The 800 bp PCR fragment from Example 1 was radiolabeled (random priming by the method of {Feinberg (1983) Anal. Biochem. 132:6-13}, with 32P-&agr;-dCTP) and used as probe for a multitissue Northern blot (Human Multiple Tissue Northern Blot II, Clontech, Heidelberg, Germany) which contains mRNA samples from the tissues spleen, thymus, prostate, testes, ovaries, small intestine, large intestine and leukocytes (PBL). This clearly showed expression of an mRNA with a length of about 3.3 kb in spleen and gonads (testes, ovaries), and less strongly in the thymus and intestine. Hybridization of a master blot (dot-blot with RNA from numerous tissues (Human RNA Master Blot™, Clontech)) confirmed this result and also showed strong expression in placental tissue.

[0140] Hybridization was carried out under stringent conditions (5×SSC, 50 mM Na phosphate pH 6.8, 50% formamide, 100 &mgr;g/ml yeast RNA) at 42° C. for 16 hours. The blots were washed stringently (65° C., 0.2×SSC, 0.1% SDS) and exposed to a Fuji BAS2000 Phosphoimager™.

Example 3

[0141] A cDNA library from human spleen, cloned in the bacteriophage Lambda gt10 (Human Spleen 5′ STRETCH PLUS cDNA, Clontech), was screened with this probe, and a lambda clone was identified. The cDNA with a length of 1.6 kb inserted in this clone was amplified by PCR (Expand™ Long Template PCR System, Boehringer Mannheim GmbH, Sandhofer Stra&bgr;ge 116, 68305 Mannheim) using the vector-specific primers No. 207608+No. 207609 (Table 6) (flanking the EcoRI cloning site), and the resulting PCR fragment was sequenced. This clone contained the 5′ end of the cDNA and also extended the known cDNA sequence in the 3′ direction. Starting from the new part-sequences of the cDNA, new primers for the RACE-PCR were developed (No. 232643, No. 232644, No. 233084, Table 6). Together with an improved thermocycler technique (PTC-200 from MJ-Research, Biozym Diagnostik GmbH, 31833 Hess. Oldendort) with distinctly better performance data (heating and cooling rates), a 3′ RACE-PCR product was amplified using the primers No. 232644 and No. 232643 and AP1, and was cloned into the vector pCR2.1 (Invitrogen, De Schelp 12, 9351 NV Leek, The Netherlands). The 3′ RACE-PCR product was sequenced and the 3′ end of the cDNA was identified in this way. A RACE amplification in the 5′ direction (primers No. 131990 and No. 233084 and AP1) extended the 5′ end of the cDNA by a few nucleotides and confirmed the amino terminus of H-SemaL found in the identified lambda clone.

Example 4

[0142] Starting from a short murine EST (Accession No. AA260340) and a primer derived therefrom, No. 260813 (Table 6) and the H-SemaL specific primer No. 121234 (Table 6), PCR (conditions: Taq52-60) was used to amplify a DNA fragment with a length of about 840 bp of murine cDNA, followed by cloning into the vector pCR2.1. The gene containing this DNA fragment was called M-SemaL. The resulting M-SemaL DNA fragment was used to investigate a cDNA bank from mouse spleen (Mouse Spleen 5′ STRETCH cDNA, Clontech), identification of several clones being possible.

[0143] PCR (Taq60-30) with the primers No. 260812 and No. 260813 from murine endothelial cDNA provided a PCR fragment with a length of 244 base pairs. The PCR results showed that there is distinct baseline expression in murine endothelial cells which declines after stimulation with the cytokine interferon-&ggr; and lipopolysaccharides.

Example 5

[0144] Investigations on the location in the chromosome were carried out by fluorescence in situ hybridization (FISH). For this purpose, human and murine metaphase chromosomes were prepared starting from a human blood sample and the mouse cell line BINE 4.8 (Keyna et al. (1995) J. Immunol. 155, 5536-5542), respectively (Kraus et al. (1994) Genomics 23, 272-274). The slides were treated with RNase and pepsin (Liehr et al. (1995) Appl. Cytogenetics 21, 185-188). For the hybridization, 120 mg of human nick-translated semaphorin sample and 200 mg of a corresponding mouse sample were used. The hybridization was in each case carried out in the presence of 4.0 &mgr;g of COT1-DNA and 20 &mgr;g of STD at 37° C. (3 days) in a moistened chamber.

[0145] The slides were washed with 50% formamide/2×SSC (3 times for 5 min each time at 45° C.) and then with 2×SSC (3 times for 5 min each time at 37° C.), and the biotinylated sample was detected using the FITC-avidin system (Liehr et al. (1995)). The slides were evaluated using a fluorescence microscope. 25 metaphases/sample were evaluated, carrying out each experiment in duplicate. It emerged that H-SemaL is located on chromosome 15q23. Located adjacent in the chromosome is the locus for Bardet-Biedls syndrome and Tay-Sachs disease (hexosaminidase A).

Example 6

[0146] The genomic intron-exon structure of the H-SemaL gene is for the most part elucidated.

[0147] Genomic DNA fragments were amplified starting from 250 mg of human genomic DNA which had been isolated from PHA-stimulated peripheral lymphocytes (blood). Shorter fragments were amplified using Ampli TaqR (Perkin Elmer), and longer fragments were amplified using the expanded long template PCR SystemR (Boehringer Mannheim).

[0148] It has been possible by PCR amplification to date to clone and characterize almost the complete genomic locus of H-SemaL. It has already been possible in total to determine more than 8888 bp of the genomic sequence and thus substantially to elucidate the intron-exon structure of the gene.

Example 7

[0149] Expression Clonings:

[0150] Since no complete clone of the semaphorin gene could be isolated from the lambda-gt10 cDNA bank, and no complete clone was obtainable by PCR either, the coding region of the cDNA was amplified in 2 overlapping subfragments by PCR (XL62-6) using the primers No. 240655 and No. 121339 for the N-terminal DNA fragment, and the primers No. 240656 (contains HindIII and Pmel cleavage sites) and No. 121234 for the C-terminal DNA fragment. The resulting DNA fragments (subfragments) were cloned into the vector pCR21. The two subfragments were completely sequenced and finally the complete H-SemaL cDNA was prepared by inserting a 0.6 kb C-terminal SstI-HindIII restriction fragment into the plasmid which contained the N-terminal DNA fragment and had been cut with the restriction enzymes SstI and HindIII. From this plasmid pCR2.1-H-SemaL (sequence shown in Table 7, SEQ ID NO. 34), the complete gene was cut out using the EcoRI cleavage site (in pCR2.1) and HindIII cleavage site (in primer No. 240656, Table 6) and ligated into a correspondingly cut constitutive expression vector pCDNA3.1 (−)MycHisA (Invitrogen). The EcoRI-ApaI fragment (without Myc-His tag) was cut out of the resulting recombinant plasmid pCDNA3.1(−)H-SemaL-MycHisA (sequence shown in Table 8) and ligated into the inducible vector pIND (Ecdysone-Inducible Mammalian Expression System, Invitrogen) which had previously likewise been cut with EcoRI-ApaI. The recombinant plasmid was called pIND-H-SemaLEA (sequence shown in Table 11). An EcoRI-Pmel fragment (with Myc-His tag) from pCDNA3.1(−)H-SemaL-Myc-HisA (sequence shown in Table 9) was inserted into an EcoRI-EcoRV-cut vector pIND. The recombinant plasmid was called pIND-H-SemaL-EE (sequence shown in Table 10).

[0151] A fusion gene of H-SemaL with enhanced green fluorescent protein (EGFP) was prepared by ligating the PCR-amplified EGFP reading frame (from the vector pEGFP-C1 (Clontech), using the primers No. 243068+No. 243069, Taq52-60) into the Pmel cleavage site of the plasmid pCDNA3.1(−)H-SemaL-MycHisA, resulting in the plasmid pCDNA3.1 (−)H-SemaL-EGFP-MycHisA (sequence shown in Table 9).

[0152] Small letters in Tables 7 to 13 and Table 15 denote the sequence of H-SemaL, parts or derivatives thereof, and large letters denote the sequence of the plasmid.

Example 8

[0153] To prepare H-SemaL-specific antibodies, cDNA fragments of H-SemaL were integrated into prokaryotic expression vectors and expressed in E. coli, and the semaphorin derivatives were purified. The semaphorin derivatives were expressed as fusion proteins with a His tag. Accordingly, vectors containing the sequence for a His tag and permitting integration of the semaphorin cDNA fragment into the reading frame were used. An N-terminal 6×histidine tag makes it possible, for example, to purify by nickel chelate affinity chromatography (Qiagen GmbH, Max-Volmer Stra&bgr;e 4, 40724 Hilden):

[0154] 1. The part of the H-SemaL cDNA coding for amino acids 179-378 was amplified by PCR using the primers No. 150788 and No. 150789, and this DNA fragment was ligated into the vector pQE30 (Qiagen) which had previously been cut with the restriction enzymes BamHI and HindIII (construct pQE30-H-SemaL-BH (sequence shown in Table 12)).

[0155] 2. The section of the H-SemaL cDNA coding for the C-terminal amino acids 480-666 was cut with the restriction enzymes SstI and HindIII out of the plasmid pCR 2.1 and ligated into the vector pQE31 (Qiagen) which had previously been cut with SstI and HindIII (construct pQE31-H-SemaL-SH (sequence shown in Table 13)).

[0156] Correct integration of the sequences in the correct reading frame was checked by DNA sequencing. The fusion proteins consisting of an N-terminal 6×histidine tag and a part of the semaphorin H-SemaL were purified by Ni2+ affinity chromatography. The purified fusion proteins were used to immunize various animals (rabbit, chicken, mouse).

Example 9

[0157] FACS Analysis of Various Cell Types (FIGS. 4 and 5)

[0158] The cells (about 0.2-0.5×106) were washed with FACS buffer (phosphate-buffered saline (PBS) with 5% fetal calf serum (FCS) and 0.1% Na azide) and then incubated with the antisera (on ice) for 1 hour in each case.

[0159] The primary antibodies used for the control (overlay chicken preimmune serum (1:50)) and for the specific detection (specific staining) comprised an H-SemaL-specific chicken antiserum (1:50). The specific antiserum with antibodies against amino acids (Aa) 179-378 (with N-terminal His tag) of H-SemaL was generated by immunizing chickens with the protein purified by Ni chelate affinity chromatography (as described in Example 8). The second antibody used was an FITC-labeled anti-chicken F(ab′) antibody from rabbits (Dianova Jackson Laboratories, Order No. 303-095-006, Hamburg, Germany) (1 mg/ml). A rabbit anti-mouse IgG, FITC-labeled, was used for the CD100 staining. The second antibody was employed in each case in 1:50 dilution in FACS buffer.

[0160] The cells were then washed, resuspended in PBS and analyzed in the FACS. The FACS analysis was carried out using a FACS-track instrument (Becton-Dickinson). Principle: a single cell suspension is passed through a measuring channel where the cells are irradiated with laser light of 488 nm and thus fluorescent dyes (FITC) are excited. The measurements are of the light scattered forward (forward scatter, FSC: correlates with the cell size), and to the side (sideward scatter, SSC: correlates with the granular content: different in different cell types) and fluorescence in channel 1 (FL 1) (for wavelengths in the FITC emission range, max. at 530 nm). 10,000 events (cells) were measured in this way each time.

[0161] The dot plot (FIGS. 4a-k) (figure on the left in each case): FSC against SSC (size against granular content/scatter) with, inside the boundary, the (uniform) cell population of similar size and granular content analyzed in the right-hand window (relevant right-hand figure in each case). The right-hand window shows the intensity of FL 1 (X axis) against the number of events (Y axis), that is to say a frequency distribution.

[0162] In each of these, the result with the control serum (unfilled curve) is superimposed on the result of the specific staining (filled curve). A shift of the curve for the specific staining to the right compared with the control corresponds to an expression of H-SemaL in the corresponding cells. A larger shift means stronger expression.

[0163] Cell lines used for FACS analysis:

[0164] a) U937 cell line

[0165] American Type Culture Collection ATCC; ATCC number: CRL-1593

[0166] Name: U-937

[0167] Tissue: lymphoma; histiocytic; monocyte-like

[0168] Species: human;

[0169] Depositor: H. Koren

[0170] b) THP-1 cell line

[0171] ATCC number: TIB-202

[0172] Tissue: monocyte; acute monocytic leukemia

[0173] Species: human

[0174] Depositor: S. Tsuchiya

[0175] c) K-562 cell line

[0176] ATCC number: CCL-243

[0177] Tissue: chronic myelogenous leukemia

[0178] Species: human;

[0179] Depositor: H. T. Holden

[0180] d) L-428 cell line

[0181] DSMZ-Deutsche Sammiung von Mikroorganismen und Zelikulturen GmbH,

[0182] DSMZ No: ACC 197

[0183] Cell type: human Hodgkin's lymphoma

[0184] e) Jurkat cell line

[0185] DSMZ-Deutsche Sammiung von Mikroorganismen und zellkulturen GmH,

[0186] DSMZ No: ACC 282

[0187] Cell type: human T cell leukemia

[0188] f) Daudi cell line

[0189] ATCC number: CCL-213

[0190] Tissue: Burkitt's lymphoma; B lymphoblast; B cells

[0191] Species: human

[0192] Depositor: G. Klein

[0193] g) LCL cell line

[0194] EBV-transformed lymphoblastoid B-cell line.

[0195] h) Jiyoye (P-2003) cell line

[0196] ATCC number: CCL-87

[0197] Tissue: Burkitt's lymphoma; B cells, B lymphocyte

[0198] Species: human

[0199] Depositor: W. Henle

[0200] i) CBL-Mix57

[0201] Human T-cell line (isolated from blood) transformed with recombinant H. Saimiri (wild-type without deletion)

[0202] j) CBL-Mix59

[0203] Human T-cell line (isolated from blood) transformed with H. Saimiri (deletion of ORF71).

Example 10

[0204] Protein Gel and Western Blot

[0205] Secretable human SEMA-L (amino acids 42-649 in Table 4 (without signal peptide and without transmembrane domain)) was cloned into the plasmid pMelBac-A (Invitrogen, De Schelp, Leck, The Netherlands, Cv 1950-20) and, in this way, the plasmid pMelBacA-H-SemaL (length 6622 bp) was generated (FIG. 8). The H-SemaL derivative was expressed in the baculovirus system (Bac-N-Blue, Invitrogen). Expression was carried out in the cell lines derived TM from insect egg cells Sf9 (from Spodoptera frugiperda) and High Five™ (from Trichoplusia ni, U.S. Pat. No. 5,300,435, purchased from Invitrogen) by infection with the recombinant, plaque-purified baculoviruses.

[0206] The expression was carried out in accordance with the manufacturer's instructions.

[0207] The proteins were then fractionated in a gel, and the H-SemaL derivative was detected in a Western blot. Detection was carried out with H-SemaL-specific chicken antiserum (compare Example 8 and FIG. 7) (dilution 1:100). The specific chicken antibody was detected using anti-IgY-HRP conjugate (dilution: 1:3000, from donkey; Dianova Jackson Laboratories) in accordance with the manufacturer's instructions.

Example 11

[0208] Preparation of pMelBacA-H-SEMAL

[0209] The recombinant vector (pMelBacA-H-SEMAL, 6622 bp) was prepared by cloning an appropriate DNA fragment which codes for amino acids 42-649 of H-SemaL into the vector pMelBacA (4.8 kb Invitrogen) (compare annotation for pMelBacA-H-SEMAL). The cloning took place via BamHI and EcoRI in frame behind the signal sequence present in the vector (“honeybee melittin signal sequence”). A corresponding H-SemaL DNA fragment was amplified using the primer pair h-sema-1 baculo 5′ and h-sema-1 baculo 3′.

[0210] Primers for amplification (TaKaRa Ex Ta9 polymerase) and cloning: “h-sema-1 baculo 5′” for amplification without signal sequence and for introducing a BamHI cleavage site 5′-CCGGATCCGCCCAGGGCCACCTAAGGAGCGG-3′ (SEQ ID NO: 43) “h-sema-1 baculo 3′” for amplification without transmembrane domain and for introducing an EcoRI cleavage site 5′-CTGMTTCAGGAGCCAGGGCACAGGCATG-3′ (SEQ ID NO: 44).

DETAILED DESCRIPTION OF THE DRAWINGS

[0211] FIG. 1:

[0212] Tissue-specific expression of H-Sema-L

[0213] A) Multiple tissue Northern blot (Clontech, Heidelberg, Germany). Loadings from left to right: 2 &mgr;g in each lane of Poly-A-RNA from spleen, thymus, prostate, testes, ovaries, small intestine, large intestinal mucosa, peripheral (blood) leukocytes. Size standards are marked.

[0214] The blots were hybridized under stringent conditions with an H-SemaL probe 800 base-pairs long.

[0215] FIG. 2:

[0216] Diagrammatic representation of the cloning of the H-SemaL cDNA and of the genomic organization of the H-SemaL encoding sequences (H-SemaL gene)

[0217] Top: Location of the EST sequences (accession numbers; location of the EST sequences is shown relative to the AHV-Sema sequence).

[0218] Below: Amplified PCR and RACE products and the position of the cDNA clones in relation to the location in the complete H-SemaL cDNA and the open reading frame (ORF) for the encoded protein.

[0219] Bottom: Relative position of the exons in the H-SemaL gene in relation to the genomic sequence. The position of the oligonucleotide primer used is indicated by arrows.

[0220] FIG. 3:

[0221] Phylogenetic tree: Obtained by multiple alignment of the listed semaphorin sequences. The phylogenetic relationship of the semaphorins can be deduced from their grouping in the phylogenetic tree.

[0222] FIG. 4:

[0223] FACS analysis of H-SemaL expression in various cell lines and various cell types (compare Example 8).

[0224] FIG. 5:

[0225] Comparative analysis of CD100 and H-SemaL expression (compare Example 9).

[0226] FIG. 6:

[0227] Expression of secretable human SEMA-L (H-SemaL) in HiFive and Sf3 cells (compare Example 10).

[0228] Aa 42-649 in pMelBac-A (Invitrogen) in the baculovirus system (Bac-N-Blue, Invitrogen)

[0229] Detection with specific chicken antiserum (1:100) and anti-IgY-HRP conjugate (1:3000, from rabbits, Jackson Lab.)

[0230] 1,4,6 uninfected HiFive cells (serum-free)

[0231] 2,3,5,7,8 HiFive cells infected with recombinant baculovirus (serum-free)

[0232] M Rainbow molecular weight marker (Amersham RPN756)

[0233] 9,10 infected Sf9 cells (serum-containing medium).

[0234] FIG. 7: Specificity of the antiserum

[0235] Lanes 1-3: chicken 1; lanes 4-6: chicken 2

[0236] Lanes 1 and 4: Preimmune serum

[0237] Lanes 2 and 5: 60th day of immunization

[0238] Lanes 4 and 6: 105th day of immunization

[0239] Immunization was carried out with amino acids 179-378 of H-SemaL (with amino-terminal His tag) (compare Example 8, Section 1.)

[0240] FIG. 8: Depiction of the plasmid map of pMelBacA-H-SEMAL.

[0241] The recombinant plasmid was prepared as described in Example 11.

TABLES

[0242] 3 TABLE 1 Various subtypes of semaphorins from various species Name Synonym Species Reference H-Sema III (H-SemaD) Human Sec. (Kolodkin et al. 1993) CD-100 Human TM, IC; CD45 associated, expressed in T cells (Hall et al. 1996) H-Sema V (H-SemaA) Human Sec.; Locus 3p21.3 (Sekido et al. 1996; Roche et al. 1996) H-Sema IV (H-Sema3F) Human Sec.; Locus 3p21.3 (Xiang et al. 1996; Sekido et al. 1996) H-SemaE Human Sec.; divergent from M-Sema-E at the 3′ end AB000220 (Yamada 1997 unpublished) (alignment of reading frame improved) H-SemaK KIAA0331 Human Sec.; (Nagase et al. 1997) H-SemaL SEMAL Human TM, no IC This application M-SemaA Mouse Sec. (Püchel et al. 1995) M-SemaB Mouse TM, IC (Püchel et al. 1995) M-SemaC Mouse TM, IC (Püchel et al. 1995) M-SemaD M-Sema III Mouse Sec. (Messersmith et al. 1995; Püchel et al. 1995) M-SemaE Mouse Sec.; 5′ partial sequence (Püchel et al. 1995) M-SemaF1 M-SemaF Mouse TM, IC (Inagaki et al. 1996) M-SemaG2 M-SemaG Mouse TM, IC; expressed in lymphoid cells, mouse (Furuyama et al. 1996) homolog of CD100 M-SemaF2 M-SemaF Mouse TM, IC; Thrombospondin motif (Adams et al. 1996) M-SemaG1 M-SemaG Mouse TM, IC; Thrombospondin motif (Adams et al. 1996) M-SemaH Mouse Sec. (Christensen 1996 unpub) Z80941 M-Sema Via Mouse TM, IC (Zhou et al. 1997) M-SemaL Semal Mouse Partial sequence This application Collapsin-1 Chicken Sec. (Luo et al. 1993) Collapsin-2 Chicken Sec. (Luo et al. 1995) Collapsin-3 Chicken Sec. (Luo et al. 1995) Collapsin-4 Chicken Partial sequence (Luo et al. 1995) Collapsin-5 Chicken Sec. (Luo et al. 1995) R-Sema III Rat Sec. (Giger et al. 1996) T-Sema I Tribolium TM, IC (Kolodkin et al. 1993) confusum Ce-Semal C. elegans TM, IC U15667 (Roy 1994 unpublished) G-Sema I Fasciclin-IV Grasshopper TM, IC (Kolodkin et al. 1992) D-Sema I Drosophila TM, IC (Kolodkin et al. 1993) D-Sema II Drosophila Sec. (Kolodkin et al. 1993) AHV-Sema AHV-1 Sec. (Ensser and Fleckenstein, 1995) ORF-A39 Vaccinia Sec. (Kolodkin et al. 1993) ORF-A39 Variola Sec.; (Kolodkin et al. 1993) homologous TM: transmembrane domain Sec.: secreted IC: presumably intracellular cytoplasmic sequence motif

[0243] 4 TABLE 2 cDNA sequence of H-SemaL (2636 nucleotides) (SEQ ID NO.: 1) 1 cggggccacg ggatgacgcc tcctccgccc ggacgtgccg cccccagcgc 51 accgcgcgcc cgcgtccctg gcccgccggc tcggttgggg cttccgctgc 101 ggctgcggct gctgctgctg ctctgggcgg ccgccgcctc cgcccagggc 151 cacctaagga gcggaccccg catcttcgcc gtctggaaag gccatgtagg 201 gcaggaccgg gtggactttg gccagactga gccgcacacg gtgcttttcc 251 acgagccagg cagctcctct gtgtgggtgg gaggacgtgg caaggtctac 301 ctctttgact tccccgaggg caagaacgca tctgtgcgca cggtgaatat 351 cggctccaca aaggggtcct gtctggataa gcgggactgc gagaactaca 401 tcactctcct ggagaggcgg agtgaggggc tgctggcctg tggcaccaac 451 gcccggcacc ccagctgctg gaacctggtg aatggcactg tggtgccact 501 tggcgagatg agaggctacg cccccttcag cccggacgag aactccctgg 551 ttctgtttga aggggacgag gtgtattcca ccatccggaa gcaggaatac 601 aatgggaaga tccctcggtt ccgccgcatc cggggcgaga gtgagctgta 651 caccagtgat actgtcatgc agaacccaca gttcatcaaa gccaccatcg 701 tgcaccaaga ccaggcttac gatgacaaga tctactactt cttccgagag 751 gacaatcctg acaagaatcc tgaggctcct ctcaatgtgt cccgtgtggc 801 ccagttgtgc aggggggacc agggtgggga aagttcactg tcagtctcca 851 agtggaacac ttttctgaaa gccatgctgg tatgcagtga tgctgccacc 901 aacaagaact tcaacaggct gcaagacgtc ttcctgctcc ctgaccccag 951 cggccagtgg agggacacca gggtctatgg tgttttctcc aacccctgga 1001 actactcagc cgtctgtgtg tattccctcg gtgacattga caaggtcttc 1051 cgtacctcct cactcaaggg ctaccactca agccttccca acccgcggcc 1101 tggcaagtgc ctcccagacc agcagccgat acccacagag accttccagg 1151 tggctgaccg tcacccagag gtggcgcaga gggtggagcc catggggcct 1201 ctgaagacgc cattgttcca ctctaaatac cactaccaga aagtggccgt 1251 tcaccgcatg caagccagcc acggggagac ctttcatgtg ctttacctaa 1301 ctacagacag gggcactatc cacaaggtgg tggaaccggg ggagcaggag 1351 cacagcttcg ccttcaacat catggagatc cagcccttcc gccgcgcggc 1401 tgccatccag accatgtcgc tggatgctga gcggaggaag ctgtatgtga 1451 gctcccagtg ggaggtgagc caggtgcccc tggacctgtg tgaggtctat 1501 ggcgggggct gccacggttg cctcatgtcc cgagacccct actgcggctg 1551 ggaccagggc cgctgcatct ccatctacag ctccgaacgg tcagtgctgc 1601 aatccattaa tccagccgag ccacacaagg agtgtcccaa ccccaaacca 1651 gacaaggccC cactgcagaa ggtttccctg gccccaaact ctcgctacta 1701 cctgagctgc cccatggaat cccgccacgc cacctactca tggcgccaca 1751 aggagaacgt ggagcagagc tgcgaacctg gtcaccagag ccccaactgc 1801 atcctgttca tcgagaacct cacggcgcag cagtacggcc actacttctg 1851 cgaggcccag gagggctcct acttccgcga ggctcagcac tggcagctgc 1901 tgcccgagga cggcatcatg gccgagcacc tgctgggtca tgcctgtgcc 1951 ctggctgcct ccctctggct gggggtgctg cccacactca ctcttggctt 2001 gctggtccac tagggcctcc cgaggctggg catgcctcag gcttctgcag 2051 cccagggcac tagaacgtct cacactcaga gccggctggc ccgggagctc 2101 cttgcctgcc acttcttcca ggggacagaa taacccagtg gaggatgcca 2151 ggcctggaga cgtccagccg caggcggctg ctgggcccca ggtggcgcac 2201 ggatggtgag gggctgagaa tgagggcacc gactgtgaag ctggggcatc 2251 gatgacccaa gactttatct tctggaaaat atttttcaga ctcctcaaac 2301 ttgactaaat gcagcgatgc tcccagccca agagcccatg ggtcggggag 2351 tgggtttgga taggagagct gggactccat ctcgaccctg gggctgaggc 2401 ctgagtcctt ctggactctt ggtacccaca ttgcctcctt cccctccctc 2451 tctcatggct gggtggctgg tgttcctgaa gacccagggc taccctctgt 2501 ccagccctgt cctctgcagc tccctctctg gtcctgggtc ccacaggaca 2551 gccgccttgc atgtttattg aaggatgttt gctttccgga cggaaggacg 2601 gaaaaagctc tgaaaaaaaa aaaaaaaaaa aaaaaa

[0244] 5 TABLE 3 Nucleotide sequence of the cDNA of M-SemaL (partial, 1195 nucleotides) (SEQ ID NO.: 2) 1 cggggctgcg ggatgacgcc tcctcctccc ggacgtgccg cccccagcgc 51 accgcgcgcc cgcgtcctca gcctgccggc tcggttcggg ctcccgctgc 101 ggctgcggct tctgctggtg ttctgggtgg ccgccgcctc cgcccaaggc 151 cactcgagga gcggaccccg catctccgcc gtctggaaag ggcaggacca 201 tgtggacttt agccagcctg agccacacac cgtgcttttc catgagccgg 251 gcagcttctc tgtctgggtg ggtggacgtg gcaaggtcta ccacttcaac 301 ttccccgagg gcaagaatgc ctctgtgcgc acggtgaaca tcggctccac 351 aaaggggtcc tgtcaggaca aacaggactg tgggaattac atcactcttc 401 tagaaaggcg gggtaatggg ctgctggtct gtggcaccaa tgcccggaag 451 cccagctgct ggaacttggt gaatgacagt gtggtgatgt cacttggtga 501 gatgaaaggc tatgccccct tcagcccgga tgagaactcc ctggttctgt 551 ttgaaggaga tgaagtgtac tctaccatcc ggaagcagga atacaacggg 601 aagatccctc ggtttcgacg cattcggggc gagagtgaac tgtacacaag 651 tgatacagtc atgcagaacc cacagttcat caaggccacc attgtgcacc 701 aagaccaagc ctatgatgat aagatctact acttcttccg agaagacaac 751 cctgacaaga accccgaggc tcctctcaat gtgtcccgag tagcccagtt 801 gtgcaggggg gaccagggtg gtgagagttc gttgtctgtc tccaagtgga 851 acaccttcct gaaagccatg ttggtctgca gcgatgcagc caccaacagg 901 aacttcaatc ggctgcaaga tgtcttcctg ctccctgacc ccagtggcca 951 gtggagagat accagggtct atggcgtttt ctccaacccc tggaactact 1001 cagctgtctg cgtgtattcg cttggtgaca ttgacagagt cttccgtacc 1051 tcatcgctca aaggctacca catgggcctt tccaaccctc gacctggcat 1101 gtgcctccca aaaaagcagc ccatacccac agaaaccttc caggtagctg 1151 atagtcaccc agaggtggct cagagggtgg aacctatggg gcccc

[0245] 6 TABLE 4 Amino acid sequence of H-SemaL (666 amino acids) (SEQ ID NO.: 3) 1 MTPPPPGRAA PSAPRARVPG PPARLGLPLR LRLLLLLWAA AASAQGHLRS 51 GPRIFAVWKG HVGQDRVDFG QTEPHTVLFH EPGSSSVWVG GRGKVYLFDF 101 PEGKNASVRT VNIGSTKGSC LDKRDCENYI TLLERRSEGL LACGTNARHP 151 SCWNLVNGTV VPLGEMRGYA PFSPDENSLV LFEGDEVYST IRKQEYNGKI 201 PRERRIRGES ELYTSDTVMQ NPQFIKATIV HQDQAYDDKI YYFFREDNPD 251 KNPEAPLNVS RVAQLCRGDQ GGESSLSVSK WNTFLKAMLV CSDAATNKNF 301 NRLQDVFLLP DPSGQWRDTR VYGVFSNPWN YSAVCVYSLG DIDKVFRTSS 351 LKGYHSSLPN PRPGKCLPDQ QPIPTETFQV ADRHPEVAQR VEPMGPLKTP 401 LFHSKYHYQK VAVHRMQASH GETFHVLYLT TDRGTIHKVV EPGEQEHSFA 451 FNIMEIQPFR RAAAIQTMSL DAERRKLYVS SQWEVSQVPL DLCEVYGGGC 501 HGCLMSRDPY GGWDQGRCIS IYSSERSVLQ SINPAEPHKE CPNPKPDKAP 551 LQKVSLAPNS RYYLSCPMES RHATYSWRHK ENVEQSCEPG HQSPNCILFI 601 ENLTAQQYGH YFCEAQEGSY FREAQHWQLL PEDGIMAEHL LGHACALAAS 651 LWLGVLPTLT LGLLVH

[0246] 7 TABLE 5 (Partial) amino acid sequence of M-SemaL (394 amino acids, corresponding to position 1-396 of H-SemaL) (SEQ ID NO.: 4) 1 MTPPPPGRAA PSAPRARVLS LPARFGLPLR LRLLLVFWVA AASAQGHSRS 51 GPRISAVWKG QDHVDFSQPE PHTVLFHEPG SFSVWVGGRG KVYHFNFPEG 101 KNASVRTVNI GSTKGSCQDK QDCGNYITLL ERRGNGLLVG GTNARKPSCW 151 NLVNDSVVMS LGEMKGYAPF SPDENSLVLF EGDEVYSTIR KQEYNGKIPR 201 FRRIRGESEL YTSDTVMQNP QFIKATIVHQ DQAYDDKIYY FFREDNPDKN 251 PEAPLNVSRV AQLCRGDQGG ESSLSVSKWN TFLKAMLVCS DAATNRNFNR 301 LQDVFLLPDP SGQWRDTRVY GVFSNPWNYS AVCVYSLGDI DRVFRTSSLK 351 GYHMGLSNPR PGMCLPKKQP IPTETFQVAD SHPEVAQRVE PMGP

[0247] 8 TABLE 6 Synthetic oligonucleotides (Eurogentec, Seraing, Belgium) Number of the primer/name Nucleotide sequence of the primer (of the synthetic oligonucleotides) 91506/AP2 actcactatagggctcgagcggc (SEQ ID NO.: 5) 121234 agccgcacacggtgcttttc (SEQ ID NO.: 6) 121235/Est 2 gcacagatgcgttcttgccc (SEQ ID NO.: 7) 121236/Est 3 accatagaccctggtgtccc (SEQ ID NO.: 8) 121237/Est 4 gcagtgatgctgccaccaac (SEQ ID NO.: 9) 121238 ccagaccatgtcgctggatg (SEQ ID NO.: 10) 121239/Est 6 acatgaggcaaccgtggcag (SEQ ID NO.: 11) 131989/AP1 ccatcctaatacgactcactatagggc (SEQ ID NO.: 12) 131990/Est 7 aggtagaccttgccacgtcc (SEQ ID NO.: 13) 131991 gaacttcaacaggctgcaagacg (SEQ ID NO.: 14) 131992 atgctgagcggaggaagctg (SEQ ID NO.: 15) 131993 ccgccatacacctcacacag (SEQ ID NO.: 16) 150788 ctggaagctttctgtgggtatcggctgc (SEQ ID NO.: 17) 150789 tttggatccctggttctgtttgaag (SEQ ID NO.: 18) 167579/cDNA ttctagaattcagcggccgcttttttttttttttttttttttttttttttvn (SEQ ID NO.: 19) Synthesis primer 168421 ggggaaagttcactgtcagtctccaag (SEQ ID NO.: 20) 168422 gggaatacacacagacggctgagtag (SEQ ID NO.: 21) 207608/ agcaagttcagcctggttaagt (SEQ ID NO.: 22) Amplification of &ggr;gt10 insert 207609/ ttatgagtatttcttccaggg (SEQ ID NO.: 23) Amplification of &ggr;gt10 insert 232643/Est 13 ccattaatccagccgagccacacaag (SEQ ID NO.: 24) 232644/Est 14 catctacagctccgaacggtcagtg (SEQ ID NO.: 25) 233084 cagcggaagccccaaccgag (SEQ ID NO.: 26) 240655/hs 5 gggatgacgcCtcctCcgCCcgg (SEQ ID NO.: 27) 240656/hs 3 aagcttcacgtggaccagcaagccaagagtg (SEQ ID NO.: 28) 240857/hs 3c aagctttttccgtccttccgtccgg (SEQ ID NO.: 29) 243068 atggtgagcaagggcgaggagctg (SEQ ID NO.: 30) 243069 cttgtacagctcgtccatgccgag (SEQ ID NO.: 31) 260812 GGGTGGTGAGAGTTCGTTGTCTGTC (SEQ ID NO.: 32) 260813 GAGCGATGAGGTACGGAAGACTCTG (SEQ ID NO.: 33)

[0248] 9 TABLE 7 Nucleotide sequence of the recombinant plasmid pCR2.1-H- SemaL (SEQ ID NO.: 34)    1 AGCGCCCAAT ACGCAAACCG CCTCTCCCCG CGCGTTGGCC GATTCATTAA   51 TGCAGCTGGC ACGACAGGTT TCCCGACTGG AAAGCGGGCA GTGAGCGCAA  101 CGCAATTAAT GTGAGTTAGC TCACTCATTA GGCACCCCAG GCTTTACACT  151 TTATGCTTCC GGCTCGTATG TTGTGTGGAA TTGTGAGCGG ATAACAATTT  201 CACACAGGAA ACAGCTATGA CCATGATTAC GCCaagcttc acgtggacca  251 gcaagccaag agtgagtgtg ggcagcaccc ccagccagag ggaggcagcc  301 agggcacagg catgacccag caggtgctcg gccatgatgc cgtcctcggg  351 cagcagctgc cagtgctgag cctcgcggaa gtaggagccc tcctgggcct  401 cgcagaagta gtggccgtac tgctgcgccg tgaggttctc gatgaacagg  451 atgcagttgg ggctctggtg accaggttcg cagctctgct ccacgttctc  501 cttgtggcgc catgagtagg tggcgtggcg ggattccatg gggcagctca  551 ggtagtagcg agagtttggg gccagggaaa ccttctgcag tggggccttg  601 tctggtttgg ggttgggaca ctccttgtgt ggctcggctg gattaatgga  651 ttgcagcact gaccgttcgg agctgtagat ggagatgcag cggccctggt  701 cccagccgca gtaggggtct cgggacatga ggcaaccgtg gcagcccccg  751 ccatagacct cacacaggtc caggggcacc tggctcacct cccactggga  801 gctcacatac agcttcctcc gctcagcatc cagcgacatg gtctggatgg  851 cagccgcgcg gcggaagggc tggatctcca tgatgttgaa ggcgaagctg  901 tgctcctgct cccccggttc caccaccttg tggatagtgc ccctgtctgt  951 agttaggtaa agcacatgaa aggtctcccc gtggctggct tgcatgcggt 1001 gaacggccac tttctggtag tggtatttag agtggaacaa tggcgtcttc 1051 agaggcccca tgggctccac cctctgcgcc acctctgggt gacggtcagc 1101 cacctggaag gtctctgtgg gtatcggctg ctggtctggg aggcacttgc 1151 caggccgcgg gttgggaagg cttgagtggt agcccttgag tgaggaggta 1201 cggaagacct tgtcaatgtc accgagggaa tacacacaga cggctgagta 1251 gttccagggg ttggagaaaa caccatagac cctggtgtcc ctccactggc 1301 cgctggggtc agggagcagg aagacgtctt gcagcctgtt gaagttcttg 1351 ttggtggcag catcactgca taccagcatg gctttcagaa aagtgttcca 1401 cttggagact gacagtgaac tttccccacc ctggtccccc ctgcacaact 1451 gggccacacg ggacacattg agaggagcct caggattctt gtcaggattg 1501 tcctctcgga agaagtagta gatcttgtca tcgtaagcct ggtcttggtg 1551 cacgatggtg gctttgatga actgtgggtt ctgcatgaca gtatcactgg 1601 tgtacagctc actctcgccc cggatgcggc ggaaccgagg gatcttccca 1651 ttgtattcct gcttccggat ggtggaatac acctcgtccc cttcaaacag 1701 aaccagggag ttctcgtccg ggctgaaggg ggcgtagcct ctcatctcgc 1751 caagtggcac cacagtgcca ttcaccaggt tccagcagct ggggtgccgg 1801 gcgttggtgc cacaggccag cagcccctca ctccgcctct ccaggagagt 1851 gatgtagttc tcgcagtccc gcttatccag acaggacccc tttgtggagc 1901 cgatattcac cgtgcgcaca gatgcgttct tgccctcggg gaagtcaaag 1951 aggtagacct tgccacgtcc tcccacccac acagaggagc tgcctggctc 2001 gtggaaaagc accgtgtgcg gctcagtctg gccaaagtcc acccggtcct 2051 gccctacatg gcctttccag acggcgaaga tgcggggtcc gctccttagg 2101 tggccctggg cggaggcggc ggccgcccag agcagcagca gcagccgcag 2151 ccgcagcgga agccccaacc gagccggcgg gccagggacg cgggcgcgcg 2201 gtgcgctggg ggcggcacgt ccgggcggag gaggcgtcat cccaagccga 2251 attcTGCAGA TATCCATCAC ACTGGCGGCC GCTCGAGCAT GCATCTAGAG 2301 GGCCCAATTC GCCCTATAGT GAGTCGTATT ACAATTCACT GGCCGTCGTT 2351 TTACAACGTC GTGACTGGGA AAACCCTGGC GTTACCCAAC TTAATCGCCT 2401 TGCAGCACAT CCCCCTTTCG CCAGCTGGCG TAATAGCGAA GAGGCCCGCA 2451 CCGATCGCCC TTCCCAACAG TTGCGCAGCC TGAATGGCGA ATGGGACGCG 2501 CCCTGTAGCG GCGCATTAAG CGCGGCGGGT GTGGTGGTTA CGCGCAGCGT 2551 GACCGCTACA CTTGCCAGCG CCCTAGCGCC CGCTCCTTTC GCTTTCTTCC 2601 CTTCCTTTCT CGCCACGTTC GCCGGCTTTC CCCGTCAAGC TCTAAATCGG 2651 GGGCTCCCTT TAGGGTTCCG ATTTAGAGCT TTACGGCACC TCGACCGCAA 2701 AAAACTTGAT TTGGGTGATG GTTCACGTAG TGGGCCATCG CCCTGATAGA 2751 CGGTTTTTCG CCCTTTGACG TTGGAGTCCA CGTTCTTTAA TAGTGGACTC 2801 TTGTTCCAAA CTGGAACAAC ACTCAACCCT ATCGCGGTCT ATTCTTTTGA 2851 TTTATAAGGG ATTTTGCCGA TTTCGGCCTA TTGGTTAAAA AATGAGCTGA 2901 TTTAACAAAT TCAGGGCGCA AGGGCTGCTA AAGGAACCGG AACACGTAGA 2951 AAGCCAGTCC GCAGAAACGG TGCTGACCCC GGATGAATGT CAGCTACTGG 3001 GCTATCTGGA CAAGGGAAAA CGCAAGCGCA AAGAGAAAGC AGGTAGCTTG 3051 CAGTGGGCTT ACATGGCGAT AGCTAGACTG GGCGGTTTTA TGGACAGCAA 3101 GCGAACCGGA ATTGCCAGCT GGGGCGCCCT CTGGTAAGGT TGGGAAGCCC 3151 TGCAAAGTAA ACTGGATGGC TTTCTTGCCG CCAAGGATCT GATGGCGCAG 3201 GGGATCAAGA TCTGATCAAG AGACAGGATG AGGATCGTTT CGCATGATTG 3251 AACAAGATGG ATTGCACGCA GGTTCTCCGG CCGCTTGGGT GGAGAGGCTA 3301 TTCGGCTATG ACTGGGCACA ACAGACAATC GGCTGCTCTG ATGCCGCCGT 3351 GTTCCGGCTG TCAGCGCAGG GGCGCCCGGT TCTTTTTGTC AAGACCGACC 3401 TGTCCGGTGC CCTGAATGAA CTGCAGGACG AGGCAGCGCG GCTATCGTGG 3451 CTGGCCACGA CGGGCGTTCC TTGCGCAGCT GTGCTCGACG TTGTCACTGA 3501 AGCGGGAAGG GACTGGCTGC TATTGGGCGA AGTGCCGGGG CAGGATCTCC 3551 TGTCATCTCG CCTTGCTCCT GCCGAGAAAG TATCCATCAT GGCTGATGCA 3601 ATGCGGCGGC TGCATACGCT TGATCCGGCT ACCTGCCCAT TCGACCACCA 3651 AGCGAAACAT CGCATCGAGC GAGCACGTAC TCGGATGGAA GCCGGTCTTG 3701 TCGATCAGGA TGATCTGGAC GAAGAGCATC AGGGGCTCGC GCCAGCCGAA 3751 CTGTTCGCCA GGCTCAAGGC GCGCATGCCC GACGGCGAGG ATCTCGTCGT 3801 GATCCATGGC GATGCCTGCT TGCCGAATAT CATGGTGGAA AATGGCCGCT 3851 TTTCTGGATT CAACGACTGT GGCCGGCTGG GTGTGGCGGA CCGCTATCAG 3901 GACATAGCGT TGGATACCCG TGATATTGCT GAAGAGCTTG GCGGCGAATG 3951 GGCTGACCGC TTCCTCGTGC TTTACGGTAT CGCCGCTCCC GATTCGCAGC 4001 GCATCGCCTT CTATCGCCTT CTTGACGAGT TCTTCTGAAT TGAAAAAGGA 4051 AGAGTATGAG TATTCAACAT TTCCGTGTCG CCCTTATTCC CTTTTTTGCG 4101 GCATTTTGCC TTCCTGTTTT TGCTCACCCA GAAACGCTGG TGAAAGTAAA 4151 AGATGCTGAA GATCAGTTGG GTGCACGAGT GGGTTACATC GAACTGGATC 4201 TCAACAGCGG TAAGATCCTT GAGAGTTTTC GCCCCGAAGA ACGTTTTCCA 4251 ATGATGAGCA CTTTTAAAGT TCTGCTATGT CATACACTAT TATCCCGTAT 4301 TGACGCCGGG CAAGAGCAAC TCGGTCGCCG GGCGCGGTAT TCTCAGAATG 4351 ACTTGGTTGA GTACTCACCA GTCACAGAAA AGCATCTTAC GGATGGCATG 4401 ACAGTAAGAG AATTATGCAG TGCTGCCATA ACCATGAGTG ATAACACTGC 4451 GGCCAACTTA CTTCTGACAA CGATCGGAGG ACCGAAGGAG CTAACCGCTT 4501 TTTTGCACAA CATGGGGGAT CATGTAACTC GCCTTGATCG TTGGGAACCG 4551 GAGCTGAATG AAGCCATACC AAACGACGAG AGTGACACCA CGATGCCTGT 4601 AGCAATGCCA ACAACGTTGC GCAAACTATT AACTGGCGAA CTACTTACTC 4651 TAGCTTCCCG GCAACAA1TA ATAGACTGGA TGGAGGCGGA TAAAGTTGCA 4701 GGACCACTTC TGCGCTCGGC CCTTCCGGCT GGCTGGTTTA TTGCTGATAA 4751 ATCTGGAGCC GGTGAGCGTG GGTCTCGCGG TATCATTGCA GCACTGGGGC 4801 CAGATGGTAA GCCCTCCCGT ATCGTAGTTA TCTACACGAC GGGGAGTCAG 4851 GCAACTATGG ATGAACGAAA TAGACAGATC GCTGAGATAG GTGCCTCACT 4901 GATTAAGCAT TGGTAACTGT CAGACCAAGT TTACTCATAT ATACTTTAGA 4951 TTGATTTAAA ACTTCATTTT TAATTTAAAA GGATCTAGGT GAAGATCCTT 5001 TTTGATAATC TCATGACCAA AATCCCTTAA CGTGAGTTTT CGTTCCACTG 5051 AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTTCTTGA GATCCTTTTT 5101 TTCTGCGCGT AATCTGCTGC TTGCAAACAA AAAAACCACC GCTACCAGCG 5151 GTGGTTTGTT TGCCGGATCA AGAGCTACCA ACTCTTTTTC CGAAGGTAAC 5201 TGGCTTCAGC AGAGCGCAGA TACCAAATAC TGTCCTTCTA GTGTAGCCGT 5251 AGTTAGGCCA CCACTTCAAG AACTCTGTAG CACCGCCTAC ATACCTCGCT 5301 CTGCTAATCC TGTTACCAGT GGCTGCTGCC AGTGGCGATA AGTCGTGTCT 5351 TACCGGGTTG GACTCAAGAC GATAGTTACC GGATAAGGCG CAGCGGTCGG 5401 GCTGAACGGG GGGTTCGTGC ACACAGCCCA GCTTGGAGCG AACGACCTAC 5451 ACCGAACTGA GATACCTACA GCGTGAGCAT TGAGAAAGCG CCACGCTTCC 5501 CGAAGGGAGA AAGGCGGACA GGTATCCGGT AAGCGGCAGG GTCGGAACAG 5551 GAGAGCGCAC GAGGGAGCTT CCAGGGGGAA ACGCCTGGTA TCTTTATAGT 5601 CCTGTCGGGT TTCGCCACCT CTGACTTGAG CGTCGATTTT TGTGATGCTC 5651 GTCAGGGGGG CGGAGCCTAT GGAAAAACGC CAGCAACGCG GCCTTTTTAC 5701 GGTTCCTGGC CTTTTGCTGG CCTTTTGCTC ACATGTTCTT TCCTGCGTTA 5751 TCCCCTGATT CTGTGGATAA CCGTATTACC GCCTTTGAGT GAGCTGATAC 5801 CGCTCGCCGC AGCCGAACGA CCGAGCGCAG CGAGTCAGTG AGCGAGGAAG 5851 CGGAAG

[0249] 10 TABLE 8 Nucleotide sequence of the recombinant expression plasmid pCDNA3.1(-)H-SemaL-MycHisA (SEQ ID NO.: 35)    1 GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC   51 TGCTCTGATG CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT  101 GGAGGTCGCT GAGTAGTGCG CGAGCAAAAT TTAAGCTACA ACAAGGCAAG  151 GCTTGACCGA CAATTGCATG AAGAATCTGC TTAGGGTTAG GCGTTTTGCG  201 CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT GATTATTGAC  251 TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA  301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG  351 CCCAACGACC CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT  401 AACGCCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAC TATTTACGGT  451 AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC  501 CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA  551 CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA  601 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA  651 TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA  701 TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA  751 ACAAGTCCGC CCCATTGACG CAAATGGGCG GTAGGCGTGT ACGGTGGGAG  801 GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA CTGCTTACTG  851 GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC  901 GTTTAAACGG GCCCTCTAGA CTCGAGCGGC CGCCACTGTG CTGGATATCT  951 GcAgaattcg gcttgggatg acgcctcctc cgcccggacg tgccgccccc 1001 agcgcaccgc gcgcccgcgt ccctggcccg ccggctcggt tggggcttcc 1051 gctgcggctg cggctgctgc tgctgctctg ggcggccgcc gcctccgccc 1101 agggccacct aaggagcgga ccccgcatct tcgccgtctg gaaaggccat 1151 gtagggcagg accgggtgga ctttggccag actgagccgc acacggtgct 1201 tttccacgag ccaggcagct cctctgtgtg ggtgggagga cgtggcaagg 1251 tctacctctt tgacttcccc gagggcaaga acgcatctgt gcgcacggtg 1301 aatatcggct ccacaaaggg gtcctgtctg gataagcggg actgcgagaa 1351 ctacatcact ctcctggaga ggcggagtga ggggctgctg gcctgtggca 1401 ccaacgcccg gcaccccagc tgctggaacc tggtgaatgg cactgtggtg 1451 ccacttggcg agatgagagg ctacgccccc ttcagcccgg acgagaactc 1501 cctggttctg tttgaagggg acgaggtgta ttccaccatc cggaagcagg 1551 aatacaatgg gaagatccct cggttccgcc gcatccgggg cgagagtgag 1601 ctgtacacca gtgatactgt catgcagaac ccacagttca tcaaagccac 1651 catcgtgcac caagaccagg cttacgatga caagatctac tacttcttcc 1701 gagaggacaa tcctgacaag aatcctgagg ctcctctcaa tgtgtcccgt 1751 gtggcccagt tgtgcagggg ggaccagggt ggggaaagtt cactgtcagt 1801 ctccaagtgg aacacttttc tgaaagccat gctggtatgc agtgatgctg 1851 ccaccaacaa gaacttcaac aggctgcaag acgtcttcct gctccctgac 1901 cccagcggcc agtggaggga caccagggtc tatggtgttt tctccaaccc 1951 ctggaactac tcagccgtct gtgtgtattc cctcggtgac attgacaagg 2001 tcttccgtac ctcctcactc aagggctacc actcaagcct tcccaacccg 2051 cggcctggca agtgcctccc agaccagcag ccgataccca cagagacctt 2101 ccaggtggct gaccgtcacc cagaggtggc gcagagggtg gagcccatgg 2151 ggcctctgaa gacgccattg ttccactcta aataccacta ccagaaagtg 2201 gccgttcacc gcatgcaagc cagccacggg gagacctttc atgtgcttta 2251 cctaactaca gacaggggca ctatccacaa ggtggtggaa ccgggggagc 2301 aggagcacag cttcgccttc aacatcatgg agatccagcc cttccgccgc 2351 gcggctgcca tccagaccat gtcgctggat gctgagcgga ggaagctgta 2401 tgtgagctcc cagtgggagg tgagccaggt gcccctggac ctgtgtgagg 2451 tctatggcgg gggctgccac ggttgcctca tgtcccgaga cccctactgc 2501 ggctgggacc agggccgctg catctccatc tacagctccg aacggtcagt 2551 gctgcaatcc attaatccag ccgagccaca caaggagtgt cccaacccca 2601 aaccagacaa ggccccactg cagaaggttt ccctggcccc aaactctcgc 2651 tactacctga gctgccccat ggaatcccgc cacgccacct actcatggcg 2701 ccacaaggag aacgtggagc agagctgcga acctggtcac cagagcccca 2751 actgcatcct gttcatcgag aacctcacgg cgcagcagta cggccactac 2801 ttctgcgagg cccaggaggg ctcctacttc cgcgaggctc agcactggca 2851 gctgctgccc gaggacggca tcatggccga gcacctgctg ggtcatgcct 2901 gtgccctggc tgcctccctc tggctggggg tgctgcccac actcactctt 2951 ggcttgctgg tccacgtgaa gcttGGGCCC GAACAAAAAC TCATCTCAGA 3001 AGAGGATCTG AATAGCGCCG TCGACCATCA TCATCATCAT CATTGAGTTT 3051 AAACCGCTGA TCAGCCTCGA CTGTGCCTTC TAGTTGCCAG CCATCTGTTG 3101 TTTGCCCCTC CCCCGTGCCT TCCTTGACCC TGGAAGGTGC CACTCCCACT 3151 GTCCTTTCCT AATAAAATGA GGAAATTGCA TCGCATTGTC TGAGTAGGTG 3201 TCATTCTATT CTGGGGGGTG GGGTGGGGCA GGACAGCAAG GGGGAGGATT 3251 GGGAAGACAA TAGCAGGCAT GCTGGGGATG CGGTGGGCTC TATGGCTTCT 3301 GAGGCGGAAA GAACCAGCTG GGGCTCTAGG GGGTATCCCC ACGCGCCCTG 3351 TAGCGGCGCA TTAAGCGCGG CGGGTGTGGT GGTTACGCGC AGCGTGACCG 3401 CTACACTTGC CAGCGGCCTA GCGCCCGCTC CTTTCGCTTT CTTCCCTTCC 3451 TTTCTCGCCA CGTTCGCCGG CTTTCCCCGT CAAGCTCTAA ATCGGGGCAT 3501 CCCTTTAGGG TTCCGATTTA GTGCTTTACG GCACCTCGAC CCCAAAAAAC 3551 TTGATTAGGG TGATGGTTCA CGTAGTGGGC CATCGCCCTG ATAGACGGTT 3601 TTTCGCCCTT TGACGTTGGA GTCCACGTTC TTTAATAGTG GACTCTTGTT 3651 CCAAACTGGA ACAACACTCA ACCCTATCTC GGTCTATTCT TTTGATTTAT 3701 AAGGGATTTT GGGGATTTCG GCCTATTGGT TAAAAAATGA GCTGATTTAA 3751 CAAAAATTTA ACGCGAATTA ATTCTGTGGA ATGTGTGTCA GTTAGGGTGT 3801 GGAAAGTCCC CAGGCTCCCC AGGCAGGCAG AAGTATGCAA AGCATGCATC 3851 TCAATTAGTC AGCAACCAGG TGTGGAAAGT CCCCAGGCTC CCCAGCAGGC 3901 AGAAGTATGC AAAGCATGCA TCTCAATTAG TCAGCAACCA TAGTCCCGCC 3951 CCTAACTCCG CCCATCCCGC CCCTAACTCC GCCCAGTTCC GCCCATTCTC 4001 CGCCCCATGG CTGACTAATT TTTTTTATTT ATGCAGAGGC CGAGGCCGCC 4051 TCTGCCTCTG AGCTATTCCA GAAGTAGTGA GGAGGCTT1T TTGGAGGCCT 4101 AGGCTTTTGC AAAAAGCTCC CGGGAGCTTG TATATCCATT TTCGGATCTG 4151 ATCAAGAGAC AGGATGAGGA TCGTTTCGCA TGATTGAACA AGATGGATTG 4201 CACGCAGGTT CTCCGGCCGC TTGGGTGGAG AGGCTATTCG GCTATGACTG 4251 GGCACAACAG ACAATCGGCT GCTCTGATGC CGCCGTGTTC CGGCTGTCAG 4301 CGCAGGGGCG CCCGGTTCTT TTTGTCAAGA CCGACCTGTC CGGTGCCCTG 4351 AATGAACTGC AGGACGAGGC AGCGCGGCTA TCGTGGCTGG CCACGACGGG 4401 CGTTCCTTGC GCAGCTGTGC TCGACGTTGT CACTGAAGCG GGAAGGGACT 4451 GGCTGCTATT GGGCGAAGTG CCGGGGCAGG ATCTCCTGTC ATCTCACCTT 4501 GCTCCTGCCG AGAAAGTATC CATCATGGCT GATGCAATGC GGCGGCTGCA 4551 TACGCTTGAT CCGGCTACCT GCCCATTCGA CCACCAAGCG AAACATCGCA 4601 TCGAGCGAGC ACGTACTCGG ATGGAAGCCG GTCTTGTCGA TCAGGATGAT 4651 CTGGACGAAG AGCATCAGGG GCTCGCGCCA GCCGAACTGT TCGCCAGGCT 4701 CAAGGCGCGC ATGCCCGACG GCGAGGATCT CGTCGTGACC CATGGCGATG 4751 CCTGCTTGCC GAATATCATG GTGGAAAATG GCCGCTTTTC TGGATTCATC 4801 GACTGTGGCC GGCTGGGTGT GGCGGACCGC TATCAGGACA TAGCGTTGGC 4851 TACCCGTGAT ATTGCTGAAG AGCTTGGCGG CGAATGGGCT GACCGCTTCC 4901 TCGTGCTTTA CGGTATCGCC GCTCCCGATT CGCAGCGCAT CGCCTTCTAT 4951 CGCCTTCTTG ACGAGTTCTT CTGAGCGGGA CTCTGGGGTT CGAAATGACC 5001 GACCAAGCGA CGCCCAACCT GCCATCACGA GATTTCGATT CCACCGCCGC 5051 CTTCTATGAA AGGTTGGGCT TCGGAATCGT TTTCCGGGAC GCCGGCTGGA 5101 TGATCCTCCA GCGCGGGGAT CTCATGCTGG AGTTCTTCGC CCACCCCAAC 5151 TTGTTTATTG CAGCTTATAA TGGTTACAAA TAAAGCAATA GCATCACAAA 5201 TTTCACAAAT AAAGCATTTT TTTCACTGCA TTCTAGTTGT GGTTTGTCCA 5251 AACTCATCAA TGTATCTTAT CATGTCTGTA TACCGTCGAC CTCTAGCTAG 5301 AGCTTGGCGT AATCATGGTC ATAGCTGTTT CCTGTGTGAA ATTGTTATCC 5351 GCTCACAATT CCACACAACA TACGAGCCGG AAGCATAAAG TGTAAAGCCT 5401 GGGGTGCCTA ATGAGTGAGC TAACTCACAT TAATTGCGTT GCGCTCACTG 5451 CCCGCTTTCC AGTCGGGAAA CCTGTCGTGC CAGCTGCATT AATGAATCGG 5501 CCAACGCGCG GGGAGAGGCG GTTTGCGTAT TGGGCGCTCT TCCGCTTCCT 5551 CGCTCACTGA CTCGCTGCGC TCGGTCGTTC GGCTGCGGCG AGCGGTATCA 5601 GCTCACTCAA AGGCGGTAAT ACGGTTATCC ACAGAATCAG GGGATAACGC 5651 AGGAAAGAAC ATGTGAGCAA AAGGCCAGCA AAAGGCCAGG AACCGTAAAA 5701 AGGCCGCGTT GCTGGCGTTT TTCCATAGGC TCCGCCCCCC TGACGAGCAT 5751 CACAAAAATC GACGCTCAAG TCAGAGGTGG CGAAACCCGA CAGGACTATA 5801 AAGATACCAG GCGTTTCCCC CTGGAAGCTC CCTCGTGCGC TCTCCTGTTC 5851 CGACCCTGCC GCTTACCGGA TACCTGTCCG CCTTTCTCCC TTCGGGAAGC 5901 GTGGCGCTTT CTCAATGCTC ACGCTGTAGG TATCTCAGTT CGGTGTAGGT 5951 CGTTCGCTCC AAGCTGGGCT GTGTGCACGA ACCCCCCGTT CAGCCCGACC 6001 GCTGCGCCTT ATCCGGTAAC TATCGTCTTG AGTCCAACCC GGTAAGACAC 6051 GACTTATCGC CACTGGCAGC AGCCACTGGT AACAGGATTA GCAGAGCGAG 6101 GTATGTAGGC GGTGCTACAG AGTTCTTGAA GTGGTGGCCT AACTACGGCT 6151 ACACTAGAAG GACAGTATTT GGTATCTGCG CTCTGCTGAA GCCAGTTACC 6201 TTCGGAAAAA GAGTTGGTAG CTCTTGATCC GGCAAACAAA CCACCGCTGG 6251 TAGCGGTGGT TTTTTTGTTT GCAAGCAGCA GATTACGCGC AGAAAAAAAG 6301 GATCTCAAGA AGATCCTTTG ATCTTTTCTA CGGGGTCTGA CGCTCAGTGG 6351 AACGAAAACT CACGTTAAGG GATTTTGGTC ATGAGATTAT CAAAAAGGAT 6401 CTTCACCTAG ATCCTTTTAA ATTAAAAATG AAGTTTTAAA TCAATCTAAA 6451 GTATATATGA GTAAACTTGG TCTGACAGTT ACCAATGCTT AATCAGTGAG 6501 GCACCTATCT CAGCGATCTG TCTATTTCGT TCATCCATAG TTGCCTGACT 6551 CCCCGTCGTG TAGATAACTA CGATACGGGA GGGCTTACCA TCTGGCCCCA 6601 GTGCTGCAAT GATACCGCGA GACCCACGCT CACCGGCTCC AGATTTATCA 6651 GCAATAAACC AGCCAGCCGG AAGGGCCGAG CGCAGAAGTG GTCCTGCAAC 6701 TTTATCCGCC TCCATCCAGT CTATTAATTG TTGCCGGGAA GCTAGAGTAA 6751 GTAGTTCGCC AGTTAATAGT TTGCGCAACG TTGTTGCCAT TGCTACAGGC 6801 ATCGTGGTGT CACGCTCGTC GTTTGGTATG GCTTCATTCA GCTCCGGTTC 6851 CCAACGATCA AGGCGAGTTA CATGATCCCC CATGTTGTGC AAAAAAGCGG 6901 TTAGCTCCTT CGGTCCTCCG ATCGTTGTCA GAAGTAAGTT GGCCGCAGTG 6951 TTATCACTCA TGGTTATGGC AGCACTGCAT AATTCTCTTA CTGTCATGCC 7001 ATCCGTAAGA TGCTTTTCTG TGACTGGTGA GTACTCAACC AAGTCATTCT 7051 GAGAATAGTG TATGCGGCGA CCGAGTTGCT CTTGCCCGGC GTCAATACGG 7101 GATAATACCG CGCCACATAG CAGAACTTTA AAAGTGCTCA TCATTGGAAA 7151 ACGTTCTTCG GGGCGAAAAC TCTCAAGGAT CTTACCGCTG TTGAGATCCA 7201 GTTCGATGTA ACCCACTCGT GCACCCAACT GATCTTCAGC ATCTTTTACT 7251 TTCACCAGCG TTTCTGGGTG AGCAAAAACA GGAAGGCAAA ATGCCGCAAA 7301 AAAGGGAATA AGGGCGACAC GGAAATGTTG AATACTCATA CTCTTCCTTT 7351 TTCAATATTA TTGAAGCATT TATCAGGGTT ATTGTCTCAT GAGCGGATAC 7401 ATATTTGAAT GTATTTAGAA AAATAAACAA ATAGGGGTTC CGCGCACATT 7451 TCCCCGAAAA GTGCCACCTG ACGTC

[0250] 11 TABLE 9 Nucleotide sequence of the recombinant plasmid pcDNA3.1-H- SemaL-EGFP-MychisA (SEQ ID NO.: 36)    1 GACGGATCGG GAGATCTCCC GATCCCCTAT GGTCGACTCT CAGTACAATC   51 TGCTCTGATG CCGCATAGTT AAGCCAGTAT CTGCTCCCTG CTTGTGTGTT  101 GGAGGTCGCT GAGTAGTGCG CGAGCAAAAT TTAAGCTACA ACAAGGCAAG  151 GCTTGACCGA CAATTGCATG AAGAATCTGC TTAGGGTTAG GCGTTTTGCG  201 CTGCTTCGCG ATGTACGGGC CAGATATACG CGTTGACATT GATTATTGAC  251 TAGTTATTAA TAGTAATCAA TTACGGGGTC ATTAGTTCAT AGCCCATATA  301 TGGAGTTCCG CGTTACATAA CTTACGGTAA ATGGCCCGCC TGGCTGACCG  351 CCCAACGACC CCCGCCCATT GACGTCAATA ATGACGTATG TTCCCATAGT  401 AACGCCAATA GGGACTTTCC ATTGACGTCA ATGGGTGGAC TATTTACGGT  451 AAACTGCCCA CTTGGCAGTA CATCAAGTGT ATCATATGCC AAGTACGCCC  501 CCTATTGACG TCAATGACGG TAAATGGCCC GCCTGGCATT ATGCCCAGTA  551 CATGACCTTA TGGGACTTTC CTACTTGGCA GTACATCTAC GTATTAGTCA  601 TCGCTATTAC CATGGTGATG CGGTTTTGGC AGTACATCAA TGGGCGTGGA  651 TAGCGGTTTG ACTCACGGGG ATTTCCAAGT CTCCACCCCA TTGACGTCAA  701 TGGGAGTTTG TTTTGGCACC AAAATCAACG GGACTTTCCA AAATGTCGTA  751 ACAACTCCGC CCCATTGACG CAAATGGGCG GTAGGCGTGT ACGGTGGGAG  801 GTCTATATAA GCAGAGCTCT CTGGCTAACT AGAGAACCCA CTGCTTACTG  851 GCTTATCGAA ATTAATACGA CTCACTATAG GGAGACCCAA GCTGGCTAGC  901 GTTTAAACGG GCCCTCTAGA CTCGAGCGGC CGCCACTGTG CTGGATATCT  951 GCAgaattcg gcttgggatg acgcctcctc cgcccggacg tgccgccccc 1001 agcgcaccgc gcgcccgcgt ccctggcccg ccggctcggt tggggcttcc 1051 gctgcggctg cggctgctgc tgctgctctg ggcggccgcc gcctccgccc 1101 agggccacct aaggagcgga ccccgcatct tcgccgtctg gaaaggccat 1151 gtagggcagg accgggtgga ctttggccag actgagccgc acacggtgct 1201 tttccacgag ccaggcagct cctctgtgtg ggtgggagga cgtggcaagg 1251 tctacctctt tgacttcccc gagggcaaga acgcatctgt gcgcacggtg 1301 aatatcggct ccacaaaggg gtcctgtctg gataagcggg actgcgagaa 1351 ctacatcact ctcctggaga ggcggagtga ggggctgctg gcctgtggca 1401 ccaacgcccg gcaccccagc tgctggaacc tggtgaatgg cactgtggtg 1451 ccacttggcg agatgagagg ctacgccccc ttcagcccgg acgagaactc 1501 cctggttctg tttgaagggg acgaggtgta ttccaccatc cggaagcagg 1551 aatacaatgg gaagatccct cggttccgcc gcatccgggg cgagagtgag 1601 ctgtacacca gtgatactgt catgcagaac ccacagttca tcaaagccac 1651 catcgtgcac caagaccagg cttacgatga caagatctac tacttcttcc 1701 gagaggacaa tcctgacaag aatcctgagg ctcctctcaa tgtgtcccgt 1751 gtggcccagt tgtgcagggg ggaccagggt ggggaaagtt cactgtcagt 1801 ctccaagtgg aacacttttc tgaaagccat gctggtatgc agtgatgctg 1851 ccaccaacaa gaacttcaac aggctgcaag acgtcttcct gctccctgac 1901 cccagcggcc agtggaggga caccagggtc tatggtgttt tctccaaccc 1951 ctggaactac tcagccgtct gtgtgtattc cctcggtgac attgacaagg 2001 tcttccgtac ctcctcactc aagggctacc actcaagcct tcccaacccg 2051 cggcctggca agtgcctccc agaccagcag ccgataccca cagagacctt 2101 ccaggtggct gaccgtcacc cagaggtggc gcagagggtg gagcccatgg 2151 ggcctctgaa gacgccattg ttccactcta aataccacta ccagaaagtg 2201 gccgttcacc gcatgcaagc cagccacggg gagacctttc atgtgcttta 2251 cctaactaca gacaggggca ctatccacaa ggtggtggaa ccgggggagc 2301 aggagcacag cttcgccttc aacatcatgg agatccagcc cttccgccgc 2351 gcggctgcca tccagaccat gtcgctggat gctgagcgga ggaagctgta 2401 tgtgagctcc cagtgggagg tgagccaggt gcccctggac ctgtgtgagg 2451 tctatggcgg gggctgccac ggttgcctca tgtcccgaga cccctactgc 2501 ggctgggacc agggccgctg catctccatc tacagctccg aacggtcagt 2551 gctgcaatcc attaatccag ccgagccaca caaggagtgt cccaacccca 2601 aaccagacaa ggccccactg cagaaggttt ccctggcccc aaactctcgc 2651 tactacctga gctgccccat ggaatcccgc cacgccacct actcatggcg 2701 ccacaaggag aacgtggagc agagctgcga acctggtcac cagagcccca 2751 actgcatcct gttcatcgag aacctcacgg cgcagcagta cggccactac 2801 ttctgcgagg cccaggaggg ctcctacttc cgcgaggctc agcactggca 2851 gctgctgccc gaggacggca tcatggccga gcacctgctg ggtcatgcct 2901 gtgccctggc tgcctccctc tggctggggg tgctgcccac actcactctt 2951 ggcttgctgg tccacATGGT GAGCAAGGGC GAGGAGCTGT TCACCGGGGT 3001 GGTGCCCATC CTGGTCGAGC TGGACGGCGA CGTAAACGGC CACAAGTTCA 3051 GCGTGTCCGG CGAGGGCGAG GGCGATGCCA CCTACGGCAA GCTGACCCTG 3101 AAGTTCATCT GCACCACCGG CAAGCTGCCC GTGCCCTGGC CCACCCTCGT 3151 GACCACCCTG ACCTACGGCG TGCAGTGCTT CAGCCGCTAC CCCGACCACA 3201 TGAAGCAGCA CGACTTCTTC AAGTCCGCCA TGCCCGAAGG CTACGTCCAG 3251 GAGCGCACCA TCTTCTTCAA GGACGACGGC AACTACAAGA CCCGCGCCGA 3301 GGTGAAGTTC GAGGGCGACA CCCTGGTGAA CCGCATCGAG CTGAAGGGCA 3351 TCGACTTCAA GGAGGACGGC AACATCCTGG GGCACAAGCT GGAGTACAAC 3401 TACAACAGCC ACAACGTCTA TATCATGGCC GACAAGCAGA AGAACGGCAT 3451 CAAGGTGAAC TTCAAGATCC GCCACAACAT CGAGGACGGC AGCGTGCAGC 3501 TCGCCGACCA CTACCAGCAG AACACCCCCA TCGGCGACGG CCCCGTGCTG 3551 CTGCCCGACA ACCACTACCT GAGCACCCAG TCCGCCCTGA GCAAAGACCC 3601 CAACGAGAAG CGCGATCACA TGGTCCTGCT GGAGTTCGTG ACCGCCGCCG 3651 GGATCACTCT CGGCATGGAC GAGCTGTACA Aggtgaagct tGGGCCCGAA 3701 CAAAAACTCA TCTCAGAAGA GGATCTGAAT AGCGCCGTCG ACCATCATCA 3751 TCATCATCAT TGAGTTTAAA CCGCTGATCA GCCTCGACTG TGCCTTCTAG 3801 TTGCCAGCCA TCTGTTGTTT GCCCCTCCCC CGTGCCTTCC TTGACCCTGG 3851 AAGGTGCCAC TCCCACTGTC CTTTCCTAAT AAAATGAGGA AATTGCATCG 3901 CATTGTCTGA GTAGGTGTCA TTCTATTCTG GGGGGTGGGG TGGGGCAGGA 3951 CAGCAAGGGG GAGGATTGGG AAGACAATAG CAGGCATGCT GGGGATGCGG 4001 TGGGCTCTAT GGCTTCTGAG GCGGAAAGAA CCAGCTGGGG CTCTAGGGGG 4051 TATCCCCACG CGCCCTGTAG CGGCGCATTA AGCGCGGCGG GTGTGGTGGT 4101 TACGCGCAGC GTGACCGCTA CACTTGCCAG CGCCCTAGCG CCCGCTCCTT 4151 TCGCTTTCTT CCCTTCCTTT CTCGCCACGT TCGCCGGCTT TCCCCGTCAA 4201 GCTCTAAATC GGGGCATCCC TTTAGGGTTC CGATTTAGTG CTTTACGGCA 4251 CCTCGACCCC AAAAAACTTG ATTAGGGTGA TGGTTCACGT AGTGGGCCAT 4301 CGCCCTGATA GACGGTTTTT CGCCCTTTGA CGTTGGAGTC CACGTTCTTT 4351 AATAGTGGAC TCTTGTTCCA AACTGGAACA ACACTCAACC CTATCTCGGT 4401 CTATTCTTTT GATTTATAAG GGATTTTGGG GATTTCGGCC TATTGGTTAA 4451 AAAATGAGCT GATTTAACAA AAATTTAACG CGAATTAATT CTGTGGAATG 4501 TGTGTCAGTT AGGGTGTGGA AAGTCCCCAG GCTCCCCAGG CAGGCAGAAG 4551 TATGCAAAGC ATGCATCTCA ATTAGTCAGC AACCAGGTGT GGAAAGTCCC 4601 CAGGCTCCCC AGCAGGCAGA AGTATGCAAA GCATGCATCT CAATTAGTCA 4651 GCAACCATAG TCCCGCCCCT AACTCCGCCC ATCCCGCCCC TAACTCCGCC 4701 CAGTTCCGCC CATTCTCCGC CCCATGGCTG ACTAATTTTT TTTATTTATG 4751 CAGAGGCCGA GGCCGCCTCT GCCTCTGAGC TATTCCAGAA GTAGTGAGGA 4801 GGCTTTTTTG GAGGCCTAGG CTTTTGCAAA AAGCTCCCGG GAGCTTGTAT 4851 ATCCATTTTC GGATCTGATC AAGAGACAGG ATGAGGATCG TTTCGCATGA 4901 TTGAACAAGA TGGATTGCAC GCAGGTTCTC CGGCCGCTTG GGTGGAGAGG 4951 CTATTCGGCT ATGACTGGGC ACAACAGACA ATCGGCTGCT CTGATGCCGC 5001 CGTGTTCCGG CTGTCAGCGC AGGGGCGCCC GGTTCTTTTT GTCAAGACCG 5051 ACCTGTCCGG TGCCCTGAAT GAACTGCAGG ACGAGGCAGC GCGGCTATCG 5101 TGGCTGGCCA CGACGGGCGT TCCTTGCGCA GCTGTGCTCG ACGTTGTCAC 5151 TGAAGCGGGA AGGGACTGGC TGCTATTGGG CGAAGTGCCG GGGCAGGATC 5201 TCCTGTCATC TCACCTTGCT CCTGCGGAGA AAGTATCCAT CATGGCTGAT 5251 GCAATGCGGC GGCTGCATAC GCTTGATCCG GCTACCTGCC CATTCGACCA 5301 CCAAGCGAAA CATCGCATCG AGCGAGCACG TACTCGGATG GAAGCCGGTC 5351 TTGTCGATCA GGATGATCTG GACGAAGAGC ATCAGGGGCT CGCGCCAGCC 5401 GAACTGTTCG CCAGGCTCAA GGCGCGCATG CCCGACGGCG AGGATCTCGT 5451 CGTGACCCAT GGCGATGCCT GCTTGCCGAA TATCATGGTG GAAAATGGCC 5501 GCTTTTCTGG ATTCATCGAC TGTGGCCGGC TGGGTGTGGC GGACCGCTAT 5551 CAGGACATAG CGTTGGCTAC CCGTGATATT GCTGAAGAGC TTGGCGGCGA 5601 ATGGGCTGAC CGCTTCCTCG TGCTTTACGG TATCGCCGCT CCCGATTCGC 5651 AGCGCATCGC CTTCTATCGC CTTCTTGACG AGTTCTTCTG AGCGGGACTC 5701 TGGGGTTCGA AATGACCGAC CAAGCGACGC CCAACCTGCC ATCACGAGAT 5751 TTCGATTCCA CCGCCGCCTT CTATGAAAGG TTGGGCTTCG GAATCGTTTT 5801 CCGGGACGCC GGCTGGATGA TCCTCCAGCG CGGGGATCTC ATGCTGGAGT 5851 TCTTCGCCCA CCCCAACTTG TTTATTGCAG CTTATAATGG TTACAAATAA 5901 AGCAATAGCA TCACAAATTT CACAAATAAA GCATTTTTTT CACTGCATTC 5951 TAGTTGTGGT TTGTCCAAAC TCATCAATGT ATCTTATCAT GTCTGTATAC 6001 CGTCGACCTC TAGCTAGAGC TTGGCGTAAT CATGGTCATA GCTGTTTCCT 6051 GTGTGAAATT GTTATCCGCT CACAATTCCA CACAACATAC GAGCCGGAAG 6101 CATAAAGTGT AAAGCCTGGG GTGCCTAATG AGTGAGCTAA CTCACATTAA 6151 TTGCGTTGCG CTCACTGCCC GCTTTCCAGT CGGGAAACCT GTCGTGCCAG 6201 CTGCATTAAT GAATCGGCCA ACGCGCGGGG AGAGGCGGTT TGCGTATTGG 6251 GCGCTCTTCC GCTTCCTCGC TCACTGACTC GCTGCGCTCG GTCGTTCGGC 6301 TGCGGCGAGC GGTATCAGCT CACTCAAAGG CGGTAATACG GTTATCCACA 6351 GAATCAGGGG ATAACGCAGG AAAGAACATG TGAGCAAAAG GCCAGCAAAA 6401 GGCCAGGAAC CGTAAAAAGG CCGCGTTGCT GGCGTTTTTC CATAGGCTCC 6451 GCCCCCCTGA CGAGCATCAC AAAAATCGAC GCTCAAGTCA GAGGTGGCGA 6501 AACCCGACAG GACTATAAAG ATACCAGGCG TTTCCCCCTG GAAGCTCCCT 6551 CGTGCGCTCT CCTGTTCCGA CCCTGCCGCT TACCGGATAC CTGTCCGCCT 6601 TTCTCCCTTC GGGAAGCGTG GCGCTTTCTC AATGCTCACG CTGTAGGTAT 6651 CTCAGTTCGG TGTAGGTCGT TCGCTCCAAG CTGGGCTGTG TGCACGAACC 6701 CCCCGTTCAG CCCGACCGCT GCGCCTTATC CGGTAACTAT CGTCTTGAGT 6751 CCAACCCGGT AAGACACGAC TTATCGCCAC TGGCAGCAGC CACTGGTAAC 6801 AGGATTAGGA GAGCGAGGTA TGTAGGCGGT GCTACAGAGT TCTTGAAGTG 6851 GTGGCCTAAC TACGGCTACA CTAGAAGGAC AGTATTTGGT ATCTGCGCTC 6901 TGCTGAAGCC AGTTACCTTC GGAAAAAGAG TTGGTAGCTC TTGATCCGGC 6951 AAACAAACCA CCGCTGGTAG CGGTGGTTTT TTTGTTTGCA AGCAGCAGAT 7001 TACGCGCAGA AAAAAAGGAT CTCAAGAAGA TCCTTTGATC TTTTCTACGG 7051 GGTCTGACGC TCAGTGGAAC GAAAACTCAC GTTAAGGGAT TTTGGTCATG 7101 AGATTATCAA AAAGGATCTT CACCTAGATC CTTTTAAATT AAAAATGAAG 7151 TTTTAAATCA ATCTAAAGTA TATATGAGTA AACTTGGTCT GACAGTTACC 7201 AATGCTTAAT CAGTGAGGCA CCTATCTCAG CGATCTGTCT ATTTCGTTCA 7251 TCCATAGTTG CCTGACTCCC CGTCGTGTAG ATAACTACGA TACGGGAGGG 7301 CTTACCATCT GGCCCCAGTG CTGCAATGAT ACCGCGAGAC CCACGCTCAC 7351 CGGCTCCAGA TTTATCAGCA ATAAACCAGC CAGCCGGAAG GGCCGAGCGC 7401 AGAAGTGGTC CTGCAACTTT ATCCGCCTCC ATCCAGTCTA TTAATTGTTG 7451 CCGGGAAGCT AGAGTAAGTA GTTCGCCAGT TAATAGTTTG CGCAACGTTG 7501 TTGCCATTGC TACAGGCATC GTGGTGTCAC GCTCGTCGTT TGGTATGGCT 7551 TCATTCAGCT CCGGTTCCCA ACGATCAAGG CGAGTTACAT GATCCCCCAT 7601 GTTGTGCAAA AAAGCGGTTA GCTCCTTCGG TCCTCCGATC GTTGTCAGAA 7651 GTAAGTTGGC CGCAGTGTTA TCACTCATGG TTATGGCAGC ACTGCATAAT 7701 TCTCTTACTG TCATGCCATC CGTAAGATGC TTTTCTGTGA CTGGTGAGTA 7751 CTCAACCAAG TCATTCTGAG AATAGTGTAT GCGGCGACCG AGTTGCTCTT 7801 GCCCGGCGTC AATACGGGAT AATACCGCGC CACATAGCAG AACTTTAAAA 7851 GTGCTCATCA TTGGAAAACG TTCTTCGGGG CGAAAACTCT CAAGGATCTT 7901 ACCGCTGTTG AGATCCAGTT CGATGTAACC CACTCGTGCA CCCAACTGAT 7951 CTTCAGCATC TTTTACTTTC ACCAGCGTTT CTGGGTGAGC AAAAACAGGA 8001 AGGCAAAATG CCGCAAAAAA GGGAATAAGG GCGACACGGA AATGTTGAAT 8051 ACTCATACTC TTCCTTTTTC AATATTATTG AAGCATTTAT CAGGGTTATT 8101 GTCTCATGAG CGGATACATA TTTGAATGTA TTTAGAAAAA TAAACAAATA 8151 GGGGTTCCGC GCACATTTCC CCGAAAAGTG CCACCTGACG TC

[0251] 12 TABLE 10 Nucleotide sequence of the recombinant plasmid pIND-H- SemaL-EE (SEQ ID NO.:37)    1 AGATCTCGGC CGCATATTAA GTGCATTGTT CTCGATACCG CTAAGTGCAT   51 TGTTCTCGTT AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC  101 GATGGACAAG TGCATTGTTC TCTTGCTGAA AGCTCGATGG ACAAGTGCAT  151 TGTTCTCTTG CTGAAAGCTC AGTACCCGGG AGTACCCTCG ACCGCCGGAG  201 TATAAATAGA GGCGCTTCGT CTACGGAGCG ACAATTCAAT TCAAACAAGC  251 AAAGTGAACA CGTCGCTAAG CGAAAGCTAA GCAAATAAAC AAGCGCAGCT  301 GAACAAGCTA AACAATCTGC AGTAAAGTGC AAGTTAAAGT GAATCAATTA  351 AAAGTAACCA GCAACCAAGT AAATCAACTG CAACTACTGA AATCTGCCAA  401 GAAGTAATTA TTGAATACAA GAAGAGAACT CTGAATACTT TCAACAAGTT  451 ACCGAGAAAG AAGAACTCAC ACACAGCTAG CGTTTAAACT TAAGCTTGGT  501 ACCGAGCTCG GATCCACTAG TCCAGTGTGG TGgaattcgg cttgggatga  551 cgcctcctcc gcccggacgt gccgccccca gcgcaccgcg cgcccgcgtc  601 cctggcccgc cggctcggtt ggggcttccg ctgcggctgc ggctgctgct  651 gctgctctgg gcggccgccg cctccgccca gggccaccta aggagcggac  701 cccgcatctt cgccgtctgg aaaggccatg tagggcagga ccgggtggac  751 tttggccaga ctgagccgca cacggtgctt ttccacgagc caggcagctc  801 ctctgtgtgg gtgggaggac gtggcaaggt ctacctcttt gacttccccg  851 agggcaagaa cgcatctgtg cgcacggtga atatcggctc cacaaagggg  901 tcctgtctgg ataagcggga ctgcgagaac tacatcactc tcctggagag  951 gcggagtgag gggctgctgg cctgtggcac caacgcccgg caccccagct 1001 gctggaacct ggtgaatggc actgtggtgc cacttggcga gatgagaggc 1051 tacgccccct tcagcccgga cgagaactcc ctggttctgt ttgaagggga 1101 cgaggtgtat tccaccatcc ggaagcagga atacaatggg aagatccctc 1151 ggttccgccg catccggggc gagagtgagc tgtacaccag tgatactgtc 1201 atgcagaacc cacagttcat caaagccacc atcgtgcacc aagaccaggc 1251 ttacgatgac aagatctact acttcttccg agaggacaat cctgacaaga 1301 atcctgaggc tcctctcaat gtgtcccgtg tggcccagtt gtgcaggggg 1351 gaccagggtg gggaaagttc actgtcagtc tccaagtgga acacttttct 1401 gaaagccatg ctggtatgca gtgatgctgc caccaacaag aacttcaaca 1451 ggctgcaaga cgtcttcctg ctccctgacc ccagcggcca gtggagggac 1501 accagggtct atggtgtttt ctccaacccc tggaactact cagccgtctg 1551 tgtgtattcc ctcggtgaca ttgacaaggt cttccgtacc tcctcactca 1601 agggctacca ctcaagcctt cccaacccgc ggcctggcaa gtgcctccca 1651 gaccagcagc cgatacccac agagaccttc caggtggctg accgtcaccc 1701 agaggtggcg cagagggtgg agcccatggg gcctctgaag acgccattgt 1751 tccactctaa ataccactac cagaaagtgg ccgttcaccg catgcaagcc 1801 agccacgggg agacctttca tgtgctttac ctaactacag acaggggcac 1851 tatccacaag gtggtggaac cgggggagca ggagcacagc ttcgccttca 1901 acatcatgga gatccagccc ttccgccgcg cggctgccat ccagaccatg 1951 tcgctggatg ctgagcggag gaagctgtat gtgagctccc agtgggaggt 2001 gagccaggtg cccctggacc tgtgtgaggt ctatggcggg ggctgccacg 2051 gttgcctcat gtcccgagac ccctactgcg gctgggacca gggccgctgc 2101 atctccatct acagctccga acggtcagtg ctgcaatcca ttaatccagc 2151 cgagccacac aaggagtgtc ccaaccccaa accagacaag gccccactgc 2201 agaaggtttc cctggcccca aactctcgct actacctgag ctgccccatg 2251 gaatcccgcc acgccaccta ctcatggcgc cacaaggaga acgtggagca 2301 gagctgcgaa cctggtcacc agagccccaa ctgcatcctg ttcatcgaga 2351 acctcacggc gcagcagtac ggccactact tctgcgaggc ccaggagggc 2401 tcctacttcc gcgaggctca gcactggcag ctgctgcccg aggacggcat 2451 catggccgag cacctgctgg gtcatgcctg tgccctggct gcctccctct 2501 ggctgggggt gctgcccaca ctcactcttg gcttgctggt ccacgtgaag 2551 cttGGGCCCG TTTAAACCCG CTGATCAGCC TCGACTGTGC CTTCTAGTTG 2601 CCAGCCATCT GTTGTTTGCC CCTCCCCCGT GCCTTCCTTG ACCCTGGAAG 2651 GTGCCACTCC CACTGTCCTT TCCTAATAAA ATGAGGAAAT TGCATCGCAT 2701 TGTCTGAGTA GGTGTCATTC TATTCTGGGG GGTGGGGTGG GGCAGGACAG 2751 CAAGGGGGAG GATTGGGAAG ACAATAGCAG GCATGCTGGG GATGCGGTGG 2801 GCTCTATGGC TTCTGAGGCG GAAAGAACCA GCTGGGGCTC TAGGGGGTAT 2851 CCCCACGCGC CCTGTAGCGG CGCATTAAGC GCGGCGGGTG TGGTGGTTAC 2901 GCGCAGCGTG ACCGCTACAC TTGCCAGCGC CCTAGCGCCC GCTCCTTTCG 2951 CTTTCTTCCC TTCCTTTCTC GCCACGTTCG CCGGCTTTCC CCGTCAAGCT 3001 CTAAATCGGG GCATCCCTTT AGGGTTCCGA TTTAGTGCTT TACGGCACCT 3051 CGACCCCAAA AAACTTGATT AGGGTGATGG TTCACGTAGT GGGCCATCGC 3101 CCTGATAGAC GGTTTTTCGC CCTTTGACGT TGGAGTCCAC GTTCTTTAAT 3151 AGTGGACTCT TGTTCCAAAC TGGAACAACA CTCAACCCTA TCTCGGTCTA 3201 TTCTTTTGAT TTATAAGGGA TTTTGGGGAT TTCGGCCTAT TGGTTAAAAA 3251 ATGAGCTGAT TTAACAAAAA TTTAACGCGA ATTAATTCTG TGGAATGTGT 3301 GTCAGTTAGG GTGTGGAAAG TCCCCAGGCT CCCCAGGCAG GCAGAAGTAT 3351 GCAAAGCATG CATCTCAATT AGTCAGCAAC CAGGTGTGGA AAGTCCCCAG 3401 GCTCCCCAGC AGGCAGAAGT ATGCAAAGCA TGCATCTCAA TTAGTCAGCA 3451 ACCATAGTCC CGCCCCTAAC TCCGCCCATC CCGCCCCTAA CTCCGCCCAG 3501 TTCCGCCCAT TCTCCGCCCC ATGGCTGACT AATTTTTTTT ATTTATGCAG 3551 AGGCCGAGGC CGCCTCTGCC TCTGAGCTAT TCCAGAAGTA GTGAGGAGGC 3601 TTTTTTGGAG GCCTAGGCTT TTGCAAAAAG CTCCCGGGAG CTTGTATATC 3651 CATTTTCGGA TCTGATCAAG AGACAGGATG AGGATCGTTT CGCATGATTG 3701 AACAAGATGG ATTGCACGCA GGTTCTCCGG CCGCTTGGGT GGAGAGGCTA 3751 TTCGGCTATG ACTGGGCACA ACAGACAATC GGCTGCTCTG ATGCCGCCGT 3801 GTTCCGGCTG TCAGCGCAGG GGCGCCCGGT TCTTTTTGTC AAGACCGACC 3851 TGTCCGGTGC CCTGAATGAA CTGCAGGACG AGGCAGCGCG GCTATCGTGG 3901 CTGGCCACGA CGGGCGTTCC TTGCGCAGCT GTGCTCGACG TTGTCACTGA 3951 AGCGGGAAGG GACTGGCTGC TATTGGGCGA AGTGCCGGGG CAGGATCTCC 4001 TGTCATCTCA CCTTGCTCCT GCCGAGAAAG TATCCATCAT GGCTGATGCA 4051 ATGCGGCGGC TGCATACGCT TGATCCGGCT ACCTGCCCAT TCGACCACCA 4101 AGCGAAACAT CGCATCGAGC GAGCACGTAC TCGGATGGAA GCCGGTCTTG 4151 TCGATCAGGA TGATCTGGAC GAAGAGCATC AGGGGCTCGC GCCAGCCGAA 4201 CTGTTCGCCA GGCTCAAGGC GCGCATGCCC GACGGCGAGG ATCTCGTCGT 4251 GACCCATGGC GATGCCTGCT TGCCGAATAT CATGGTGGAA AATGGCCGCT 4301 TTTCTGGATT CATCGACTGT GGCCGGCTGG GTGTGGCGGA CCGCTATCAG 4351 GACATAGCGT TGGCTACCCG TGATATTGCT GAAGAGCTTG GCGGCGAATG 4401 GGCTGACCGC TTCCTCGTGC TTTACGGTAT CGCCGCTCCC GATTCGCAGC 4451 GCATCGCCTT CTATCGGCTT CTTGACGAGT TCTTCTGAGC GGGACTCTGG 4501 GGTTCGAAAT GACCGACCAA GCGACGCCCA ACCTGCCATC ACGAGATTTC 4551 GATTCCACCG CCGCCTTCTA TGAAAGGTTG GGCTTCGGAA TCGTTTTCCG 4601 GGACGCCGGC TGGATGATCC TCCAGCGCGG GGATCTCATG CTGGAGTTCT 4651 TCGCCCACCC CAACTTGTTT ATTGCAGCTT ATAATGGTTA CAAATAAAGC 4701 AATAGCATCA CAAATTTCAC AAATAAAGCA TTTTTTTCAC TGCATTCTAG 4751 TTGTGGTTTG TCCAAACTCA TCAATGTATC TTATCATGTC TGTATACCGT 4801 CGACCTCTAG CTAGAGCTTG GCGTAATCAT GGTCATAGCT GTTTCCTGTG 4851 TGAAATTGTT ATCCGCTCAC AATTCCACAC AACATACGAG CCGGAAGCAT 4901 AAAGTGTAAA GCCTGGGGTG CCTAATGAGT GAGCTAACTC ACATTAATTG 4951 CGTTGCGCTC ACTGCCCGCT TTCCAGTCGG GAAACCTGTC GTGCCAGCTG 5001 CATTAATGAA TCGGCCAACG CGCGGGGAGA GGCGGTTTGC GTATTGGGCG 5051 CTCTTCCGCT TCCTCGCTCA CTGACTCGCT GCGCTCGGTC GTTCGGCTGC 5101 GGCGAGCGGT ATCAGCTCAC TCAAAGGCGG TAATACGGTT ATCCACAGAA 5151 TCAGGGGATA ACGCAGGAAA GAACATGTGA GCAAAAGGCC AGCAAAAGGC 5201 CAGGAACCGT XAAAAGGCCG CGTTGCTGGC GTTTTTCCAT AGGCTCCGCC 5251 CCCCTGACGA GCATCACAAA AATCGACGCT CAAGTCAGAG GTGGCGAAAC 5301 CCGACAGGAC TATAAAGATA CCAGGCGTTT CCCCCTGGAA GCTCCCTCGT 5351 GCGCTCTCCT GTTCCGACCC TGCCGCTTAC CGGATACCTG TCCGCCTTTC 5401 TCCCTTCGGG AAGCGTGGCG CTTTCTCAAT GCTCACGCTG TAGGTATCTC 5451 AGTTCGGTGT AGGTCGTTCG CTCCAAGCTG GGCTGTGTGC ACGAACCCCC 5501 CGTTCAGCCC GACCGCTGCG CCTTATCCGG TAACTATCGT CTTGAGTCCA 5551 ACCCGGTAAG ACACGACTTA TCGCCACTGG CAGCAGCCAC TGGTAACAGG 5601 ATTAGCAGAG CGAGGTATGT AGGCGGTGCT ACAGAGTTCT TGAAGTGGTG 5651 GCCTAACTAC GGCTACACTA GAAGGACAGT ATTTGGTATC TGCGCTCTGC 5701 TGAAGCCAGT TACCTTCGGA AAAAGAGTTG GTAGCTCTTG ATCCGGCAAA 5751 CAAACCACCG CTGGTAGCGG TGGTTTTTTT GTTTGCAAGC AGCAGATTAC 5801 GCGCAGAAAA AAAGGATCTC AAGAAGATCC TTTGATCTTT TCTACGGGGT 5851 CTGACGCTCA GTGGAACGAA AACTCACGTT AAGGGATTTT GGTCATGAGA 5901 TTATCAAAAA GGATCTTCAC CTAGATCCTT TTAAATTAAA AATGAAGTTT 5951 TAAATCAATC TAAAGTATAT ATGAGTAAAC TTGGTCTGAC AGTTACCAAT 6001 GCTTAATCAG TGAGGCACCT ATCTCAGCGA TCTGTCTATT TCGTTCATCC 6051 ATAGTTGCCT GACTCCCCGT CGTGTAGATA ACTACGATAC GGGAGGGCTT 6101 ACCATCTGGC CCCAGTGCTG CAATGATACC GCGAGACCCA CGCTCACCGG 6151 CTCCAGATTT ATCAGCAATA AACCAGCCAG CCGGAAGGGC CGAGCGCAGA 6201 AGTGGTCCTG CAACTTTATC CGCCTCCATC CAGTCTATTA ATTGTTGCCG 6251 GGAAGCTAGA GTAAGTAGTT CGCCAGTTAA TAGTTTGCGC AACGTTGTTG 6301 CCATTGCTAC AGGCATCGTG GTGTCACGCT CGTCGTTTGG TATGGCTTCA 6351 TTCAGCTCCG GTTCCCAACG ATCAAGGCGA GTTACATGAT CCCCCATGTT 6401 GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT GTCAGAAGTA 6451 AGTTGGCCGC AGTGTTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT 6501 CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC 6551 AACCAAGTCA TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTTGCC 6601 CGGCGTCAAT ACGGGATAAT ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG 6651 CTCATCATTG GAAAACGTTC TTCGGGGCGA AAACTCTCAA GGATCTTACC 6701 GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC AACTGATCTT 6751 CAGCATCTTT TACTTTCACC AGCGTTTCTG GGTGAGCAAA AACAGGAAGG 6801 CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTTGAATACT 6851 CATACTCTTC CTTTTTCAAT ATTATTGAAG CATTTATCAG GGTTATTGTC 6901 TCATGAGCGG ATACATATiT GAATGTATTT AGAAAAATAA ACAAATAGGG 6951 GTTCCGCGCA CATTTCCCCG AAAAGTGCCA CCTGACGTCG ACGGATGGGG

[0252] 13 TABLE 1 Nucleotide sequence of the recombinant plasmid pIN D-H- SemaL-EA (SEQ ID NO.:38)    1 AGATCTCGGC CGCATATTAA GTGCATTGTT CTCGATACCG CTAAGTGCAT   51 TGTTCTCGTT AGCTCGATGG ACAAGTGCAT TGTTCTCTTG CTGAAAGCTC  101 GATGGACAAG TGCATTGTTC TCTTGCTGAA AGCTCGATGG ACAAGTGCAT  151 TGTTCTCTTG CTGAAAGCTC AGTACCCGGG AGTACCCTCG ACCGCCGGAG  201 TATAAATAGA GGCGCTTCGT CTACGGAGCG ACAATTCAAT TCAAACAAGC  251 AAAGTGAACA CGTCGCTAAG CGAAAGCTAA GCAAATAAAC AAGCGCAGCT  301 GAACAAGCTA AACAATCTGC AGTAAAGTGC AAGTTAAAGT GAATCAATTA  351 AAAGTAACCA GCAACCAAGT AAATCAACTG CAACTACTGA AATCTGCCAA  401 GAAGTAATTA TTGAATACAA GAAGAGAACT CTGAATACTT TCAACAAGTT  451 ACCGAGAAAG AAGAACTCAC ACACAGCTAG CGTTTAAACT TAAGCTTGGT  501 ACCGAGCTCG GATCCACTAG TCCAGTGTGG TGgaattcgg cttgggatga  551 cgcctcctcc gcccggacgt gccgccccca gcgcaccgcg cgcccgcgtc  601 cctggcccgc cggctcggtt ggggcttccg ctgcggctgc ggctgctgct  651 gctgctctgg gcggccgccg cctccgccca gggccaccta aggagcggac  701 cccgcatctt cgccgtctgg aaaggccatg tagggcagga ccgggtggac  751 tttggccaga ctgagccgca cacggtgctt ttccacgagc caggcagctc  801 ctctgtgtgg gtgggaggac gtggcaaggt ctacctcttt gacttccccg  851 agggcaagaa cgcatctgtg cgcacggtga atatcggctc cacaaagggg  901 tcctgtctgg ataagcggga ctgcgagaac tacatcactc tcctggagag  951 gcggagtgag gggctgctgg cctgtggcac caacgcccgg caccccagct 1001 gctggaacct ggtgaatggc actgtggtgc cacttggcga gatgagaggc 1051 tacgccccct tcagcccgga cgagaactcc ctggttctgt ttgaagggga 1101 cgaggtgtat tccaccatcc ggaagcagga atacaatggg aagatccctc 1151 ggttccgccg catccggggc gagagtgagc tgtacaccag tgatactgtc 1201 atgcagaacc cacagttcat caaagccacc atcgtgcacc aagaccaggc 1251 ttacgatgac aagatctact acttcttccg agaggacaat cctgacaaga 1301 atcctgaggc tcctctcaat gtgtcccgtg tggcccagtt gtgcaggggg 1351 gaccagggtg gggaaagttc actgtcagtc tccaagtgga acacttttct 1401 gaaagccatg ctggtatgca gtgatgctgc caccaacaag aacttcaaca 1451 ggctgcaaga cgtcttcctg ctccctgacc ccagcggcca gtggagggac 1501 accagggtct atggtgtttt ctccaacccc tggaactact cagccgtctg 1551 tgtgtattcc ctcggtgaca ttgacaaggt cttccgtacc tcctcactca 1601 agggctacca ctcaagcctt cccaacccgc ggcctggcaa gtgcctccca 1651 gaccagcagc cgatacccac agagaccttc caggtggctg accgtcaccc 1701 agaggtggcg cagagggtgg agcccatggg gcctctgaag acgccattgt 1751 tccactctaa ataccactac cagaaagtgg ccgttcaccg catgcaagcc 1801 agccacgggg agacctttca tgtgctttac ctaactacag acaggggcac 1851 tatccacaag gtggtggaac cgggggagca ggagcacagc ttcgccttca 1901 acatcatgga gatccagccc ttccgccgcg cggctgccat ccagaccatg 1951 tcgctggatg ctgagcggag gaagctgtat gtgagctccc agtgggaggt 2001 gagccaggtg cccctggacc tgtgtgaggt ctatggcggg ggctgccacg 2051 gttgcctcat gtcccgagac ccctactgcg gctgggacca gggccgctgc 2101 atctccatct acagctccga acggtcagtg ctgcaatcca ttaatccagc 2151 cgagccacac aaggagtgtc ccaaccccaa accagacaag gccccactgc 2201 agaaggtttc cctggcccca aactctcgct actacctgag ctgccccatg 2251 gaatcccgcc acgccaccta ctcatggcgc cacaaggaga acgtggagca 2301 gagctgcgaa cctggtcacc agagccccaa ctgcatcctg ttcatcgaga 2351 acctcacggc gcagcagtac ggccactact tctgcgaggc ccaggagggc 2401 tcctacttcc gcgaggctca gcactggcag ctgctgcccg aggacggcat 2451 catggccgag cacctgctgg gtcatgcctg tgccctggct gcctccctct 2501 ggctgggggt gctgcccaca ctcactcttg gcttgctggt ccacgtgaag 2551 cttGGGCCCG AACAAAAACT CATCTCAGAA GAGGATCTGA ATAGCGCCGT 2601 CGACCATCAT CATCATCATC ATTGAGTTTA TCCAGCACAG TGGCGGCCGC 2651 TCGAGTCTAG AGGGCCCGTT TAAACCCGCT GATCAGCCTC GACTGTGCCT 2701 TCTAGTTGCC AGCCATCTGT TGTTTGCCCC TCCCCCGTGC CTTCCTTGAC 2751 CCTGGAAGGT GCCACTCCCA CTGTCCTTTC CTAATAAAAT GAGGAAATTG 2801 CATCGCATTG TCTGAGTAGG TGTCATTCTA TTCTGGGGGG TGGGGTGGGG 2851 CAGGACAGCA AGGGGGAGGA TTGGGAAGAC AATAGCAGGC ATGCTGGGGA 2901 TGCGGTGGGC TCTATGGCTT CTGAGGCGGA AAGAACCAGC TGGGGCTCTA 2951 GGGGGTATCC CCACGCGCCC TGTAGCGGCG CATTAAGCGC GGCGGGTGTG 3001 GTGGTTACGC GCAGCGTGAC CGCTACACTT GCCAGCGCCC TAGCGCCCGC 3051 TCCTTTCGCT TTCTTCCCTT CCTTTCTCGC CACGTTCGCC GGCTTTCCCC 3101 GTCAAGCTCT AAATCGGGGC ATCCCTTTAG GGTTCCGATT TAGTGCTTTA 3151 CGGCACCTCG ACCCCAAAAA ACTTGATTAG GGTGATGGTT CACGTAGTGG 3201 GCCATCGCCC TGATAGACGG TTTTTCGCCC TTTGACGTTG GAGTCCACGT 3251 TCTTTAATAG TGGACTCTTG TTCCAAACTG GAACAACACT CAACCCTATC 3301 TCGGTCTATT CTTTTGATTT ATAAGGGATT TTGGGGATTT CGGCCTATTG 3351 GTTAAAAAAT GAGCTGATTT AACAAAAATT TAACGCGAAT TAATTCTGTG 3401 GAATGTGTGT CAGTTAGGGT GTGGAAAGTC CCCAGGCTCC CCAGGCAGGC 3451 AGAAGTATGC AAAGCATGCA TCTCAATTAG TCAGCAACCA GGTGTGGAAA 3501 GTCCCCAGGC TCCCCAGCAG GCAGAAGTAT GCAAAGCATG CATCTCAATT 3551 AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC GCCCCTAACT 3601 CCGCCCAGTT CCGCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTTAT 3651 TTATGCAGAG GCCGAGGCCG CCTCTGCCTC TGAGCTATTC CAGAAGTAGT 3701 GAGGAGGCTT TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT CCCGGGAGCT 3751 TCTATATCCA TTTTCGGATC TGATCAAGAG ACAGGATGAG GATCGTTTCG 3801 CATGATTGAA CAAGATGGAT TGCACGCAGG TTCTCCGGCC GCTTGGGTGG 3851 AGAGGCTATT CGGCTATGAC TGGGCACAAC AGACAATCGG CTGCTCTGAT 3901 GCCGCCGTGT TCCGGCTGTC AGCGCAGGGG CGCCCGGTTC TTT1TGTCAA 3951 GACCGACCTG TCCGGTGCCC TGAATGAACT GCAGGACGAG GCAGCGCGGC 4001 TATCGTGGCT GGCCACGACG GGCGTTCCTT GCGCAGCTGT GCTCGACGTT 4051 GTCACTGAAG CGGGAAGGGA CTGGCTGCTA TTGGGCGAAG TGCCGGGGCA 4101 GGATCTCCTG TCATCTCACC TTGCTCCTGC CGAGAAAGTA TCCATCATGG 4151 CTGATGCAAT GCGGCGGCTG CATACGCTTG ATCCGGCTAC CTGCCCATTC 4201 GACCACCAAG CGAAACATCG CATCGAGCGA GCACGTACTC GGATGGAAGC 4251 CGGTCTTGTC GATCAGGATG ATCTGGACGA AGAGCATCAG GGGCTCGCGC 4301 CAGCCGAACT GTTCGCCAGG CTCAAGGCGC GCATGCCCGA CGGCGAGGAT 4351 CTCGTCGTGA CCCATGGCGA TGCCTGCTTG CCGAATATCA TGGTGGAAAA 4401 TGGCCGCTTT TCTGGATTCA TCGACTGTGG CCGGCTGGGT GTGGCGGACC 4451 GCTATCAGGA CATAGCGTTG GCTACCCGTG ATATTGCTGA AGAGCTTGGC 4501 GGCGAATGGG CTGACCGCTT CCTCGTGCTT TACGGTATCG CCGCTCCCGA 4551 TTCGCAGCGC ATCGCCTTCT ATCGCC1TCT TGACGAGTTC TTCTGAGCGG 4601 GACTCTGGGG TTCGAAATGA CCGACCAAGC GACGCCCAAC CTGCCATCAC 4651 GAGATTTCGA TTCCACCGCC GCCTTCTATG AAAGGTTGGG CTTCGGAATC 4701 GTTTTCCGGG ACGCCGGCTG GATGATCCTC CAGCGCGGGG ATCTCATGCT 4751 GGAGTTCTTC GCCCACCCCA ACTTGTTTAT TGCAGCTTAT AATGGTTACA 4801 AATAAAGCAA TAGGATCACA AATTTCACAA ATAAAGCATT TTTTTCACTG 4851 CATTCTAGTT GTGGTTTGTC CAAACTCATC AATGTATCTT ATCATGTCTG 4901 TATACCGTCG ACCTCTAGCT AGAGCTTGGC GTAATCATGG TCATAGCTGT 4951 TTCCTGTGTG AAATTGTTAT CCGCTCACAA TTCCACACAA CATACGAGCC 5001 GGAAGCATAA AGTGTAAAGC CTGGGGTGCC TAATGAGTGA GCTAACTCAC 5051 ATTAATTGCG TTGCGCTCAC TGCCCGCTTT CCAGTCGGGA AACCTGTCGT 5101 GCCAGCTGCA TTAATGAATC GGCCAACGCG CGGGGAGAGG CGGTTTGCGT 5151 ATTGGGCGCT CTTCCGCTTC CTCGCTCACT GACTCGCTGC GCTCGGTCGT 5201 TCGGCTGCGG CGAGCGGTAT CAGCTCACTC AAAGGCGGTA ATACGGTTAT 5251 CCACAGAATC AGGGGATAAC GCAGGAAAGA ACATGTGAGC AAAAGGCCAG 5301 CAAAAGGCCA GGAACCGTAA AAAGGCCGCG TTGCTGGCGT TTTTCCATAG 5351 GCTCCGCCCC CCTGACGAGC ATCACAAAAA TCGACGCTCA AGTCAGAGGT 5401 GGCGAAACCC GACAGGACTA TAAAGATACC AGGCGTTTCC CCCTGGAAGC 5451 TCCCTCGTGC GCTCTCCTGT TCCGACCCTG CCGCTTACCG GATACCTGTC 5501 CGCCTTTCTC CCTTCGGGAA GCGTGGCGCT TTCTCAATGC TCACGCTGTA 5551 GGTATCTCAG TTCGGTGTAG GTCGTTCGCT CCAAGCTGGG CTGTGTGCAC 5601 GAACCCCCCG TTCAGCCCGA CCGCTGCGCC TTATCCGGTA ACTATCGTCT 5651 TGAGTCCAAC CCGGTAAGAC ACGACTTATC GCCACTGGCA GCAGCCACTG 5701 GTAACAGGAT TAGCAGAGCG AGGTATGTAG GCGGTGCTAC AGAGTTCTTG 5751 AAGTGGTGGC CTAACTACGG CTACACTAGA AGGACAGTAT TTGGTATCTG 5801 CGCTCTGCTG AAGCCAGTTA CCTTCGGAAA AAGAGTTGGT AGCTCTTGAT 5851 CCGGCAAACA AACCACCGCT GGTAGCGGTG GTTTTTTTGT TTGCAAGCAG 5901 CAGATTACGC GCAGAAAAAA AGGATCTCAA GAAGATCCTT TGATCTTTTC 5951 TACGGGGTCT GACGCTCAGT GGAACGAAAA CTCACGTTAA GGGATTTTGG 6001 TCATGAGATT ATCAAAAAGG ATCTTCACCT AGATCCTTTT AAATTAAAAA 6051 TGAAGTTTTA AATCAATCTA AAGTATATAT GAGTAAACTT GGTCTGACAG 6101 TTACCAATGC TTAATCAGTG AGGCACCTAT CTCAGCGATC TGTCTATTTC 6151 GTTCATCCAT AGTTGCCTGA CTCCCCGTCG TGTAGATAAC TACGATACGG 6201 GAGGGCTTAC CATCTGGCCC CAGTGCTGCA ATGATACCGC GAGACCCACG 6251 CTCACCGGCT CCAGATTTAT CAGCAATAAA CCAGCCAGCC GGAAGGGCCG 6301 AGCGCAGAAG TGGTCCTGCA ACTTTATCCG CCTCCATCCA GTCTATTAAT 6351 TGTTGCCGGG AAGCTAGAGT AAGTAGTTCG CCAGTTAATA GTTTGCGCAA 6401 CGTTGTTGCC ATTGCTACAG GCATCGTGGT GTCACGCTCG TCGTTTGGTA 6451 TGGCTTCATT CAGCTCCGGT TCCCAACGAT CAAGGCGAGT TACATGATCC 6501 CCCATGTTGT GCAAAAAAGC GGTTAGCTCC TTCGGTCCTC CGATCGTTGT 6551 CAGAAGTAAG TTGGCCGCAG TGTTATCACT CATGGTTATG GCAGCACTGC 6601 ATAATTCTCT TACTGTCATG CCATCCGTAA GATGCTTTTC TGTGACTGGT 6651 GAGTACTCAA CCAAGTCATT CTGAGAATAG TGTATGCGGC GACCGAGTTG 6701 CTCTTGCCCG GCGTCAATAC GGGATAATAC CGCGCCACAT AGCAGAACTT 6751 TAAAAGTGCT CATCATTGGA AAACGTTCTT CGGGGCGAAA ACTCTCAAGG 6801 ATCTTACCGC TGTTGAGATC CAGTTCGATG TAACCCACTC GTGCACCCAA 6851 CTGATCTTCA GCATCTTTTA CTTTCACCAG CGTTTCTGGG TGAGCAAAAA 6901 CAGGAAGGCA AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT 6951 TGAATACTCA TACTCTTCCT TTTTCAATAT TATTGAAGCA TTTATCAGGG 7001 TTATTGTCTC ATGAGCGGAT ACATATTTGA ATGTATTTAG AAAAATAAAC 7051 AAATAGGGGT TCCGCGCACA TTTCCCCGAA AAGTGCCACC TGACGTCGAC 7101 GGATCGGG

[0253] 14 TABLE 12 Sequence of the recombinant plasmid pQE30-H-SemaL-BH (SEQ ID NO.:39)    1 CTCGAGAAAT CATAAAAAAT TTATTTGCTT TGTGAGCGGA TAACAATTAT   51 AATAGATTCA ATTGTGAGCG GATAACAATT TCACACAGAA TTCATTAAAG  101 AGGAGAAATT AACTATGAGA GGATCGCATC ACCATCACCA TCACGGAtcc  151 ctggttctgt ttgaagggga cgaggtgtat tccaccatcc ggaagcagga  201 atacaatggg aagatccctc ggttccgccg catccggggc gagagtgagc  251 tgtacaccag tgatactgtc atgcagaacc cacagttcat caaagccacc  301 atcgtgcacc aagaccaggc ttacgatgac aagatctact acttcttccg  351 agaggacaat cctgacaaga atcctgaggc tcctctcaat gtgtcccgtg  401 tggcccagtt gtgcaggggg gaccagggtg gggaaagttc actgtcagtc  451 tccaagtgga acacttttct gaaagccatg ctggtatgca gtgatgctgc  501 caccaacaag aacttcaaca ggctgcaaga cgtcttcctg ctccctgacc  551 ccagcggcca gtggagggac accagggtct atggtgtttt ctccaacccc  601 tggaactact cagccgtctg tgtgtattcc ctcggtgaca ttgacaaggt  651 cttccgtacc tcctcactca agggctacca ctcaagcctt cccaacccgc  701 ggcctggcaa gtgcctccca gaccagcagc cgatacccac agaAAGCTTA  751 ATTAGCTGAG CTVGGACTCC TGTTGATAGA TCCAGTAATG ACCTCAGAAC  801 TCCATCTGGA TTTGTTCAGA ACGCTCGGTT GCCGCCGGGC GTTTTTTATT  851 GGTGAGAATC CAAGCTAGCT TGGCGAGATT TTCAGGAGCT AAGGAAGCTA  901 AAATGGAGAA AAAAATCACT GGATATACCA CCGTTGATAT ATCCCAATGG  951 CATCGTAAAG AACATTTTGA GGCATTTCAG TCAGTTGCTC AATGTACCTA 1001 TAACCAGACC GTTCAGCTGG ATATTACGGG CTTTTTAAAG ACCGTAAAGA 1051 AAAATAAGCA CAAGTTTTAT CCGGCCTTTA TTCACATTCT TGCCCGCCTG 1101 ATGAATGCTC ATCCGGAATT TCGTATGGCA ATGAAAGACG GTGAGCTGGT 1151 GATATGGGAT AGTGTTCACC CTTGTTACAC CGTTTTCCAT GAGCAAACTG 1201 AAACGTTTTC ATCGCTCTGG AGTGAATACC ACGACGATTT CCGGCAGTTT 1251 CTACACATAT ATTCGCAAGA TGTGGCGTGT TACGGTGAAA ACCTGGCCTA 1301 TTTCCCTAAA GGGTTTATTG AGAATATGTT TTTCGTCTCA GCCAATCCCT 1351 GGGTGAGTTT CACCAGTTTT GATTTAAACG TGGCCAATAT GGACAACTTC 1401 TTCGCCCCCG TTTTCACCAT GGGCAAATAT TATACGCAAG GCGACAAGGT 1451 GCTGATGCCG CTGGCGATTC AGGTTCATCA TGCCGTCTGT GATGGCTTCC 1501 ATGTCGGCAG AATGCTTAAT GAATTACAAC AGTACTGCGA TGAGTGGCAG 1551 GGCGGGGCGT AATTTTTTTA AGGCAGTTAT TGGTGCCCTT AAACGCCTGG 1601 GGTAATGACT CTCTAGCTTG AGGCATCAAA TAAAACGAAA GGCTCAGTCG 1651 AAAGACTGGG CCTTTCGTTT TATCTGTTGT TTGTCGGTGA ACGCTCTCCT 1701 GAGTAGGACA AATCCGCCGC TCTAGAGCTG CCTCGCGCGT TTCGGTGATG 1751 ACGGTGAAAA CCTCTGACAC ATGCAGCTCC CGGAGACGGT CACAGCTTGT 1801 CTGTAAGCGG ATGCCGGGAG CAGACAAGCC CGTCAGGGCG CGTCAGCGGG 1851 TGTTGGCGGG TGTCGGGGCG CAGCCATGAC CCAGTCACGT AGCGATAGCG 1901 GAGTGTATAC TGGCTTAACT ATGCGGCATC AGAGCAGATT GTACTGAGAG 1951 TGCACCATAT GCGGTGTGAA ATACCGCACA GATGCGTAAG GAGAAAATAC 2001 CGCATCAGGC GCTCTTCCGC TTCCTCGCTC ACTGACTCGC TGCGCTCGGT 2051 CTGTCGGCTG CGGCGAGCGG TATCAGCTCA CTCAAAGGCG GTAATACGGT 2101 TATCCACAGA ATCAGGGGAT AACGCAGGAA AGAACATGTG AGCAAAAGGC 2151 CAGCAAAAGG CCAGGAACCG TAAAAAGGCC GCGTTGCTGG CGTTTTTCCA 2201 TAGGCTCCGC CCCCCTGACG AGCATCACAA AAATCGACGG TCAAGTCAGA 2251 GGTGGCGAAA CCCGACAGGA CTATAAAGAT ACCAGGCGTT TCCCCCTGGA 2301 AGCTCCCTCG TGCGCTCTCC TGTTCCGACC CTGCCGCTTA CCGGATACCT 2351 GTCCGCCTTT CTCCCTTCGG GAAGCGTGGC GCTTTCTCAA TGCTCACGCT 2401 GTAGGTATCT CAGTTCGGTG TAGGTCGTTC GCTCCAAGCT GGGCTGTGTG 2451 CACGAACCCC CCGTTCAGCC CGACCGCTGC GCCTTATCCG GTAACTATCG 2501 TCTTGAGTCC AACCCGGTAA GACACGACTT ATCGCCACTG GCAGCAGCCA 2551 CTGGTAACAG GATTAGCAGA GCGAGGTATG TAGGCGGTGC TACAGAGTTC 2601 TTGAAGTGGT GGCCTAACTA CGGCTACACT AGAAGGACAG TATTTGGTAT 2651 CTGCGCTCTG CTGAAGCCAG TTACCTTCGG AAAAAGAGTT GGTAGCTCTT 2701 GATCCGGCAA ACAAACCACC GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG 2751 CAGGAGATTA CGCGCAGAAA AAAAGGATCT CAAGAAGATC CTTTGATCTT 2801 TVCTACGGGG TCTGACGCTC AGTGGAACGA AAACTCACGT TAAGGGATTT 2851 TGGTCATGAG ATTATCAAAA AGGATCTTCA CCTAGATCCT TTTAAATTAA 2901 AAATGAAGTT TTAAATCAAT CTAAAGTATA TATGAGTAAA CTTGGTCTGA 2951 CAGTTACCAA TGCTTAATCA GTGAGGCACC TATCTCAGCG ATCTGTCTAT 3001 TTCGTTCATC CATAGCTGCC TGACTCCCCG TCGTGTAGAT AACTACGATA 3051 CGGGAGGGCT TACCATCTGG CCCCAGTGCT GCAATGATAC CGCGAGACCC 3101 ACGCTCACCG GCTCCAGATT TATCAGCAAT AAACCAGCCA GCCGGAAGGG 3151 CCGAGCGCAG AAGTGGTCCT GCAACTTTAT CCGCCTCCAT CCAGTCTATT 3201 AATTGTTGCC GGGAAGCTAG AGTAAGTAGT TCGCCAGTTA ATAGTTTGCG 3251 CAACGTTGTT GCCATTGCTA CAGGCATCGT GGTGTCACGC TCGTCGTTTG 3301 GTATGGCTTC ATTCAGCTCC GGTTCCCAAC GATCAAGGCG AGTTACATGA 3351 TCCCCCATGT TGTGCAAAAA AGCGGTTAGC TCCTTCGGTC CTCCGATCGT 3401 TGTCAGAAGT AAGTTGGCCG CAGTGTTATC ACTCATGGTT ATGGCAGCAC 3451 TGCATAATTC TCTTACTGTC ATGCCATCCG TAAGATGCTT TTCTGTGACT 3501 GGTGAGTACT CAACCAAGTC ATTCTGAGAA TAGTGTATGC GGCGACCGAG 3551 TTGCTCTTGC CCGGCGTCAA TACGGGATAA TACCGCGCCA CATAGCAGAA 3601 CTTTAAAAGT GCTCATCATT GGAAAACGTT CTTCGGGGCG AAAACTCTCA 3651 AGGATCTTAC CGCTGTTGAG ATCCAGTTCG ATGTAACCCA CTCGTGCACC 3701 CAACTGATCT TCAGCATCTT TTACTTTCAC CAGCGTTTCT GGGTGAGCAA 3751 AAACAGGAAG GCAAAATGCC GCAAAAAAGG GAATAAGGGC GACACGGAAA 3801 TGTTGAATAC TCATACTCTT CCTTTTTCAA TATTATTGAA GCATTTATCA 3851 GGGTTATTGT CTCATGAGCG GATACATATT TGAATGTATT TAGAAAAATA 3901 AACAAATAGG GGTTCCGCGC ACATTTCCCC GAAAAGTGCC ACCTGACGTC 3951 TAAGAAACCA TTATTATCAT GACATTAACC TATAAAAATA GGCGTATCAC 4001 GAGGCCCTTT CGTCTTCAC

[0254] 15 TABLE 13 Sequence of the recombinant plasmid pQE3I-H-SemaL-SH (SEQ ID NO.:40)    1 CTCGAGAAAT CATAAAAAAT TTATTTGCTT TGTGAGCGGA TAACAATTAT   51 AATAGATTCA ATTGTGAGCG GATAACAATT TCACACAGAA TTCATTAAAG  101 AGGAGAAATT AACTATGAGA GGATCGCATC ACCATCACCA TCACACGGAT  151 CCGCATGCga gctcccagtg ggaggtgagc caggtgcccc tggacctgtg  201 tgaggtctat ggcgggggct gccacggttg cctcatgtcc cgagacccct  251 actgcggctg ggaccagggc cgctgcatct ccatctaoag ctccgaacgg  301 tcagtgctgc aatccattaa tccagccgag ccacacaagg agtgtcccaa  351 ccccaaacca gacaaggccc cactgcagaa ggtttccctg gccccaaact  401 ctcgctacta cctgagctgc cccatggaat cccgccacgc cacctactca  451 tggcgccaca aggagaacgt ggagcagagc tgcgaacctg gtcaccagag  501 ccccaactgc atcctgttca tcgagaacct cacggcgcag cagtacggcc  551 actacttctg cgaggcccag gagggctcct acttccgcga ggctcagcac  601 tggcagctgc tgcccgagga cggcatcatg gccgagcacc tgctgggtca  651 tgcctgtgcc ctggctgcct ccctctggct gggggtgctg cccacactca  701 ctcttggctt gctggtccac gtgaagcttA ATTAGCTGAG CTTGGACTCC  751 TGTTGATAGA TCCAGTAATG ACCTCAGAAC TCCATCTGGA TTTGTTCAGA  801 ACGCTCGGTT GCCGCCGGGC GTTTTTTATT GGTGAGAATC CAAGCTAGCT  851 TGGCGAGATT TTCAGGAGCT AAGGAAGCTA AAATGGAGAA AAAAATCACT  901 GGATATACCA CCGTTGATAT ATCCCAATGG CATCGTAAAG AACATTTTGA  951 GGCATTTCAG TCAGTTGCTC AATGTACCTA TAACCAGACC GTTCAGCTGG 1001 ATATTACGGC CTTTTTAAAG ACCGTAAAGA AAAATAAGCA CAAGTTTTAT 1051 CCGGCCTTTA TTCACATTCT TGCCCGCCTG ATGAATGCTC ATCCGGAATT 1101 TCGTATGGCA ATGAAAGACG GTGAGCTGGT GATATGGGAT AGTGTTCACC 1151 CTTGTTACAC CGTTTTCCAT GAGCAAACTG AAACGTTTTC ATCGCTCTGG 1201 AGTGAATACC ACGACGATTT CCGGCAGTTT CTACACATAT ATTCGCAAGA 1251 TGTGGCGTGT TACGGTGAAA ACCTGGCCTA TTTCCCTAAA GGGTTTATTG 1301 AGAATATGTT TTTCGTCTCA GCCAATCCCT GGGTGAGTTT CACCAGTTTT 1351 GATTTAAACG TGGCCAATAT GGACAACTTC TTCGCCCCCG TTTTCACCAT 1401 GGGCAAATAT TATACGCAAG GCGACAAGGT GCTGATGCCG CTGGCGATTC 1451 AGGTTCATCA TGCCGTCTGT GATGGCTTCC ATGTCGGCAG AATGCTTAAT 1501 GAATTACAAC AGTACTGCGA TGAGTGGCAG GGCGGGGCGT AATTTTTTTA 1551 AGGCAGTTAT TGGTGCCCTT AAACGCCTGG GGTAATGACT CTCTAGCTTG 1601 AGGCATCAAA TAAAACGAAA GGCTCAGTCG AAAGACTGGG CCTTTCGTTT 1651 TATCTGTTGT TTGTCGGTGA ACGCTCTCCT GAGTAGGACA AATCCGCCGC 1701 TCTAGAGCTG CCTCGCGCGT TTCGGTGATG ACGGTGAAAA CCTCTGACAC 1751 ATGCAGCTCC CGGAGACGGT CACAGCTTGT CTGTAAGCGG ATGCCGGGAG 1801 CAGACAAGCC CGTCAGGGCG CGTCAGCGGG TGTTGGCGGG TGTCGGGGCG 1851 CAGCCATGAC CCAGTCACGT AGCGATAGCG GAGTGTATAC TGGCTTAACT 1901 ATGCGGCATC AGAGCAGATT GTACTGAGAG TGCACCATAT GCGGTGTGAA 1951 ATACCGCACA GATGCGTAAG GAGAAAATAC CGCATCAGGC GCTCTTCCGC 2001 TTCCTCGCTC ACTGACTCGC TGCGCTCGGT CTGTCGGCTG CGGCGAGCGG 2051 TATCAGCTCA CTCAPAGGCG GTAATACGGT TATCCACAGA ATCAGGGGAT 2101 AACGCAGGAA AGAACATGTG AGCAAAAGGC CAGCAAAAGG CCAGGAACCG 2151 TAAAAAGGCC GCGTTGCTGG CGTTTTTCCA TAGGCTCCGC CCCCCTGACG 2201 AGCATCACAA AAATCGACGC TCAAGTCAGA GGTGGCGAAA CCCGACAGGA 2251 CTATAAAGAT ACCAGGCGTT TCCCCCTGGA AGCTCCCTCG TGCGCTCTCC 2301 TGTTCCGACC CTGCCGCTTA CCGGATACCT GTCCGCCTTT CTCCCTTCGG 2351 GAAGCGTGGC GCTTTCTCAA TGCTCACGCT GTAGGTATCT CAGTTCGGTG 2401 TAGGTCGTTC GCTCCAAGCT GGGCTGTGTG CACGAACCCC CCGTTCAGCC 2451 CGACCGCTGC GCCTTATCCG GTAACTATCG TCTTGAGTCC AACCCGGTAA 2501 GACACGACTT ATCGCCACTG GCAGCAGCCA CTGGTAACAG GATTAGCAGA 2551 GCGAGGTATG TAGGCGGTGC TACAGAGTTC TTGAAGTGGT GGCCTAACTA 2601 CGGCTACACT AGAAGGACAG TATTTGGTAT CTGCGCTCTG CTGAAGCCAG 2651 TTACCTTCGG AAAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAAACCACC 2701 GCTGGTAGCG GTGGTTTTTT TGTTTGCAAG CAGCAGATTA CGCGCAGAAA 2751 AAAAGGATCT CAAGAAGATC CTTTGATCTT TTCTACGGGG TCTGACGCTC 2801 AGTGGAACGA AAACTCACGT TAAGGGATTT TGGTCATGAG ATTATCAAAA 2851 AGGATCTTCA CCTAGATCCT TTTAAATTAA AAATGAAGTT TTAAATCAAT 2901 CTAAAGTATA TATGAGTAAA CTTGGTCTGA CAGTTACCAA TGCTTAATCA 2951 GTGAGGCACC TATCTCAGCG ATCTGTCTAT TTCGTTCATC CATAGCTGCC 3001 TGACTCCCCG TCGTGTAGAT AACTACGATA CGGGAGGGCT TACCATCTGG 3051 CCCCAGTGCT GCAATGATAC CGCGAGACCC ACGCTCACCG GCTCCAGATT 3101 TATCAGCAAT AAACCAGCCA GCCGGAAGGG CCGAGCGCAG AAGTGGTCCT 3151 GCAACTTTAT CCGCCTCCAT CCAGTCTATT AATTGTTGCC GGGAAGCTAG 3201 AGTAAGTAGT TCGCCAGTTA ATAGTTTGCG CAACGTTGTT GCCATTGCTA 3251 CAGGCATCGT GGTGTCACGC TCGTCGTTTG GTATGGCTTC ATTCAGCTCC 3301 GGTTCCCAAC GATCAAGGCG AGTTACATGA TCCCCCATGT TGTGCAAAAA 3351 AGCGGTTAGC TCCTTCGGTC CTCCGATCGT TGTCAGAAGT AAGTTGGCCG 3401 CAGTGTTATC ACTCATGGTT ATGGCAGCAC TGCATAATTC TCTTACTGTC 3451 ATGCCATCCG TAAGATGCTT TTCTGTGACT GGTGAGTACT CAACCAAGTC 3501 ATTCTGAGAA TAGTGTATGC GGCGACCGAG TTGCTCTTGC CCGGCGTCAA 3551 TACGGGATAA TACCGCGCCA CATAGCAGAA CTTTAAAAGT GCTCATCATT 3601 GGAAAACGTT CTTCGGGGCG AAAACTCTCA AGGATCTTAC CGCTGTTGAG 3651 ATCCAGTTGG ATGTAACCCA CTCGTGCACG CAACTGATCT TCAGCATCTT 3701 TTACTTTCAC CAGCGTTTCT GGGTGAGCAA AAACAGGAAG GCAAAATGCC 3751 GCAAAAAAGG GAATAAGGGC GACACGGAAA TGTTGAATAC TCATACTCTT 3801 CCTTTTTCAA TATTATTGAA GCATTTATCA GGGTTATTGT CTCATGAGCG 3851 GATACATATT TGAATGTATT TAGAAAAATA AACAAATAGG GGTTCCGCGC 3901 ACATTTCCCC GAAAAGTGCC ACCTGACGTC TAAGAAACCA TTATTATCAT 3951 GACATTAACC TATAAAAATA GGCGTATCAC GAGGCCCTTT CGTCTTCAC

[0255] 16 TABLE 14 (Partial) nucleotide sequence of the human semaphorin L gene. (8888 nucleotides) (SEQ ID NO.:41): GAGCCGCACACGGTGCTTTTCCACGAGCCAGGCAGCTCCTCTGTGTGGGTGGGAGGACGT GGCAAGGTCTACCTCTTTGACTTCCCCGAGGGCAAGAACGCATCTGTGCGCACGGTGAGC CTCTCTCTTCCCCCAACACCCCCCCTACCCTCTTATCTCCCCTCTGGCCCTGCCAAGGGT CCTCAGGGAATCCGAGGGAGCTGGCTTCTCTTCCTAAACTGCCCCCACCTCCGTATCCTA TAAATGGCTCCTGGGGGAGGCTCCCTAAAGGTAGTCCAGATTGGAGTGGGGAGCTGGGGC GGTGTGGAGAAAAACAGGAGCTAATGGGCCTGGCCAGCTGGGCAGCGCTGCTGCGGAAAG CCCAGGCTGGAAGCTGGGCCCCAGAGCCCATGCCTGGTCTTCTGAACCCTCTGGGCCTCA GCTCTGGATATGAGACCCTGTTTGACCTCAGGTAGATCACTCACCCTCTCAGAGCCCCAG TTGCTCATCTGTCAGATGAGAATAATGGTTGCTTCCTTTGGGGCTTATCCTGAGGCTGTG TGGAAAGCATTTCAGGGGTACCTCACCCCTGGCAGATTGAACTAATGCTTCTCCCCTTCC CCAGGTGAATATCGGCTCCACAAAGGGGTCCTGTCTGGATAAGCGGGTGAGCGGGGGAGG GATCTGGAGGGGTCTGAGCCACTTGGTAAAGGGAGAGGAGACCCTGAGGGTCTAAGGAAG GAAGCATGGCCCTGCCCCACGAGTCCCAGACTGATGGGGAGACGTGGTCCTCTGTGCTTA GGGGATGGCGTCAGCTGCACACACTCTGGGCTGTCCCGGGAGGCTGTCACCTATGCTAAG CCCTTCTGACACCTTCTTCCCTGATCCTGGGGGTCCTAGTGCTAGGCTTGCCAGGGCCTT CCAGCAACCAATTTCTCTCCTCCCTTCTCTCTTCCCCGGGCAGGACTGCGAGAACTACAT CACTCTCCTGGAGAGGCGGAGTGAGGGGCTGCTGGCCTGTGGCACCAACGCCCGGCACCC CAGCTGCTGGAACCTGGTGAGAAGGCTGCTCCCCATGTGCCTGATCAGCTCACCTTCTAC TGCGTGGGCTTCTGCCCCTCATGGTGGGAAGGAGATGGCGAGACTCCAATGCTGGCCTTG CCCTGGGAGGATGGGGCTCCTGGCCGAGAAACTGGCCGTCATGGGAGGCAGTGGCTGTGG GATTATGTGGCCATCCAACCCTCTGGATCTCCCACAGGTGAATGGCACTGTGGTGCCACT TGGCGAGATGAGAGGCTACGCCCCCTTCAGCCCGGACGAGAACTCCCTGGTTCTGTTTGA AGGTTGGGGCATGCTTCGGAACTGGGCTGGGAGCAGGATGGTCAGCTCTTTGTCCAGTGT CCGGAGGAGGGACTTCCAGGAGCTGCCTGCCCTTACTCATTTCTCCCTCCCACTGACCCC AGGGGACGAGGTGTATTCCACCATCCGGAAGCAGGAATACAATGGGAAGATCCCTCGGTT CCGCCGCATCCGGGGCGAGAGTGAGCTGTACACCAGTGATACTGTCATGCAGAGTGAGTC AGGCTCCGGCTGGGCTGAGGGTGGGCAAGGGGGTGTGAGCACTTAAGGTGGCAGATGGGA TCCTGATGTTTCTGGGAGGGCTCCCTGAGGGCCGCTGGGGCCATGCAGGAAAGCAGGACC TTGGTATAGGCCTGAGAAGTTAGGGTTGGCTGGGAGCAGAGGAACAGACAAGGTATAGCA GTGGGATGGGCCCAGCCCTCTTCAGGAACACAAACAGAGGGAGCCCCAGACCCAGTGCAG GGTCCCCAGGAGCCAAAGTTTATCCTCTGCTGAGTTCACGTGGAGGCAGCCCCCCAACTC CCTCCTCATCAGGGCTCTGCCAATTGAGCAGAAGTGACATAGGGGCCCCCAGGGACCTTC CCCCACTCCCCAGGCATGAAGTCATTGCTCCTGGGCCGATGACATCTTTGTAGGAAGAGG GCAAAACAGGTGTGGGGTGGAGGTGCAGGGTCTAGGGCCCCTCGGGGAGTTGGACCTGAT GTTATGAGTCCTATTCCAGATCTGATTTGCCATGGTTTGTGCAGACCCGAAGGAGGGAGG AGAGTGTGCAGGGTTGGAATGGTCTCCCGGGCAAGCTTCCCAGCCTTACGCCCATTCGCT TCTGTGCCCTGGCAGACCCACAGTTCATCAAAGCCACCATCGTGCACCAAGACCAGGCTT ACGATGACAAGATCTACTACTTCTTCCGAGAGGACAATCCTGACAAGAATCCTGAGGCTC CTCTCAATGTGTCCCGTGTGGCCCAGTTGTGCAGGGTGAACACGGGCGTGAGGGCTGCTG GCTACGTGTCTGTGCATGAATAGGCCTGAGTGAGGGTGAGTTCTGTGTGTCCGTGTGCAT GTAGAAGTTGTGTGGATGTATGAGTGGGTCTGTGTCAGGGACTGTGGGAGCAGCTGTGTG TGCATGGAGCATCATGTGTCTGTGTGTGGGTAAAGGTGGCTGAGCTCCTGTGCACGTATG ATGGCGTGTGAGCGTGTGTATGATGGGGTGTGTGTGTGTGTGTGTGTGTGTGTTTTGCCT GTGTGAATGTGCTGTGCCACGTATGTGGGTGCGTGAGTCAGTAAATGTGTGTCTGAGTCC GTCTGCTCTGTGGGGACCTGGCACTCTCACCTGCCCTGACCCTGGGCACTGCTGGCCCTG GGCTCTGGATCAGCCAGGCCTGCTTGCAGGAGTCTCATCTGGAGACCTGCCCTGAGTCCT GGGGCACCCCCGGCAGGTCCTGGCCCCTCGCAGCCTGCCTTCCTCCTCTGGGCCCAGGTG TTGATATTGCTGGCAGTGGTTTCCTGGGGTGTGTGGGGAAGCCCGGGCAGGTGCTGAGGG GCCTCTTCTCCCCTCTACCCTTCCAGGGGGACCAGGGTGGGGAAAGTTCACTGTCAGTCT CCAAGTGGAACACTTTTCTGAAAGCCATGCTGGTATGCAGTGATGCTGCCACCAACAAGA ACTTCAACAGGCTGCAAGACGTCTTCCTGCTCCCTGACCCCAGCGGCCAGTGGAGGGACA CCAGGGTCTATGGTGTTTTCTCCAACCCCTGGTGAGTGGCCCTTGTCCTGGGGCCGGGGC TGGCATTGGTTCAGTGTCCAGTAGGGACAGGAGGCCTTGGGCCCTGCTGAGGGCCTCCCT GGTGTGGCAGGAGCAGGGGCTGCAGGCTCAAGAGGCTGGGCTGTTGCTGGGTGTGGGGTG GGGGGACAGCCAGTGCGATGTATGTACTGTTGTGTGAGTGAGTCTGCACTCATGGGTGTG TGTGCATGCCCTATATGCACACTCATGACTGCACTTGTGCCTGTGTGTCCCACCACCTGC TTGTGCCGAGAGTGGACACTGGGCCCAGGAGGAAGCTGCTGAAGCATCTCTCGGGGAGCT GGGTGOTATTACACCTGCTCAGGCACTGCCTGAGCCCGATAATTCACACTTCTTAATCAC TCTCATTGATTGAACACACGGCAGGCGGAAGTGTTGGGTGTGTGTGGGGAGAGTTAGGGA TAGAGTGGAGGAAGCCAAGACCCTGCTCTGTGGGTCCTGGGTGAGTGGGTCCCCCAGGCT GGGAAGGGGTTGGGGGTCTGGCCTCCTGGGGCATCAGCACCCCACAGCCTGTGCCCAGGG AGGGCTAGAGAACTGCTCAGCCTATGATGGGGTTCCTCCTGCCTTGGGGTTGGGTAGAGC AGATGGCCTCTAGACTCAGTGATTCTGTAACAGGATACAAGTTTGTGGTTTTAAATTGCA GCACAAAGAAATTAGGCTGAACTCCTCTCCTTCCTCCTCTCCATCCCTCCCCAThTTCAG TGGTGGTTGGCAACTCAGTGCCAGGCACAAGGCTGGCCTGGGTGAGTGGAGGTGGATGGG TGGGTTCTGGGCCCCCCATTGAGCTGGTCTCCATGTCACTGCAGGAACTACTCAGCCGTC TGTGTGTATTCCCTCGGTGACATTGACAAGGTCTTCCGTACCTCCTCACTCTTGGGCTAC CACTCAAGCCTTCCCAACCCGCGGCCTGGCAAGGTGAGCGTGACACCAGCCGTGGCCCAG GCCCAGCCCTCCTTCTGCCTCACCTCCCACCACCCCACTGACCTGGGCCTGCTCTCCTTG CCCAGTGCCTCCCAGACCAGCAGCCGATACCCACAGAGACCTTCCAGGTGGCTGACCGTC ACCCAGAGGTGGCGCAGAGGGTGGAGCCCATGGGGCCTCTGAAGACGCCATTGTTCCACT CTAAATACCACTACCAGAAAGTGGCCGTCCACCGCATGCAAGCCAGCCACGGGGAGACCT TTCATGTGCTTTACCTAACTACAGGTGAGAGGCTACCCCGGGACCCTCAGTTTGCTTTGT AAAAACGGGCATGAAAGGTGTAAGGAATAATGTAGTTAACATCTGGTTGGATCTTTACAT GTGGAAGGAATAATTGAGTGACTGGAGTTGTCAGGGGTTAATGTGTGTGGGTGTGGTTGA GCCAGGCAGGGAGAGCTTCCTGGAGGAGGTAGGGGCAAGAGGGAAAGGGGGATGGGAGAA AAGCAAGCACTGGGATTTGGAGGCGGAAATCTGGAGAGTCTGAGCAAAGCCAGGTGCACC TTTGGTCCAGATGTCTGACTCAGGGAAGAAGATGGTAGGAAGAGACGTGGCAAATGAGGA GGAGGGGCCTGAACCACAGGGATACTGGCCTCTGCCAGGCAGAATGAGGGAGTCAGGCCC TGCGCCTGTCTTTGGGATTGTGCAGGTGAGAAGAAACATTTGAGGAGTTGATGGGGCACA AATTAGGTATGGGGAAGGAGTTCCAGGGGGCAGAACCTTTGCCATCTCACAGAGGACAGG GGCAGCTTCTCTTCTTCCCTGGAGTAGGCCCTGCTGGGGGAAGCTGGGTGGAATGCCGTG GGAGATGCTCCTGCTTTCTGGAAAGCCACAGGACACGGAGGAGCCAGTCCTGAGTTGGGT TTGTCGCAGCTTCCCATGCCAGCTGCCTTCCTTGAGACTGGAAAGGGCCTCTAGCACCCC TGGGGCCATTCAATTCAGGCCCAGGCGCCCAACCTCAGTTGTTCACATTCCCCATGTGAT CTCCTGTTGCTGCTTCACCTTGGGACTGTCTCGGCTTTGGTGACCTTGTAGGAAACTGGA ACCCCAGCACCATTGTTTGGCTCCTGGAAGCCTTGGGGAGAGGAATTTCCCACAGGGCAG GGCCTGGGTCCTGATTCCCTGCCTCTTTACTCCCTATTCATCCCGGCTACACCCTTGGGC CCCCATCCTTGCTTGGCTCCAGTACTGGCTGGCACAGCTGTTGTGGTCATCCAGGGATGG CAGGGCACTGGGGAACAGAAGAGAGAGGTCACACAGTGCGGAACTGGGAGCAGGAGCTAG GACAAGGAAGGCTGGACTTGGGCCATGGATTCCCTTCCTGCAGACTTGGGAAGTGAGCAC ACTTGAGTGATTAGAGAAGGTGTCTTCGTTCTAAGGGCAGTGGAGGAGGCACCATTTTGG AGCCTGCATCATTCGTATTTGGGCTAGATTGAAAAATAGAGCTTTCTAAGTCCTCTGCAG AGAATGGGAGGCTCTCACAACTGGGAGAAGTATTGGCTCTTTTCCTGAGAATTTTGCCTT GGGTATGCTGTTACTGGGGCTGGTTTGGAAGGAGTATAGGGCNTTATGTCTGTGAAGGCA GTGGCTGGGGTGGGGCCTTATCAGGCCCAAGGAGCATCTGGCCACATCTCAGAGTCCACA GATGAGGATCACGGATGTGTAGAGGAAACATCCTAGGCAGGCAATCATCTGACTGCTTTT TTGGGGCAGGTGATGCCCTGGGAAATTGGGAGGGAGGGAGAGAGGGAGGTAGGCTATTCT AGAPACTGGGAGAGCAGGTGAGGTAGGATTGGGAGGACCAGGGGTCAGGGTCCCCATTGG TCCCTAATTGAGAACGGAGAGAGCATTGGTCTAGGAGGCAGGCAGCTCGGTTATAAGACC TTGGGAACTCTTGATTTAGAATCCAAGATCCTTTTTAGATCTAGGATTTTATAAAATTAA GATATCCCCTAAGATCAAATGCTTCGTGGAGTCCTGAATTGGATCCTAGTTCAGTTGTTG GACATTTGTGGAAAAACTAGTGAAATCCAAATAAAGTCTGTAGTTTTGTTAATAGTAATG CACCAATGTCAGTTGCCTAGTTGTGACAAATATACCGTGGTTATGTAAGATGGTAACATT AGGGGGAACTGGAGAAGGGTAGATTGGAGCTCTCTGTACTATCTTTGCAACTTTTCTGGG AATCTAAAATTACTCCAAAATAAAAAAAAAATGTATTTAAAGTAAATATATTCCCTTTGA GTCCAGGAGGCAGGGGAGTTGTAGAAGCAGCTGAGTGGTTGGGTTCTGACAGATTTGGTT CCAACTCGGTCTCTGCTGCTCACCAGCTGTGTGACCTTGAGCAAGTGGCTTAGCCTTTCT GAGCCTGATTTCCTTATCTGTGGAGTGGGGAAGATGACAGCCACCTCGCAGGGCTGTGGA GGGTTAAACGAGGTGATGCATGGACAGCAGCCGCACTGACCTTGCTGGTGTGGGGCTCCT GCTTCTGTTCTTCCCGTGCAGCCTTGGGAATGTTGGAGGCCGTATCCAGGGACCCCTGGG CCTCCTGGGATGGCCTCTCTGGATCAGCCTTGGAAGGTTCCAGGCTGCCCTTAGGCTCCC ACATTCTTCCCCAGTCACGCTCTCCTCGCCCTGCCCACACCAGTCCTGTGACCCTTGCCT GAGTTGTGACTTCCCACCCCTCCCCGGCCTAGAGGAAAGCTGCCTGGCCCCTCAGTGGGA CTCCCGCCCACTGACCCTCTGTCCACCATACACAGACAGGGGCACTATCCACAAGGTGGT GGAACCGGGGGAGCAGGAGCACAGCTTCGCCTTCAACATCATGGAGATCCAGCCCTTCCG CCGCGCGGCTGCCATCCAGACCATGTCGCTGGATGCTGAGCGGGTGAGCCTTCCCCCACT GCGTCCCATGGGCTATGCAGTGACTGCAGCTGAGGACAGGGCTCCTTTGCATGTGATTTG TGTGTTCTTTTAAGAGCTTCTAGGCCTTAGGGCCTGGACATTTAGGACTGAGTGTGGGGT GGGGCCCGGGCCTGACCCAATCCTGCTGTCCTTCCAGAGGAAGCTGTATGTGAGCTCCCA GTGGGAGGTGAGCCAGGTGCCCCTGGACCTGTGTGAGGTCTATGGCGGGGGCTGCCACGG TTGCCTCATGTCCCGAGACCCCTACTGCGGCTGGGACCAGGGCCGCTGCATCTCCATCTA CAGCTCCGAACGGTACGTTGGCCGGGATCCCTCCGTCCCTGGGACAAGGTGGGCATGGGA CAGGGGGAGGTGTTGTCGGGCTGGAAGAGGTGGCGGTACTGGGCCTTTCTTGTGGGACCT CCTCTCTACTGGAACTGCACTAGGGGTAAGGATATGAGGGTCAGGTCTGCAGCCTTGTAT CTGCTGATCCTCTTTCGTCCTTCCCACTCCAGGTCAGTGCTGCAATCCATTAATCCAGCC GAGCCACACAAGGAGTGTCCCAACCCCAAACCAGGTACCTGATCTGGCCCTGCTGGCGGC TGTGGCCCAATGAGTGGGGTACTGCCCTGCCCTGATTGTCCTGGTCTGAGGGAAACATGG CCTTGTCCTGTGGGCCCCAGGTACATGGGGCAGGATACAGTCCTGCAGAGGGAGCCCTCT TGGTGGGATGAGCGAGACGGGAGAAAAAAGGAGGACGCTGAGGGCTGGGTTCCCCACGTT CATTCAGAAGCCTTGTCCTGGGATCCCAGTCGGTGGGGAGGACACATCCTCCCCTGGGAG CTCTTTGTCCCTCCTCACGGCTGCTTCCCCACTGCCTCCCCAGACTTGGCCCCACTGCAG AAGGTTTCCCTGGCCCCAAACTCTCGCTACTACCTGAGCTGCCCCATGGAATCCCGCCAC GCCACCTACTCATGGCGCCACAAGGAGAACGTGGAGCAGAGCTGCGTTCCTGGTCACCAG AGCCCCAACTGCATCCTGTTCATCGAGAACCTCACGGCGCAGCAGTACGGCCACTACTTC TGCGAGGCCCAGGAGGGCTCCTACTTCCGCGAGGCTCAGCACTGGCAGCTGCTGCCCGAG GACGGCATCATGGCCGAGCACCTGCTGGGTCATGCCTGTGCCCTGGCCGCCTCCCTCTGG CTGGGGGTGCTGCCCACACTCACTCTTGGCTTGCTGGTCCACTAGGGCCTCCCGAGGCTG GGCATGCCTCAGGCTTCTGCAGCCCAGGGCACTAGTTCGTCTCACACTCAGAGCCGGCTG GCCCGGGAGCTCCTTGCCTGCCACTTCTTCCAGGGGACAGTTTTTCCCAGTGGAGGATGC CAGGCCTGGAGACGTCCAGCCGCAGGCGGCTGCTGGGCCCCAGGTGGCGCACGGATGGTG AGGGGCTGAGAATGAGGGCACCGACTGTGAAGCTGGGGCATCGATGACCCAAGACTTTAT CTTCTGGAAAATATTTTTCAGACTCCTCAAACTTGACTAAATGCAGCGATGCTCCCAGCC CAAGAGCCCATGGGTCGGGGAGTGGGTTTGGATAGGAGAGCTGGGACTCCATCTCGACCC TGGGGCTGAGGCCTGAGTCCTTCTGGACTCTTGGTACCCACATTGCCTCCTTCCCCTCCC TCTCTCATGGCTGGGTGGCTGGTGTTCCTGAAGACCCAGGGCTACCCTCTGTCCAGCCCT GTCCTCTGCAGCTCCCTCTCTGGTCCTGGGTCCCACAGGACAGCCGCCTTGCATGTTTAT TGAAGGATGTTTGCTTTCCGGACGGAAGGACGGAAAAAGCTCTGAAAAAAAAAAAAAAAA AAAAAAAA

[0256] 17 TABLE 15 Nucleotide sequence of pMeIBacA-H-SEMAL (6622bp) (SEQ ID NO:42)    1 GATATCATGG AGATAATTAA AATGATAACC ATCTCGCAAA TAAATAAGTA   51 TTTTACTGTT TTCGTAACAG TTTTGTAATA AAAAAACCTA TAAATATGAA  101 ATTCTTAGTC AACGTTGCCC TTGTTTTTAT GGTCGTATAC ATTTCTTACA  151 TCTATGCGGA TCGATGG                    gga tccgcccagg gccacctaag gagcggaccc  201 cgcatcttcg ccgtctggaa aggccatgta gggcaggacc gggtggactt  251 tggccagact gagccgcaca cggtgctttt ccacgagcca ggcagctcct  301 ctgtgtgggt gggaggacgt ggcaaggtct acctctttga cttccccgag  351 ggcaagaacg catctgtgcg cacggtgaat atcggctcca caaaggggtc  401 ctgtctggat aagcgggact gcgagaacta catcactctc ctggagaggc  451 ggagtgaggg gctgctggcc tgtggcacca acgcccggca ccccagctgc  501 tggaacctgg tgaatggcac tgtggtgcca cttggcgaga tgagaggcta  551 tgcccccttc agccGggaCg agaactccct ggttctgttt gaaggggacg  601 aggtgtattc caccatccgg aagcaggaat acaatgggaa gatccctcgg  651 ttccgccgca tccggggcga gagtgagctg tacaccagtg atactgtcat  701 gcagaaccca cagttcatca aagccaccat cgtgcaccaa gaccaggctt  751 acgatgacaa gatctactac ttcttccgag aggacaatcc tgacaagaat  801 cctgaggctc ctctcaatgt gtcccgtgtg gcccagttgt gcagggggga  851 ccagggtggg gaaagttcac tgtcagtctc caagtggaac acttttctga  901 aagccatgct ggtatgcagt gatgctgcca ccaacaagaa cttcaacagg  951 ctgcaagacg tcttcctgct ccctgacccc agcggccagt ggagggacac 1001 cagggtctat ggtgttttct ccaacccctg gaactactca gccgtctgtg 1051 tgtattccct cggtgacatt gacaaggtct tccgtacctc ctcactcaag 1101 ggctaccact caagccttcc caacccgcgg cctggcaagt gcctcccaga 1151 ccagcagccg atacccacag agaccttcca ggtggctgac cgtcacccag 1201 aggtggcgca gagggtggag cccatggggc ctctgaagac gccattgttc 1251 cactctaaat accactacca gaaagtggcc gttcaccgca tgcaagccag 1301 ccacggggag acctttcatg tgctttacct aactacagac aggggcacta 1351 tccacaaggt ggtggaaccg ggggagcagg agcacagctt cgccttcaac 1401 atcatggaga tccagccctt ccgccgcgcg gctgccatcc agaccatgtc 1451 gctggatgct gagcggagga agctgtatgt gagctcccag tgggaggtga 1501 gccaggtgcc cctggacctg tgtgaggtct atggcggggg ctgccacggt 1551 tgcctcatgt cccgagaccc ctactgcggc tgggaccagg gccgctgcat 1601 ctccatctac agctccgaac ggtcagtgct gcaatccatt aatccagccg 1651 agccacacaa ggagtgtccc aaccccaaac cagacaaggc cccactgcag 1701 aaggtttccc tggccccaaa ctctcgctac tacctgagct gccccatgga 1751 atcccgccac gccacctact catggcgcca caaggagaac gtggagcaga 1801 gctgcgaacc tggtcaccag agccccaact gcatcctgtt catcgagaaG 1851 ctcacggcgc agcagtacgg ccactacttc tgcgaggccc aggagggctc 1901 ctacttccgc gaggctcagc actggcagct gctgcccgag gacggcatca 1951 tggccgagca cctgctgggt catgcctgtg ccctggctgc ctgaattc 2001 AGCTTGGAGT CGACTCTGCT GAAGAGGAGG AAATTCTCCT TGAAGTTTCC 2051 CTGGTGTTCA AAGTAAAGGA GTTTGCACCA GACGCACCTC TGTTCACTGG 2101 TCCGGCGTAT TAAAACACGA TACATTGTTA TTAGTACATT TATTAAGCGC 2151 TAGATTCTGT GCGTTGTTGA TTTACAGACA ATTGTTGTAC GTATTTTAAT 2201 AATTCATTAA ATTTATAATC TTTAGGGTGG TATGTTAGAG CGAAAATCAA 2251 ATGATTTTCA GCGTCTTTAT ATCTGAATTT AAATATTAAA TCCTCAATAG 2301 ATTTGTAAAA TAGGTTTCGA TTAGTTTCAA ACAAGGGTTG TTTTTCCGAA 2351 CCGATGGCTG GACTATCTAA TGGATTTTCG CTCAACGCCA CAAAACTTGC 2401 CAAATCTTGT AGCAGCAATC TAGCTTTGTC GATATTCGTT TGTGTTTTGT 2451 TTTGTAATAA AGGTTCGACG TCGTTCAAAA TATTATGCGC TTTTGTATTT 2501 CTTTCATCAC TGTCGTTAGT GTACAATTGA CTCGACGTAA ACACGTTAAA 2551 TAAAGCCTGG ACATATTTAA CATCGGGCGT GTTAGCTTTA TTAGGCCGAT 2601 TATCGTCGTC GTCCCAACCC TCGTCGTTAG AAGTTGCTTC CGAAGACGAT 2651 TTTGCCATAG CCACACGACG CCTATTAATT GTGTCGGCTA ACACGTCCGC 2701 GATCAAATTT GTAGTTGAGC TTTTTGGAAT TATTTCTGAT TGCGGGCGTT 2751 TTTGGGCGGG TTTCAATCTA ACTGTGCCCG ATTTTAATTC AGACAACACG 2801 TTAGAAAGCG ATGGTGCAGG CGGTGGTAAC ATTTCAGACG GCAAATCTAC 2851 TAATGGCGGC GGTGGTGGAG CTGATGATAA ATCTACCATC GGTGGAGGCG 2901 CAGGCGGGGC TGGCGGCGGA GGCGGAGGCG GAGGTGGTGG CGGTGATGCA 2951 GACGGCGGTT TAGGCTCAAA TTGTCTCTTT CAGGCAACAC AGTCGGCACC 3001 TCAACTATTG TACTGGTTTC GGGCGTATGG TGCACTCTCA GTACAATCTG 3051 CTCTGATGCC GCATAGTTAA GCCAGCCCCG ACACCCGCCA ACACCCGCTG 3101 ACGCGCCCTG ACGGGCTTGT CTGCTCCCGG CATCCGCTTA CAGACAAGCT 3151 GTGACCGTCT CCGGGAGCTG CATGTGTCAG AGGTTTTCAC CGTCATCACC 3201 GAAACGCGCG AGACGAAAGG GCCTCGTGAT ACGCCTATTT TTATAGGTTA 3251 ATGTCATGAT AATAATGGTT TCTTAGACGT CAGGTGGCAC TTTTCGGGGA 3301 AATGTGCGCG GAACCCCTAT TTGTTTATTT TTCTAAATAC ATTCAAATAT 3351 GTATCCGCTC ATGAGACAAT AACCCTGATA AATGCTTCAA TAATATTGAA 3401 AAAGGAAGAG TATGAGTATT CAACATTTCC GTGTCGCCCT TATTCCCTTT 3451 TTTGCGGCAT TTTGCCTTCC TGTTTTTGCT CACCCAGAAA CGCTGGTGAA 3501 AGTAAAAGAT GCTGAAGATC AGTTGGGTGC ACGAGTGGGT TACATCGAAC 3551 TGGATCTCAA CAGCGGTAAG ATCCTTGAGA GTTTTCGCCC CGAAGAACGT 3601 TTTCCAATGA TGAGCACTTT TAAAGTTCTG CTATGTGGCG CGGTATTATC 3651 CCGTATTGAC GCCGGGCAAG AGCAACTCGG TCGCCGCATA CACTATTCTC 3701 AGAATGACTT GGTTGAGTAC TCACCAGTCA CAGAAAAGCA TCTTACGGAT 3751 GGCATGACAG TAAGAGAATT ATGCAGTGCT GCCATAACCA TGAGTGATAA 3801 CACTGCGGCC AACTTACTTC TGACAACGAT CGGAGGACCG AAGGAGCTAA 3851 CCGCTTTTTT GCACAACATG GGGGATCATG TAACTCGCCT TGATCGTTGG 3901 GAACCGGAGC TGAATGAAGC CATACCAAAC GACGAGCGTG ACACCACGAT 3951 GCCTGTAGCA ATGGCAACAA CGTTGCGCAA ACTATTAACT GGCGAACTAC 4001 TTACTCTAGC TTCCCGGCAA CAATTAATAG ACTGGATGGA GGCGGATAAA 4051 GTTGCAGGAC CACTTCTGCG CTCGGCCCTT CCGGCTGGCT GGTTTATTGC 4101 TGATAAATCT GGAGCCGGTG AGCGTGGGTC TCGCGGTATC ATTGCAGCAC 4151 TGGGGCCAGA TGGTAAGCCC TCCCGTATCG TAGTTATCTA CACGACGGGG 4201 AGTCAGGCAA CTATGGATGA ACGAAATAGA CAGATCGCTG AGATAGGTGC 4251 CTCACTGATT AAGCATTGGT AACTGTCAGA CCAAGTTTAC TCATATATAC 4301 TTTAGATTGA TTTAAAACTT CATTTTTAAT TTAAAAGGAT CTAGGTGAAG 4351 ATCCTTTTTG ATAATCTCAT GACCAAAATC CCTTAACGTG AGTTTTCGTT 4401 CCACTGAGCG TCAGACCCCG TAGAAAAGAT CAAAGGATCT TCTTGAGATC 4451 CTTTTTTTCT GCGCGTAATC TGCTGCTTGC AAACAAAAAA ACCACCGCTA 4501 CCAGCGGTGG TTTGTTTGCC GGATCAAGAG CTACCAACTC TTTTTCCGAA 4551 GGTAACTGGC TTCAGCAGAG CGCAGATACC AAATACTGTT CTTCTAGTGT 4601 AGCCGTAGTT AGGCCACCAC TTCAAGAACT CTGTAGCACC GCCTACATAC 4651 CTCGCTCTGC TAATCCTGTT ACCAGTGGCT GCTGCCAGTG GCGATAAGTC 4701 GTGTCTTACC GGGTTGGACT CAAGACGATA GTTACCGGAT AAGGCGCAGC 4751 GGTCGGGCTG AACGGGGGGT TCGTGCACAC AGCCCAGCTT GGAGCGAACG 4801 ACCTACACCG AACTGAGATA CCTACAGCGT GAGCTATGAG AAAGCGCCAC 4851 GCTTCCCGAA GGGAGAAAGG CGGACAGGTA TCCGGTAAGC GGCAGGGTCG 4901 GAACAGGAGA GCGCACGAGG GAGCTTCCAG GGGGAAACGC CTGGTATCTT 4951 TATAGTCCTG TCGGGTTTCG CCACCTCTGA CTTGAGCGTC GATTTTTGTG 5001 ATGCTCGTCA GGGGGGCGGA GCCTATGGAA AAACGCCAGC AACGCGGCCT 5051 TTTTACGGTT CCTGGCCTTT TGCTGGCCTT TTGCTCACAT GTTCTTTCCT 5101 GCGTTATCCC CTGATTCTGT GGATAACCGT ATTACCGCCT TTGAGTGAGC 5151 TGATACCGCT CGCCGCAGCC GAACGACCGA GCGCAGCGAG TCAGTGAGCG 5201 AGGAAGCATC CTGCACCATC GTCTGCTCAT CCATGACCTG ACCATGCAGA 5251 GGATGATGCT CGTGACGGTT AACGCCTCGA ATCAGCAACG GCTTGCCGTT 5301 CAGCAGCAGC AGACCATTTT CAATCCGCAC CTCGCGGAAA CCGACATCGC 5351 AGGCTTCTGC TTCAATCAGC GTGCCGTCGG CGGTGTGCAG TTCAACCACC 5401 GCACGATAGA GATTCGGGAT TTCGGCGCTC CACAGTTTCG GGTTTTCGAC 5451 GTTCAGACGT AGTGTGACGC GATCGGTATA ACCACCACGC TCATCGATAA 5501 TTTCACCGCC GAAAGGCGCG GTGCCGCTGG CGACCTGCGT TTCACCCTGC 5551 CATAAAGAAA CTGTTACCCG TAGGTAGTCA CGCAACTCGC CGCACATCTG 5601 AACTTCAGCC TCCAGTACAG CGCGGCTGAA ATCATCATTA AAGCGAGTGG 5651 CAACATGGAA ATCGCTGATT TGTGTAGTCG GTTTATGCAG CAACGAGACG 5701 TCACGGAAAA TGCCGCTCAT CCGCCACATA TCCTGATCTT CCAGATAACT 5751 GCCGTCACTC CAACGCAGGA CCATCACCGC GAGGCGGTTT TCTCCGGCGC 5801 GTAAAAATGC GCTCAGGTCA AATTCAGACG GCAAACGACT GTCCTGGCCG 5851 TAACCGACCC AGCGCCCGTT GCACCACAGA TGAAACGCCG AGTTAACGCC 5901 ATCAAAAATA ATTCGCGTCT GGCCTTCCTG TAGCCAGCTT TCATCAACAT 5951 TAAATGTGAG CGAGTAACAA CCCGTCGGAT TCTCCGTGGG AACAAACGGC 6001 GGATTGACCG TAATGGGATA GGTCACGTTG GTGTAGATGG GCGCATCGTA 6051 ACCGTGCATC TGCCAGTTTG AGGGGACGAC GACAGTATCG GCCTCAGGAA 6101 GATCGCACTC CAGCCAGCTT TCCGGCACCG CTTCTGGTGC CGGAAACCAG 6151 GCAAAGCGCC ATTCGCCATT CAGGCTGCGC AACTGTTGGG AAGGGCGATC 6201 GGTGCGGGCC TCTTCGCTAT TACGCCAGCT GGCGAAAGGG GGATGTGCTG 6251 CAAGGCGATT AAGTTGGGTA ACGCCAGGGT TTTCCCAGTC ACGACGTTGT 6301 AAAACGACGG GATCTATCAT TTTTAGCAGT GATTCTAATT GCAGCTGCTC 6351 TTTGATACAA CTAATTTTAC GACGACGATG CGAGCTTTTA TTCAACCGAG 6401 CGTGCATGTT TGCAATCGTG CAAGCGTTAT CAATTTTTCA TTATCGTATT 6451 GTTGCACATC AACAGGCTGG ACACCACGTT GAACTCGCCG CAGTTTTGCG 6501 GCAAGTTGGA CCCGCCGCGC ATCCAATGCA AACTTTCCGA CATTCTGTTG 6551 CCTACGAACG ATTGATTCTT TGTCCATTGA TCGAAGCGAG TGCCTTCGAC 6601 TTTTTCGTGT CCAGTGTGGC TT

[0257] The above description of the invention is intended to be illustrative and not limiting. Various changes or modifications in the embodiments described may occur to those skilled in the art. These can be made without departing from the spirit or scope of the invention. Accordingly, it is intended that the invention be limited only to the extent required by the claims and the applicable rules of law.

Claims

1. An isolated semaphorin protein comprising an amino acid sequence having an N-terminal signal peptide, a Sema domain and, in a C-terminal region, an immunoglobulin-like domain and a transmembrane domain.

2. The isolated semaphorin protein as claimed in claim 1, wherein the amino acid sequence corresponds to SEQ ID NO.: 3, or a derivative of SEQ ID NO.: 3.

3. The isolated semaphorin protein as claimed in claim 1, wherein the amino acid sequence of the Sema domain of the semaphorin protein is at least about 40% homologous to the Sema domain of SEQ ID NO.: 3.

4. The isolated semaphorin protein as claimed in claim 1, wherein the amino acid sequence of the protein is at least about 15 to 20% homologous to SEQ ID NO.: 3.

5. The isolated semaphorin protein as claimed in claim 1, comprising an amino acid sequence corresponding to SEQ ID NO.: 4.

6. An isolated nucleic acid molecule encoding a semaphorin protein as claimed in claim 1.

7. The isolated nucleic acid molecule as claimed in claim 6, comprising a nucleic acid sequence corresponding to SEQ ID NO.: 41, or a derivative of SEQ ID NO.: 41.

8. The isolated nucleic acid molecule as claimed in claim 6 wherein the nucleic acid molecule is a cDNA sequence coding for the semaphorin protein.

9. The isolated nucleic acid molecule as claimed in claim 8, wherein the cDNA sequence corresponds to SEQ ID NO.: 1, or to a derivative of SEQ ID NO.: 1.

10. The isolated nucleic acid molecule as claimed in claim 8, wherein the cDNA sequence corresponds to SEQ ID NO.: 2, or to a derivative of SEQ ID NO.: 2.

11. The isolated semaphorin protein as claimed in claim 1, wherein the protein is phosphorylated, glycosylated or myristylated.

12. A plasmid comprising the nucleic acid sequence as claimed in claim 6.

13. A plasmid comprising a nucleic acid sequence corresponding to SEQ ID NO.: 41, or a derivative of SEQ ID NO.: 41.

14. A plasmid comprising the nucelic acid sequence as claimed in claim 8.

15. A vector comprising the nucleic acid sequence as claimed in claim 6.

16. A vector comprising the nucleic acid sequence as claimed in claim 8.

17. A process for preparing a semaphorin protein as claimed in claim 1, which comprises the steps of:

cloning a nucleic acid sequence as claimed in claim 6 into an expression vector to form a recombinant vector;
transforming a cell with the recombinant vector; and
expressing the protein from the transformed cell.

18. The process as claimed in claim 17, wherein the transformed cell is a eukcaryotic cell.

19. A process for preparing a nucleic acid molecule encoding a semaphorin protein as claimed in claim 1, comprising amplifying the nucleic acid sequence corresponding to SEQ ID NO.: 41, or a derivative thereof, by the polymerase chain reaction using specific primers.

20. A method for identifying immunomodulating agents, which comprises incubating a semaphorin protein as claimed in claim 1 under defined conditions with an agent to be investigated, carrying out a second batch in parallel without without the agent to be investigated but under conditions which are otherwise the same, and then determining the inhibiting or activating effect of the agent to be investigated.

21. A method for identifying immunomodulating agents, which comprises expressing a nucleic acid sequence as claimed in claim 6 under defined conditions and in the presence of an agent to be investigated, and determining the extent of the expression.

22. An isolated semaphorin antibody which recognizes an epitope corresponding to amino acids 179 to 378 of SEQ ID NO.: 3 or amino acids 480 to 666 of SEQ ID NO.: 3.

23. A process for preparing an antibody to the semaphorin protein as claimed in claim 1, which comprises the steps of:

preparing a recombinant plasmid with a fusion protein consisting of of a semaphorin epitope and an epitope tag;
transforming a suitable cell with the recombinant plasmid;
purifying the fusion protein from the cells via the epitope tag; and
using the purified fusion proteins for immunization.

24. A method for preventing or treating an immunological disorder which comprises administering to a host in need thereof a pharmaceutical product containing an isolated semaphorin protein or a derivative thereof, as claimed in claim 1.

25. A method for preventing or treating an immunological disorder which comprises administering to a host in need thereof a pharmaceutical product containing a nucleic acid sequence as claimed in claim 6 or a derivative thereof.

26. A method for preventing or treating an immunological disorder which comprises administering to a host in need thereof a pharamceutical product containing a nucleic acid sequence as claimed in claim 8.

27. The method according to claim 24 wherein the method is gene therapy.

28. The method according to claim 25 wherein the method is gene therapy.

29. A method for modulating an immune response or inhibiting inflammation which comprises introducing the nucleic acid sequence as claimed in claim 6 to a host cell.

Patent History
Publication number: 20020037851
Type: Application
Filed: Apr 16, 2001
Publication Date: Mar 28, 2002
Inventors: Bernhard Fleckenstein (Wiesenthau), Armin Ensser (Nurnberg)
Application Number: 09836077