Crystalline TNF-alpha-converting enzyme and uses thereof

A tumor necrosis factor-&agr; converting enzyme (TACE) is produced, purified, and crystallized. The three-dimensional coordinates of the crystal are obtained by X-ray diffraction. The coordinates can be recorded on a computer readable medium, or are part of a video memory, where they can be used as part of a system for studying for studying TACE. The coordinates are also used in designing, screening, and developing compounds that associate with TACE.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
INFORMATION ON RELATED APPLICATIONS

[0001] This application claims the priority benefit of U.S. provisional patent application serial No. 60/073,709, filed Feb. 4, 1998, U.S. patent application Ser. No. 09/050,083, filed Mar. 30, 1998 (which will be converted to a US provisional application pursuant to a petition filed on Jan. 27, 1999), and US provisional patent application titled “Crystalline TNF-&agr;-Converting Enzyme and Uses Thereof,” filed Jan. 27, 1999.

BACKGROUND OF THE INVENTION

[0002] The cytokine tumor necrosis factor-&agr; (TNF&agr;) plays a role in the induction of inflammatory reactions and is known to be cytotoxic towards tumor cells. TNF&agr;, however, also may cause severe damage to the human body when produced in excess by eventually leading to multiple organ failure and death. See Bemelmans et al., “Tumor Necrosis Factor: Function, Release and Clearance,” Crit. Rev. Immun. 16: 1-11 (1996).

[0003] Tumor necrosis factor-&agr; is produced by activated cells, such as mononuclear phagocytes, T-Cells, B-Cells, mast cells and NK cells. TNF&agr; exists in two forms: a type II membrane protein having a relative molecular mass of 26 kD and a soluble 17 kD form generated from the membrane form by proteolytic cleavage. The TNF&agr; membrane protein is synthesized as a 223 amino acid membrane-anchored precursor. The soluble TNF&agr; is released from the membrane-bound precursor by a membrane-anchored proteinase. This proteinase was recently identified as a multidomain metalloproteinase called TNF-&agr;-converting enzyme (TACE). See, Black et al., “A metalloproteinase disintigrin that releases tumor-necrosis factor-&agr; from cells,” Nature 385: 729-733 (1997), Moss et al., “Cloning of a disintigrin metalloproteinase that processes precursor tumor-necrosis factor-&agr;,” Nature 385: 733-736 (1997). TACE has recently been identified as a zinc endopeptidase consisting of an extracellular region comprising an N-terminal signal peptide, a pro-domain, a 263 residue catalytic domain (TCD) that is preceded by a furin cleavage site (residues 211-214), a disintegrin domain, an EGF-like domain, and a crambin-like domain, an apparent transmembrane helix and the intracellular C-terminal tail. Tumor necrosis factor-&agr; converting enzyme (TACE), including a polynucleotide sequence, is described in detail in the published PCT application No. WO 96/41624, herein incorporated in the entirety by reference.

[0004] As noted above, the over-production or unregulated production of TNF&agr; presents serious physiological dangers. It has been implicated in various deleterious physiological diseases such as rheumatoid arthritis, cachexia and endotoxic shock. It also may eventually lead to organ failure and death. Thus, a way to control or block release of TNF&agr; into the circulation is needed. Because of TACE's role in the conversion of TNF&agr;, inhibition, modulation, or regulation of TACE would affect the release of TNF&agr; into circulation. Inhibitors of metalloproteinases and structure based design thereof are described in Zask et al., “Inhibition of Matrix Metalloproteinases: Structure Based Design” Current Pharmaceutical Design, 2:624-661 (1996). Thus, compounds that associate with TACE, such as inhibitors, receptors or modulators will be useful to protect patients from adverse effects associated with the over-production or unregulated production of tumor necrosis factor-&agr;.

SUMMARY OF THE INVENTION

[0005] According to one aspect of the invention, there is provided a composition comprising a polypeptide in crystalline form, wherein the polypeptide is a TNF-&agr;-converting enzyme polypeptide. In one embodiment, the TNF-&agr;-converting enzyme polypeptide comprises the TNF-&agr;-converting enzyme catalytic domain. In another embodiment, the TNF-&agr;-converting enzyme polypeptide is the expression product of a polynucleotide encoding the pro and catalytic domains of TNF-&agr;-converting enzyme. In a further embodiment, the TNF-&agr;-converting enzyme polypeptide is the expression product of a polynucleotide encoding the amino acid residues 1-477 of TNF-converting enzyme. In yet another embodiment, the polynucleotide is substituted such that amino acid residue Ser266 is changed to Ala and amino acid residue Asn542 is changed to Gin, and wherein a second polynucleotide encoding the sequence Gly-Ser-(His)6 is fused to the C-terminus.

[0006] According to another aspect of the invention, the compositions above further comprising a binding partner suitable for co-crystallization with the TNF-&agr;-converting enzyme polypeptide. In one embodiment, the binding partner is a hydroxamate-based binding partner. In another embodiment, the binding partner is N-{D,L-2-(hydroxyaminocarbonyl)methyl-4-methylpentanoyl}-L-3-amino-2-dimethylbutanoyl-L-alanine,2-(amino)ethyl amide.

[0007] According to further embodiments, the compositions above have a crystal structure diffracting to 2.0 Å, are monoclinic, have a unit cell comprising four crystallographically independent TNF-&agr;-converting enzyme catalytic domain (TCD) molecules, have the TCD molecules are in an asymmetric unit, and/or have monoclimc space group P21 and the cell has the constants a=61.38 A, b=126.27 A, c=81.27 A, and &bgr;=107.41°.

[0008] In still another embodiment of the invention, the polypeptides above are characterized by the structure coordinates according to Table 1, or a substantial part thereof.

[0009] According to a further aspect of the invention, there is provided a method for crystallizing a TNF-&agr;-converting enzyme polypeptide, comprising (A) mixing a solution comprising a TACE polypeptide and a binding partner with a crystallization buffer; and (B) crystallizing the mixture of step (A) by drop vapor diffusion to form a crystalline precipitate. In one embodiment, the method further comprises (C) transferring seeds from the crystalline precipitate formed by the drop vapor diffusion and a crystallization promotor into a mixture of a concentrated solution comprising a TACE polypeptide and binding partner substrate, and a crystallization buffer; and (D) crystallizing the mixture of step (C) by drop vapor diffusion to form a crystal. In another embodiment, the crystallization buffer is 0.1M Na Citrate pH 5.4, 20% w/v PEG 4000, and 20% v/v Isopropanol. In still another embodiment, the binding partner is N-{D,L-2-(hydroxyaminocarbonyl)methyl-4-methylpentanoyl}-L-3-amino-2-dinethylbutanoyl-L-alanine, 2-(amino)ethyl amide. In yet another embodiment, crystalization is at a temperature ranging from 4 to 20 degrees Celsius. In another embodiment, the solution comprising the TACE polypeptide and the inhibitor is at a concentration of about 5 mg/mL to about 12 mg/mL in a buffer. In a further embodiment, the solution comprising a TACE polypeptide and the binding partner is mixed with the crystallization buffer in a 1:1 ratio.

[0010] According to still another aspect of the invention, there is provided a tumor necrosis factor-&agr; (TNF-&agr;)-converting enzyme crystal made by co-crystallizing a TNF-&agr;-converting enzyme polypeptide with a co-crystallization substrate.

[0011] According to yet another aspect of the invention, there is provided a computer-readable medium having recorded thereon x-ray crystallographic coordinate data for the catalytic domain of TNF-&agr; converting enzyme, or a portion thereof. In one embodiment, the computer-readable medium has recorded thereon the x-ray crystallographic coordinate data set forth in Table 1, or a portion thereof. In another embodiment, the medium is selected from the group consisting of a floppy disc, a hard disc, computer tape, RAM, ROM, CD, DVD, a magnetic disk, and an optical disk. In still another embodiment, the computer-readable medium has recorded thereon machine-readable data, wherein the computer-readable medium, when used in conjunction with a machine programmed with instructions for using the data, is capable of generating image signals for depicting a graphical, three-dimensional representation of a TNF-&agr; converting enzyme polypeptide, or portion thereof.

[0012] According to a further aspect of the invention, there is provided a system for studying a TNF&agr; converting enzyme polypeptide, said system comprising (a) a memory capable of storing information representing at least a portion of a TNF-&agr; converting enzyme polypeptide, wherein said memory comprises at least one first-type storage region, including a set of spatial coordinates specifying a location in a three dimensional space, and at least one second-type storage region comprising information representing a characteristic of one of a plurality of amino acids, said second-type storage regions being logically associated with said first-type storage regions in said memory to represent a geometric arrangement of at least one characteristic of said at least a portion of said TNF-&agr; converting enzyme peptide in said three dimensional space; (b) a processor coupled to said memory to access said first-type storage regions and said second-type storage regions, wherein the processor generates image signals for depicting a visual image representing three dimensional image of said at least one characteristic of said at least a portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space based on data from said memory; and (c) a display coupled to said processor to receive said image signals, wherein the display depicts a visual three dimensional image of said at least one characteristic of said at least a portion of said TNF&agr; converting enzyme polypeptide in said three dimensional space based on said image signals. In one embodiment of the invention, the image signals include signals for depicting a visual three dimensional image of a ribbon structure of said at least a portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space. In another embodiment of the invention, the image signals include signals for depicting a visual image of a solid model representation of said at least a portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space. In still another embodiment of the invention, the image signals include signals for depicting a visual three dimensional image of electrostatic surface potential of said at least a portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space. In yet another embodiment of the invention, the image signals include signals for depicting a visual three dimensional stereo image of said at least a portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space. In a further embodiment of the invention, the system further comprises a storage device capable of storing data representing a geometric arrangement of a characteristic of a composition other than said TNF-&agr; converting enzyme polypeptide; and an operator interface for receiving instructions from a operator; and wherein said processor is coupled to said storage device and to said operator interface and generates additional image signals for depicting said geometric arrangement of said characteristic of said composition relative to said visual three dimensional image of said at least one characteristic of said at least a portion of said TNF-&agr; converting enzyme polypeptide on said display based on instructions from the operator interface. In one embodiment, the storage device is part of said memory. In another embodiment, the system comprises a plurality of first-type and second-type storage regions.

[0013] According to another aspect of the invention, there is provided a video memory capable of storing information for generating a visual display of at least a portion of a TNF-&agr; converting enzyme polypeptide, said video memory comprising (a) at least one first-type storage region, each of said first-type storage regions including a set of spatial coordinates specifying a location in a three dimensional space; and (b) at least one second-type storage region, each of said second-type storage regions containing information for visually depicting a characteristic of one of a plurality of amino acids; wherein said second-type storage regions are logically associated with said first-type storage regions in said video memory to represent a geometric arrangement of at least one characteristic of said at least a portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space. In one embodiment, the second-type storage regions are logically associated with said first-type storage regions in said video memory to represent a geometric arrangement of at least one characteristic of a catalytic domain portion of said TNF converting enzyme polypeptide in said three dimensional space. In another embodiment, the first-type storage regions and said second-type storage regions are regions of a semiconductor memory. In yet another embodiment, the first-type storage regions and said second-type storage regions are regions of an optical disk. In still another embodiment, the first-type storage regions and said second-type storage regions are regions of a magnetic memory. In a further embodiment, the video memory comprises a plurality of first-type and second-type storage regions.

[0014] In a still further aspect of the invention, there is provided a method of identifying a compound that associates with TNF-&agr;-converting enzyme, comprising (A) designing an associating compound for said polypeptide that forms a bond with the TNF-&agr;-converting enzyme catalytic domain based on x-ray diffraction coordinates of a TNF&agr;-converting enzyme polypeptide crystal; (B) synthesizing said compound; and (C) determining the associate capability of said compound with said TNF-&agr;-converting enzyme. In one embodiment, the associating compound is an inhibitor, mediator, or other compound that regulates TNF-&agr;-converting enzyme activity. In another embodiment, the associating compound is a competitive inhibitor, uncompetitive inhibitor, or non-competitive inhibitor. In still another embodiment, the coordinates are the coordinates of Table 1, or a substantial part thereof. In a further embodiment, the TNF-&agr;-converting enzyme polypeptide crystal comprises the TNF-&agr;-converting enzyme catalytic domain. In still another embodiment, the TNF-&agr;-converting enzyme polypeptide is the expression product of a polynucleotide encoding the pro and catalytic domains of TNF&agr;-converting enzyme. In yet another embodiment, the TNF-&agr;-converting enzyme polypeptide is the expression product of a polynucleotide encoding the amino acid residues 1-477 of TNF-&agr;-converting enzyme. In another embodiment, the polynucleotide is substituted such that amino acid residue Ser266 is changed to Ala and amino acid residue Asn542 is changed to Gln, and wherein a second polynucleotide encoding the sequence Gly-Ser-(His)6 is fused to the C-terminus. In a further embodiment, the TNF-&agr;-converting enzyme polypeptide crystal is co-crystallized with a binding partner. In still another embodiment, the binding partner is a hydroxamate-based binding partner or N-{D,L-2-(hydroxyaminocarbonyl)methylmethylpentanoyl}-L-3-amino-2Amethylbutanoyl-L-alanine,2-(amino)ethyl amide. In yet other embodiments, the TNF-&agr;-converting enzyme polypeptide crystal has a crystal structure diffracting to 2.0 Å, is monoclinic, has a unit cell comprising four crystallographically independent TNF-&agr;-converting enzyme catalytic domain (TCD) molecules, has the TCD molecules are in an asymmetric unit, and/or is of monoclinic space group P21 and the cell has the constants a=61.38 Å, b=126.27 Å, c=81.27 Å, and &bgr;=107.41°. In still another embodiment, the invention the the associating compound is designed to associate with the S1′ region of TNF-&agr;-converting enzyme. In yet another embodiment, the associating compound is designed to associate with the S1′S3′ pocket of TNF&agr;-converting enzyme. In still other embodiments of the invention, the associating compound is designed to (i) incorporate a moiety that chelates zinc, (ii) form a hydrogen bond with Leu348 or Gly349 of TNF-&agr;-converting enzyme, (iii) introduce a non-polar group which occupies the S1′ pocket of TNF-&agr;-converting enzyme, (iv) introduce a group which lies within the channel joining S1′-S3′ pockets of TNF-&agr;-converting enzyme and which makes appropriate van der Waal contact with the channel, and/or (v) form a hydrogen bond with Leu348 or Gly349 on the backbone amide groups of TNF-&agr;-converting enzyme.

[0015] These and other aspects of the invention will become apparent to the skilled artisan in view of the teachings contained herein.

BRIEF DESCRIPTION OF THE FIGURES

[0016] FIG. 1: FIG. 1 is a ribbon diagram of the TACE catalytic domain (TCD). The chain starts on the lower left back side, runs through the structural elements sI, hAI, hA, sII, hB, hB2, sIII, IV, IVa, sIVb, sV, hC, Met-turn and hD, and ends in the upper left back. The three disulfides are shown as connections, with the sulphurs given as small spheres. The catalytic zinc (central sphere) is liganded by the three imidazoles of His4O5, His4O9 and His415, and by the hydroxyl and the carbonyl oxygen atoms of the inhibitor hydroxamic acid group. The inhibitor mimicking interaction of primed-site residues of a peptide substrate is shown in full. FIG. 1 was made using SETOR. See Evans, S. “SETOR: Hardware Lighted Three-Dimensional Solid Model Representations of Macromolecules” J. Mol. Graph. 11:134-138 (1993).

[0017] FIGS. 2a and 2b: FIGS. 2a and 2b are solid surface representations of the catalytic domains of TACE (TCD) (FIG. 2a) and MMP-3 (FIG. 2b). The electrostatic surface potential is contoured from −15 (intense red) to 15 (intense blue) k8T/e. Both active-site clefts run from left to right, with the catalytic zinc atoms (spheres) in the centers. In TACE, the bound inhibitor is shown in full structure, binding with its isobutyl (P1′) and its Ala (P3′) sidechains into the deep S1′ and the novel S3′ pockets. The orientation is similar to FIG. 1. FIGS. 2a and 2b were made using GRASP. Nicolls, A., Bharadwaj, R. and Houig, B., “Grasp—Graphical representation and analysis of surface properties,” Biophs. 64, A166 (1993).

[0018] FIG. 3: FIG. 3 aligns the catalytic domain sequences of adamalysin II (ADAM_CROAD), TACE and human ADAM 10 (hADAM1O), according to their topological equivalence and sequence similarity, respectively. The residue numbers are due to the generic TACE numbering. Arrows and braces represent &bgr;-strands and &agr;-helices in TACE.

[0019] FIG. 4: FIG. 4 is a stereo section of the final 2.0 Å electron density around the catalytic zinc (large, central sphere) superimposed with the final TACE model. Visible are the three zinc liganding imidazole rings of His4O5 (top), His4O9 (left) and His415 (bottom), the “catalytic” Glu406, and the hydroxamic acid moiety of the inhibitor. The orientation is similar to FIG. 1. FIG. 4 was made using TURBO-FRODO. See Roussel, A. & Cambilleau, C., “Turbo-Frodo in Silicon Graphics Geometry,” Partners Directory, Silicon Graphics, Mountain View, Calif. (1989).

[0020] FIG. 5: FIG. 5 is a superposition of the ribbon plots of the catalytic domain of TACE (light) and adamalysin (dark). Also shown is the catalytic zinc of TACE (sphere) and the three (TACE) and two (adamalysin) disulfide bridges. The orientation is similar to FIG. 1. FIG. 5 was made using GRASP.

[0021] FIG. 6: FIG. 6 illustrates a system for studying a TNF-&agr; converting enzyme, including a video memory storing information for generating a visual display of at least a portion of a TNF-&agr; converting enzyme.

DETAILED DESCRIPTION OF THE INVENTION

[0022] The present invention relates to a highly purified tumor necrosis factor-&agr; converting enzyme (TACE) polypeptide, a method of producing and purifying a TACE polypeptide, a method of crystallizing a TACE polypeptide, and a TACE polypeptide crystal. The invention further relates to a X-ray diffraction method using a TACE polypeptide crystal, and to a method of obtaining the X-ray crystallographic structural coordinates of a TACE polypeptide as well as the structural coordinates themselves. Still finer, the present invention relates using the structural coordinates of a TACE polypeptide to elucidate the three-dimensional structure of a TACE polypeptide and designing and developing compounds that associate with TACE. Knowledge of the three-dimensional structure and structure coordinates provided according to the invention permit the skilled person to make compounds that will interact with TACE. Such interacting compounds can be made by a variety of techniques and design criteria, including those disclosed in Protein Engineering (Oxender and Fox, eds.) (Alan R. Liss, Inc. 1987).

[0023] As used herein, TACE refers to a group of polypeptides that are capable of converting the 26 kD cell membrane-bound form of TNF&agr; into the soluble 17 kD form that comprises the C-terminal 156 residues of the TNF&agr; protein. TACE encompasses proteins having the amino acid sequence described in PCT application No. WO 96/41624, herein incorporated in its entirety by reference, as well as any of those proteins having homology, preferably no less than 50%, more preferably at least 80% homology, still more preferably 90% homology to such sequence, at the amino acid level. Additionally, TACE further refers to the expression products of nucleotide sequences disclosed in PCT application No. WO 96/41624. TACE further encompasses the membrane-bound protein and soluble or truncated proteins comprising the extracellular portion of the protein and which retain biological activity and are capable of being secreted. Examples of such proteins are described in PCT application No. WO 96/41624.

[0024] The TACE amino acid sequence, or any part or residue thereof, can be found in Black et al., “A Metalloproteinase disintigrin that releases tumour-necrosis factor-&agr; from cells,” Nature 385: 729-733 (February 1997), herein incorporated in the entirety by reference. Variations in the amino acid sequence of TACE are within the present invention as well. All references to the TACE ammo acid sequence contained herein refer to the sequence in Black et al., supra.

[0025] As used herein, the TACE catalytic domain (TCD) refers to the portion of a TACE polypeptide between residues 215 and 477-and including the preceding furin cleavage site (residues 211-214), or any part thereof that is capable of cleaving the peptide PLAQAVRSSS.

[0026] Expression, Isolation and Purification of TACE Polypeptides

[0027] Tumor necrosis factor-&agr; converting enzyme (TACE) is described in the published PCT application No. WO 96/41624. The application describes isolated nucleic acids encoding TACE or portions of TACE, expression vectors comprising a cDNA encoding TACE or portions thereof, and host cells transformed or transfected with the expression vectors comprising a cDNA encoding TACE or portions of TACE. The application further describes processes for producing TACE and portions thereof, for example by culturing transfected cells engineered to express TACE, followed by purification of the recombinantly produced TACE or portion thereof. Methods of isolating, expressing, and purifying a TACE polypeptide are described in detail in published PCT application No. WO 96/41624. The entirety of PCT 96/41624 is incorporated herein by reference.

[0028] According to the invention, cDNA encoding the signal peptide, pro and catalytic domains of TACE, i.e., amino acid residues 1-477 is inserted into a suitable expression vector and expressed in a suitable cell line. The cDNA also may include other regions that facilitate expression or achieve other objects that otherwise that do not depart from the essence of the invention, such as flanking regions.

[0029] The cDNAs encoding the TACE polypeptide, or functional portions thereof, such as the TCD, may be altered by addition, substitution, deletion, or insertion. Such alterations may be made, for example, to prevent glycosolation, prevent formation of incorrect or undesired disulfide bridges, and/or enhance expression. Examples of such alterations are described in WO 96/41624 and can be carried out by the methods described therein and other conventional methods. TACE may also be conjugated. Such conjugates may comprise peptides added to facilitate purification and/or identification. Such peptides include, for example, poly-His peptides. Conjugation is described in U.S. Pat. No. 5,011,912 and Hopp et al., Bio/Technology 6:1204 (1988).

[0030] In one embodiment of the invention, the cDNA encodes a TNF-&agr; converting enzyme polypeptide comprising the signal peptide, pro and catalytic domains of TACE (TCD), residues 1-477, with Ser266 changed to Ala and Asn452 changed to Gln. These substitutions are useful in preventing N-linked glycosolation. Additionally, the sequence Gly-Ser(His)6 may be added to the C-terminus. The addition of the sequence Gly-Ser(His)6 facilitates purification of the polypeptide using metal-chelate affinity resins, such as Ni-NTA resins.

[0031] Recombinant expression vectors containing the nucleotide sequence encoding TACE, or a portion thereof, may be prepared using well known methods. Suitable host cells for expression of TACE polypeptides include prokaryotic, yeast, and higher eukaryotic cells. Vectors and host cells suitable for use in the present invention are described in WO 96/41624. Further examples of suitable expression systems that can be employed to express recombinant TACE according to the present invention include mammalian or insect host cell culture expression systems, including baculovirus systems in insect cells (See Luckow and Summers, Bio/Technology 6:47 (1988))and mammalian cell lines such as COS-7 cells (Gluzman et al., Cell 23:175 (1981)). Additional examples are known in the art and include those described in WO 96141624. In one embodiment of the invention, the TACE polypeptide is expressed in CHO cells. In this embodiment, the cells secrete a mixture of TACE polypeptide beginning with Val212 and Arg215.

[0032] In one embodiment, stable expressing cells may be selected by culturing the cells in a drug that kills those cells that do not incorporate the vector. Examples of suitable selection methods are described in, for example, Kaufman, R. J., “Selection and coamplification of heterologous genes in mammalian cells,” Methods in Enzymology, 185:537-566 (1990).

[0033] Purification of the expressed TACE polypeptide may be carried out by any suitable means, such as those described in WO 96/41624. According to one aspect of the invention, it is preferable to obtain a TACE polypeptide that is suitable for crystallization. In obtaining a TACE polypeptide suitable for crystallization, it is important that the process for purifying the TACE polypeptide is sufficient to yield a polypeptide pure enough to properly crystallize.

[0034] A preferred method of purification starts with a suitable amount of medium from the culture of TACE-secreting cells. This medium is generally a supernate of the culture. The medium contains the TACE polypeptide to be purified. Preferably, the TACE polypeptide is recombinantly produced using DNA coding for the TACE polypeptide with the sequence altered to encode a conjugate or conjugates that facilitate purification. For example, the sequence encoding Gly-Ser-(His)6 may be added to the C-terminus to facilitate purification using metal-chelate resins.

[0035] The medium is concentrated, for example, by diafiltration. Suitable diafiltration units include a Millipore 10K cut-off, 1 ft2 TFF diafiltration unit. A suitable buffer solution is then added to the concentrated medium. Any suitable buffer may be used. One such suitable buffer contains 20 mM Tris (pH 7.5) and 300 mM NaCl.

[0036] The sample is reconcentrated and diluted numerous times. For example, the sample may be reconcentrated and diluted a second time with the buffer, reconcentrated again, diluted a third time with the buffer, and reconcentrated a final time. The sample retained in the diafiltration unit is recovered by a suitable method, such as by a back-flush method. The recovered material may then be filtered through a suitable membrane. Suitable membranes include, for example, 0.45 or 0.22 micron pore-size membranes. Azide is then added. The filtered sample may then be stored overnight at a low temperature, such as about 2-9° C. After overnight storage, imidazole from a stock solution in water and ZnCl2 from a stock solution in water are added to the filtered sample. The sample then is pumped over a suitable column. One suitable column, particularly when the TACE polypeptide is conjugated with the sequence Gly-Ser-(His)6, is a metal-chelate resin, such as a Ni-NTA resin.

[0037] The column is washed with a buffer, such as a buffer of 20 mM Tris pH 7.5, 300 mM NaCl, 5 mM imidazole, and 5 uM ZnCl2. The TACE polypeptide is then eluted with an increasing gradient of imidazole. Fractions are collected in tubes containing glycerol in water Tris pH 8. Preferably, the glycerol solution is prepared the day of the column run.

[0038] An aliquot from each fraction is spotted on a membrane which is stained with amido black to determine which fractions contain a significant amount of protein. Alternatively, a small amount, for example 5 &mgr;l, from each fraction may be used for gel analysis using Coomassie staining. The fractions with a significant amount of protein are pooled, and the pool is then concentrated with, for example, a diafiltration unit.

[0039] In some cases, aggregation of polypeptide may occur. In order to eliminate aggregates and further facilitate purification, an inhibitor of TACE, such as a hydroxamate-based inhibitor, may be added to the concentrated sample from a stock solution in water, and octylglucoside (commercially available from Boehringer Mannheim) is added from a stock solution in water. The sample is then incubated at room temperature for 15-24 hours.

[0040] Following incubation, the sample is applied to a size exclusion column. The column is first equilibrated with a suitable buffer, such as a buffer of 10 mM Tris pH 7.5, 100 mM NaCl, 10% glycerol. Suitable size exclusion columns include, for example, LKB 2135-365, packed with TSK-G3000 SWG or the like such as Superdex-200. The buffer is then pumped through the column. The highly purified TACE polypeptide can be detected by absorption at 280 nm.

[0041] A gel analysis of all fractions with significant protein is carried out to determine which fractions should be pooled. The size exclusion chromatography pool is concentrated using, for example, a diafiltration unit.

[0042] A binding partner, such as an inhibitor, may then be added to the purified sample. The binding partner is particularly usefull in stabilizing the TACE polypeptide. The binding partner may be any suitable compound. Suitable binding partners include, for example, hydroxamate-based inhibitors. One suitable inhibitor is N-{D,L-2-(hydroxyaminocarbonyl)methyl-4methylpentanoyl}-L-3-amino-2-dimethylbutanoyl-L-alanine, 2-(amino)ethyl amide. This inhibitor, as well as other inhibitors, are described in U.S. Pat. No. 5,594,106 (Black et al.), herein incorporated in its entirety by reference.

[0043] The protein complex can be stored at low temperature, for example, at about 4° C.

[0044] TACE Crystal and Methods of Crystallization of TACE Polypeptides

[0045] One aspect of the invention relates to a method of crystallizing a TACE polypeptide. A preferred method comprises co-crystallizing a TACE polypeptide with a binding partner described above. Exemplary means for obtaining the TACE polypeptide, as well as purification of the polypeptide are described above.

[0046] Crystals may be grown or formed by any suitable method, including drop vapor diffusion, batch, liquid bridge, and dialysis, and under any suitable conditions. Crystallization by drop vapor diffusion is often preferable. In addition, those of skill in the art will appreciate that the crystallization conditions may be varied. Various methods of crystallizing polypeptides are generally known in the art. See, for example, WO 95/35367, WO 97/15588, EP 646 599 A2, GB 2 306 961 A, and WO 97/08300.

[0047] In one embodiment of the invention, a DNA construct comprising TACE residues 1-477, with Ser266 changed to Ala, Asn452 changed to Gln, and the sequence Gly-Ser-(His)6 added to the C-terminus, may be expressed in CHO cells. These cells primarily secrete a processed mixture of TACE, about half beginning with Val212 and about half with Arg215. The mixture is purified as described above. The purified TACE polypeptide, with the added binding partner, is stored in a buffer as described above.

[0048] The TACE polypeptide and binding partner are co-crystallized. The TACE/binding partner solution, at a polypeptide concentration of about 5 mg/mL to about 12 mg/mL in a TACE buffer described above, is mixed with a suitable crystallization buffer and crystallized using a suitable crystallization technique, for example drop vapor diffusion. Suitable crystallization buffers, for example, include: 0.1 M Na Acetate pH 5.3, 0.2 M CaCl2, 30% v/v Ethanol; 0.1 M Na Citrate pH 5.0, 40% v/v Ethanol; 0.1 M Na Citrate pH 8.7, 20% w/v PEG 4000, 20% v/v Isopropanol; and 0.1 M Na Citrate pH 5.4, 20% w/v PEG 4000, 20% v/v Isopropanol. The sample is incubated at a temperature ranging from about 4 to 20 degrees Celsius. A crystalline precipitate is formed.

[0049] Seeds from the crystalline precipitate obtained, as whole crystals or crushed crystal suspensions, are transferred, along with a suitable crystallization promoter, such as hair of rabbit, to a solution of concentrated TACE/substrate in a crystallization buffer. Crystals suitable for X-ray data collection are formed.

[0050] Another aspect of the invention relates to a TACE polypeptide crystal. One such crystal comprises a TNF&agr; converting enzyme catalytic domain (TCD) polypeptide co-crystallized with an inhibitor. The crystal diffracts to about 2 A and belongs to the monoclinic space group P21. The crystal's unit cell comprises four crystallographically independent TCD molecules. The TCD molecules are in an asymmetric unit and are not clustered into separate tetrameres, but are integrated into the infinite periodic structure. The crystal has the cell constants: a=61.38 Å (angstrom), b=126.27 Å, C=81.27 Å and &bgr;=107.41°.

[0051] X-Ray Diffraction

[0052] Another aspect of the invention relates to the structure of TACE, particularly the structure of the TACE catalytic domain (TCD). The structure of TACE can be determined utilizing a crystal comprising a TACE polypeptide as described above. According to the present invention, the structure of TACE, and particularly the TCD, is determined using X-ray crystallography. Any suitable X-ray diffraction method for obtaining three dimensional structural coordinates of a polypeptide may be used. The three-dimensional structure coordinates, or any part thereof that characterizes the part of the TACE polypeptide of interest, such as the TACE catalytic domain or part thereof that is capable of cleaving the peptide PLAQAVRSSS, can be used as described herein.

[0053] Methods of Using TACE X-Ray Diffraction Coordinates

[0054] The invention also relates to use of the structure coordinates obtained from the above described X-ray diffraction studies of the TACE catalytic domain. The coordinates may be utilized, by direct analysis, with the aide of computers, or combinations thereof, to determine the structure, including secondary and tertiary structure, of the TACE catalytic domain. The TACE catalytic domain structure coordinates also may be used to develop, design, and/or screen compounds that associate with TACE. As used herein, “associate” means that the compound may bind to or interact with TACE ionically, covalently, by hydrogen bond, van der Waals interaction, salt bridges, steric interaction, hydophilic interactions and hydrophobic interaction. Moreover, the term “associate” encompasses associations with any portion of the TACE catalytic domain. For example, compounds that associate with TACE may be compounds that act as competitive inhibitors, un-competitive inhibitors, and non-competitive inhibitors. Compounds that associate with TACE also may be compounds that act as mediators or other regulatory compounds. Compounds that associate with TACE also may be compounds that isomerize to short-lived reaction intermediates in the chemical reaction of substrate with TACE. In particular, compounds designed to associate with TACE may be used therapeutically as inhibitors, mediators and other regulatory compounds.

[0055] The use of X-ray coordinates for structure determination, molecular design and selection and synthesis of compounds that associate with other polypeptides is known in the art. Published PCT application WO 95/35367 describes the use of X-ray structure coordinates to design, evaluate, synthesize and use compounds that associate with the active site of an enzyme. UK Patent Application 2306961A describes the use of X-ray coordinates in rational drug design. Published PCT application, WO 97/15588 describes the structural determination of a polypeptide using x-ray diffraction patterns as well as use of the coordinates and three-dimensional structure in finding compounds that associate with the polypeptide of interest. This invention, however, for the first time allows the use of X-ray coordinates for a TACE polypeptide for structural determination, molecular design, and selection and synthesis of compounds that associate with TACE.

[0056] In one aspect of the invention, the structure coordinates obtained by the foregoing methods may be displayed as, or converted to, a graphical representation, including three-dimensional shape representations. This may be accomplished using commercially available computer programs capable of generating graphical representations of molecules, or parts thereof, from a set of structural coordinates. Examples of computer programs capable of generating graphical representations of molecules, or parts thereof, from a set of structural coordinates are described in published PCT application WO 97/08300, incorporated in the entirety by reference.

[0057] In another aspect of the invention, the structure coordinates and structure may be compared to, or superimposed over, other similar molecules, such as other metalloproteinases. For example, the TACE structure coordinates and structure may be compared to or superimposed over the structure coordinates or structure of snake venom metalloproteinases, such as, for example, adamalysin II. The TACE structure coordinates and structure also may be compared to or superimposed over the structure coordinates or structure of matrix metalloproteinases, such as ADAM 10, including human ADAM 10. Comparison of TACE and other molecules for which a graphical structure or three-dimensional structural coordinates are available may be carried out with the aide of available software applications, such as the Molecular Similarity application of QUANTA (Molecular Simulations, Inc., Waltham, Mass.).

[0058] Compounds that associate with TACE also may be computationally evaluated and designed by screening and selecting chemical entities or fragments for their ability to associate with TACE, and specifically the TACE catalytic domain. Several methods may be used to accomplish this aspect of the invention. In one embodiment, one may visually inspect a computer-generated model of TACE, and specifically the catalytic domain, based on the structure coordinates described herein. Computer generated models of chemical entities or specific chemical moieties can then be positioned in or around the catalytic domain and evaluated based on energy minimization and molecular dynamics, using, for example, available programs such as CHARMM or AMBER. Positioning of the chemical entity or fragment can be accomplished, for example with docking software such as Quanta and Sybyl. Additionally, known and commercially available computer programs may be used in selecting chemical entities or fragments. Once suitable chemical entities or fragments are selected, they may be assembled into a single compound, such as an inhibitor, mediator, or other regulatory compound. Known and commercially available model building software may assist in assembly.

[0059] In one aspect of the invention, compounds that associate with TACE and specifically the TACE catalytic domain may be designed as a whole, rather than by assembly of specific chemical moieties or chemical entities. This embodiment may be carried out using computer programs such as LUDI (Biosym Technologies, San Diego, Calif.), LEGEND (Molecular Simulations, Burlington, Mass.), and Leap Frog (Tripos Associates, St. Louis, Mo.).

[0060] In one embodiment, a candidate compound is chosen based upon the desired sites of interaction with TACE and the candidate compound in light of the sites of interaction identified previously. Once the specific candidate compound-TACE interactions are determined, docking studies, using commercially available docking software, are performed to provide preliminary “modeled” complexes of selected candidate compound with TACE.

[0061] Constrained conformational analysis is performed using, for example, molecular dynamics (MD) to check the integrity of the modeled TACE-inhibitor complex. Once the complex reaches its most favorable conformational state, the structure as proposed by the MD study is analyzed visually to ensure that the modeled complex complies with known experimental SAR/QSAR (structure-activity relationship/quantitative structure-activity relationship) based on measured binding affinities.

[0062] Other modeling techniques also may be used in accordance with the invention. Examples of these techniques are disclosed in Cohen et al., “Molecular Modeling Software and Methods for Medicinal Chemistry,” J. Med. Chem., 33:883-894 (1990) and Navia et al., “The Use of Structural Information in Drug Design,” Current Opinions in Structural Biology, 2:202-210 (1992), herein incorporated by reference in the entirety.

[0063] Compounds developed or designed to associate with TACE may be optimized or the efficiency of association can be tested using a number of methods known in the art. For example, the deformation energy and electrostatic interactions may be determined and optimized. Known and commercially available software and hardware systems may be used. Examples of such software are disclosed in WO 95/07619. Structure-based analoging for optimization of the inhibitor potency, selectivity and physical drug-like properties in an iterative manner also may be performed by one skilled in the art of drug design.

[0064] Substitutions also may be made to selected or designed compounds. These substitutions can be made to improve or modify the association properties of the compound. Such substitutions may be made, for example, in side groups or particular atoms of the compounds. Generally, one should begin with conservative substitutions that have approximately the same size, shape, charge and other characteristics of the original group or atom. Substituted compounds may be further analyzed and optimized as described above.

[0065] In a further aspect of the invention, the potential inhibitory, mediatory, regulatory, or other binding effect of a compound may be analyzed and evaluated, using, for example, commercially available computer software, prior to actual synthesis and testing of such compound. In this way, one can evaluate the probability of synthesizing and testing of inoperative compounds.

[0066] Procedures for measuring inhibition generally are known in the art and are disclosed, for example, in PCT 96141624. Such methods include assays based on reaction with a peptide substrate.

[0067] TACE Catalytic Domain Structure

[0068] The physical features of the TCD, determined based on the X-ray diffraction data obtained using the methods described and its use in creating molecular models of the TCD, are further described, with reference to the Figures.

[0069] The domain depicted in FIG. 1 has the shape of an oblate ellipsoid, notched at its flat side to give a relatively small active-site cleft separating the small “lower” subdomain from the “upper” main molecular body (FIG. 2a). The TCD polypeptide chain start on the molecular surface (in the lower back, FIG. 1), with the chain becoming well defined between Asp217 and Met221 (see FIG. 3). Central to the molecule is the five-stranded &bgr;-pleated sheet, with the &bgr;-strands arranged in the order (from back to front, see FIG. 1) sII, sI, sIII, sV and sIV (see FIG. 3), with sIV, the “edge” strand, running antiparallel to the others. This &bgr;-sheet is highly twisted flanked by two &agr;-helices (hB and hB2) on its convex and two helices (hA and hC) on its concave side. The &bgr;-strands sI and sII are connected by the short &agr;-helix hAI and the long &agr;-helix hA (the obliquely running helix on the backside, FIG. 1). The &bgr;-strands sII and sIII are linked by the large “multiple-turn loop”, the long “intermediate” &agr;-helix hB and the adjacent short =60 -helix hB2, all of them arranged on “top” of the &bgr;-sheet thus fully shielding its central part from bulk water (FIG. 1). The multiple-turn loop is bulged out at two sites giving rise to a “spur-like” and a quite acidic protuberance, respectively (visible in FIG. 2a on top of the molecule). The sIII-sIV linker terminates in a short “bulge”, before it enters the edge strand sIV. The sIV-sV connecting segment is dissected into two large “ear-like” surface-located loops, a first one nestling to the main molecular body (giving rise to the “blue” surface, center left, in FIG. 2a), and a long &bgr;-hairpin loop (sIIa-sIIb) projecting from the molecular surface (top left in FIGS. 1 and 2). A bulged-out loop links sV with the “active-site helix” hC, which is located in the center of the molecule and stops abruptly at the strictly conserved Gly412, where the chain kinks down to build the lower subdomain.

[0070] The C-terminal chain comprising the last 61 TCD residues (FIG. 3) first forms three short straight almost perpendicularly arranged segments linked by two “narrow” supertwisted loops, returns via the tight “Met-turn” Tyr433-Val434-Met435-Tyr436 back to the surface where it kinks at Pro437 to form the Pro437-Ile438-Ala439 outer “wall” of the S1′ crevice, approaches in a wide loop the C-terminal &agr;-helix hD and runs through it, and ends up on the molecular “back” surface close to the N-terminus, with the last defined residues Arg473-Ser474 fixed via hydrogen bonds to the main molecular body. Via Cys423-Cys453, the first of the two “narrow” loops is disulfide-linked with the N-terminus of helix hD, whose C-terminal end in turn is clamped to the “ear-like” sIV-sV linker peptide through Cys365-Cys469. Spatially adjacent, the third disulfide bridge of TCD, Cys225-Cys333, connects the N-terminal parts of &bgr;-strands sI and sIII. In the intact TACE molecule, four residues downstream of Ser474 would reside Cys478, which is already integral part of the compact elongated disintegrin domain (Saudek et al., “Three-dimensional structure of echistatin, the smallest active RGD protein” Biochem. 30, 7369-7372 (1991)). Considering Ser474 and this Cys478 as pivot points of their respective domains, the three residue linker would allow relatively unconstrained docking of the disintegrin domain to the “left” surface side of the catalytic domain.

[0071] The active-site cleft of TACE (FIG. 2a) is relatively flat on the left hand (non-primed) side, but becomes notched towards the right. The catalytic zinc residing in its center is pentaoordinated by the three imidazole N&egr;2 atoms of His4O5, His4O9 and His415 (provided by the active-site helix and the following “descending” chain comprising the conserved zinc binding consensus motif HEXXHXXGXXH), and by the carbonyl and the hydroxyl oxygen of the hydroxamic acid moiety of the inhibiter (see FIGS. 1, 2a and 4). This zinc-imidazole ensemble is based on the distal &egr;-methyl-sulphur moiety of the strictly conserved Met435, harbored in the Met-turn characteristic for the metzincin clan (Bode et al., “Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc binding enviromnents (HEXXHGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’” FEBS Lett. 331, 134 140 (1993); Stöcker et a., “The metzincins: Topological and sequential relations between the astacins, adamalysins, serralysins, andmatrixins (collagenases) define a superfamily of zinc-peptidases” Protein Sci. 4, 823-840 (1995)). Both carboxylate oxygens of the “catalytic” Glu4O6 (which acts as a general base during catalysis (Grams et al., “X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors: Implications for substrate binding and rational drug design” Eur. J. Biochem. 228, 830-841 (1995)) squeezed between the zinc-liganding imidazole of His4O5 and the edge strand, are hydrogen bonded to the hydroxyl and the N—H group of the hydroxamic acid (see FIG. 4). To the right of the catalytic zinc opens the deep S1′ pocket, which, besides the S1′ wall-forming segment (bottom, FIGS. 1 and 2a), is bordered by the side chains of His4O5 and Glu4O6 (left), the sIV main chain and the Leu345 side chain (top), and the side chains of Val440 (back) and Ala439 (right). To the right of Ala439 opens a second (S3′) pocket, which inside the molecule merges with the S1′ pocket, leaving a small bridge made of the opposing side chains of Ala439 and Leu348 (FIG. 2a).

[0072] The (pseudo)peptidic part of the inhibitor binds in an extended geometry to the notched right-hand side of the active-site cleft, mimicking the interaction of the primed residues of a productively bound peptide substrate (FIG. 2a). It runs antiparallel to the upper short bulge Gly346-Thr347-Leu348 and parallel to the S1′ wall-forming segment Pro437-Ile438-Ala439, making two and two inter-main chain hydrogen bonds, respectively. The dominant intermolecular interactions are made by the P1′ isobutyl (pseudo-leucyl) side chain of the inhibitor and the essentially hydrophobic S1′ pocket, however, is large and accommodates three partially ordered solvent molecules in addition. The P2′ t-butyl side chain extends away from the enzyme, but nestles to the hydrophobic canopy above formed by the enzyme's bulge. The P3′ Ala side chain points into the large negatively charged S3′ pocket, but is too short to make favorable contacts. The C-terminal diaminoethyl group has different conformations in the four molecules.

[0073] The P1′ to P3′ segment Val77-Arg78-Ser79 of a bound pro-TNF&agr; probably binds in a similar manner, possibly under better matching with the underlying cleft surface; the preceding P3 to P1 residues Ala74Gln75-Ala76 certainly will align antiparallel to the edge strand, with their side chains extending into the (partially charged) S3 pocket and the (negatively charged) shallow S2 depression, and projecting out of the central cleft, respectively. The primed subsites and surrounding molecular surfaces of TACE are dominated by negative charges, while the non-primed subsites are essentially hydrophobic in nature (FIG. 2a). More distant interactions may be involved in the specificity of TACE for processing pro-TNF&agr;. The 12 residue substrate comprising the pro-TNF&agr; cleavage site can also be split by some of the MMPs, although with less specificity and efficacy (Black et al., “Relaxed specificity of matrix metalloproteinases (MMPs) and TIMP intensity of tumor necrosis factor-&agr; (TNF-&agr;) production suggest the major TNF-&agr; converting enzyme is not an MMP” Biochem. Biophys. Res. Comm. 225, 400-405 (1996)). Thus, the preferential processing of the (probably trimeric) (Tang et al., “Human pro-tumor necrosis factor is a homotrimer” Biochem. 35, 8216-8225 (1996a); Tang et al., “Length of the linking domain of human pro-tumor necrosis factor determines the cleavage processing” Biochem. 35, 8226-8233 (1996b)) membrane-bound pro-TNF&agr; in vivo might in part be due to correct assembling, i.e. suitable presentation of the pro-TNF&agr; cleavage segment to the TACE active site in a distinct distance from the anchoring membrane. Some experimental evidence (Tang et al., Biochem. 35, 8216-8225 (1996a); Tang et al., Biochem. 35, 8226-8233 (1996b)) suggests that the cleavage site might not be determined by the cleavage sequence alone, but that also the distance to the base of the compact cone formed by the associated C-terminal segments of three TNF&agr; molecules (Jones et al., “Structure of tumor necrosis factor” Nature 338, 225-228 (1989)) plays a role. In a productive TACE-proTNF&agr; complex, the base of this TNF&agr;-trimer cone (into which the disordered N-termini run up) may be recognized by the “right” side of the TACE catalytic domain (FIG. 2a), with the about 10 residues long spacer favoring the correct placement of the proTNF&agr; Ala76-Val77 scissile peptide bond in the active site of TACE.

[0074] The polypeptide topology and in particular the surface presentation of the catalytic zinc prove the catalytic domain of TACE to be a typical metzincin. (Bode et al., “Astacins, serralysins, snake venom and matnrix metalloproteinases exhibit identical zinc binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’” FEBS klet. 331, 134-140 (1993); Stocker et al., “The metzincins: Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases” Protein Sci. 4, 823-840 (1995)) A superposition with the other metzincins shows, however, that its topology is most similar to that of the catalytic domain of snake venom metalloproteinases such as adamalysin II (FIG. 5). (Gomis-Rüth et al., “First structure of a snake venom metalloproteinase: prototype for matrix metalloproteinases/collagenases” EMBO J. 12, 4151-4157 (1993); Zhang et al., “Structural interaction of natural and synthetic inhibitors with the venom metalloproteinase, atrolysin C (form d)” Proc. Natl. Acad. Sci. USA 91, 8447-8451 (1994); Kumasaka et al., “Crystal structure of H2-proteinase from the venom of Trimeresurus flavoviridis” J. Biochem. 119, 49-57 (1996)) This close homology is reflected by the much better simultaneous superposition of the central sheet and the large helices, but in particularly also by a couple of structural features, which TACE shares exclusively with the adamalysins such as: the long helix hB and the preceding multiple-turn loop arranged on top of the &bgr;-sheet; the typically arranged and shaped C-terminal helix hC; and the extended C-terminus placed on the backside surface. About 175 of the 263 TACE and 201 adamalysin &agr;-atoms are topologically equivalent (with an rms deviation of 1.3 Å, 39 of which have identical side chains (FIG. 3). These numbers are close to those obtained from a comparison of members within the different metzincin families. (Stöcker et at., supra) In addition, detailed structural features prove the close relationship of TACE to the adamalysins: a more conserved core structure; the loosely arranged N-terminus; the characteristic Asp416 (directly following the zinc binding consensus motif, FIG. 3) involved in identical intramolecular hydrogen bond interactions; the adjacent disulfide bridge Cys423-Cys453 linking the first narrow loop to the C-terminal helix hD (which TACE does not share with adamalysin II, but with the H2-proteinase from the snake venom of T. flavoviridis) (Kumasaka et al., supra); disulfide bridge Cys365-Cys469 connecting the sIV-sV linker with the C-terminal helix hD; a similarly shaped active-site cleft, with particularly strong similarities in the S1′ pocket and other primed subsites.

[0075] The catalytic domain of TACE (TCD) also differs from adamalysin II in several respects: with 263 residues, its chain is much longer; most of the additional residues of TACE are clustered giving rise to a more projecting hA-sII turn, to the two surface protuberances of the multiple-turn loop, to the two “ears” of the sIV-sV linker, and to a more bulged-out sV-hC connector (see FIGS. 3 and 5); lack of a calcium binding site but presence of a third disulfide bridge Cys225-Cys333 in TACE, both elements serving, however, for the same function namely to clamp the N-terminal chain to strand sill; the quite deep S3′ pocket of TACE which merges with its S1′ pocket; an almost inverted charge pattern in and around the primed subsites, with an absolute predominance of positive charges in adamalysin.

[0076] According to its sequence, and probably with respect to its three-dimensional structure, the TACE catalytic domain is thus not a typical member of the mammalian ADAMs proper (a family of membrane-anchored cell-surface proteins, with the catalytic domain quite homologous to adamalysin (Wolfsberg et al., “ADAMs in Fertilization and Development” Developm. Biol. 180, 389-401 (1996))) TACE presumably shares this “outsider” role with (bovine) ADAM 10 (FIG. 3), which does also possess some TACE-like activity (Lumn et al., “Purification of ADAM 10 from bovine spleen as a TNF&agr; convertase,” FEBS Lett. 400, 333-335 (1997)), and whose Drosophila version (kuz) has recently been shown to process the Notch receptor (Rooke et al., Science 273, 1227-1231 (1996)). Also ADAM 10 probably exhibits an elongated hA-sII loop and the two “ears” typical for TACE, but might have a multiple-turn intermediate in size between TACE and adamalysin (see FIG. 3). Ninety of the ADAM 10 catalytic domain residues are identical to TACE farther underlining the close homology (see FIG. 3), whereas the other mammalian ADAMs probably resemble much more adamalysin II (Gomis-Ruth et al., “Refined 2.0 A crystal structure of snake venom zinc endopeptidase adamalysin II” J. Mol. Biol. 239, 513-544 (1994)).

[0077] The structural homology of TACE to the MMPs is significantly lower. The relative arrangement of the common secondary structural elements differs more (reflected by the significantly larger rms deviation of 1.6 Å of the about 120 topologically equivalent C&agr;-atoms), and the MMPs lack characteristic TACE/adamalysin structural elements (such as the intermediate helix hB and the multiple-turn loop, the Asp residue behind the third zinc-binding histidine), or exhibit typical determinants (such as the structural zinc and the integrated calcium ions) not seen in TACE. Notwithstanding the differences in secondary structure, the active-site cleft of TACE bears some similarity with that of the MMPs, with the flat nonprimed (left-hand) side, and the narrow primed side centering in the deep S1′ pocket (FIG. 2b). This subsite similarity to the MMPs explains the observed partial sensitivity of TNF-&agr;-convertase activity towards synthetic hydroxamic acid inhibitors originally designed for inhibition of various MMPs (DiMartino et al., “Anti-arthritic activity of hydroxamic acid-based pseudopeptide inhibitors of matrix metalloproteinases and TNF&agr; processing” Inflamm. Res. 46, 211-215 (1997)). Model building experiments with TIMP-1 structure (Gomis-Rüth et al., “Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1” Nature 389, 77-81(1997)) show no obvious obstacles in the active-site region of TACE that would easily explain its resistance to blockage by the TIMPs.

[0078] This TCD crystal structure thus gives evidence for a topological similarity of the catalytic domain of TACE with that of the adamalysins/ADAMs, and for a share of its substrate binding site to that of the MMPs. TACE exhibits, however, several structural peculiarities regarding surface contour, charge and shape, which facilitates the design of potent selective synthetic inhibitors.

[0079] In designing and developing compounds, such as inhibitors, mediators and other compounds having activities with biological significance, that associate with TACE, it is desirable to select compounds with a view toward the particular surface contour, charge, shape, and other physical characteristics of the TACE catalytic domain. Generally, the compounds should be capable of physically and structurally associating with TACE, as well as be able to assume a conformation that allows it to associate with TACE. The features described above will direct the skilled artisan in this regard. In particular, compounds with a linear functionality should be particularly suitable. Such compounds will be particularly suitable in light of the deep pockets of the TACE catalytic domain.

[0080] The compounds that associate with TACE, for example, may be designed to associate with the S1′ region or the S1′S3′ pocket of TACE. Compounds that associate with TACE also may be designed to (i) incorporate a moiety that chelates zinc. Further exemplary compounds include compounds are designed to form a hydrogen bond with Leu348 or Gly349 of TACE, (ii) introduce a non-polar group which occupies the S1′ pocket of TACE, (iii) introduce a group which lies within the channel joining S1′-S3′ pockets of TACE and which makes appropriate van der Waal contact with the channel, and (iv) form a hydrogen bond with Leu348 or Gly349 on the backbone amide groups of TNF-converting enzyme, or (v) any combination of the above.

[0081] Computer-Readable Medium

[0082] The present invention also relates to a computer-readable medium having recorded thereon the x-ray diffraction structure coordinates of a crystalline TACE polypeptide. The computer-readable media of the invention are useful for storage, transfer, and use with software of the TACE structural coordinates. The computer readable medium may be any suitable data storage material, including, but not limited to, a floppy disc, a hard disc, computer-type Random Access Memory, Read-Only Memory flash memory, CD-ROM, recordable and rewritable CDs, recordable and rewritable DVDs, magneticoptical disk, ZIP drive, JAZ drive, Syquist drive, digital tape drive, or the like. Other suitable media will be known to those of skill in the art.

[0083] In one embodiment, the computer readable medium comprises the coordinates of Table 1 or a substantial portion thereof. The computer-readable medium may be used in conjunction with a machine programmed with instructions for using the data recorded on the medium, such as a computer loaded with one or more programs identified throughout the specification, to display a graphical, three-dimensional representation of a TACE polypeptide, or any part thereof.

[0084] Computer Based System

[0085] FIG. 6 illustrates a system 1000 for studying a TACE polypeptide. The system includes a video memory 110 that stores information representing at least a portion of a TACE polypeptide. The memory has at least one first-type storage region 112, having recorded thereon a set of spatial coordinates specifying a location in a three dimensional space, and at least one second-type storage region 114, having recording thereon information representing a characteristic of one of a plurality of amino acids. The second-type storage regions are logically associated with the first-type storage regions in the video memory 110 to represent a geometric arrangement of at least one characteristic of at least a portion of the TACE polypeptide in the three dimensional space. Memory, 112 and 114 can comprise, for example, the data shown in Table 1. The system 1000 also includes a processor, coupled to the memory to access the first-type storage regions 112 and the second-type storage regions 114, to generate image signals for depicting a visual three dimensional image of at least one characteristic of at least a portion of the TACE polypeptide in the three dimensional space based on data from the memory 110. The processor can be any general purpose processor with a CPU, register, memory and the like. A display 130 coupled to the processor 120 via lines 125 to receive the image signals, for depicting a visual three dimensional image of at least one characteristic of at least a portion of the TACE polypeptide in the three dimensional space based on the image data on a screen 132.

[0086] In one embodiment of the invention, the image data includes data for depicting a visual three dimensional image of a ribbon structure of at least a portion of a TACE polypeptide in three dimensional space, such as shown in FIG. 1. In another embodiment, the image data includes data for depicting a visual three dimensional image of a solid model representation of at least a portion of said TACE polypeptide in three dimensional space, such as shown in FIG. 2. In still another embodiment, the image data includes data for depicting a visual three dimensional image of electrostatic surface potential of at least a portion of TACE polypeptide in three dimensional space, such as shown in FIG. 2. In yet another embodiment, the image data includes data for depicting a visual three dimensional stereo image of at least a portion of a TACE polypeptide in three dimensional space, such as shown in FIG. 4.

[0087] The system 1000 of the present invention may further comprise a storage device 145 that stores data representing a geometric arrangement of a characteristic of a composition other than the TACE polypeptide and an operator interface, such as a mouse 135, for receiving instructions from a Operator. Storage device 145 can include, for example, the three-dimensional X-ray coordinate data for other chemical entities. The processor 120 is coupled to the storage device 145 and to said operator interface 135 and generates additional image data for depicting the geometric arrangement of the characteristic of the composition relative to said visual three dimensional image of said at least one characteristic of said at least a portion of TACE polypeptide on the screen 132 based on instructions from the operator interface. In the FIG. 6 embodiment, the storage device 145 is part of the memory 110.

[0088] The first-type storage regions 112 and said second-type storage regions 114 are regions of, for example, a semiconductor memory, regions of an optical disk, or regions of a magnetic memory.

[0089] In one embodiment, processor 120 and video memory 110 are in the form of a UNIX or VAX computer, such those available from Silicon Graphics, Sun Microsystems, and IBM. However, the invention is not limited to use of this particular hardware and software.

[0090] The invention is described in more detail in the following illustrative examples. Although the examples may represent only selected embodiments of the invention, it should be understood that the following examples are illustrative and not limiting.

EXAMPLE 1 TACE Polypeptide Expression, Isolation, and Purification

[0091] A cDNA encoding the signal peptide, pro and catalytic domains of TACE, amino acid residues 1-477, as disclosed in Black et al., “A Metalloproteinase disintigrin that releases tumour-necrosis factor-&agr; from cells,” Nature 385: 729-733 (February 1997), with Ser266 changed to Ala, Asn452 changed to Gln and the sequence Gly-Ser-(His)6 added to the C-terminus, was inserted into an expression vector for CHO cells. The TACE polypeptide was expressed in CHO cells and a mixture of the TACE polypeptide beginning either with Val212 or Arg215 was secreted. The cells were cultured in the drug, methotrexate, which kills those cells that did not incorporate the vector.

[0092] The expressed TACE polypeptide was then purified. Purification started with 5 liters of the medium containing the expressed TACE polypeptide. The medium was concentrated to about 200 mL with a Millipore 10K cut-off, 1 ft2 TFF diafiltration unit. The pumping rate was 50-100 mL/min. Two liters of a buffer solution of 20 mM Tris (pH 7.5) and 300 mM NaCl (Buffer E) was then added to the sample.

[0093] The sample was reconcentrated as described above and diluted a second time with 2 liters of Buffer E, reconcentrated again, diluted a third time with 2 liters of Buffer E, and reconcentrated to about 100 mL. The sample retained in the diafiltration unit was recovered by a back-flush. This material was then filtered through a 0.45 &mgr;m and was azide added to 0.05%. The filtered sample was stored overnight at 4° C.

[0094] After overnight storage, imidazole was added to the filtered sample to 5 mM from a 200 mM stock in water and ZnCl2 was added to 5 uM from a 1 M stock in water. The sample then was pumped over 2.2 mL of Qiagen Ni-NTA Superflow resin (Cat. #30430) at 3 mL/min (column size 7.5×50 mm).

[0095] The column was washed at 5 mL/min with 100 mL of a buffer of 20 mM Tris pH 7.5, 300 mM NaCl, 5 mM imidazole, and S uM ZnCl2 (Buffer A). The protein was then eluted with an increasing gradient of imidazole, going up to 200 mM in 1 minute (5 mL total volume), followed by 35 mL of 200 mM imidazole in Buffer A. Two mL fractions were collected, TACE generally coming off about 6 mL into the elution. The fractions were collected in tubes containing 500 ul of 50% glycerol in water and 200 ul of 1 M Tris pH 8. The glycerol in water was prepared the day of the column run.

[0096] A dot blot, with 3 &mgr;l from each fraction, was stained with amido black to determine which fractions contained a significant amount of protein. The fractions with a significant amount of protein were pooled. The pool was then concentrated to 1-2 mL with a 10 K cut-off Amicon Centriprep concentrator.

[0097] The inhibitor N-{D,L-2(hydroxyaminocarbonyl)methylmethylpentanoyl}-L-3-amino-2-dimethylbutanoyl-L-alanine, 2-(amino)ethyl amide was added to the concentrated sample to 1 mM from a 50 mM stock in water, and octylglucoside was added to 1% from a 10% stock in water. The sample was then incubated at room temperature for 15-24 hours.

[0098] Following incubation, the sample was applied to a 21.5×600 mm size exclusion column, LKB 2135-365, packed with TSK-G3000 SWG, and equilibrated with 10 mM Tris pH 7.5, 100 mM NaCl, 10% glycerol. This buffer was then pumped through the column at 2.5 mL/min for 100 minutes. The TACE polypeptide in the effluent was detected by absorption at 280 nm. Excluded material generally eluted at about 38 minutes. The pure TACE generally eluted at about 78 minutes or longer.

[0099] A gel analysis, with 15 &mgr;l of all fractions with significant protein was then carried out to determine which fractions should be pooled. The size-exclusion chromatography pool was concentrated to about 1 mL with a 10 K cut-off Amicon Centriprep concentrator.

[0100] The inhibitor N-{D,L-2(hydroxyaminocarbonyl)methylmethylpentanoyl}-L-3-amino-2dimethylbutanoyl-L-alanine, 2-(amino)ethyl amide was then added to the purified sample to a concentration of 1 mM. The protein can be stored at 4° C.

EXAMPLE 2 Protein Crystallization

[0101] A DNA construct comprising the prodomain and the catalytic domain of human TACE (resides 1-477) was fused to the sequence Gly-Ser-(His)6 to facilitate purification of the protein on a Ni-NTA affinity column. Chinese Hamster Ovary (CHO) were cells used for protein expression. The cells secreted a mixture of mature TACE beginning with either Val212 or Arg215. TACE-containing fractions from the Ni-NTA column were incubated in a buffer containing octylglucoside and the binding partner N-[D,L-[2-(hydroxyaminocarnbonyl)methyl]-4-methylpentanoyl)-L-3-(tert-butyl)-glycyl-L-alanine. The final purification step was performed on a gel filtration column. Purified TACE was stored in a buffer containing 10 mM Tris/HCL pH 7.5, 100 mM NaCl, 10% glycerol and 1 mM of inhibitor (TACE buffer).

[0102] Crystallization experiments were set up at a TACE concentration of approximately 5 mg/mL by mixing TACE (in TACE buffer) in a 1:1 ratio with the crystallization buffers listed below and using the sitting drop vapor diffusion technique. The experiments were performed in duplicate and incubated either at about 4° C. or at 20° C. Crystalline precipitate was obtained at 20° C. in the following crystallization buffers:

[0103] Buffer A) 0.1 M Na Acetate pH 5.3, 0.2 M CaCl2, 30% v/v Ethanol

[0104] Buffer B) 0.1 M Na Citrate pH 5.0, 40% v/v Ethanol

[0105] Buffer C) 0.1 M Na Citrate pH 8.7, 20% w/v PEG 4000, 20% v/v Isopropanol

[0106] Small crystals were obtained upon transferring seeds from the crystalline precipitate with a hair of a rabbit into a 1:1 mixture of a concentrated sample of TACE (12 mg/mL in TACE buffer) with either buffer B or C. Further refinement of buffer C resulted in buffer D, which allowed the production of crystals suitable for X-ray data collection.

[0107] Buffer D) 0.1 M Na Citrate pH 5.4, 20% w/v PEG 4000, 20% v/v Isopropanol

[0108] The first data set was measured to a reduction of 2.5 Å on a MAR300 imaging plate scanner attached to a Rigaku-Denki totaling Cu-anode generator operated at 5.4 kW providing graphite-monochromatized CuK&agr; radiation. The data were processed with MOSFLM v. 5.23 program and routines of the CCP4 suite. All attempts to solve the structure by molecular replacement methods using either adamalysin II, an all-alanine model of adamalysin II and models generated failed to produce useful starting points for phasing. Thus the locations of four independent zinc atoms were determined with the help of an anomalous difference Patterson synthesis. In order to measure MAD data, the crystals were deep-frozen in liquid nitrogen. Therefore, crystals were transferred into a cryo buffer (80% v/v buffer D containing 17% v/v glycerol) with the help of a silk loop of appropriate size, soaked for about 10 seconds and then immediately deep-frozen at 90 degrees K.

[0109] The crystals obtained belong to the monoclinic space group P21, have cell constants a=61.38 Å (angstrom), b=126.27 Å, c=81.27 Å, &bgr;=107.41°, and contain four molecules in the asymmetric unit.

EXAMPLE 3 X-Ray Diffraction

[0110] Using the crystals described in Example 2, a first data set was measured to a resolution of 2.5 Å on a MAR300 imaging plate scanner attached to a Rigaku-Denki rotating Cu-anode generator operated at 5.4 kW providing graphite-monochromatized CuK&agr; radiation. The data were processed at with the MOSFLM v. 5.23 program and routines of the CCP4 suite.

[0111] All attempts to solve the structure by molecular replacement methods using either adamalysin II, an all-alanine model of adamalysin II, and other models failed to produce useful starting points for phasing.

[0112] Thus, the locations of the four independent zinc atoms were determined with the help of an anomalous difference Patterson synthesis. In order to measure MAD data, the crystals were deep-frozen in a nitrogen gas stream cooled down to the temperature of liquid nitrogen. The crystals were first transferred into a cryo-buffer of 80% v/v Buffer D (0.1 M Na Citrate pH 5.4, 20% w/v PEG 4000, 20% v/v Isopropanol) containing 17% v/v glycerol. Transfer to the cryo-buffer was performed with the help of a silk loop of appropriate size. The crystals were soaked in the cryo-buffer for about 10 seconds and then immediately deep-frozen at 90 K.

[0113] Anomalous diffraction data to 2.0 Å were collected with MAR345 imaging plate scanner at 90 K on the BW6 wiggler beamline of DORIS (DESY, Hamburg, Germany), using monochromatic X-ray radiation at the wavelengths of maximal f″ (1.2769 Å) and minimal f″ (1.2776 Å) at the K absorption edge of zinc and at a remote wavelength (1.060 Å). The data were scanned and evaluated using DENZO/SCALEPACK, yielding 77653 independent reflections from 1051836 measurements (96.9% completeness, R-merge 0.031 in intensities).

[0114] MAD phases were refined and calculated with MLPHARE including all measured data to 2.0 Å resolution. Their initial mean-figure-of-merit of 0.53 was increased to 0.76 by solvent flattening/histogram matching methods applying DM. This density allowed building of the complete chains of the four independent TACE catalytic domains and the bound hydroxamic acid substrates on an SGI system using TURBO-FRODO. This model was crystallographically refined with XPLOR and with CCP4 routines to a crystallographic R factor of 18.6% (Rfree 27.4%) using 79400 independent reflections from, 12.0 to 2A. resolution.

[0115] Four independent TACE molecules form the periodic arrangement.

[0116] Molecules 1 and 2, and 3 and 4 are defined from Asp219 and Met221, respectively, to Ser474.

EXAMPLE 4 X-Ray Diffraction

[0117] Anomalous dispersion diffraction data to 2.0 Å were collected with a MAR345 imaging plate scanner at 100 K on the wiggler beamline of DORIS (DESY, Hamburg, Germany), using monochromatic X-ray radiation of maximal f′ (1.2797 Å) and minimal f′ (1.2804 Å) at the K absorption edge of zinc and at a remote wavelength (1.060 Å). These data were evaluated and scanned using DENZO/SCALEPACK, yielding 77,653 independent reflections (96.9% completeness, R-merge 0.031).

[0118] The structure coordinates obtained are reproduced in Table 1. 1 TABLE 1 REMARK Created by MOLEMAN V. 961218/7.2.5 at Fri Sep 19 20:05:05 1997 for user carlos REMARK MoleMan PDB file CRYST1 61.387 126.278 81.273 90.00 107.42 90.00 P 21 4 ORIGX1 1.000000 0.000000 0.000000 0.00000 ORIGX2 0.000000 1.000000 0.000000 0.00000 ORIGX3 0.000000 0.000000 1.000000 0.00000 SCALE1 0.016290 0.000000 0.005111 0.00000 SCALE2 0.000000 0.007919 0.000000 0.00000 SCALE3 0.000000 0.000000 0.012896 0.00000 Atom Type Residue ? # X Y Z OCC B ATOM 1 N ASP A 219 0.865 33.077 15.204 1.00 20.00 ATOM 2 OD2 ASP A 219 5.154 33.868 14.335 1.00 20.00 ATOM 3 OD1 ASP A 219 4.450 35.924 14.844 1.00 20.00 ATOM 4 CG ASP A 219 4.191 34.718 14.461 1.00 20.00 ATOM 5 CB ASP A 219 2.738 34.303 14.156 1.00 20.00 ATOM 6 CA ASP A 219 2.290 33.026 14.883 1.00 20.00 ATOM 7 C ASP A 219 3.166 32.889 16.123 1.00 20.00 ATOM 8 O ASP A 219 3.439 33.884 16.819 1.00 20.00 ATOM 9 N PRO A 220 3.629 31.679 16.386 1.00 20.00 ATOM 10 CG PRO A 220 4.073 29.436 16.118 1.00 20.00 ATOM 11 CD PRO A 220 3.224 30.531 15.588 1.00 20.00 ATOM 12 CB PRO A 220 4.893 29.974 17.303 1.00 20.00 ATOM 13 CA PRO A 220 4.523 31.452 17.495 1.00 20.00 ATOM 14 C PRO A 220 5.649 32.530 17.443 1.00 20.00 ATOM 15 O PRO A 220 6.513 32.741 18.173 1.00 20.00 ATOM 16 N MET A 221 5.766 33.341 16.625 1.00 48.83 ATOM 17 CE MET A 221 9.090 36.336 12.584 1.00 53.01 ATOM 18 SD MET A 221 9.248 36.147 14.337 1.00 54.21 ATOM 19 CG MET A 221 8.515 34.606 14.801 1.00 51.15 ATOM 20 CB MET A 221 7.101 34.778 15.298 1.00 48.69 ATOM 21 CA MET A 221 6.875 34.306 16.701 1.00 46.22 ATOM 22 C MET A 221 6.485 35.500 17.614 1.00 42.51 ATOM 23 O MET A 221 7.279 36.002 18.427 1.00 43.93 ATOM 24 N LYS A 222 5.215 35.817 17.508 1.00 36.53 ATOM 25 NZ LYS A 222 1.844 39.934 13.657 1.00 40.05 ATOM 26 CE LYS A 222 2.513 39.901 14.974 1.00 39.09 ATOM 27 CD LYS A 222 2.353 38.522 15.613 1.00 38.20 ATOM 28 CG LYS A 222 3.646 38.146 16.312 1.00 36.27 ATOM 29 CB LYS A 222 3.345 37.404 17.597 1.00 33.97 ATOM 30 CA LYS A 222 4.567 36.853 18.299 1.00 32.39 ATOM 31 C LYS A 222 4.144 36.220 19.633 1.00 29.13 ATOM 32 O LYS A 222 2.999 35.844 19.866 1.00 26.54 ATOM 33 N ASN A 223 5.157 36.011 20.462 1.00 23.62 ATOM 34 CA ASN A 223 4.951 35.295 21.704 1.00 22.97 ATOM 35 CB ASN A 223 5.756 33.987 21.611 1.00 25.44 ATOM 36 CG ASN A 223 7.229 34.245 21.372 1.00 26.32 ATOM 37 OD1 ASN A 223 7.973 33.261 21.243 1.00 29.74 ATOM 38 ND2 ASN A 223 7.688 35.482 21.319 1.00 25.96 ATOM 39 C ASN A 223 5.327 36.123 22.908 1.00 18.46 ATOM 40 O ASN A 223 5.365 35.556 23.983 1.00 18.08 ATOM 41 N THR A 224 5.611 37.408 22.709 1.00 17.03 ATOM 42 CA THR A 224 6.035 38.246 23.824 1.00 16.24 ATOM 43 CB THR A 224 7.507 38.721 23.599 1.00 17.52 ATOM 44 OG1 THR A 224 8.317 37.590 23.318 1.00 16.14 ATOM 45 CG2 THR A 224 8.002 39.440 24.840 1.00 17.72 ATOM 46 C THR A 224 5.152 39.464 24.033 1.00 16.13 ATOM 47 O THR A 224 4.863 40.275 23.152 1.00 15.14 ATOM 48 N CYS A 225 4.708 39.650 25.253 1.00 16.61 ATOM 49 CA CYS A 225 3.915 40.833 25.646 1.00 17.81 ATOM 50 CB CYS A 225 2.895 40.460 26.723 1.00 18.01 ATOM 51 SG CYS A 225 2.120 41.843 27.562 1.00 18.77 ATOM 52 C CYS A 225 4.899 41.914 26.101 1.00 17.46 ATOM 53 O CYS A 225 5.614 41.703 27.093 1.00 18.52 ATOM 54 N LYS A 226 5.070 42.945 25.285 1.00 17.94 ATOM 55 CA LYS A 226 6.011 44.033 25.573 1.00 18.61 ATOM 56 CB LYS A 226 6.373 44.816 24.311 1.00 21.04 ATOM 57 CG LYS A 226 6.985 43.974 23.202 1.00 22.16 ATOM 58 CD LYS A 226 8.395 43.451 23.514 1.00 24.95 ATOM 59 CE LYS A 226 8.867 42.585 22.365 1.00 28.75 ATOM 60 NZ LYS A 226 10.336 42.445 22.185 1.00 31.31 ATOM 61 C LYS A 226 5.461 44.940 26.658 1.00 17.48 ATOM 62 O LYS A 226 4.295 45.336 26.642 1.00 16.96 ATOM 63 N LEU A 227 6.281 45.274 27.641 1.00 15.78 ATOM 64 CA LEU A 227 5.848 46.025 28.777 1.00 15.23 ATOM 65 CB LEU A 227 6.182 45.347 30.117 1.00 15.96 ATOM 66 CG LEU A 227 5.848 43.884 30.334 1.00 15.88 ATOM 67 CD1 LEU A 227 6.375 43.381 31.692 1.00 15.72 ATOM 68 CD2 LEU A 227 4.356 43.646 30.314 1.00 13.61 ATOM 69 C LEU A 227 6.462 47.398 28.965 1.00 16.89 ATOM 70 O LEU A 227 7.639 47.635 28.725 1.00 17.35 ATOM 71 N LEU A 228 5.585 48.248 29.488 1.00 16.01 ATOM 72 CA LEU A 228 6.024 49.559 29.935 1.00 15.78 ATOM 73 CB LEU A 228 5.105 50.721 29.644 1.00 15.98 ATOM 74 CG LEU A 228 5.360 52.012 30.426 1.00 17.60 ATOM 75 CD1 LEU A 228 6.596 52.712 29.853 1.00 15.81 ATOM 76 CD2 LEU A 228 4.154 52.945 30.340 1.00 19.40 ATOM 77 C LEU A 228 6.144 49.360 31.455 1.00 16.70 ATOM 78 O LEU A 228 5.124 49.074 32.104 1.00 16.99 ATOM 79 N VAL A 229 7.356 49.488 31.983 1.00 13.83 ATOM 80 CA VAL A 229 7.484 49.343 33.450 1.00 12.75 ATOM 81 CB VAL A 229 8.600 48.320 33.747 1.00 15.41 ATOM 82 CG1 VAL A 229 9.015 48.421 35.199 1.00 15.21 ATOM 83 CG2 VAL A 229 8.062 46.910 33.451 1.00 16.11 ATOM 84 C VAL A 229 7.758 50.710 34.055 1.00 11.45 ATOM 85 O VAL A 229 8.592 51.462 33.529 1.00 10.78 ATOM 86 N VAL A 230 7.029 51.092 35.090 1.00 11.10 ATOM 87 CA VAL A 230 7.169 52.397 35.688 1.00 13.35 ATOM 88 CB VAL A 230 5.910 53.299 35.518 1.00 13.78 ATOM 89 CG1 VAL A 230 6.096 54.643 36.192 1.00 13.70 ATOM 90 CG2 VAL A 230 5.577 53.586 34.050 1.00 12.14 ATOM 91 C VAL A 230 7.495 52.252 37.154 1.00 12.98 ATOM 92 O VAL A 230 6.791 51.546 37.877 1.00 14.51 ATOM 93 N ALA A 231 8.582 52.891 37.570 1.00 14.57 ATOM 94 CA ALA A 231 8.915 52.901 39.001 1.00 12.63 ATOM 95 CB ALA A 231 10.382 52.556 39.219 1.00 14.54 ATOM 96 C ALA A 231 8.616 54.305 39.505 1.00 13.54 ATOM 97 O ALA A 231 9.215 55.290 39.004 1.00 12.89 ATOM 98 N ASP A 232 7.739 54.412 40.500 1.00 13.89 ATOM 99 CA ASP A 232 7.440 55.781 40.947 1.00 15.63 ATOM 100 CB ASP A 232 6.061 55.875 41.560 1.00 16.03 ATOM 101 CG ASP A 232 5.856 55.198 42.876 1.00 17.24 ATOM 102 OD1 ASP A 232 4.725 55.249 43.432 1.00 18.20 ATOM 103 OD2 ASP A 232 6.804 54.565 43.403 1.00 15.69 ATOM 104 C ASP A 232 8.559 56.276 41.875 1.00 15.96 ATOM 105 O ASP A 232 9.395 55.459 42.253 1.00 13.21 ATOM 106 N HIS A 233 8.375 57.492 42.392 1.00 16.98 ATOM 107 CA HIS A 233 9.399 58.118 43.244 1.00 16.61 ATOM 108 CB HIS A 233 9.075 59.600 43.522 1.00 17.60 ATOM 109 CG HIS A 233 7.977 59.866 44.494 1.00 17.74 ATOM 110 CD2 HIS A 233 8.012 60.040 45.836 1.00 18.92 ATOM 111 ND1 HIS A 233 6.648 59.946 44.152 1.00 17.72 ATOM 112 CE1 HIS A 233 5.910 60.144 45.222 1.00 18.19 ATOM 113 NE2 HIS A 233 6.730 60.214 46.266 1.00 19.56 ATOM 114 C HIS A 233 9.562 57.364 44.535 1.00 16.98 ATOM 115 O HIS A 233 10.626 57.385 45.170 1.00 14.73 ATOM 116 N ARG A 234 8.457 56.762 45.005 1.00 16.26 ATOM 117 CA ARG A 234 8.476 55.997 46.231 1.00 16.71 ATOM 118 CB ARG A 234 7.083 55.600 46.688 1.00 19.19 ATOM 119 CG ARG A 234 6.078 56.729 46.814 1.00 18.94 ATOM 120 CD ARG A 234 4.726 56.181 47.250 1.00 21.89 ATOM 121 NE ARG A 234 3.696 57.214 47.125 1.00 23.72 ATOM 122 CZ ARG A 234 2.872 57.469 48.130 1.00 26.70 ATOM 123 NH1 ARG A 234 2.923 56.798 49.270 1.00 27.34 ATOM 124 NH2 ARG A 234 1.953 58.411 47.989 1.00 28.96 ATOM 125 C ARG A 234 9.319 54.728 46.062 1.00 17.39 ATOM 126 O ARG A 234 10.072 54.359 46.955 1.00 17.02 ATOM 127 N PHE A 235 9.149 54.039 44.954 1.00 15.45 ATOM 128 CA PHE A 235 9.913 52.829 44.669 1.00 17.15 ATOM 129 CB PHE A 235 9.458 52.167 43.370 1.00 15.92 ATOM 130 CG PHE A 235 10.063 50.804 43.165 1.00 14.51 ATOM 131 CD1 PHE A 235 11.226 50.638 42.442 1.00 14.09 ATOM 132 CD2 PHE A 235 9.429 49.693 43.697 1.00 13.27 ATOM 133 CE1 PHE A 235 11.786 49.394 42.283 1.00 12.49 ATOM 134 CE2 PHE A 235 9.979 48.436 43.514 1.00 14.15 ATOM 135 CZ PHE A 235 11.159 48.280 42.812 1.00 11.73 ATOM 136 C PHE A 235 11.391 53.211 44.502 1.00 15.85 ATOM 137 O PHE A 235 12.309 52.611 45.041 1.00 15.02 ATOM 138 N TYR A 236 11.573 54.282 43.750 1.00 15.65 ATOM 139 CA TYR A 236 12.920 54.781 43.501 1.00 18.77 ATOM 140 CB TYR A 236 12.809 56.087 42.744 1.00 20.15 ATOM 141 CG TYR A 236 14.079 56.831 42.453 1.00 20.77 ATOM 142 CD1 TYR A 236 15.006 56.379 41.554 1.00 23.25 ATOM 143 CE1 TYR A 236 16.171 57.111 41.294 1.00 25.10 ATOM 144 CD2 TYR A 236 14.303 58.043 43.094 1.00 22.97 ATOM 145 CE2 TYR A 236 15.434 58.789 42.840 1.00 23.38 ATOM 146 CZ TYR A 236 16.355 58.309 41.944 1.00 24.28 ATOM 147 OH TYR A 236 17.490 59.032 41.699 1.00 27.10 ATOM 148 C TYR A 236 13.668 55.005 44.807 1.00 18.41 ATOM 149 O TYR A 236 14.785 54.538 44.979 1.00 17.82 ATOM 150 N ARG A 237 13.029 55.671 45.741 1.00 18.84 ATOM 151 NH2 ARG A 237 16.164 60.578 45.801 1.00 36.66 ATOM 152 NH1 ARG A 237 15.513 58.642 46.822 1.00 35.42 ATOM 153 CZ ARG A 237 15.208 59.704 46.106 1.00 35.99 ATOM 154 NE ARG A 237 13.940 59.862 45.712 1.00 36.11 ATOM 155 CD ARG A 237 12.867 58.910 45.981 1.00 32.12 ATOM 156 CG ARG A 237 12.655 58.442 47.386 1.00 28.99 ATOM 157 CB ARG A 237 12.578 56.978 47.698 1.00 22.94 ATOM 158 CA ARG A 237 13.566 56.021 47.029 1.00 21.89 ATOM 159 C ARG A 237 13.824 54.847 47.959 1.00 22.82 ATOM 160 O ARG A 237 14.874 54.759 48.586 1.00 22.33 ATOM 161 N TYR A 238 12.826 53.995 48.165 1.00 20.93 ATOM 162 CA TYR A 238 12.807 52.950 49.142 1.00 22.79 ATOM 163 CB TYR A 238 11.438 52.835 49.835 1.00 25.02 ATOM 164 CG TYR A 238 11.052 54.133 50.502 1.00 28.43 ATOM 165 CD1 TYR A 238 10.191 55.011 49.873 1.00 30.38 ATOM 166 CE1 TYR A 238 9.827 56.214 50.439 1.00 32.45 ATOM 167 CD2 TYR A 238 11.570 54.501 51.729 1.00 30.38 ATOM 168 CE2 TYR A 238 11.228 55.709 52.309 1.00 32.79 ATOM 169 CZ TYR A 238 10.384 56.572 51.647 1.00 33.85 ATOM 170 OH TYR A 238 10.043 57.784 52.208 1.00 34.86 ATOM 171 C TYR A 238 13.222 51.579 48.683 1.00 22.48 ATOM 172 O TYR A 238 13.682 50.772 49.509 1.00 24.69 ATOM 173 N MET A 239 13.171 51.306 47.405 1.00 20.92 ATOM 174 CA MET A 239 13.680 50.048 46.893 1.00 18.57 ATOM 175 CB MET A 239 12.667 49.374 45.965 1.00 18.57 ATOM 176 CG MET A 239 11.394 48.971 46.729 1.00 18.44 ATOM 177 SD MET A 239 11.677 47.664 47.929 1.00 17.64 ATOM 178 CE MET A 239 12.084 46.309 46.855 1.00 16.38 ATOM 179 C MET A 239 14.975 50.292 46.121 1.00 17.52 ATOM 180 O MET A 239 15.826 49.422 46.133 1.00 16.58 ATOM 181 N GLY A 240 15.067 51.440 45.447 1.00 16.74 ATOM 182 CA GLY A 240 16.198 51.733 44.602 1.00 16.82 ATOM 183 C GLY A 240 17.334 52.497 45.232 1.00 20.60 ATOM 184 O GLY A 240 18.280 52.875 44.516 1.00 20.21 ATOM 185 N ARG A 241 17.242 52.871 46.503 1.00 20.89 ATOM 186 CA ARG A 241 18.300 53.628 47.162 1.00 24.17 ATOM 187 CB ARG A 241 19.609 52.806 47.126 1.00 26.15 ATOM 188 CG ARG A 241 19.504 51.488 47.875 1.00 29.48 ATOM 189 CD ARG A 241 20.771 50.648 47.896 1.00 31.73 ATOM 190 NE ARG A 241 21.417 50.785 49.228 1.00 32.75 ATOM 191 CZ ARG A 241 22.188 51.837 49.428 1.00 33.64 ATOM 192 NH1 ARG A 241 22.361 52.722 48.450 1.00 35.35 ATOM 193 NH2 ARG A 241 22.752 52.014 50.598 1.00 32.64 ATOM 194 C ARG A 241 18.497 55.001 46.543 1.00 25.05 ATOM 195 O ARG A 241 19.574 55.585 46.696 1.00 21.63 ATOM 196 N GLY A 242 17.470 55.529 45.831 1.00 22.70 ATOM 197 CA GLY A 242 17.603 56.784 45.110 1.00 20.94 ATOM 198 C GLY A 242 18.622 56.667 44.003 1.00 20.36 ATOM 199 O GLY A 242 19.255 57.656 43.639 1.00 20.42 ATOM 200 N GLU A 243 18.841 55.486 43.445 1.00 19.57 ATOM 201 CA GLU A 243 19.832 55.277 42.418 1.00 19.51 ATOM 202 CB GLU A 243 20.951 54.324 42.832 1.00 21.04 ATOM 203 CG GLU A 243 21.992 54.818 43.816 1.00 22.54 ATOM 204 CD GLU A 243 22.782 53.747 44.543 1.00 24.67 ATOM 205 OE1 GLU A 243 23.740 54.097 45.292 1.00 24.23 ATOM 206 OE2 GLU A 243 22.512 52.535 44.451 1.00 22.83 ATOM 207 C GLU A 243 19.104 54.717 41.197 1.00 19.62 ATOM 208 O GLU A 243 18.414 53.698 41.291 1.00 18.85 ATOM 209 N GLU A 244 19.324 55.341 40.075 1.00 19.48 ATOM 210 CA GLU A 244 18.699 54.904 38.833 1.00 22.19 ATOM 211 CB GLU A 244 18.928 55.950 37.739 1.00 25.49 ATOM 212 CG GLU A 244 18.502 55.433 36.371 1.00 29.88 ATOM 213 CD GLU A 244 18.409 56.498 35.310 1.00 32.59 ATOM 214 OE1 GLU A 244 18.205 57.691 35.608 1.00 33.16 ATOM 215 OE2 GLU A 244 18.528 56.090 34.136 1.00 35.02 ATOM 216 C GLU A 244 19.176 53.524 38.414 1.00 21.10 ATOM 217 O GLU A 244 18.360 52.654 38.029 1.00 17.68 ATOM 218 N SER A 245 20.466 53.247 38.644 1.00 18.06 ATOM 219 CA SER A 245 21.001 51.960 38.207 1.00 20.29 ATOM 220 CB SER A 245 22.549 51.953 38.270 1.00 21.06 ATOM 221 OG SER A 245 22.833 52.394 39.607 1.00 21.74 ATOM 222 C SER A 245 20.409 50.844 39.056 1.00 17.46 ATOM 223 O SER A 245 19.970 49.834 38.536 1.00 18.81 ATOM 224 N THR A 246 20.355 51.020 40.343 1.00 15.88 ATOM 225 CA THR A 246 19.821 50.027 41.275 1.00 18.13 ATOM 226 CB THR A 246 20.051 50.546 42.689 1.00 19.42 ATOM 227 OG1 THR A 246 21.459 50.877 42.861 1.00 21.14 ATOM 228 CG2 THR A 246 19.692 49.547 43.761 1.00 19.86 ATOM 229 C THR A 246 18.337 49.757 41.014 1.00 16.92 ATOM 230 O THR A 246 17.915 48.619 41.068 1.00 14.90 ATOM 231 N THR A 247 17.545 50.799 40.800 1.00 17.19 ATOM 232 CA THR A 247 16.108 50.689 40.560 1.00 16.84 ATOM 233 CB THR A 247 15.458 52.076 40.443 1.00 16.21 ATOM 234 OG1 THR A 247 15.860 52.839 41.581 1.00 14.61 ATOM 235 CG2 THR A 247 13.920 52.069 40.449 1.00 14.87 ATOM 236 C THR A 247 15.848 49.892 39.308 1.00 15.69 ATOM 237 O THR A 247 15.088 48.922 39.295 1.00 14.94 ATOM 238 N THR A 248 16.502 50.305 38.232 1.00 16.92 ATOM 239 CA THR A 248 16.382 49.685 36.926 1.00 16.92 ATOM 240 CB THR A 248 17.322 50.415 35.963 1.00 17.93 ATOM 241 OG1 THR A 248 16.875 51.787 35.915 1.00 18.06 ATOM 242 CG2 THR A 248 17.381 49.792 34.586 1.00 19.15 ATOM 243 C THR A 248 16.712 48.202 36.972 1.00 18.22 ATOM 244 O THR A 248 16.073 47.313 36.427 1.00 14.91 ATOM 245 N ASN A 249 17.857 47.907 37.593 1.00 17.46 ATOM 246 CA ASN A 249 18.342 46.545 37.700 1.00 17.81 ATOM 247 CB ASN A 249 19.723 46.472 38.349 1.00 19.11 ATOM 248 CG ASN A 249 20.854 47.016 37.499 1.00 22.53 ATOM 249 OD1 ASN A 249 20.753 47.173 36.283 1.00 22.82 ATOM 250 ND2 ASN A 249 21.989 47.306 38.157 1.00 21.73 ATOM 251 C ASN A 249 17.364 45.662 38.478 1.00 15.16 ATOM 252 O ASN A 249 17.157 44.510 38.066 1.00 13.94 ATOM 253 N TYR A 250 16.850 46.170 39.578 1.00 14.10 ATOM 254 CA TYR A 250 15.888 45.426 40.360 1.00 15.67 ATOM 255 CB TYR A 250 15.393 46.239 41.546 1.00 16.52 ATOM 256 CG TYR A 250 14.527 45.444 42.501 1.00 19.76 ATOM 257 CD1 TYR A 250 15.109 44.778 43.571 1.00 20.38 ATOM 258 CE1 TYR A 250 14.344 44.031 44.447 1.00 21.56 ATOM 259 CD2 TYR A 250 13.138 45.344 42.332 1.00 18.76 ATOM 260 CE2 TYR A 250 12.377 44.600 43.203 1.00 19.63 ATOM 261 CZ TYR A 250 12.985 43.943 44.248 1.00 22.22 ATOM 262 OH TYR A 250 12.250 43.189 45.134 1.00 24.91 ATOM 263 C TYR A 250 14.683 45.029 39.472 1.00 14.95 ATOM 264 O TYR A 250 14.234 43.893 39.546 1.00 11.83 ATOM 265 N LEU A 251 14.133 46.021 38.758 1.00 13.07 ATOM 266 CA LEU A 251 12.977 45.742 37.899 1.00 12.72 ATOM 267 CB LEU A 251 12.271 47.059 37.519 1.00 12.66 ATOM 268 CG LEU A 251 11.696 47.800 38.734 1.00 14.96 ATOM 269 CD1 LEU A 251 11.038 49.099 38.363 1.00 18.53 ATOM 270 CD2 LEU A 251 10.717 46.914 39.501 1.00 19.00 ATOM 271 C LEU A 251 13.288 44.885 36.700 1.00 11.35 ATOM 272 O LEU A 251 12.518 43.962 36.349 1.00 10.33 ATOM 273 N ILE A 252 14.429 45.093 36.050 1.00 10.29 ATOM 274 CA ILE A 252 14.832 44.209 34.944 1.00 12.09 ATOM 275 CB ILE A 252 16.209 44.654 34.372 1.00 13.58 ATOM 276 CG2 ILE A 252 16.848 43.570 33.523 1.00 14.17 ATOM 277 CG1 ILE A 252 16.059 45.964 33.581 1.00 16.57 ATOM 278 CD1 ILE A 252 17.351 46.450 32.902 1.00 18.53 ATOM 279 C ILE A 252 14.938 42.791 35.448 1.00 10.51 ATOM 280 O ILE A 252 14.592 41.830 34.755 1.00 12.14 ATOM 281 N GLU A 253 15.508 42.598 36.641 1.00 9.27 ATOM 282 CA GLU A 253 15.743 41.263 37.159 1.00 10.71 ATOM 283 CB GLU A 253 16.762 41.233 38.306 1.00 12.25 ATOM 284 CG GLU A 253 18.217 41.412 37.830 1.00 12.76 ATOM 285 CD GLU A 253 19.215 41.029 38.924 1.00 15.62 ATOM 286 OE1 GLU A 253 19.091 40.009 39.615 1.00 14.92 ATOM 287 OE2 GLU A 253 20.134 41.798 39.207 1.00 14.69 ATOM 288 C GLU A 253 14.422 40.619 37.605 1.00 9.88 ATOM 289 O GLU A 253 14.195 39.441 37.388 1.00 7.43 ATOM 290 N LEU A 254 13.559 41.420 38.230 1.00 10.47 ATOM 291 CA LEU A 254 12.266 40.858 38.649 1.00 10.04 ATOM 292 CB LEU A 254 11.537 41.807 39.572 1.00 9.92 ATOM 293 CG LEU A 254 10.103 41.493 40.022 1.00 10.99 ATOM 294 CD1 LEU A 254 9.778 42.322 41.239 1.00 11.71 ATOM 295 CD2 LEU A 254 9.106 41.854 38.918 1.00 11.46 ATOM 296 C LEU A 254 11.481 40.463 37.408 1.00 9.41 ATOM 297 O LEU A 254 10.959 39.343 37.426 1.00 10.16 ATOM 298 N ILE A 255 11.399 41.269 36.369 1.00 11.15 ATOM 299 CA ILE A 255 10.590 40.910 35.180 1.00 11.06 ATOM 300 CB ILE A 255 10.480 42.108 34.194 1.00 10.34 ATOM 301 CG2 ILE A 255 9.910 41.651 32.851 1.00 12.31 ATOM 302 CG1 ILE A 255 9.646 43.216 34.796 1.00 10.06 ATOM 303 CD1 ILE A 255 8.235 42.810 35.286 1.00 10.90 ATOM 304 C ILE A 255 11.113 39.671 34.495 1.00 11.34 ATOM 305 O ILE A 255 10.466 38.704 34.055 1.00 8.95 ATOM 306 N ASP A 256 12.458 39.596 34.420 1.00 10.09 ATOM 307 CA ASP A 256 13.108 38.362 33.953 1.00 11.00 ATOM 308 CB ASP A 256 14.621 38.617 33.890 1.00 12.60 ATOM 309 CG ASP A 256 15.320 37.358 33.434 1.00 16.54 ATOM 310 OD1 ASP A 256 15.159 37.033 32.249 1.00 17.04 ATOM 311 OD2 ASP A 256 15.977 36.731 34.290 1.00 18.15 ATOM 312 C ASP A 256 12.763 37.124 34.779 1.00 10.53 ATOM 313 O ASP A 256 12.485 36.036 34.246 1.00 11.14 ATOM 314 N ARG A 257 12.719 37.177 36.087 1.00 11.51 ATOM 315 CA ARG A 257 12.362 36.025 36.923 1.00 11.03 ATOM 316 CB ARG A 257 12.646 36.291 38.375 1.00 11.04 ATOM 317 CG ARG A 257 14.194 36.302 38.743 1.00 9.97 ATOM 318 CD ARG A 257 14.347 36.333 40.258 1.00 9.94 ATOM 319 NE ARG A 257 13.581 37.392 40.951 1.00 9.56 ATOM 320 CZ ARG A 257 14.058 38.613 41.124 1.00 10.48 ATOM 321 NH1 ARG A 257 15.283 38.961 40.677 1.00 8.64 ATOM 322 NH2 ARG A 257 13.363 39.539 41.718 1.00 8.45 ATOM 323 C ARG A 257 10.868 35.673 36.655 1.00 10.99 ATOM 324 O ARG A 257 10.495 34.509 36.580 1.00 10.38 ATOM 325 N VAL A 258 10.033 36.685 36.635 1.00 7.90 ATOM 326 CA VAL A 258 8.600 36.497 36.295 1.00 9.48 ATOM 327 CB VAL A 258 7.877 37.856 36.335 1.00 8.97 ATOM 328 CG1 VAL A 258 6.398 37.717 35.905 1.00 7.38 ATOM 329 CG2 VAL A 258 7.915 38.447 37.733 1.00 7.76 ATOM 330 C VAL A 258 8.469 35.851 34.931 1.00 9.20 ATOM 331 O VAL A 258 7.769 34.858 34.706 1.00 11.73 ATOM 332 N ASP A 259 9.193 36.330 33.947 1.00 10.44 ATOM 333 CA ASP A 259 9.196 35.817 32.585 1.00 11.92 ATOM 334 CB ASP A 259 10.101 36.614 31.655 1.00 12.64 ATOM 335 CG ASP A 259 10.059 36.157 30.219 1.00 17.49 ATOM 336 OD1 ASP A 259 8.962 36.007 29.644 1.00 16.26 ATOM 337 OD2 ASP A 259 11.145 35.932 29.637 1.00 20.54 ATOM 338 C ASP A 259 9.618 34.346 32.546 1.00 13.21 ATOM 339 O ASP A 259 9.021 33.572 31.783 1.00 11.13 ATOM 340 N ASP A 260 10.546 33.904 33.412 1.00 12.46 ATOM 341 OD2 ASP A 260 14.081 33.042 35.067 1.00 19.42 ATOM 342 OD1 ASP A 260 13.629 33.074 32.936 1.00 15.68 ATOM 343 CG ASP A 260 13.335 32.789 34.098 1.00 16.09 ATOM 344 CB ASP A 260 11.972 32.171 34.451 1.00 13.52 ATOM 345 CA ASP A 260 10.912 32.498 33.403 1.00 11.20 ATOM 346 C ASP A 260 9.647 31.669 33.761 1.00 13.45 ATOM 347 O ASP A 260 9.461 30.565 33.241 1.00 11.34 ATOM 348 N ILE A 261 8.867 32.202 34.720 1.00 10.81 ATOM 349 CA ILE A 261 7.643 31.469 35.052 1.00 11.86 ATOM 350 CB ILE A 261 6.910 32.167 36.198 1.00 13.06 ATOM 351 CG2 ILE A 261 5.538 31.612 36.416 1.00 12.50 ATOM 352 CG1 ILE A 261 7.825 31.986 37.422 1.00 16.02 ATOM 353 CD1 ILE A 261 7.242 32.547 38.701 1.00 17.40 ATOM 354 C ILE A 261 6.738 31.396 33.815 1.00 10.07 ATOM 355 O ILE A 261 6.351 30.273 33.480 1.00 11.72 ATOM 356 N TYR A 262 6.434 32.522 33.232 1.00 8.70 ATOM 357 CA TYR A 262 5.515 32.515 32.082 1.00 11.55 ATOM 358 CB TYR A 262 5.275 33.937 31.548 1.00 11.91 ATOM 359 CG TYR A 262 4.257 34.650 32.411 1.00 12.15 ATOM 360 CD1 TYR A 262 4.554 35.110 33.670 1.00 12.29 ATOM 361 CE1 TYR A 262 3.598 35.746 34.457 1.00 12.53 ATOM 362 CD2 TYR A 262 2.940 34.799 31.941 1.00 14.52 ATOM 363 CE2 TYR A 262 1.989 35.420 32.716 1.00 14.04 ATOM 364 CZ TYR A 262 2.315 35.905 33.956 1.00 14.14 ATOM 365 OH TYR A 262 1.368 36.538 34.724 1.00 12.39 ATOM 366 C TYR A 262 5.982 31.682 30.932 1.00 11.66 ATOM 367 O TYR A 262 5.202 30.842 30.446 1.00 11.39 ATOM 368 N ARG A 263 7.231 31.887 30.478 1.00 10.78 ATOM 369 CA ARG A 263 7.771 31.180 29.333 1.00 14.61 ATOM 370 CB ARG A 263 9.236 31.623 29.117 1.00 18.66 ATOM 371 CG ARG A 263 9.634 32.729 28.194 1.00 21.81 ATOM 372 CD ARG A 263 11.103 32.655 27.718 1.00 25.82 ATOM 373 NE ARG A 263 11.932 31.745 28.516 1.00 27.30 ATOM 374 CZ ARG A 263 12.427 32.092 29.708 1.00 28.71 ATOM 375 NH1 ARG A 263 12.225 33.329 30.166 1.00 29.09 ATOM 376 NH2 ARG A 263 13.087 31.212 30.435 1.00 27.05 ATOM 377 C ARG A 263 7.751 29.674 29.425 1.00 15.13 ATOM 378 O ARG A 263 7.596 28.973 28.384 1.00 17.45 ATOM 379 N ASN A 264 8.019 29.078 30.591 1.00 12.82 ATOM 380 CA ASN A 264 8.003 27.677 30.834 1.00 14.56 ATOM 381 CB ASN A 264 8.878 27.204 32.013 1.00 17.95 ATOM 382 CG ASN A 264 10.323 27.555 31.654 1.00 19.62 ATOM 383 OD1 ASN A 264 10.776 27.002 30.654 1.00 23.25 ATOM 384 ND2 ASN A 264 10.957 28.464 32.335 1.00 19.81 ATOM 385 C ASN A 264 6.582 27.144 31.076 1.00 16.00 ATOM 386 O ASN A 264 6.449 25.944 31.293 1.00 14.82 ATOM 387 N THR A 265 5.566 28.017 31.073 1.00 13.74 ATOM 388 CA THR A 265 4.221 27.425 31.290 1.00 13.37 ATOM 389 CB THR A 265 3.309 28.463 31.935 1.00 14.37 ATOM 390 OG1 THR A 265 3.800 28.787 33.238 1.00 11.71 ATOM 391 CG2 THR A 265 1.866 27.953 32.101 1.00 12.84 ATOM 392 C THR A 265 3.675 26.917 29.965 1.00 12.82 ATOM 393 O THR A 265 3.698 27.628 28.968 1.00 14.37 ATOM 394 N ALA A 266 3.134 25.708 29.970 1.00 13.65 ATOM 395 CA ALA A 266 2.432 25.151 28.820 1.00 14.19 ATOM 396 CB ALA A 266 2.737 23.645 28.812 1.00 14.17 ATOM 397 C ALA A 266 0.937 25.431 28.997 1.00 11.04 ATOM 398 O ALA A 266 0.250 24.682 29.675 1.00 10.22 ATOM 399 N TRP A 267 0.426 26.539 28.524 1.00 11.35 ATOM 400 CA TRP A 267 −0.962 26.949 28.736 1.00 13.04 ATOM 401 CB TRP A 267 −1.183 28.301 28.045 1.00 11.63 ATOM 402 CG TRP A 267 −0.186 29.330 28.523 1.00 10.70 ATOM 403 CD2 TRP A 267 −0.205 29.920 29.819 1.00 8.77 ATOM 404 CE2 TRP A 267 0.904 30.814 29.863 1.00 12.19 ATOM 405 CE3 TRP A 267 −1.007 29.828 30.931 1.00 9.72 ATOM 406 CD1 TRP A 267 0.865 29.846 27.849 1.00 10.38 ATOM 407 NE1 TRP A 267 1.531 30.754 28.652 1.00 11.35 ATOM 408 CZ2 TRP A 267 1.187 31.580 30.989 1.00 10.57 ATOM 409 CZ3 TRP A 267 −0.718 30.580 32.066 1.00 11.82 ATOM 410 CH2 TRP A 267 0.395 31.439 32.071 1.00 9.78 ATOM 411 C TRP A 267 −2.007 25.919 28.298 1.00 14.01 ATOM 412 O TRP A 267 −3.089 25.832 28.915 1.00 14.19 ATOM 413 N ASP A 268 −1.688 25.091 27.326 1.00 11.86 ATOM 414 CA ASP A 268 −2.615 24.026 26.899 1.00 13.82 ATOM 415 CB ASP A 268 −2.765 24.051 25.382 1.00 13.92 ATOM 416 CG ASP A 268 −1.517 23.691 24.619 1.00 16.74 ATOM 417 OD1 ASP A 268 −0.422 23.699 25.244 1.00 16.49 ATOM 418 OD2 ASP A 268 −1.561 23.395 23.404 1.00 15.38 ATOM 419 C ASP A 268 −2.165 22.661 27.367 1.00 15.26 ATOM 420 O ASP A 268 −2.554 21.608 26.834 1.00 13.18 ATOM 421 N ASN A 269 −1.225 22.609 28.329 1.00 14.90 ATOM 422 CA ASN A 269 −0.596 21.391 28.792 1.00 15.45 ATOM 423 CB ASN A 269 −1.547 20.454 29.549 1.00 17.28 ATOM 424 CG ASN A 269 −2.190 21.182 30.719 1.00 18.96 ATOM 425 OD1 ASN A 269 −1.464 21.670 31.560 1.00 20.34 ATOM 426 ND2 ASN A 269 −3.500 21.321 30.788 1.00 18.93 ATOM 427 C ASN A 269 0.108 20.556 27.711 1.00 14.79 ATOM 428 O ASN A 269 0.330 19.352 27.859 1.00 14.35 ATOM 429 N ALA A 270 0.523 21.193 26.654 1.00 14.55 ATOM 430 CA ALA A 270 1.203 20.593 25.533 1.00 17.42 ATOM 431 CB ALA A 270 0.189 20.155 24.481 1.00 15.76 ATOM 432 C ALA A 270 2.239 21.573 25.004 1.00 16.67 ATOM 433 O ALA A 270 3.183 21.866 25.757 1.00 19.13 ATOM 434 N GLY A 271 2.143 22.004 23.765 1.00 16.01 ATOM 435 CA GLY A 271 3.174 22.837 23.177 1.00 18.64 ATOM 436 C GLY A 271 2.951 24.321 23.125 1.00 17.56 ATOM 437 O GLY A 271 3.768 25.075 22.589 1.00 18.20 ATOM 438 N PHE A 272 1.844 24.831 23.659 1.00 17.81 ATOM 439 CA PHE A 272 1.538 26.263 23.614 1.00 16.42 ATOM 440 CB PHE A 272 0.047 26.539 23.710 1.00 16.73 ATOM 441 CG PHE A 272 −0.389 27.890 23.205 1.00 17.94 ATOM 442 CD1 PHE A 272 −0.462 28.168 21.858 1.00 19.17 ATOM 443 CD2 PHE A 272 −0.716 28.894 24.100 1.00 18.80 ATOM 444 CE1 PHE A 272 −0.813 29.421 21.407 1.00 18.87 ATOM 445 CE2 PHE A 272 −1.120 30.139 23.664 1.00 18.81 ATOM 446 CZ PHE A 272 −1.142 30.404 22.310 1.00 19.11 ATOM 447 C PHE A 272 2.305 26.889 24.796 1.00 16.83 ATOM 448 O PHE A 272 1.786 27.138 25.860 1.00 14.19 ATOM 449 N LYS A 273 3.584 27.067 24.561 1.00 17.93 ATOM 450 CA LYS A 273 4.522 27.543 25.546 1.00 21.35 ATOM 451 CB LYS A 273 5.236 26.296 26.080 1.00 24.32 ATOM 452 CG LYS A 273 6.157 25.698 25.023 1.00 27.94 ATOM 453 CD LYS A 273 6.625 24.300 25.389 1.00 31.29 ATOM 454 CE LYS A 273 7.307 24.300 26.732 1.00 32.80 ATOM 455 NZ LYS A 273 6.347 24.136 27.857 1.00 33.38 ATOM 456 C LYS A 273 5.479 28.518 24.906 1.00 19.96 ATOM 457 O LYS A 273 5.444 28.763 23.706 1.00 18.61 ATOM 458 N GLY A 274 6.382 29.094 25.709 1.00 20.59 ATOM 459 CA GLY A 274 7.323 30.058 25.166 1.00 17.10 ATOM 460 C GLY A 274 6.701 31.449 25.153 1.00 17.80 ATOM 461 O GLY A 274 7.272 32.334 24.547 1.00 17.48 ATOM 462 N TYR A 275 5.527 31.675 25.763 1.00 15.67 ATOM 463 CA TYR A 275 4.892 32.965 25.802 1.00 16.24 ATOM 464 CB TYR A 275 3.340 32.874 25.854 1.00 15.81 ATOM 465 CG TYR A 275 2.838 32.446 24.503 1.00 17.73 ATOM 466 CD1 TYR A 275 2.784 31.102 24.175 1.00 17.51 ATOM 467 CE1 TYR A 275 2.384 30.722 22.919 1.00 20.42 ATOM 468 CD2 TYR A 275 2.524 33.418 23.543 1.00 18.48 ATOM 469 CE2 TYR A 275 2.140 33.017 22.279 1.00 20.02 ATOM 470 CZ TYR A 275 2.065 31.690 21.989 1.00 19.42 ATOM 471 OH TYR A 275 1.670 31.304 20.737 1.00 23.70 ATOM 472 C TYR A 275 5.317 33.689 27.087 1.00 15.60 ATOM 473 O TYR A 275 5.270 33.077 28.160 1.00 15.87 ATOM 474 N GLY A 276 5.638 34.959 26.991 1.00 17.04 ATOM 475 CA GLY A 276 5.978 35.692 28.190 1.00 17.48 ATOM 476 C GLY A 276 5.988 37.183 28.020 1.00 19.17 ATOM 477 O GLY A 276 5.226 37.781 27.278 1.00 16.76 ATOM 478 N ILE A 277 6.893 37.805 28.811 1.00 18.66 ATOM 479 CA ILE A 277 6.938 39.245 28.907 1.00 17.89 ATOM 480 CB ILE A 277 6.413 39.745 30.256 1.00 19.63 ATOM 481 CG2 ILE A 277 4.925 39.409 30.421 1.00 21.02 ATOM 482 CG1 ILE A 277 7.212 39.101 31.390 1.00 20.19 ATOM 483 CD1 ILE A 277 6.754 39.439 32.779 1.00 20.94 ATOM 484 C ILE A 277 8.385 39.741 28.763 1.00 18.46 ATOM 485 O ILE A 277 9.318 39.076 29.168 1.00 16.61 ATOM 486 N GLN A 278 8.505 40.919 28.219 1.00 17.96 ATOM 487 CA GLN A 278 9.743 41.629 28.051 1.00 19.65 ATOM 488 CB GLN A 278 10.224 41.684 26.624 1.00 25.01 ATOM 489 CG GLN A 278 11.692 41.405 26.382 1.00 28.24 ATOM 490 CD GLN A 278 11.580 40.059 25.643 1.00 32.63 ATOM 491 OE1 GLN A 278 11.660 40.060 24.422 1.00 33.32 ATOM 492 NE2 GLN A 278 11.331 39.078 26.502 1.00 34.14 ATOM 493 C GLN A 278 9.499 43.122 28.316 1.00 17.44 ATOM 494 O GLN A 278 8.589 43.689 27.693 1.00 14.22 ATOM 495 N ILE A 279 10.537 43.709 28.900 1.00 13.53 ATOM 496 CA ILE A 279 10.471 45.146 29.090 1.00 15.82 ATOM 497 CB ILE A 279 11.441 45.658 30.183 1.00 15.54 ATOM 498 CG2 ILE A 279 11.402 47.166 30.140 1.00 15.97 ATOM 499 CG1 ILE A 279 11.007 45.083 31.520 1.00 16.27 ATOM 500 CD1 ILE A 279 11.940 45.388 32.661 1.00 17.52 ATOM 501 C ILE A 279 10.745 45.847 27.771 1.00 16.97 ATOM 502 O ILE A 279 11.741 45.578 27.115 1.00 16.40 ATOM 503 N GLU A 280 9.824 46.719 27.370 1.00 17.63 ATOM 504 CA GLU A 280 10.019 47.523 26.185 1.00 20.86 ATOM 505 CB GLU A 280 8.744 47.778 25.395 1.00 23.07 ATOM 506 CG GLU A 280 8.890 48.784 24.268 1.00 29.11 ATOM 507 CD GLU A 280 9.843 48.327 23.189 1.00 32.61 ATOM 508 OE1 GLU A 280 10.187 47.124 23.154 1.00 36.14 ATOM 509 OE2 GLU A 280 10.293 49.127 22.343 1.00 34.84 ATOM 510 C GLU A 280 10.599 48.892 26.605 1.00 18.21 ATOM 511 O GLU A 280 11.426 49.511 25.941 1.00 16.53 ATOM 512 N GLN A 281 10.088 49.380 27.716 1.00 18.36 ATOM 513 NE2 GLN A 281 11.497 53.112 26.056 1.00 34.24 ATOM 514 OE1 GLN A 281 10.702 55.093 26.755 1.00 36.11 ATOM 515 CD GLN A 281 10.798 53.869 26.901 1.00 33.14 ATOM 516 CG GLN A 281 10.120 53.163 28.056 1.00 29.67 ATOM 517 CB GLN A 281 9.611 51.793 27.640 1.00 24.17 ATOM 518 CA GLN A 281 10.509 50.675 28.207 1.00 21.85 ATOM 519 C GLN A 281 10.385 50.730 29.723 1.00 22.08 ATOM 520 O GLN A 281 9.444 50.170 30.275 1.00 19.43 ATOM 521 N ILE A 282 11.379 51.377 30.337 1.00 19.26 ATOM 522 CA ILE A 282 11.340 51.564 31.756 1.00 20.21 ATOM 523 CB ILE A 282 12.456 50.838 32.501 1.00 23.17 ATOM 524 CG2 ILE A 282 12.567 51.331 33.942 1.00 22.63 ATOM 525 CG1 ILE A 282 12.183 49.337 32.486 1.00 24.53 ATOM 526 CD1 ILE A 282 13.292 48.530 33.126 1.00 27.43 ATOM 527 C ILE A 282 11.408 53.062 32.033 1.00 20.13 ATOM 528 O ILE A 282 12.183 53.826 31.441 1.00 21.53 ATOM 529 N ARG A 283 10.595 53.478 32.972 1.00 18.99 ATOM 530 CA ARG A 283 10.541 54.878 33.353 1.00 20.71 ATOM 531 CB ARG A 283 9.159 55.499 33.116 1.00 23.74 ATOM 532 CG ARG A 283 8.779 55.516 31.645 1.00 28.61 ATOM 533 CD ARG A 283 9.030 56.887 31.041 1.00 33.16 ATOM 534 NE ARG A 283 9.596 56.759 29.712 1.00 37.40 ATOM 535 CZ ARG A 283 9.199 57.449 28.659 1.00 40.44 ATOM 536 NH1 ARG A 283 8.191 58.311 28.783 1.00 41.71 ATOM 537 NH2 ARG A 283 9.800 57.245 27.492 1.00 41.03 ATOM 538 C ARG A 283 10.826 54.930 34.844 1.00 20.40 ATOM 539 O ARG A 283 10.049 54.339 35.566 1.00 17.37 ATOM 540 N ILE A 284 11.881 55.634 35.220 1.00 18.94 ATOM 541 CA ILE A 284 12.127 55.779 36.655 1.00 19.58 ATOM 542 CB ILE A 284 13.582 55.519 37.053 1.00 20.09 ATOM 543 CG2 ILE A 284 13.684 55.477 38.573 1.00 20.97 ATOM 544 CG1 ILE A 284 14.178 54.254 36.460 1.00 20.86 ATOM 545 CD1 ILE A 284 13.442 52.976 36.774 1.00 20.01 ATOM 546 C ILE A 284 11.792 57.228 37.002 1.00 19.71 ATOM 547 O ILE A 284 12.399 58.147 36.427 1.00 19.08 ATOM 548 N LEU A 285 10.816 57.413 37.849 1.00 19.33 ATOM 549 CA LEU A 285 10.379 58.729 38.276 1.00 20.90 ATOM 550 CB LEU A 285 8.881 58.729 38.557 1.00 20.57 ATOM 551 CG LEU A 285 8.020 58.220 37.391 1.00 18.92 ATOM 552 CD1 LEU A 285 6.569 58.488 37.719 1.00 19.77 ATOM 553 CD2 LEU A 285 8.426 58.759 36.039 1.00 18.79 ATOM 554 C LEU A 285 11.153 59.078 39.542 1.00 22.65 ATOM 555 O LEU A 285 10.861 58.536 40.585 1.00 21.09 ATOM 556 N LYS A 286 12.179 59.897 39.370 1.00 23.47 ATOM 557 CA LYS A 286 13.101 60.223 40.443 1.00 25.88 ATOM 558 CB LYS A 286 14.400 60.777 39.830 1.00 24.64 ATOM 559 CG LYS A 286 15.057 59.703 38.969 1.00 26.69 ATOM 560 CD LYS A 286 16.105 60.262 38.032 1.00 28.58 ATOM 561 CE LYS A 286 17.308 59.334 37.986 1.00 28.89 ATOM 562 NZ LYS A 286 18.328 59.807 37.012 1.00 29.92 ATOM 563 C LYS A 286 12.515 61.157 41.473 1.00 26.73 ATOM 564 O LYS A 286 12.944 61.136 42.622 1.00 28.60 ATOM 565 N SER A 287 11.543 61.980 41.133 1.00 25.80 ATOM 566 CA SER A 287 10.969 62.865 42.158 1.00 26.18 ATOM 567 CB SER A 287 11.627 64.249 42.056 1.00 26.60 ATOM 568 OG SER A 287 11.272 64.767 40.796 1.00 28.18 ATOM 569 C SER A 287 9.471 62.857 41.977 1.00 24.89 ATOM 570 O SER A 287 8.996 62.358 40.947 1.00 25.47 ATOM 571 N PRO A 288 8.739 63.268 42.989 1.00 26.04 ATOM 572 CD PRO A 288 9.222 63.876 44.247 1.00 27.14 ATOM 573 CA PRO A 288 7.294 63.276 42.938 1.00 26.70 ATOM 574 CB PRO A 288 6.831 63.561 44.339 1.00 26.05 ATOM 575 CG PRO A 288 8.010 63.972 45.128 1.00 27.69 ATOM 576 C PRO A 288 6.826 64.313 41.928 1.00 27.00 ATOM 577 O PRO A 288 7.522 65.301 41.666 1.00 27.28 ATOM 578 N GLN A 289 5.681 64.051 41.341 1.00 25.80 ATOM 579 CA GLN A 289 5.123 64.976 40.376 1.00 27.15 ATOM 580 CB GLN A 289 4.021 64.214 39.628 1.00 27.78 ATOM 581 CG GLN A 289 3.246 65.040 38.617 1.00 27.92 ATOM 582 CD GLN A 289 4.207 65.636 37.616 1.00 28.41 ATOM 583 OE1 GLN A 289 4.970 64.944 36.966 1.00 28.03 ATOM 584 NE2 GLN A 289 4.179 66.966 37.505 1.00 32.04 ATOM 585 C GLN A 289 4.553 66.194 41.093 1.00 27.84 ATOM 586 O GLN A 289 3.693 66.017 41.943 1.00 27.12 ATOM 587 N GLU A 290 4.962 67.414 40.766 1.00 30.72 ATOM 588 OE2 GLU A 290 4.477 72.113 38.486 1.00 39.70 ATOM 589 OE1 GLU A 290 6.067 72.564 39.857 1.00 40.48 ATOM 590 CD GLU A 290 5.336 71.724 39.305 1.00 39.53 ATOM 591 CG GLU A 290 5.461 70.253 39.660 1.00 37.94 ATOM 592 CB GLU A 290 5.094 69.910 41.084 1.00 35.71 ATOM 593 CA GLU A 290 4.384 68.595 41.401 1.00 33.44 ATOM 594 C GLU A 290 2.912 68.679 40.978 1.00 32.66 ATOM 595 O GLU A 290 2.615 68.487 39.807 1.00 32.60 ATOM 596 N VAL A 291 2.027 68.929 41.928 1.00 32.52 ATOM 597 CA VAL A 291 0.589 68.960 41.608 1.00 34.53 ATOM 598 CB VAL A 291 0.016 67.667 42.214 1.00 34.68 ATOM 599 CG1 VAL A 291 −0.992 67.828 43.317 1.00 33.99 ATOM 600 CG2 VAL A 291 −0.509 66.742 41.114 1.00 33.97 ATOM 601 C VAL A 291 −0.040 70.265 42.070 1.00 36.93 ATOM 602 O VAL A 291 0.296 70.786 43.141 1.00 35.77 ATOM 603 N LYS A 292 −0.879 70.860 41.231 1.00 38.91 ATOM 604 NZ LYS A 292 0.250 74.239 36.361 1.00 47.09 ATOM 605 CE LYS A 292 −0.459 74.753 37.563 1.00 45.89 ATOM 606 CD LYS A 292 −1.298 73.665 38.215 1.00 45.49 ATOM 607 CG LYS A 292 −1.226 73.759 39.722 1.00 44.08 ATOM 608 CB LYS A 292 −2.197 72.809 40.397 1.00 42.31 ATOM 609 CA LYS A 292 −1.595 72.078 41.589 1.00 41.28 ATOM 610 C LYS A 292 −2.701 71.697 42.557 1.00 41.79 ATOM 611 O LYS A 292 −3.085 70.535 42.624 1.00 42.72 ATOM 612 N PRO A 293 −3.192 72.668 43.305 1.00 42.21 ATOM 613 CD PRO A 293 −2.802 74.096 43.247 1.00 42.59 ATOM 614 CA PRO A 293 −4.279 72.420 44.237 1.00 41.91 ATOM 615 CB PRO A 293 −4.605 73.784 44.806 1.00 41.79 ATOM 616 CG PRO A 293 −3.481 74.676 44.450 1.00 41.90 ATOM 617 C PRO A 293 −5.441 71.807 43.474 1.00 41.40 ATOM 618 O PRO A 293 −5.696 72.212 42.339 1.00 41.02 ATOM 619 N GLY A 294 −6.059 70.755 44.003 1.00 40.85 ATOM 620 CA GLY A 294 −7.176 70.123 43.332 1.00 41.30 ATOM 621 C GLY A 294 −6.832 69.033 42.332 1.00 40.98 ATOM 622 O GLY A 294 −7.688 68.185 42.061 1.00 41.17 ATOM 623 N GLU A 295 −5.636 69.051 41.753 1.00 39.55 ATOM 624 OE2 GLU A 295 −2.049 69.989 38.852 1.00 44.47 ATOM 625 OE1 GLU A 295 −3.356 71.223 37.568 1.00 44.87 ATOM 626 CD GLU A 295 −3.176 70.330 38.422 1.00 44.01 ATOM 627 CG GLU A 295 −4.422 69.647 38.946 1.00 42.26 ATOM 628 CB GLU A 295 −4.099 68.521 39.886 1.00 39.91 ATOM 629 CA GLU A 295 −5.214 68.044 40.813 1.00 38.60 ATOM 630 C GLU A 295 −4.641 66.825 41.552 1.00 36.59 ATOM 631 O GLU A 295 −4.281 66.871 42.720 1.00 36.85 ATOM 632 N LYS A 296 −4.418 65.777 40.773 1.00 33.95 ATOM 633 CA LYS A 296 −3.782 64.575 41.294 1.00 30.68 ATOM 634 CB LYS A 296 −4.755 63.656 41.996 1.00 31.56 ATOM 635 CG LYS A 296 −5.992 63.312 41.185 1.00 32.22 ATOM 636 CD LYS A 296 −7.149 62.924 42.075 1.00 32.13 ATOM 637 CE LYS A 296 −8.161 62.034 41.381 1.00 33.43 ATOM 638 NZ LYS A 296 −8.106 62.091 39.904 1.00 34.90 ATOM 639 C LYS A 296 −3.028 63.883 40.167 1.00 28.79 ATOM 640 O LYS A 296 −3.275 64.112 38.986 1.00 27.50 ATOM 641 N HIS A 297 −1.999 63.135 40.580 1.00 25.20 ATOM 642 CA HIS A 297 −1.216 62.396 39.584 1.00 20.71 ATOM 643 CB HIS A 297 −0.148 63.267 38.981 1.00 20.06 ATOM 644 CG HIS A 297 0.824 62.612 38.054 1.00 18.56 ATOM 645 CD2 HIS A 297 1.808 61.741 38.309 1.00 15.40 ATOM 646 ND1 HIS A 297 0.863 62.878 36.701 1.00 18.13 ATOM 647 CE1 HIS A 297 1.844 62.180 36.160 1.00 17.97 ATOM 648 NE2 HIS A 297 2.416 61.463 37.105 1.00 19.72 ATOM 649 C HIS A 297 −0.730 61.151 40.292 1.00 19.15 ATOM 650 O HIS A 297 −0.477 61.256 41.493 1.00 18.54 ATOM 651 N TYR A 298 −0.557 60.030 39.580 1.00 18.21 ATOM 652 CA TYR A 298 −0.155 58.824 40.330 1.00 16.80 ATOM 653 CB TYR A 298 −0.193 57.594 39.437 1.00 16.24 ATOM 654 CG TYR A 298 0.940 57.509 38.444 1.00 17.23 ATOM 655 CD1 TYR A 298 2.077 56.755 38.742 1.00 15.56 ATOM 656 CE1 TYR A 298 3.094 56.667 37.821 1.00 15.21 ATOM 657 CD2 TYR A 298 0.881 58.184 37.236 1.00 16.74 ATOM 658 CE2 TYR A 298 1.913 58.098 36.337 1.00 16.91 ATOM 659 CZ TYR A 298 3.022 57.325 36.636 1.00 16.49 ATOM 660 OH TYR A 298 4.046 57.260 35.719 1.00 18.10 ATOM 661 C TYR A 298 1.185 58.981 41.029 1.00 16.63 ATOM 662 O TYR A 298 1.351 58.330 42.073 1.00 16.70 ATOM 663 N ASN A 299 2.112 59.766 40.523 1.00 16.99 ATOM 664 CA ASN A 299 3.423 60.011 41.085 1.00 18.59 ATOM 665 CB ASN A 299 4.463 60.166 39.965 1.00 18.92 ATOM 666 CG ASN A 299 5.890 60.214 40.494 1.00 18.76 ATOM 667 OD1 ASN A 299 6.205 59.456 41.412 1.00 18.23 ATOM 668 ND2 ASN A 299 6.748 61.070 39.950 1.00 19.19 ATOM 669 C ASN A 299 3.513 61.224 42.009 1.00 20.06 ATOM 670 O ASN A 299 4.606 61.723 42.362 1.00 18.80 ATOM 671 N MET A 300 2.395 61.732 42.509 1.00 20.80 ATOM 672 CA MET A 300 2.449 62.886 43.417 1.00 22.77 ATOM 673 CB MET A 300 1.115 63.568 43.608 1.00 23.16 ATOM 674 CG MET A 300 0.029 62.931 44.436 1.00 25.10 ATOM 675 SD MET A 300 −1.590 63.723 44.020 1.00 28.00 ATOM 676 CE MET A 300 −2.640 62.839 45.144 1.00 24.04 ATOM 677 C MET A 300 3.012 62.458 44.767 1.00 21.89 ATOM 678 O MET A 300 2.833 61.314 45.160 1.00 18.53 ATOM 679 N ALA A 301 3.369 63.413 45.606 1.00 22.83 ATOM 680 CA ALA A 301 3.872 63.134 46.926 1.00 23.87 ATOM 681 CB ALA A 301 4.450 64.429 47.484 1.00 23.72 ATOM 682 C ALA A 301 2.841 62.580 47.893 1.00 24.63 ATOM 683 O ALA A 301 3.085 61.615 48.637 1.00 23.46 ATOM 684 N LYS A 302 1.652 63.178 47.913 1.00 26.09 ATOM 685 CA LYS A 302 0.645 62.719 48.859 1.00 26.00 ATOM 686 CB LYS A 302 −0.215 63.890 49.329 1.00 28.38 ATOM 687 CG LYS A 302 0.554 65.188 49.528 1.00 29.29 ATOM 688 CD LYS A 302 1.697 65.125 50.505 1.00 30.98 ATOM 689 CE LYS A 302 2.522 66.407 50.512 1.00 32.65 ATOM 690 NZ LYS A 302 2.617 67.085 49.191 1.00 33.62 ATOM 691 C LYS A 302 −0.198 61.580 48.291 1.00 25.55 ATOM 692 O LYS A 302 −0.295 61.399 47.087 1.00 24.72 ATOM 693 N SER A 303 −0.793 60.835 49.202 1.00 24.45 ATOM 694 CA SER A 303 −1.621 59.696 48.836 1.00 25.50 ATOM 695 CB SER A 303 −1.434 58.619 49.878 1.00 26.64 ATOM 696 OG SER A 303 −1.869 59.030 51.149 1.00 31.03 ATOM 697 C SER A 303 −3.052 60.182 48.666 1.00 25.87 ATOM 698 O SER A 303 −3.396 61.256 49.185 1.00 22.73 ATOM 699 N TYR A 304 −3.814 59.454 47.855 1.00 24.98 ATOM 700 CA TYR A 304 −5.181 59.862 47.550 1.00 24.27 ATOM 701 CB TYR A 304 −5.140 60.449 46.132 1.00 25.45 ATOM 702 CG TYR A 304 −6.466 61.015 45.686 1.00 28.35 ATOM 703 CD1 TYR A 304 −6.762 62.357 45.929 1.00 29.08 ATOM 704 CE1 TYR A 304 −7.978 62.891 45.552 1.00 29.59 ATOM 705 CD2 TYR A 304 −7.426 60.214 45.085 1.00 27.54 ATOM 706 CE2 TYR A 304 −8.630 60.754 44.702 1.00 29.33 ATOM 707 CZ TYR A 304 −8.893 62.094 44.944 1.00 29.27 ATOM 708 OH TYR A 304 −10.103 62.610 44.578 1.00 32.08 ATOM 709 C TYR A 304 −6.192 58.769 47.721 1.00 25.14 ATOM 710 O TYR A 304 −5.707 57.735 47.336 1.&agr;00 20.08 ATOM 711 N PRO A 305 −7.356 59.000 48.279 1.00 26.60 ATOM 712 CD PRO A 305 −8.386 58.001 48.459 1.00 25.22 ATOM 713 CA PRO A 305 −7.989 60.240 48.637 1.00 27.02 ATOM 714 CB PRO A 305 −9.492 60.083 48.491 1.00 25.75 ATOM 715 CG PRO A 305 −9.707 58.646 48.789 1.00 25.74 ATOM 716 C PRO A 305 −7.625 60.782 50.007 1.00 28.63 ATOM 717 O PRO A 305 −7.922 61.915 50.430 1.00 28.68 ATOM 718 N ASN A 306 −6.988 59.904 50.783 1.00 29.14 ATOM 719 CA ASN A 306 −6.713 60.273 52.173 1.00 30.26 ATOM 720 CB ASN A 306 −7.350 59.232 53.075 1.00 32.58 ATOM 721 CG ASN A 306 −8.766 58.861 52.676 1.00 35.48 ATOM 722 OD1 ASN A 306 −9.661 59.712 52.612 1.00 36.24 ATOM 723 ND2 ASN A 306 −8.992 57.588 52.368 1.00 36.01 ATOM 724 C ASN A 306 −5.229 60.477 52.375 1.00 29.94 ATOM 725 O ASN A 306 −4.444 59.536 52.439 1.00 28.29 ATOM 726 N GLU A 307 −4.819 61.724 52.507 1.00 29.94 ATOM 727 OE2 GLU A 307 −2.295 66.669 51.130 1.00 41.44 ATOM 728 OE1 GLU A 307 −2.711 66.223 53.238 1.00 41.35 ATOM 729 CD GLU A 307 −2.656 65.896 52.037 1.00 40.02 ATOM 730 CG GLU A 307 −3.034 64.464 51.678 1.00 38.20 ATOM 731 CB GLU A 307 −3.401 63.683 52.914 1.00 33.77 ATOM 732 CA GLU A 307 −3.461 62.152 52.717 1.00 32.32 ATOM 733 C GLU A 307 −2.770 61.594 53.949 1.00 30.24 ATOM 734 O GLU A 307 −1.542 61.522 53.970 1.00 30.44 ATOM 735 N GLU A 308 −3.513 61.273 54.984 1.00 29.39 ATOM 736 OE2 GLU A 308 −6.099 61.320 55.501 1.00 38.47 ATOM 737 OE1 GLU A 308 −7.129 59.531 56.089 1.00 37.95 ATOM 738 CD GLU A 308 −6.176 60.330 56.250 1.00 36.70 ATOM 739 CG GLU A 308 −5.168 60.057 57.322 1.00 35.39 ATOM 740 CB GLU A 308 −3.931 60.913 57.384 1.00 33.10 ATOM 741 CA GLU A 308 −2.950 60.795 56.224 1.00 29.98 ATOM 742 C GLU A 308 −2.487 59.353 56.093 1.00 28.21 ATOM 743 O GLU A 308 −1.607 58.963 56.857 1.00 26.31 ATOM 744 N LYS A 309 −3.004 58.626 55.094 1.00 24.19 ATOM 745 CA LYS A 309 −2.648 57.216 55.015 1.00 24.20 ATOM 746 CB LYS A 309 −3.711 56.413 54.263 1.00 24.89 ATOM 747 CG LYS A 309 −5.098 56.344 54.884 1.00 27.73 ATOM 748 CD LYS A 309 −5.089 56.571 56.361 1.00 31.22 ATOM 749 CE LYS A 309 −6.317 56.792 57.162 1.00 32.52 ATOM 750 NZ LYS A 309 −6.638 55.694 58.107 1.00 34.53 ATOM 751 C LYS A 309 −1.285 57.012 54.387 1.00 21.98 ATOM 752 O LYS A 309 −0.832 57.851 53.636 1.00 22.27 ATOM 753 N ASP A 310 −0.675 55.855 54.593 1.00 20.75 ATOM 754 CA ASP A 310 0.605 55.530 53.953 1.00 20.70 ATOM 755 CB ASP A 310 1.130 54.173 54.501 1.00 20.19 ATOM 756 CG ASP A 310 2.615 54.085 54.167 1.00 22.21 ATOM 757 OD1 ASP A 310 3.335 54.893 54.831 1.00 24.55 ATOM 758 OD2 ASP A 310 3.040 53.306 53.292 1.00 18.20 ATOM 759 C ASP A 310 0.474 55.419 52.450 1.00 19.43 ATOM 760 O ASP A 310 1.385 55.706 51.651 1.00 20.19 ATOM 761 N ALA A 311 −0.727 55.044 51.990 1.00 18.69 ATOM 762 CA ALA A 311 −0.947 54.834 50.572 1.00 17.44 ATOM 763 CB ALA A 311 −0.991 53.296 50.429 1.00 16.55 ATOM 764 C ALA A 311 −2.302 55.316 50.028 1.00 16.60 ATOM 765 O ALA A 311 −3.221 55.655 50.751 1.00 12.08 ATOM 766 N TRP A 312 −2.339 55.302 48.711 1.00 17.19 ATOM 767 CA TRP A 312 −3.555 55.615 47.963 1.00 15.85 ATOM 768 CB TRP A 312 −3.236 55.569 46.483 1.00 14.37 ATOM 769 CG TRP A 312 −2.713 56.757 45.760 1.00 16.10 ATOM 770 CD2 TRP A 312 −3.413 57.526 44.772 1.00 16.24 ATOM 771 CE2 TRP A 312 −2.554 58.554 44.342 1.00 17.46 ATOM 772 CE3 TRP A 312 −4.685 57.427 44.204 1.00 17.59 ATOM 773 CD1 TRP A 312 −1.492 57.360 45.884 1.00 15.52 ATOM 774 NE1 TRP A 312 −1.381 58.440 45.050 1.00 16.75 ATOM 775 CZ2 TRP A 312 −2.900 59.475 43.357 1.00 17.80 ATOM 776 CZ3 TRP A 312 −5.022 58.348 43.228 1.00 15.80 ATOM 777 CH2 TRP A 312 −4.154 59.345 42.828 1.00 17.23 ATOM 778 C TRP A 312 −4.562 54.502 48.204 1.00 16.18 ATOM 779 O TRP A 312 −4.185 53.393 48.559 1.00 14.62 ATOM 780 N ASP A 313 −5.841 54.750 47.906 1.00 17.14 ATOM 781 CA ASP A 313 −6.817 53.682 47.741 1.00 17.42 ATOM 782 CB ASP A 313 −8.170 54.298 47.343 1.00 19.70 ATOM 783 CG ASP A 313 −9.106 53.244 46.797 1.00 22.89 ATOM 784 OD1 ASP A 313 −9.073 52.935 45.598 1.00 24.60 ATOM 785 OD2 ASP A 313 −9.841 52.697 47.623 1.00 26.78 ATOM 786 C ASP A 313 −6.273 52.903 46.539 1.00 14.58 ATOM 787 O ASP A 313 −6.033 53.570 45.533 1.00 14.85 ATOM 788 N VAL A 314 −6.101 51.596 46.588 1.00 15.33 ATOM 789 CA VAL A 314 −5.434 50.915 45.475 1.00 14.25 ATOM 790 CB VAL A 314 −5.067 49.478 45.891 1.00 13.94 ATOM 791 CG1 VAL A 314 −6.266 48.578 46.107 1.00 12.58 ATOM 792 CG2 VAL A 314 −4.090 48.891 44.864 1.00 12.94 ATOM 793 C VAL A 314 −6.110 50.966 44.129 1.00 14.22 ATOM 794 O VAL A 314 −5.480 51.152 43.099 1.00 13.01 ATOM 795 N LYS A 315 −7.435 50.819 44.092 1.00 16.35 ATOM 796 NZ LYS A 315 −12.342 48.884 46.668 1.00 27.78 ATOM 797 CE LYS A 315 −11.908 48.279 45.365 1.00 26.99 ATOM 798 CD LYS A 315 −11.499 49.287 44.334 1.00 24.72 ATOM 799 CG LYS A 315 −10.084 49.278 43.775 1.00 21.52 ATOM 800 CB LYS A 315 −9.700 50.621 43.204 1.00 18.30 ATOM 801 CA LYS A 315 −8.223 50.882 42.870 1.00 17.01 ATOM 802 C LYS A 315 −8.111 52.273 42.255 1.00 15.42 ATOM 803 O LYS A 315 −7.967 52.432 41.065 1.00 14.82 ATOM 804 N MET A 316 −8.189 53.317 43.095 1.00 16.67 ATOM 805 CA MET A 316 −8.023 54.673 42.531 1.00 16.96 ATOM 806 CB MET A 316 −8.396 55.717 43.579 1.00 19.66 ATOM 807 CG MET A 316 −9.874 55.616 43.966 1.00 21.49 ATOM 808 SD MET A 316 −10.303 56.858 45.216 1.00 25.95 ATOM 809 CE MET A 316 −11.921 56.212 45.655 1.00 23.70 ATOM 810 C MET A 316 −6.624 54.927 41.996 1.00 16.13 ATOM 811 O MET A 316 −6.463 55.672 41.038 1.00 16.38 ATOM 812 N LEU A 317 −5.583 54.315 42.552 1.00 15.29 ATOM 813 CA LEU A 317 −4.218 54.490 42.078 1.00 13.26 ATOM 814 CB LEU A 317 −3.200 53.915 43.097 1.00 11.74 ATOM 815 CG LEU A 317 −1.733 54.036 42.672 1.00 12.04 ATOM 816 CD1 LEU A 317 −1.323 55.505 42.512 1.00 10.99 ATOM 817 CD2 LEU A 317 −0.861 53.326 43.698 1.00 11.54 ATOM 818 C LEU A 317 −4.079 53.785 40.755 1.00 12.38 ATOM 819 O LEU A 317 −3.526 54.334 39.819 1.00 14.48 ATOM 820 N LEU A 318 −4.637 52.580 40.616 1.00 12.87 ATOM 821 CA LEU A 318 −4.561 51.890 39.326 1.00 12.84 ATOM 822 CB LEU A 318 −5.112 50.457 39.453 1.00 12.79 ATOM 823 CG LEU A 318 −4.966 49.629 38.170 1.00 14.82 ATOM 824 CD1 LEU A 318 −3.531 49.542 37.700 1.00 15.86 ATOM 825 CD2 LEU A 318 −5.558 48.241 38.355 1.00 14.73 ATOM 826 C LEU A 318 −5.230 52.673 38.218 1.00 12.07 ATOM 827 O LEU A 318 −4.780 52.829 37.099 1.00 12.74 ATOM 828 N GLU A 319 −6.420 53.193 38.511 1.00 15.24 ATOM 829 OE2 GLU A 319 −11.483 52.210 39.220 1.00 28.26 ATOM 830 OE1 GLU A 319 −10.797 54.093 40.042 1.00 29.42 ATOM 831 CD GLU A 319 −10.674 53.181 39.193 1.00 27.45 ATOM 832 CG GLU A 319 −9.561 53.233 38.177 1.00 24.55 ATOM 833 CB GLU A 319 −8.553 54.375 38.270 1.00 18.18 ATOM 834 CA GLU A 319 −7.199 54.025 37.614 1.00 15.25 ATOM 835 C GLU A 319 −6.421 55.288 37.289 1.00 14.06 ATOM 836 O GLU A 319 −6.317 55.697 36.141 1.00 13.57 ATOM 837 N GLN A 320 −5.879 55.947 38.303 1.00 14.48 ATOM 838 CA GLN A 320 −5.086 57.164 38.073 1.00 15.95 ATOM 839 CB GLN A 320 −4.631 57.772 39.413 1.00 17.37 ATOM 840 CG GLN A 320 −3.969 59.147 39.262 1.00 20.30 ATOM 841 CD GLN A 320 −4.917 60.189 38.681 1.00 20.82 ATOM 842 OE1 GLN A 320 −6.069 60.198 39.101 1.00 22.55 ATOM 843 NE2 GLN A 320 −4.480 61.016 37.768 1.00 20.50 ATOM 844 C GLN A 320 −3.896 56.849 37.206 1.00 15.14 ATOM 845 O GLN A 320 −3.545 57.572 36.274 1.00 16.35 ATOM 846 N PHE A 321 −3.178 55.751 37.535 1.00 14.19 ATOM 847 CA PHE A 321 −1.997 55.416 36.728 1.00 13.62 ATOM 848 CB PHE A 321 −1.389 54.100 37.277 1.00 14.84 ATOM 849 CG PHE A 321 −0.286 53.531 36.462 1.00 14.25 ATOM 850 CD1 PHE A 321 0.874 54.232 36.256 1.00 16.53 ATOM 851 CD2 PHE A 321 −0.407 52.275 35.889 1.00 15.71 ATOM 852 CE1 PHE A 321 1.915 53.714 35.499 1.00 16.96 ATOM 853 CE2 PHE A 321 0.594 51.737 35.109 1.00 16.98 ATOM 854 CZ PHE A 321 1.760 52.464 34.920 1.00 19.64 ATOM 855 C PHE A 321 −2.367 55.265 35.284 1.00 15.37 ATOM 856 O PHE A 321 −1.743 55.838 34.391 1.00 17.95 ATOM 857 N SER A 322 −3.440 54.502 35.011 1.00 15.65 ATOM 858 CA SER A 322 −3.862 54.261 33.650 1.00 16.47 ATOM 859 CB SER A 322 −5.052 53.312 33.545 1.00 17.62 ATOM 860 OG SER A 322 −4.956 52.111 34.281 1.00 21.90 ATOM 861 C SER A 322 −4.219 55.608 32.980 1.00 15.02 ATOM 862 O SER A 322 −3.836 55.773 31.839 1.00 15.73 ATOM 863 N PHE A 323 −4.855 56.499 33.694 1.00 15.76 ATOM 864 CA PHE A 323 −5.163 57.831 33.153 1.00 17.15 ATOM 865 CB PHE A 323 −5.953 58.697 34.136 1.00 18.22 ATOM 866 CG PHE A 323 −6.374 60.050 33.604 1.00 20.68 ATOM 867 CD1 PHE A 323 −5.660 61.195 33.861 1.00 21.45 ATOM 868 CD2 PHE A 323 −7.524 60.161 32.852 1.00 22.31 ATOM 869 CE1 PHE A 323 −6.032 62.425 33.329 1.00 22.60 ATOM 870 CE2 PHE A 323 −7.945 61.384 32.325 1.00 24.15 ATOM 871 CZ PHE A 323 −7.175 62.502 32.558 1.00 23.26 ATOM 872 C PHE A 323 −3.897 58.570 32.756 1.00 18.08 ATOM 873 O PHE A 323 −3.807 59.053 31.648 1.00 15.95 ATOM 874 N ASP A 324 −2.913 58.698 33.662 1.00 19.20 ATOM 875 CA ASP A 324 −1.748 59.521 33.405 1.00 20.57 ATOM 876 CB ASP A 324 −0.994 59.740 34.742 1.00 23.05 ATOM 877 CG ASP A 324 −1.773 60.624 35.687 1.00 23.08 ATOM 878 OD1 ASP A 324 −1.894 60.419 36.896 1.00 22.69 ATOM 879 OD2 ASP A 324 −2.335 61.620 35.188 1.00 26.34 ATOM 880 C ASP A 324 −0.746 58.999 32.402 1.00 21.82 ATOM 881 O ASP A 324 −0.058 59.793 31.764 1.00 21.73 ATOM 882 N ILE A 325 −0.672 57.679 32.240 1.00 21.33 ATOM 883 CA ILE A 325 0.264 57.038 31.339 1.00 22.61 ATOM 884 CB ILE A 325 0.922 55.889 32.161 1.00 25.69 ATOM 885 CG2 ILE A 325 0.154 54.579 32.043 1.00 24.65 ATOM 886 CG1 ILE A 325 2.370 55.730 31.765 1.00 26.90 ATOM 887 CD1 ILE A 325 3.369 56.465 32.631 1.00 27.55 ATOM 888 C ILE A 325 −0.394 56.551 30.073 1.00 22.34 ATOM 889 O ILE A 325 0.238 55.950 29.209 1.00 19.22 ATOM 890 N ALA A 326 −1.663 56.970 29.849 1.00 21.30 ATOM 891 CA ALA A 326 −2.412 56.538 28.677 1.00 21.14 ATOM 892 CB ALA A 326 −3.743 57.301 28.568 1.00 20.96 ATOM 893 C ALA A 326 −1.701 56.616 27.350 1.00 20.02 ATOM 894 O ALA A 326 −1.716 55.660 26.557 1.00 18.13 ATOM 895 N GLU A 327 −1.087 57.750 27.055 1.00 21.17 ATOM 896 OE2 GLU A 327 1.606 59.498 22.827 1.00 38.00 ATOM 897 OE1 GLU A 327 −0.468 59.073 22.310 1.00 37.16 ATOM 898 CD GLU A 327 0.389 59.482 23.114 1.00 35.40 ATOM 899 CG GLU A 327 −0.062 59.993 24.456 1.00 33.57 ATOM 900 CB GLU A 327 0.333 59.223 25.685 1.00 26.72 ATOM 901 CA GLU A 327 −0.310 57.845 25.805 1.00 23.82 ATOM 902 C GLU A 327 0.748 56.760 25.705 1.00 20.97 ATOM 903 O GLU A 327 0.932 56.156 24.626 1.00 20.68 ATOM 904 N GLU A 328 1.536 56.501 26.758 1.00 20.00 ATOM 905 OE2 GLU A 328 6.485 57.857 28.558 1.00 20.00 ATOM 906 OE1 GLU A 328 5.550 56.151 29.650 1.00 20.00 ATOM 907 CD GLU A 328 5.561 56.965 28.651 1.00 20.00 ATOM 908 CG GLU A 328 4.474 56.875 27.579 1.00 20.00 ATOM 909 CB GLU A 328 3.625 55.608 27.694 1.00 20.00 ATOM 910 CA GLU A 328 2.584 55.483 26.582 1.00 20.00 ATOM 911 C GLU A 328 1.966 54.088 26.633 1.00 20.00 ATOM 912 O GLU A 328 2.420 53.176 25.932 1.00 20.00 ATOM 913 N ALA A 329 0.930 53.900 27.438 1.00 19.57 ATOM 914 CA ALA A 329 0.280 52.586 27.501 1.00 21.09 ATOM 915 CB ALA A 329 −0.828 52.628 28.545 1.00 20.52 ATOM 916 C ALA A 329 −0.292 52.148 26.167 1.00 21.74 ATOM 917 O ALA A 329 −0.460 50.963 25.860 1.00 22.92 ATOM 918 N SER A 330 −0.593 53.077 25.263 1.00 22.47 ATOM 919 CA SER A 330 −1.185 52.807 23.972 1.00 23.55 ATOM 920 CB SER A 330 −1.669 54.151 23.397 1.00 23.31 ATOM 921 OG SER A 330 −0.614 54.856 22.781 1.00 25.74 ATOM 922 C SER A 330 −0.209 52.129 23.038 1.00 23.79 ATOM 923 O SER A 330 −0.545 51.533 22.032 1.00 23.93 ATOM 924 N LYS A 331 1.073 52.141 23.385 1.00 20.00 ATOM 925 NZ LYS A 331 4.948 57.241 21.295 1.00 20.00 ATOM 926 CE LYS A 331 3.827 56.290 21.276 1.00 20.00 ATOM 927 CD LYS A 331 4.162 54.958 21.950 1.00 20.00 ATOM 928 CG LYS A 331 2.995 53.972 21.928 1.00 20.00 ATOM 929 CB LYS A 331 3.327 52.639 22.588 1.00 20.00 ATOM 930 CA LYS A 331 2.147 51.613 22.574 1.00 20.00 ATOM 931 C LYS A 331 2.659 50.261 22.982 1.00 20.00 ATOM 932 O LYS A 331 3.484 49.683 22.278 1.00 20.00 ATOM 933 N VAL A 332 2.207 49.748 24.112 1.00 21.24 ATOM 934 CA VAL A 332 2.660 48.458 24.592 1.00 19.62 ATOM 935 CB VAL A 332 3.467 48.639 25.896 1.00 20.18 ATOM 936 CG1 VAL A 332 4.816 49.290 25.660 1.00 19.67 ATOM 937 CG2 VAL A 332 2.651 49.433 26.897 1.00 18.82 ATOM 938 C VAL A 332 1.495 47.533 24.905 1.00 18.19 ATOM 939 O VAL A 332 0.344 47.965 24.964 1.00 18.61 ATOM 940 N CYS A 333 1.816 46.274 25.098 1.00 16.72 ATOM 941 CA CYS A 333 0.869 45.245 25.475 1.00 18.08 ATOM 942 CB CYS A 333 1.522 43.872 25.365 1.00 20.13 ATOM 943 SG CYS A 333 0.694 42.448 26.048 1.00 23.29 ATOM 944 C CYS A 333 0.346 45.494 26.878 1.00 16.83 ATOM 945 O CYS A 333 −0.855 45.347 27.075 1.00 15.63 ATOM 946 N LEU A 334 1.226 45.820 27.841 1.00 12.87 ATOM 947 CA LEU A 334 0.838 46.094 29.187 1.00 12.88 ATOM 948 CB LEU A 334 0.857 44.925 30.157 1.00 13.67 ATOM 949 CG LEU A 334 0.004 43.686 29.867 1.00 12.92 ATOM 950 CD1 LEU A 334 0.432 42.513 30.699 1.00 9.29 ATOM 951 CD2 LEU A 334 −1.465 44.030 30.158 1.00 10.80 ATOM 952 C LEU A 334 1.788 47.151 29.816 1.00 14.90 ATOM 953 O LEU A 334 2.929 47.313 29.428 1.00 13.88 ATOM 954 N ALA A 335 1.203 47.856 30.778 1.00 14.03 ATOM 955 CA ALA A 335 1.920 48.854 31.544 1.00 14.38 ATOM 956 CB ALA A 335 1.292 50.235 31.381 1.00 15.95 ATOM 957 C ALA A 335 1.859 48.404 32.991 1.00 13.27 ATOM 958 O ALA A 335 0.794 48.020 33.435 1.00 14.32 ATOM 959 N HIS A 336 2.936 48.458 33.750 1.00 12.02 ATOM 960 CA HIS A 336 2.886 48.039 35.141 1.00 10.67 ATOM 961 CB HIS A 336 3.543 46.655 35.252 1.00 9.55 ATOM 962 CG HIS A 336 3.104 45.903 36.449 1.00 12.03 ATOM 963 CD2 HIS A 336 2.026 45.099 36.601 1.00 9.22 ATOM 964 ND1 HIS A 336 3.730 45.915 37.684 1.00 11.53 ATOM 965 CE1 HIS A 336 3.048 45.186 38.533 1.00 8.45 ATOM 966 NE2 HIS A 336 1.995 44.711 37.891 1.00 12.17 ATOM 967 C HIS A 336 3.596 49.089 36.001 1.00 13.40 ATOM 968 O HIS A 336 4.669 49.576 35.641 1.00 13.52 ATOM 969 N LEU A 337 2.987 49.473 37.104 1.00 12.61 ATOM 970 CA LEU A 337 3.514 50.440 38.026 1.00 12.83 ATOM 971 CB LEU A 337 2.357 51.336 38.563 1.00 13.25 ATOM 972 CG LEU A 337 2.688 52.163 39.816 1.00 14.22 ATOM 973 CD1 LEU A 337 3.886 53.054 39.540 1.00 14.34 ATOM 974 CD2 LEU A 337 1.489 53.027 40.232 1.00 12.48 ATOM 975 C LEU A 337 4.137 49.730 39.243 1.00 11.76 ATOM 976 O LEU A 337 3.486 48.887 39.833 1.00 10.29 ATOM 977 N PHE A 338 5.396 50.012 39.548 1.00 11.12 ATOM 978 CA PHE A 338 6.001 49.502 40.775 1.00 9.77 ATOM 979 CB PHE A 338 7.378 48.877 40.584 1.00 10.95 ATOM 980 CG PHE A 338 7.336 47.661 39.688 1.00 10.01 ATOM 981 CD1 PHE A 338 7.341 47.745 38.336 1.00 6.77 ATOM 982 CD2 PHE A 338 7.347 46.392 40.263 1.00 10.50 ATOM 983 CE1 PHE A 338 7.261 46.629 37.530 1.00 8.39 ATOM 984 CE2 PHE A 338 7.260 45.254 39.504 1.00 7.33 ATOM 985 CZ PHE A 338 7.257 45.387 38.135 1.00 9.45 ATOM 986 C PHE A 338 6.093 50.673 41.742 1.00 10.02 ATOM 987 O PHE A 338 6.621 51.737 41.430 1.00 11.99 ATOM 988 N THR A 339 5.501 50.493 42.897 1.00 9.73 ATOM 989 CA THR A 339 5.455 51.468 43.940 1.00 12.72 ATOM 990 CB THR A 339 4.053 52.092 44.003 1.00 15.30 ATOM 991 OG1 THR A 339 4.060 53.246 44.828 1.00 16.97 ATOM 992 CG2 THR A 339 3.048 51.044 44.495 1.00 15.12 ATOM 993 C THR A 339 5.886 50.830 45.261 1.00 12.86 ATOM 994 O THR A 339 6.169 49.638 45.386 1.00 12.05 ATOM 995 N TYR A 340 5.954 51.663 46.268 1.00 11.17 ATOM 996 CA TYR A 340 6.323 51.315 47.616 1.00 11.82 ATOM 997 CB TYR A 340 7.823 51.632 47.844 1.00 10.81 ATOM 998 CG TYR A 340 8.342 51.050 49.121 1.00 11.94 ATOM 999 CD1 TYR A 340 8.766 49.717 49.157 1.00 13.34 ATOM 1000 CE1 TYR A 340 9.228 49.144 50.342 1.00 13.22 ATOM 1001 CD2 TYR A 340 8.375 51.795 50.286 1.00 11.57 ATOM 1002 CE2 TYR A 340 8.862 51.239 51.481 1.00 13.34 ATOM 1003 CZ TYR A 340 9.294 49.929 51.474 1.00 12.53 ATOM 1004 OH TYR A 340 9.708 49.349 52.630 1.00 13.01 ATOM 1005 C TYR A 340 5.422 52.066 48.560 1.00 12.56 ATOM 1006 O TYR A 340 5.784 53.138 49.086 1.00 13.24 ATOM 1007 N GLN A 341 4.248 51.479 48.801 1.00 12.63 ATOM 1008 CA GLN A 341 3.279 52.124 49.697 1.00 12.73 ATOM 1009 CB GLN A 341 2.457 53.199 48.996 1.00 15.96 ATOM 1010 CG GLN A 341 1.630 52.745 47.790 1.00 12.86 ATOM 1011 CD GLN A 341 1.063 53.915 47.015 1.00 14.37 ATOM 1012 OE1 GLN A 341 0.019 54.455 47.412 1.00 14.26 ATOM 1013 NE2 GLN A 341 1.690 54.336 45.913 1.00 12.87 ATOM 1014 C GLN A 341 2.409 51.026 50.281 1.00 13.05 ATOM 1015 O GLN A 341 2.135 50.001 49.651 1.00 12.36 ATOM 1016 N ASP A 342 2.036 51.214 51.518 1.00 11.62 ATOM 1017 CA ASP A 342 1.313 50.221 52.293 1.00 12.36 ATOM 1018 CB ASP A 342 1.766 50.350 53.748 1.00 11.58 ATOM 1019 CG ASP A 342 1.603 49.084 54.533 1.00 14.83 ATOM 1020 OD1 ASP A 342 1.136 48.053 53.979 1.00 12.25 ATOM 1021 OD2 ASP A 342 1.976 49.034 55.734 1.00 16.16 ATOM 1022 C ASP A 342 −0.202 50.344 52.159 1.00 13.76 ATOM 1023 O ASP A 342 −0.850 50.940 53.016 1.00 10.06 ATOM 1024 N PHE A 343 −0.705 49.804 51.047 1.00 12.77 ATOM 1025 CA PHE A 343 −2.123 49.686 50.828 1.00 13.67 ATOM 1026 CB PHE A 343 −2.407 48.846 49.572 1.00 11.23 ATOM 1027 CG PHE A 343 −1.813 49.447 48.336 1.00 13.10 ATOM 1028 CD1 PHE A 343 −2.070 50.761 47.978 1.00 11.42 ATOM 1029 CD2 PHE A 343 −0.968 48.703 47.519 1.00 11.91 ATOM 1030 CE1 PHE A 343 −1.494 51.298 46.845 1.00 11.83 ATOM 1031 CE2 PHE A 343 −0.431 49.235 46.395 1.00 13.17 ATOM 1032 CZ PHE A 343 −0.693 50.547 46.011 1.00 11.97 ATOM 1033 C PHE A 343 −2.827 49.073 52.018 1.00 13.82 ATOM 1034 O PHE A 343 −2.411 48.111 52.663 1.00 11.97 ATOM 1035 N ASP A 344 −3.976 49.646 52.364 1.00 14.70 ATOM 1036 CA ASP A 344 −4.734 49.159 53.500 1.00 16.30 ATOM 1037 CB ASP A 344 −6.066 49.896 53.688 1.00 19.86 ATOM 1038 CG ASP A 344 −5.919 51.270 54.287 1.00 24.51 ATOM 1039 OD1 ASP A 344 −4.851 51.804 54.586 1.00 24.70 ATOM 1040 OD2 ASP A 344 −6.983 51.916 54.436 1.00 27.18 ATOM 1041 C ASP A 344 −5.093 47.675 53.396 1.00 13.85 ATOM 1042 O ASP A 344 −5.208 47.157 52.310 1.00 9.77 ATOM 1043 N MET A 345 −5.213 47.069 54.564 1.00 13.16 ATOM 1044 CA MET A 345 −5.708 45.753 54.800 1.00 17.11 ATOM 1045 CB MET A 345 −7.235 45.710 54.450 1.00 23.01 ATOM 1046 CG MET A 345 −7.944 46.687 55.406 1.00 28.99 ATOM 1047 SD MET A 345 −9.349 45.913 56.215 1.00 39.05 ATOM 1048 CE MET A 345 −9.993 47.308 57.172 1.00 36.28 ATOM 1049 C MET A 345 −4.992 44.658 54.023 1.00 16.11 ATOM 1050 O MET A 345 −5.586 43.729 53.496 1.00 11.01 ATOM 1051 N GLY A 346 −3.649 44.811 53.976 1.00 13.02 ATOM 1052 CA GLY A 346 −2.848 43.775 53.364 1.00 12.48 ATOM 1053 C GLY A 346 −2.754 43.637 51.897 1.00 10.57 ATOM 1054 O GLY A 346 −2.092 42.654 51.492 1.00 10.20 ATOM 1055 N THR A 347 −3.392 44.516 51.092 1.00 10.34 ATOM 1056 CA THR A 347 −3.236 44.419 49.645 1.00 10.83 ATOM 1057 CB THR A 347 −4.204 45.426 48.958 1.00 11.57 ATOM 1058 OG1 THR A 347 −5.515 45.104 49.474 1.00 11.02 ATOM 1059 CG2 THR A 347 −4.265 45.214 47.479 1.00 9.59 ATOM 1060 C THR A 347 −1.836 44.663 49.119 1.00 11.95 ATOM 1061 O THR A 347 −1.160 45.651 49.506 1.00 10.72 ATOM 1062 N LEU A 348 −1.400 43.853 48.171 1.00 9.29 ATOM 1063 CA LEU A 348 −0.082 43.950 47.585 1.00 11.62 ATOM 1064 CB LEU A 348 0.550 42.518 47.580 1.00 11.68 ATOM 1065 CG LEU A 348 0.940 41.992 48.967 1.00 13.21 ATOM 1066 CD1 LEU A 348 1.053 40.466 48.924 1.00 13.82 ATOM 1067 CD2 LEU A 348 2.282 42.599 49.398 1.00 13.80 ATOM 1068 C LEU A 348 −0.066 44.478 46.170 1.00 10.88 ATOM 1069 O LEU A 348 0.889 45.107 45.724 1.00 10.81 ATOM 1070 N GLY A 349 −1.177 44.229 45.417 1.00 10.78 ATOM 1071 CA GLY A 349 −1.154 44.718 44.035 1.00 9.96 ATOM 1072 C GLY A 349 −2.577 44.686 43.420 1.00 11.05 ATOM 1073 O GLY A 349 −3.461 44.195 44.075 1.00 9.57 ATOM 1074 N LEU A 350 −2.667 45.177 42.201 1.00 12.61 ATOM 1075 CA LEU A 350 −4.033 45.102 41.592 1.00 12.78 ATOM 1076 CB LEU A 350 −4.766 46.348 42.090 1.00 13.89 ATOM 1077 CG LEU A 350 −6.279 46.356 41.850 1.00 16.31 ATOM 1078 CD1 LEU A 350 −6.981 45.416 42.807 1.00 17.00 ATOM 1079 CD2 LEU A 350 −6.786 47.797 41.945 1.00 15.79 ATOM 1080 C LEU A 350 −3.881 45.086 40.119 1.00 10.61 ATOM 1081 O LEU A 350 −2.867 45.625 39.674 1.00 9.12 ATOM 1082 N ALA A 351 −4.815 44.544 39.319 1.00 8.13 ATOM 1083 CA ALA A 351 −4.645 44.560 37.896 1.00 9.68 ATOM 1084 CB ALA A 351 −3.807 43.358 37.429 1.00 8.30 ATOM 1085 C ALA A 351 −6.006 44.393 37.158 1.00 8.00 ATOM 1086 O ALA A 351 −6.781 43.671 37.749 1.00 8.17 ATOM 1087 N TYR A 352 −6.102 44.923 35.997 1.00 10.56 ATOM 1088 CA TYR A 352 −7.378 44.669 35.243 1.00 11.99 ATOM 1089 CB TYR A 352 −7.517 45.727 34.152 1.00 13.49 ATOM 1090 CG TYR A 352 −7.816 47.102 34.704 1.00 16.49 ATOM 1091 CD1 TYR A 352 −9.085 47.388 35.198 1.00 18.25 ATOM 1092 CE1 TYR A 352 −9.369 48.643 35.704 1.00 18.58 ATOM 1093 CD2 TYR A 352 −6.835 48.096 34.726 1.00 15.80 ATOM 1094 CE2 TYR A 352 −7.121 49.344 35.231 1.00 17.33 ATOM 1095 CZ TYR A 352 −8.385 49.612 35.726 1.00 19.62 ATOM 1096 OH TYR A 352 −8.671 50.865 36.229 1.00 20.81 ATOM 1097 C TYR A 352 −7.306 43.297 34.623 1.00 11.61 ATOM 1098 O TYR A 352 −6.226 42.856 34.133 1.00 9.99 ATOM 1099 N VAL A 353 −8.414 42.569 34.618 1.00 9.19 ATOM 1100 CA VAL A 353 −8.433 41.240 34.027 1.00 9.63 ATOM 1101 CB VAL A 353 −9.532 40.388 34.675 1.00 12.16 ATOM 1102 CG1 VAL A 353 −9.580 38.963 34.168 1.00 11.71 ATOM 1103 CG2 VAL A 353 −9.337 40.459 36.180 1.00 11.77 ATOM 1104 C VAL A 353 −8.597 41.233 32.532 1.00 12.50 ATOM 1105 O VAL A 353 −9.522 41.869 32.012 1.00 12.29 ATOM 1106 N GLY A 354 −7.759 40.476 31.830 1.00 10.94 ATOM 1107 CA GLY A 354 −7.781 40.328 30.400 1.00 14.31 ATOM 1108 C GLY A 354 −8.927 39.377 29.976 1.00 14.67 ATOM 1109 O GLY A 354 −9.497 38.711 30.814 1.00 13.50 ATOM 1110 N SER A 355 −9.183 39.300 28.685 1.00 15.31 ATOM 1111 CA SER A 355 −10.226 38.340 28.254 1.00 18.47 ATOM 1112 CB SER A 355 −11.596 39.039 28.449 1.00 19.00 ATOM 1113 OG SER A 355 −12.631 38.360 27.760 1.00 21.32 ATOM 1114 C SER A 355 −9.959 38.049 26.808 1.00 17.63 ATOM 1115 O SER A 355 −9.378 38.937 26.168 1.00 18.38 ATOM 1116 N PRO A 356 −10.461 36.952 26.271 1.00 19.06 ATOM 1117 CD PRO A 356 −11.125 35.862 27.017 1.00 18.95 ATOM 1118 CA PRO A 356 −10.370 36.661 24.859 1.00 21.26 ATOM 1119 CB PRO A 356 −10.771 35.200 24.707 1.00 20.19 ATOM 1120 CG PRO A 356 −11.451 34.834 25.974 1.00 20.51 ATOM 1121 C PRO A 356 −11.357 37.502 24.051 1.00 24.27 ATOM 1122 O PRO A 356 −11.249 37.622 22.833 1.00 25.16 ATOM 1123 N ARG A 357 −12.369 38.028 24.714 1.00 27.47 ATOM 1124 NH2 ARG A 357 −14.829 39.823 29.846 1.00 45.75 ATOM 1125 NH1 ARG A 357 −15.278 41.187 28.059 1.00 45.46 ATOM 1126 CZ ARG A 357 −15.278 39.980 28.609 1.00 43.96 ATOM 1127 NE ARG A 357 −15.708 38.909 27.965 1.00 41.93 ATOM 1128 CD ARG A 357 −16.239 38.818 26.627 1.00 38.04 ATOM 1129 CG ARG A 357 −15.252 38.219 25.641 1.00 34.46 ATOM 1130 CB ARG A 357 −14.476 39.345 24.961 1.00 32.97 ATOM 1131 CA ARG A 357 −13.386 38.812 24.032 1.00 31.58 ATOM 1132 C ARG A 357 −12.777 39.943 23.231 1.00 33.38 ATOM 1133 O ARG A 357 −11.979 40.784 23.635 1.00 32.52 ATOM 1134 CB ALA A 358 −13.971 40.872 19.874 1.00 35.32 ATOM 1135 C ALA A 358 −12.904 42.350 21.524 1.00 36.30 ATOM 1136 O ALA A 358 −11.940 43.090 21.425 1.00 37.79 ATOM 1137 N ALA A 358 −13.235 39.948 21.981 1.00 35.10 ATOM 1138 CA ALA A 358 −12.901 40.933 20.979 1.00 36.40 ATOM 1139 N ASN A 359 −14.027 42.745 22.100 1.00 36.18 ATOM 1140 ND2 ASN A 359 −17.589 44.247 20.981 1.00 38.54 ATOM 1141 OD1 ASN A 359 −15.577 44.791 20.178 1.00 40.48 ATOM 1142 CG ASN A 359 −16.290 44.493 21.132 1.00 39.04 ATOM 1143 CB ASN A 359 −15.760 44.367 22.540 1.00 37.70 ATOM 1144 CA ASN A 359 −14.263 44.061 22.641 1.00 36.27 ATOM 1145 C ASN A 359 −13.834 44.198 24.094 1.00 35.65 ATOM 1146 O ASN A 359 −14.157 45.182 24.751 1.00 35.92 ATOM 1147 N SER A 360 −13.119 43.218 24.615 1.00 34.08 ATOM 1148 OG SER A 360 −10.429 42.540 26.749 1.00 34.50 ATOM 1149 CB SER A 360 −11.683 42.108 26.257 1.00 33.68 ATOM 1150 CA SER A 360 −12.647 43.261 25.982 1.00 32.95 ATOM 1151 C SER A 360 −11.907 44.577 26.260 1.00 30.62 ATOM 1152 O SER A 360 −11.073 45.055 25.505 1.00 29.59 ATOM 1153 N HIS A 361 −12.244 45.128 27.405 1.00 28.43 ATOM 1154 CD2 HIS A 361 −14.316 47.743 26.576 1.00 37.21 ATOM 1155 NE2 HIS A 361 −14.610 48.664 25.596 1.00 37.98 ATOM 1156 CE1 HIS A 361 −13.624 49.531 25.503 1.00 37.94 ATOM 1157 ND1 HIS A 361 −12.729 49.221 26.413 1.00 38.32 ATOM 1158 CG HIS A 361 −13.138 48.108 27.110 1.00 36.46 ATOM 1159 CB HIS A 361 −12.374 47.488 28.234 1.00 33.76 ATOM 1160 CA HIS A 361 −11.550 46.275 27.920 1.00 30.24 ATOM 1161 C HIS A 361 −10.928 45.653 29.193 1.00 29.98 ATOM 1162 O HIS A 361 −11.660 45.080 30.014 1.00 33.02 ATOM 1163 N GLY A 362 −9.625 45.543 29.184 1.00 25.53 ATOM 1164 CA GLY A 362 −8.942 45.064 30.371 1.00 20.70 ATOM 1165 C GLY A 362 −7.829 44.108 29.983 1.00 16.68 ATOM 1166 O GLY A 362 −7.986 43.330 29.056 1.00 12.10 ATOM 1167 N GLY A 363 −6.695 44.301 30.672 1.00 13.81 ATOM 1168 CA GLY A 363 −5.648 43.339 30.406 1.00 14.18 ATOM 1169 C GLY A 363 −4.908 43.513 29.110 1.00 13.66 ATOM 1170 O GLY A 363 −4.808 44.608 28.557 1.00 12.16 ATOM 1171 N VAL A 364 −4.310 42.413 28.673 1.00 14.17 ATOM 1172 CG2 VAL A 364 −4.030 40.030 27.062 1.00 15.53 ATOM 1173 CG1 VAL A 364 −1.902 40.628 28.266 1.00 15.36 ATOM 1174 CB VAL A 364 −2.897 41.047 27.174 1.00 18.71 ATOM 1175 CA VAL A 364 −3.455 42.442 27.502 1.00 17.47 ATOM 1176 C VAL A 364 −4.138 43.070 26.294 1.00 22.13 ATOM 1177 O VAL A 364 −5.313 42.870 26.039 1.00 18.74 ATOM 1178 N CYS A 365 −3.323 43.852 25.611 1.00 26.09 ATOM 1179 SG CYS A 365 −3.257 42.201 22.935 1.00 38.70 ATOM 1180 CB CYS A 365 −4.184 43.720 23.283 1.00 34.15 ATOM 1181 CA CYS A 365 −3.608 44.572 24.400 1.00 32.02 ATOM 1182 C CYS A 365 −4.433 45.808 24.719 1.00 32.84 ATOM 1183 O CYS A 365 −5.505 45.800 25.307 1.00 33.41 ATOM 1184 N PRO A 366 −3.826 46.943 24.391 1.00 34.94 ATOM 1185 CG PRO A 366 −2.315 48.596 23.731 1.00 34.57 ATOM 1186 CD PRO A 366 −2.542 47.119 23.698 1.00 34.14 ATOM 1187 CB PRO A 366 −3.403 49.216 24.501 1.00 35.23 ATOM 1188 CA PRO A 366 −4.515 48.220 24.644 1.00 35.75 ATOM 1189 C PRO A 366 −5.714 48.244 23.715 1.00 36.16 ATOM 1190 O PRO A 366 −5.574 47.917 22.548 1.00 38.73 ATOM 1191 N LYS A 367 −6.905 48.420 24.211 1.00 36.55 ATOM 1192 NZ LYS A 367 −11.060 46.083 19.713 1.00 39.83 ATOM 1193 CE LYS A 367 −10.945 46.830 20.990 1.00 39.58 ATOM 1194 CD LYS A 367 −10.461 45.989 22.141 1.00 39.79 ATOM 1195 CG LYS A 367 −9.071 46.373 22.617 1.00 39.82 ATOM 1196 CB LYS A 367 −9.031 47.227 23.867 1.00 36.78 ATOM 1197 CA LYS A 367 −8.228 48.530 23.676 1.00 37.98 ATOM 1198 C LYS A 367 −8.995 49.679 24.375 1.00 36.54 ATOM 1199 O LYS A 367 −9.725 49.528 25.366 1.00 33.85 ATOM 1200 N ALA A 368 −8.855 50.888 23.839 1.00 35.07 ATOM 1201 CA ALA A 368 −9.376 52.113 24.400 1.00 32.73 ATOM 1202 CB ALA A 368 −9.170 53.209 23.330 1.00 34.00 ATOM 1203 C ALA A 368 −10.770 52.317 24.933 1.00 32.95 ATOM 1204 O ALA A 368 −11.784 51.928 24.364 1.00 32.14 ATOM 1205 N TYR A 369 −10.878 53.117 25.991 1.00 31.03 ATOM 1206 CA TYR A 369 −12.087 53.643 26.567 1.00 32.06 ATOM 1207 CB TYR A 369 −12.264 53.583 28.057 1.00 34.85 ATOM 1208 CG TYR A 369 −13.026 52.465 28.689 1.00 37.47 ATOM 1209 CD1 TYR A 369 −12.349 51.435 29.321 1.00 38.45 ATOM 1210 CE1 TYR A 369 −13.025 50.390 29.914 1.00 39.73 ATOM 1211 CD2 TYR A 369 −14.410 52.415 28.669 1.00 39.08 ATOM 1212 CE2 TYR A 369 −15.096 51.380 29.271 1.00 40.46 ATOM 1213 CZ TYR A 369 −14.397 50.369 29.891 1.00 41.04 ATOM 1214 OH TYR A 369 −15.067 49.320 30.483 1.00 42.68 ATOM 1215 C TYR A 369 −11.953 55.158 26.287 1.00 32.03 ATOM 1216 O TYR A 369 −10.842 55.634 26.529 1.00 28.95 ATOM 1217 N TYR A 370 −12.996 55.828 25.851 1.00 32.03 ATOM 1218 OH TYR A 370 −13.216 63.382 23.761 1.00 38.96 ATOM 1219 CD2 TYR A 370 −14.752 60.205 24.698 1.00 36.28 ATOM 1220 CE2 TYR A 370 −14.597 61.568 24.490 1.00 36.78 ATOM 1221 CZ TYR A 370 −13.409 62.034 23.975 1.00 37.70 ATOM 1222 CE1 TYR A 370 −12.383 61.168 23.662 1.00 36.85 ATOM 1223 CD1 TYR A 370 −12.563 59.820 23.871 1.00 35.73 ATOM 1224 CG TYR A 370 −13.741 59.312 24.388 1.00 35.35 ATOM 1225 CB TYR A 370 −13.896 57.816 24.613 1.00 34.74 ATOM 1226 CA TYR A 370 −12.850 57.254 25.574 1.00 33.23 ATOM 1227 C TYR A 370 −12.982 57.999 26.897 1.00 33.56 ATOM 1228 O TYR A 370 −13.819 57.580 27.684 1.00 33.28 ATOM 1229 N SER A 371 −12.169 59.015 27.125 1.00 35.61 ATOM 1230 OG SER A 371 −10.952 60.534 30.263 1.00 37.79 ATOM 1231 CB SER A 371 −10.994 59.623 29.183 1.00 39.02 ATOM 1232 CA SER A 371 −12.297 59.726 28.389 1.00 38.04 ATOM 1233 C SER A 371 −12.666 61.187 28.201 1.00 39.91 ATOM 1234 O SER A 371 −11.843 62.022 27.853 1.00 38.57 ATOM 1235 N PRO A 372 −13.931 61.484 28.420 1.00 43.18 ATOM 1236 CG PRO A 372 −16.243 61.324 28.452 1.00 44.76 ATOM 1237 CD PRO A 372 −15.008 60.574 28.867 1.00 44.03 ATOM 1238 CB PRO A 372 −15.900 62.772 28.425 1.00 45.09 ATOM 1239 CA PRO A 372 −14.403 62.878 28.437 1.00 45.43 ATOM 1240 C PRO A 372 −13.833 63.366 29.760 1.00 46.59 ATOM 1241 O PRO A 372 −14.102 62.743 30.789 1.00 47.64 ATOM 1242 N VAL A 373 −12.978 64.362 29.767 1.00 48.18 ATOM 1243 CG2 VAL A 373 −13.693 65.070 32.937 1.00 48.74 ATOM 1244 CG1 VAL A 373 −11.354 64.454 33.270 1.00 48.15 ATOM 1245 CB VAL A 373 −12.534 64.295 32.314 1.00 48.02 ATOM 1246 CA VAL A 373 −12.176 64.754 30.916 1.00 47.53 ATOM 1247 C VAL A 373 −10.843 64.081 30.527 1.00 47.84 ATOM 1248 O VAL A 373 −10.706 62.871 30.685 1.00 48.07 ATOM 1249 N GLY A 374 −9.966 64.870 29.936 1.00 46.71 ATOM 1250 CA GLY A 374 −8.687 64.329 29.474 1.00 45.92 ATOM 1251 C GLY A 374 −8.718 64.327 27.946 1.00 44.34 ATOM 1252 O GLY A 374 −7.703 64.386 27.276 1.00 43.53 ATOM 1253 N LYS A 375 −9.937 64.227 27.433 1.00 20.00 ATOM 1254 NZ LYS A 375 −11.621 70.469 25.481 1.00 20.00 ATOM 1255 CE LYS A 375 −11.822 69.108 25.996 1.00 20.00 ATOM 1256 CD LYS A 375 −10.786 68.111 25.474 1.00 20.00 ATOM 1257 CG LYS A 375 −10.999 66.697 26.013 1.00 20.00 ATOM 1258 CB LYS A 375 −9.976 65.697 25.486 1.00 20.00 ATOM 1259 CA LYS A 375 −10.201 64.262 26.011 1.00 20.00 ATOM 1260 C LYS A 375 −9.308 63.297 25.260 1.00 20.00 ATOM 1261 O LYS A 375 −8.529 63.725 24.411 1.00 20.00 ATOM 1262 N LYS A 376 −9.386 62.003 25.604 1.00 20.00 ATOM 1263 NZ LYS A 376 −3.285 64.692 24.559 1.00 20.00 ATOM 1264 CE LYS A 376 −4.696 64.381 24.290 1.00 20.00 ATOM 1265 CD LYS A 376 −5.139 63.045 24.890 1.00 20.00 ATOM 1266 CG LYS A 376 −6.606 62.726 24.608 1.00 20.00 ATOM 1267 CB LYS A 376 −7.050 61.390 25.194 1.00 20.00 ATOM 1268 CA LYS A 376 −8.531 61.050 24.897 1.00 20.00 ATOM 1269 C LYS A 376 −8.810 59.601 25.286 1.00 20.00 ATOM 1270 O LYS A 376 −9.696 59.281 26.077 1.00 20.00 ATOM 1271 N ASN A 377 −8.050 58.726 24.640 1.00 29.74 ATOM 1272 CA ASN A 377 −8.240 57.295 24.862 1.00 29.33 ATOM 1273 CB ASN A 377 −7.825 56.539 23.612 1.00 29.66 ATOM 1274 CG ASN A 377 −8.743 56.803 22.433 1.00 30.76 ATOM 1275 OD1 ASN A 377 −9.964 56.948 22.559 1.00 29.66 ATOM 1276 ND2 ASN A 377 −8.128 56.865 21.249 1.00 31.26 ATOM 1277 C ASN A 377 −7.486 56.848 26.098 1.00 28.35 ATOM 1278 O ASN A 377 −6.411 57.376 26.306 1.00 26.83 ATOM 1279 N ILE A 378 −8.123 56.055 26.952 1.00 26.88 ATOM 1280 CA ILE A 378 −7.431 55.408 28.039 1.00 28.08 ATOM 1281 CB ILE A 378 −7.802 55.780 29.473 1.00 29.37 ATOM 1282 CG2 ILE A 378 −7.624 57.282 29.706 1.00 28.66 ATOM 1283 CG1 ILE A 378 −9.217 55.317 29.789 1.00 31.06 ATOM 1284 CD1 ILE A 378 −9.563 55.301 31.261 1.00 32.92 ATOM 1285 C ILE A 378 −7.567 53.887 27.882 1.00 26.65 ATOM 1286 O ILE A 378 −8.559 53.283 27.479 1.00 25.21 ATOM 1287 N TYR A 379 −6.456 53.246 28.250 1.00 25.14 ATOM 1288 CA TYR A 379 −6.298 51.805 28.141 1.00 23.62 ATOM 1289 CB TYR A 379 −5.057 51.473 27.299 1.00 25.30 ATOM 1290 CG TYR A 379 −5.076 52.202 25.979 1.00 27.60 ATOM 1291 CD1 TYR A 379 −4.644 53.523 25.919 1.00 28.62 ATOM 1292 CE1 TYR A 379 −4.683 54.224 24.736 1.00 30.42 ATOM 1293 CD2 TYR A 379 −5.571 51.619 24.836 1.00 28.58 ATOM 1294 CE2 TYR A 379 −5.582 52.298 23.634 1.00 29.43 ATOM 1295 CZ TYR A 379 −5.141 53.597 23.603 1.00 30.50 ATOM 1296 OH TYR A 379 −5.162 54.325 22.441 1.00 33.44 ATOM 1297 C TYR A 379 −6.141 51.154 29.498 1.00 22.07 ATOM 1298 O TYR A 379 −5.164 51.460 30.204 1.00 22.84 ATOM 1299 N LEU A 380 −6.941 50.122 29.768 1.00 16.20 ATOM 1300 CA LEU A 380 −6.831 49.396 30.998 1.00 17.68 ATOM 1301 CB LEU A 380 −8.233 49.019 31.490 1.00 19.14 ATOM 1302 CG LEU A 380 −9.204 50.207 31.624 1.00 21.74 ATOM 1303 CD1 LEU A 380 −10.479 49.690 32.285 1.00 22.06 ATOM 1304 CD2 LEU A 380 −8.614 51.364 32.411 1.00 20.08 ATOM 1305 C LEU A 380 −5.903 48.191 30.845 1.00 13.92 ATOM 1306 O LEU A 380 −6.249 47.139 31.351 1.00 12.26 ATOM 1307 N ASN A 381 −4.762 48.385 30.190 1.00 14.40 ATOM 1308 CA ASN A 381 −3.798 47.282 30.009 1.00 15.71 ATOM 1309 CB ASN A 381 −3.148 47.364 28.646 1.00 13.12 ATOM 1310 CG ASN A 381 −2.442 48.681 28.373 1.00 13.93 ATOM 1311 OD1 ASN A 381 −2.614 49.693 29.057 1.00 15.98 ATOM 1312 ND2 ASN A 381 −1.584 48.766 27.386 1.00 13.77 ATOM 1313 C ASN A 381 −2.732 47.428 31.111 1.00 15.34 ATOM 1314 O ASN A 381 −1.538 47.496 30.826 1.00 19.25 ATOM 1315 N SER A 382 −3.178 47.587 32.318 1.00 14.28 ATOM 1316 CA SER A 382 −2.363 47.953 33.462 1.00 16.49 ATOM 1317 CB SER A 382 −2.722 49.449 33.712 1.00 19.36 ATOM 1318 OG SER A 382 −4.021 49.622 34.261 1.00 19.22 ATOM 1319 C SER A 382 −2.534 47.168 34.720 1.00 13.50 ATOM 1320 O SER A 382 −3.491 46.443 34.986 1.00 14.79 ATOM 1321 N GLY A 383 −1.543 47.226 35.602 1.00 12.08 ATOM 1322 CA GLY A 383 −1.460 46.552 36.865 1.00 7.68 ATOM 1323 C GLY A 383 −0.407 47.250 37.737 1.00 9.13 ATOM 1324 O GLY A 383 0.356 48.018 37.167 1.00 7.23 ATOM 1325 N LEU A 384 −0.406 46.961 39.018 1.00 9.60 ATOM 1326 CA LEU A 384 0.596 47.604 39.860 1.00 10.98 ATOM 1327 CB LEU A 384 0.108 48.911 40.437 1.00 10.87 ATOM 1328 CG LEU A 384 −1.098 48.840 41.372 1.00 12.55 ATOM 1329 CD1 LEU A 384 −0.751 48.583 42.819 1.00 11.84 ATOM 1330 CD2 LEU A 384 −1.824 50.197 41.305 1.00 14.27 ATOM 1331 C LEU A 384 0.963 46.614 40.982 1.00 11.40 ATOM 1332 O LEU A 384 0.191 45.705 41.269 1.00 12.17 ATOM 1333 N THR A 385 2.174 46.774 41.470 1.00 10.30 ATOM 1334 CA THR A 385 2.773 45.977 42.535 1.00 10.05 ATOM 1335 CB THR A 385 3.958 45.170 41.969 1.00 11.82 ATOM 1336 OG1 THR A 385 3.463 44.161 41.100 1.00 12.53 ATOM 1337 CG2 THR A 385 4.842 44.430 42.991 1.00 7.93 ATOM 1338 C THR A 385 3.429 46.936 43.546 1.00 10.37 ATOM 1339 O THR A 385 4.154 47.869 43.150 1.00 10.04 ATOM 1340 N SER A 386 3.153 46.751 44.806 1.00 10.16 ATOM 1341 CA SER A 386 3.835 47.470 45.853 1.00 12.08 ATOM 1342 CB SER A 386 2.913 47.978 46.925 1.00 12.65 ATOM 1343 OG SER A 386 3.625 48.590 47.976 1.00 12.90 ATOM 1344 C SER A 386 4.773 46.445 46.540 1.00 11.71 ATOM 1345 O SER A 386 4.348 45.314 46.714 1.00 11.70 ATOM 1346 N THR A 387 5.929 46.899 46.978 1.00 13.21 ATOM 1347 CA THR A 387 6.861 46.004 47.677 1.00 11.54 ATOM 1348 CB THR A 387 8.258 45.976 47.083 1.00 12.46 ATOM 1349 OG1 THR A 387 8.794 47.305 46.902 1.00 12.52 ATOM 1350 CG2 THR A 387 8.193 45.224 45.771 1.00 9.84 ATOM 1351 C THR A 387 6.917 46.429 49.137 1.00 12.59 ATOM 1352 O THR A 387 7.750 45.916 49.857 1.00 9.86 ATOM 1353 N LYS A 388 5.888 47.176 49.559 1.00 10.11 ATOM 1354 CA LYS A 388 5.781 47.451 50.983 1.00 11.18 ATOM 1355 CB LYS A 388 5.844 48.928 51.315 1.00 10.27 ATOM 1356 CG LYS A 388 5.598 49.163 52.809 1.00 11.78 ATOM 1357 CD LYS A 388 5.570 50.665 53.086 1.00 12.59 ATOM 1358 CE LYS A 388 5.610 50.846 54.616 1.00 12.42 ATOM 1359 NZ LYS A 388 5.400 52.289 54.915 1.00 12.86 ATOM 1360 C LYS A 388 4.466 46.836 51.470 1.00 12.79 ATOM 1361 O LYS A 388 3.445 47.068 50.803 1.00 13.47 ATOM 1362 N ASN A 389 4.490 46.117 52.561 1.00 11.20 ATOM 1363 CA ASN A 389 3.235 45.595 53.114 1.00 13.05 ATOM 1364 CB ASN A 389 2.797 44.247 52.498 1.00 9.98 ATOM 1365 CG ASN A 389 1.328 43.929 52.695 1.00 13.57 ATOM 1366 OD1 ASN A 389 0.562 44.823 53.020 1.00 11.41 ATOM 1367 ND2 ASN A 389 0.828 42.697 52.544 1.00 11.87 ATOM 1368 C ASN A 389 3.401 45.431 54.605 1.00 12.01 ATOM 1369 O ASN A 389 4.389 44.832 55.045 1.00 12.68 ATOM 1370 N TYR A 390 2.463 45.891 55.415 1.00 9.33 ATOM 1371 CA TYR A 390 2.544 45.725 56.834 1.00 11.32 ATOM 1372 CB TYR A 390 2.395 44.317 57.360 1.00 13.01 ATOM 1373 CG TYR A 390 1.034 43.646 57.138 1.00 17.63 ATOM 1374 CD1 TYR A 390 0.888 42.699 56.135 1.00 17.99 ATOM 1375 CE1 TYR A 390 −0.324 42.059 55.906 1.00 18.34 ATOM 1376 CD2 TYR A 390 −0.059 43.950 57.918 1.00 17.56 ATOM 1377 CE2 TYR A 390 −1.295 43.344 57.684 1.00 19.81 ATOM 1378 CZ TYR A 390 −1.408 42.399 56.685 1.00 18.72 ATOM 1379 OH TYR A 390 −2.599 41.770 56.456 1.00 18.16 ATOM 1380 C TYR A 390 3.875 46.390 57.342 1.00 11.32 ATOM 1381 O TYR A 390 4.444 45.867 58.262 1.00 10.06 ATOM 1382 N GLY A 391 4.202 47.568 56.849 1.00 12.38 ATOM 1383 CA GLY A 391 5.264 48.396 57.395 1.00 13.46 ATOM 1384 C GLY A 391 6.671 47.822 57.226 1.00 14.75 ATOM 1385 O GLY A 391 7.615 48.218 57.920 1.00 13.47 ATOM 1386 N LYS A 392 6.864 47.001 56.213 1.00 14.18 ATOM 1387 NZ LYS A 392 6.391 42.087 59.901 1.00 31.24 ATOM 1388 CE LYS A 392 6.545 43.004 58.726 1.00 30.06 ATOM 1389 CD LYS A 392 7.980 43.237 58.298 1.00 27.75 ATOM 1390 CG LYS A 392 8.231 44.701 57.942 1.00 25.41 ATOM 1391 CB LYS A 392 8.133 44.929 56.460 1.00 20.56 ATOM 1392 CA LYS A 392 8.133 46.376 55.909 1.00 15.94 ATOM 1393 C LYS A 392 8.265 46.221 54.399 1.00 14.65 ATOM 1394 O LYS A 392 7.242 46.070 53.676 1.00 12.21 ATOM 1395 N THR A 393 9.481 45.969 53.965 1.00 9.88 ATOM 1396 CA THR A 393 9.744 45.629 52.574 1.00 10.28 ATOM 1397 CB THR A 393 11.178 45.988 52.155 1.00 10.31 ATOM 1398 OG1 THR A 393 11.412 47.397 52.330 1.00 9.91 ATOM 1399 CG2 THR A 393 11.393 45.631 50.693 1.00 7.83 ATOM 1400 C THR A 393 9.450 44.139 52.450 1.00 11.39 ATOM 1401 O THR A 393 9.872 43.332 53.278 1.00 11.16 ATOM 1402 N ILE A 394 8.715 43.737 51.398 1.00 8.47 ATOM 1403 CA ILE A 394 8.413 42.305 51.297 1.00 8.59 ATOM 1404 CB ILE A 394 7.223 42.076 50.329 1.00 7.43 ATOM 1405 CG2 ILE A 394 6.044 42.929 50.867 1.00 5.89 ATOM 1406 CG1 ILE A 394 7.562 42.401 48.910 1.00 7.72 ATOM 1407 CD1 ILE A 394 6.413 42.268 47.877 1.00 9.17 ATOM 1408 C ILE A 394 9.657 41.573 50.761 1.00 9.33 ATOM 1409 O ILE A 394 10.482 42.262 50.170 1.00 8.55 ATOM 1410 N LEU A 395 9.689 40.276 50.913 1.00 7.97 ATOM 1411 CA LEU A 395 10.808 39.499 50.347 1.00 11.81 ATOM 1412 CB LEU A 395 10.545 37.998 50.620 1.00 12.21 ATOM 1413 CG LEU A 395 10.370 37.651 52.090 1.00 13.09 ATOM 1414 CD1 LEU A 395 10.246 36.140 52.313 1.00 10.90 ATOM 1415 CD2 LEU A 395 11.569 38.245 52.832 1.00 13.70 ATOM 1416 C LEU A 395 10.920 39.603 48.860 1.00 13.57 ATOM 1417 O LEU A 395 9.864 39.692 48.193 1.00 11.36 ATOM 1418 N THR A 396 12.089 39.426 48.281 1.00 9.31 ATOM 1419 CA THR A 396 12.273 39.345 46.840 1.00 11.95 ATOM 1420 CB THR A 396 13.746 39.021 46.476 1.00 14.52 ATOM 1421 OG1 THR A 396 14.575 40.034 47.090 1.00 16.31 ATOM 1422 CG2 THR A 396 13.983 39.148 44.996 1.00 16.49 ATOM 1423 C THR A 396 11.376 38.264 46.209 1.00 12.19 ATOM 1424 O THR A 396 10.790 38.544 45.152 1.00 11.09 ATOM 1425 N LYS A 397 11.286 37.104 46.840 1.00 9.73 ATOM 1426 CA LYS A 397 10.451 36.033 46.298 1.00 12.22 ATOM 1427 CB LYS A 397 10.630 34.680 46.935 1.00 11.19 ATOM 1428 CG LYS A 397 10.365 34.491 48.402 1.00 10.22 ATOM 1429 CD LYS A 397 10.459 32.971 48.678 1.00 12.87 ATOM 1430 CE LYS A 397 9.904 32.634 50.049 1.00 10.59 ATOM 1431 NZ LYS A 397 10.430 31.409 50.690 1.00 13.72 ATOM 1432 C LYS A 397 8.946 36.390 46.379 1.00 11.16 ATOM 1433 O LYS A 397 8.250 35.937 45.488 1.00 10.09 ATOM 1434 N GLU A 398 8.588 37.196 47.346 1.00 10.22 ATOM 1435 CA GLU A 398 7.207 37.628 47.475 1.00 13.12 ATOM 1436 CB GLU A 398 6.931 38.233 48.857 1.00 11.64 ATOM 1437 CG GLU A 398 6.951 37.079 49.876 1.00 15.45 ATOM 1438 CD GLU A 398 6.952 37.662 51.284 1.00 15.72 ATOM 1439 OE1 GLU A 398 7.139 38.861 51.557 1.00 15.77 ATOM 1440 OE2 GLU A 398 6.722 36.861 52.186 1.00 17.81 ATOM 1441 C GLU A 398 6.875 38.628 46.374 1.00 14.23 ATOM 1442 O GLU A 398 5.819 38.496 45.746 1.00 11.36 ATOM 1443 N ALA A 399 7.791 39.566 46.144 1.00 11.71 ATOM 1444 CA ALA A 399 7.603 40.571 45.121 1.00 10.93 ATOM 1445 CB ALA A 399 8.705 41.611 45.021 1.00 10.46 ATOM 1446 C ALA A 399 7.464 39.901 43.737 1.00 11.66 ATOM 1447 O ALA A 399 6.535 40.310 43.047 1.00 8.52 ATOM 1448 N ASP A 400 8.259 38.892 43.411 1.00 10.58 ATOM 1449 CA ASP A 400 8.092 38.172 42.164 1.00 11.27 ATOM 1450 CB ASP A 400 9.061 37.001 41.994 1.00 13.33 ATOM 1451 CG ASP A 400 10.525 37.443 41.936 1.00 15.25 ATOM 1452 OD1 ASP A 400 10.787 38.685 41.868 1.00 11.52 ATOM 1453 OD2 ASP A 400 11.331 36.459 41.963 1.00 15.55 ATOM 1454 C ASP A 400 6.682 37.543 42.061 1.00 10.74 ATOM 1455 O ASP A 400 6.102 37.681 40.959 1.00 11.54 ATOM 1456 N LEU A 401 6.184 37.034 43.155 1.00 9.91 ATOM 1457 CA LEU A 401 4.860 36.399 43.132 1.00 12.48 ATOM 1458 CB LEU A 401 4.618 35.610 44.411 1.00 13.67 ATOM 1459 CG LEU A 401 5.551 34.464 44.805 1.00 19.11 ATOM 1460 CD1 LEU A 401 5.596 34.451 46.337 1.00 20.83 ATOM 1461 CD2 LEU A 401 5.072 33.125 44.302 1.00 19.44 ATOM 1462 C LEU A 401 3.724 37.434 42.994 1.00 11.96 ATOM 1463 O LEU A 401 2.701 37.092 42.388 1.00 9.62 ATOM 1464 N VAL A 402 3.849 38.626 43.576 1.00 9.23 ATOM 1465 CA VAL A 402 2.856 39.664 43.347 1.00 10.16 ATOM 1466 CB VAL A 402 3.222 40.976 44.086 1.00 11.53 ATOM 1467 CG1 VAL A 402 2.219 42.096 43.805 1.00 10.53 ATOM 1468 CG2 VAL A 402 3.254 40.598 45.565 1.00 8.46 ATOM 1469 C VAL A 402 2.701 40.016 41.882 1.00 12.23 ATOM 1470 O VAL A 402 1.581 40.096 41.336 1.00 9.50 ATOM 1471 N THR A 403 3.821 40.359 41.261 1.00 8.92 ATOM 1472 CA THR A 403 3.845 40.764 39.883 1.00 8.22 ATOM 1473 CB THR A 403 5.220 41.259 39.386 1.00 6.99 ATOM 1474 OG1 THR A 403 5.612 42.325 40.255 1.00 6.97 ATOM 1475 CG2 THR A 403 5.221 41.841 37.998 1.00 6.87 ATOM 1476 C THR A 403 3.381 39.610 38.992 1.00 9.35 ATOM 1477 O THR A 403 2.693 39.954 38.016 1.00 5.99 ATOM 1478 N THR A 404 3.855 38.407 39.301 1.00 6.34 ATOM 1479 CA THR A 404 3.382 37.249 38.521 1.00 7.96 ATOM 1480 CB THR A 404 3.962 35.946 39.104 1.00 8.71 ATOM 1481 OG1 THR A 404 5.404 35.959 38.945 1.00 8.46 ATOM 1482 CG2 THR A 404 3.448 34.743 38.303 1.00 8.11 ATOM 1483 C THR A 404 1.842 37.175 38.572 1.00 6.99 ATOM 1484 O THR A 404 1.211 36.979 37.529 1.00 6.33 ATOM 1485 N HIS A 405 1.298 37.277 39.751 1.00 6.76 ATOM 1486 CA HIS A 405 −0.132 37.232 40.003 1.00 9.62 ATOM 1487 CB HIS A 405 −0.383 37.343 41.495 1.00 7.56 ATOM 1488 CG HIS A 405 −1.828 37.311 41.919 1.00 6.65 ATOM 1489 CD2 HIS A 405 −2.801 38.292 41.862 1.00 4.31 ATOM 1490 ND1 HIS A 405 −2.389 36.204 42.467 1.00 7.16 ATOM 1491 CE1 HIS A 405 −3.664 36.486 42.798 1.00 9.20 ATOM 1492 NE2 HIS A 405 −3.937 37.722 42.413 1.00 9.52 ATOM 1493 C HIS A 405 −0.867 38.376 39.290 1.00 9.96 ATOM 1494 O HIS A 405 −1.836 38.080 38.597 1.00 9.05 ATOM 1495 N GLU A 406 −0.414 39.612 39.416 1.00 9.09 ATOM 1496 CA GLU A 406 −1.106 40.730 38.755 1.00 11.72 ATOM 1497 CB GLU A 406 −0.532 42.078 39.207 1.00 12.02 ATOM 1498 CG GLU A 406 −0.582 42.239 40.701 1.00 11.63 ATOM 1499 CD GLU A 406 −1.940 42.013 41.321 1.00 12.61 ATOM 1500 OE1 GLU A 406 −2.985 42.048 40.632 1.00 12.02 ATOM 1501 OE2 GLU A 406 −1.910 41.759 42.535 1.00 12.54 ATOM 1502 C GLU A 406 −1.087 40.659 37.256 1.00 13.24 ATOM 1503 O GLU A 406 −2.110 40.827 36.529 1.00 10.09 ATOM 1504 N LEU A 407 0.115 40.341 36.745 1.00 9.35 ATOM 1505 CA LEU A 407 0.259 40.106 35.318 1.00 11.31 ATOM 1506 CB LEU A 407 1.702 39.802 34.937 1.00 13.34 ATOM 1507 CG LEU A 407 2.671 40.844 34.384 1.00 17.06 ATOM 1508 CD1 LEU A 407 2.232 42.279 34.412 1.00 15.35 ATOM 1509 CD2 LEU A 407 4.112 40.690 34.878 1.00 15.89 ATOM 1510 C LEU A 407 −0.675 38.971 34.886 1.00 8.96 ATOM 1511 O LEU A 407 −1.105 38.869 33.720 1.00 9.09 ATOM 1512 N GLY A 408 −0.837 37.972 35.732 1.00 7.26 ATOM 1513 CA GLY A 408 −1.649 36.774 35.444 1.00 7.95 ATOM 1514 C GLY A 408 −3.107 37.247 35.182 1.00 8.27 ATOM 1515 O GLY A 408 −3.776 36.757 34.277 1.00 7.64 ATOM 1516 N HIS A 409 −3.565 38.171 36.030 1.00 10.19 ATOM 1517 CA HIS A 409 −4.873 38.777 35.752 1.00 11.21 ATOM 1518 CB HIS A 409 −5.162 39.920 36.713 1.00 8.68 ATOM 1519 CG HIS A 409 −5.605 39.404 38.018 1.00 10.30 ATOM 1520 CD2 HIS A 409 −5.193 39.710 39.255 1.00 9.44 ATOM 1521 ND1 HIS A 409 −6.606 38.454 38.114 1.00 10.06 ATOM 1522 CE1 HIS A 409 −6.833 38.237 39.402 1.00 12.63 ATOM 1523 NE2 HIS A 409 −5.961 38.972 40.132 1.00 12.50 ATOM 1524 C HIS A 409 −4.918 39.414 34.381 1.00 12.04 ATOM 1525 O HIS A 409 −5.853 39.223 33.615 1.00 12.02 ATOM 1526 N ASN A 410 −3.910 40.235 34.085 1.00 11.36 ATOM 1527 CA ASN A 410 −3.859 40.925 32.820 1.00 10.24 ATOM 1528 CB ASN A 410 −2.594 41.750 32.616 1.00 10.71 ATOM 1529 CG ASN A 410 −2.499 43.027 33.424 1.00 12.40 ATOM 1530 OD1 ASN A 410 −1.369 43.394 33.748 1.00 9.72 ATOM 1531 ND2 ASN A 410 −3.598 43.762 33.714 1.00 9.17 ATOM 1532 C ASN A 410 −3.953 39.918 31.675 1.00 12.78 ATOM 1533 O ASN A 410 −4.538 40.276 30.652 1.00 9.40 ATOM 1534 N PHE A 411 −3.292 38.782 31.796 1.00 9.09 ATOM 1535 CA PHE A 411 −3.280 37.693 30.872 1.00 10.91 ATOM 1536 CB PHE A 411 −2.105 36.703 31.101 1.00 10.93 ATOM 1537 CG PHE A 411 −0.840 37.086 30.375 1.00 13.69 ATOM 1538 CD1 PHE A 411 −0.102 38.216 30.730 1.00 15.12 ATOM 1539 CD2 PHE A 411 −0.309 36.297 29.389 1.00 15.69 ATOM 1540 CE1 PHE A 411 1.076 38.546 30.052 1.00 13.51 ATOM 1541 CE2 PHE A 411 0.862 36.617 28.723 1.00 15.64 ATOM 1542 CZ PHE A 411 1.556 37.782 29.051 1.00 14.11 ATOM 1543 C PHE A 411 −4.606 36.903 30.849 1.00 10.27 ATOM 1544 O PHE A 411 −4.684 36.100 29.931 1.00 9.02 ATOM 1545 N GLY A 412 −5.578 37.150 31.701 1.00 11.88 ATOM 1546 CA GLY A 412 −6.912 36.517 31.563 1.00 11.02 ATOM 1547 C GLY A 412 −7.360 35.734 32.748 1.00 12.85 ATOM 1548 O GLY A 412 −8.496 35.256 32.898 1.00 11.80 ATOM 1549 N ALA A 413 −6.418 35.577 33.737 1.00 9.39 ATOM 1550 CA ALA A 413 −6.759 34.738 34.860 1.00 8.60 ATOM 1551 CB ALA A 413 −5.523 34.078 35.504 1.00 6.06 ATOM 1552 C ALA A 413 −7.520 35.451 35.966 1.00 9.94 ATOM 1553 O ALA A 413 −7.216 36.584 36.300 1.00 9.19 ATOM 1554 N GLU A 414 −8.476 34.694 36.530 1.00 9.61 ATOM 1555 CA GLU A 414 −9.172 35.158 37.731 1.00 12.27 ATOM 1556 CB GLU A 414 −10.666 34.812 37.677 1.00 14.74 ATOM 1557 CG GLU A 414 −11.293 35.591 36.517 1.00 16.17 ATOM 1558 CD GLU A 414 −11.696 36.987 36.834 1.00 20.61 ATOM 1559 OE1 GLU A 414 −11.520 37.544 37.933 1.00 21.11 ATOM 1560 OE2 GLU A 414 −12.266 37.646 35.920 1.00 24.06 ATOM 1561 C GLU A 414 −8.509 34.457 38.920 1.00 12.40 ATOM 1562 O GLU A 414 −7.455 33.841 38.757 1.00 12.29 ATOM 1563 N HIS A 415 −9.108 34.478 40.104 1.00 11.96 ATOM 1564 CA HIS A 415 −8.512 33.849 41.259 1.00 13.28 ATOM 1565 CB HIS A 415 −9.093 34.484 42.514 1.00 12.84 ATOM 1566 CG HIS A 415 −8.513 35.841 42.716 1.00 11.55 ATOM 1567 CD2 HIS A 415 −7.240 36.265 42.433 1.00 11.21 ATOM 1568 ND1 HIS A 415 −9.180 36.899 43.276 1.00 10.77 ATOM 1569 CE1 HIS A 415 −8.380 37.944 43.314 1.00 9.60 ATOM 1570 NE2 HIS A 415 −7.174 37.576 42.791 1.00 11.71 ATOM 1571 C HIS A 415 −8.789 32.362 41.293 1.00 14.34 ATOM 1572 O HIS A 415 −9.851 32.007 40.751 1.00 10.53 ATOM 1573 N ASP A 416 −7.855 31.567 41.826 1.00 10.07 ATOM 1574 CA ASP A 416 −8.239 30.158 41.962 1.00 11.05 ATOM 1575 CB ASP A 416 −6.978 29.338 42.310 1.00 13.78 ATOM 1576 CG ASP A 416 −5.913 29.387 41.229 1.00 14.67 ATOM 1577 OD1 ASP A 416 −6.267 29.373 40.039 1.00 13.81 ATOM 1578 OD2 ASP A 416 −4.717 29.403 41.608 1.00 16.01 ATOM 1579 C ASP A 416 −9.254 29.930 43.052 1.00 10.40 ATOM 1580 O ASP A 416 −9.169 30.468 44.159 1.00 11.17 ATOM 1581 N PRO A 417 −10.296 29.111 42.805 1.00 10.30 ATOM 1582 CD PRO A 417 −10.544 28.473 41.502 1.00 12.83 ATOM 1583 CA PRO A 417 −11.275 28.774 43.805 1.00 12.54 ATOM 1584 CB PRO A 417 −12.495 28.328 42.975 1.00 13.91 ATOM 1585 CG PRO A 417 −11.940 27.894 41.674 1.00 15.31 ATOM 1586 C PRO A 417 −10.837 27.603 44.689 1.00 13.42 ATOM 1587 O PRO A 417 −10.002 26.839 44.276 1.00 14.77 ATOM 1588 N ASP A 418 −11.346 27.376 45.860 1.00 14.02 ATOM 1589 CA ASP A 418 −11.086 26.217 46.694 1.00 20.43 ATOM 1590 CB ASP A 418 −11.375 26.531 48.172 1.00 22.42 ATOM 1591 CG ASP A 418 −10.416 27.595 48.658 1.00 25.60 ATOM 1592 OD1 ASP A 418 −9.221 27.416 48.429 1.00 27.33 ATOM 1593 OD2 ASP A 418 −10.724 28.666 49.204 1.00 29.81 ATOM 1594 C ASP A 418 −11.997 25.061 46.257 1.00 23.39 ATOM 1595 O ASP A 418 −13.034 25.354 45.640 1.00 23.78 ATOM 1596 N GLY A 419 −11.533 23.829 46.307 1.00 24.01 ATOM 1597 CA GLY A 419 −12.290 22.650 46.050 1.00 28.51 ATOM 1598 C GLY A 419 −12.000 21.714 44.916 1.00 31.09 ATOM 1599 O GLY A 419 −11.000 21.726 44.169 1.00 31.19 ATOM 1600 N LEU A 420 −12.976 20.849 44.625 1.00 32.09 ATOM 1601 CD2 LEU A 420 −14.406 17.142 44.111 1.00 38.06 ATOM 1602 CD1 LEU A 420 −16.571 18.444 44.050 1.00 37.27 ATOM 1603 CG LEU A 420 −15.061 18.507 44.238 1.00 36.91 ATOM 1604 CB LEU A 420 −14.424 19.470 43.224 1.00 36.82 ATOM 1605 CA LEU A 420 −12.969 19.843 43.591 1.00 35.26 ATOM 1606 C LEU A 420 −12.193 20.130 42.331 1.00 36.08 ATOM 1607 O LEU A 420 −11.638 19.221 41.701 1.00 37.02 ATOM 1608 N ALA A 421 −12.053 21.380 41.907 1.00 36.27 ATOM 1609 CB ALA A 421 −11.478 23.254 40.472 1.00 37.17 ATOM 1610 CA ALA A 421 −11.309 21.755 40.742 1.00 36.49 ATOM 1611 C ALA A 421 −9.841 21.381 40.794 1.00 35.18 ATOM 1612 O ALA A 421 −9.253 21.402 39.702 1.00 36.10 ATOM 1613 N GLU A 422 −9.183 21.102 41.907 1.00 32.65 ATOM 1614 OE2 GLU A 422 −8.104 20.106 37.709 1.00 41.16 ATOM 1615 OE1 GLU A 422 −6.137 19.284 37.500 1.00 39.97 ATOM 1616 CD GLU A 422 −6.983 19.889 38.198 1.00 38.24 ATOM 1617 CG GLU A 422 −6.628 20.311 39.582 1.00 35.89 ATOM 1618 CB GLU A 422 −7.426 19.813 40.760 1.00 31.03 ATOM 1619 CA GLU A 422 −7.761 20.769 41.914 1.00 29.38 ATOM 1620 C GLU A 422 −6.901 22.028 41.779 1.00 24.25 ATOM 1621 O GLU A 422 −5.677 21.951 41.645 1.00 21.69 ATOM 1622 N CYS A 423 −7.530 23.185 41.837 1.00 19.59 ATOM 1623 CA CYS A 423 −6.862 24.457 41.613 1.00 18.31 ATOM 1624 CB CYS A 423 −7.819 25.319 40.797 1.00 21.54 ATOM 1625 SG CYS A 423 −8.112 24.725 39.090 1.00 22.74 ATOM 1626 C CYS A 423 −6.367 25.102 42.893 1.00 16.82 ATOM 1627 O CYS A 423 −5.884 26.233 42.855 1.00 14.86 ATOM 1628 N ALA A 424 −6.516 24.451 44.029 1.00 15.16 ATOM 1629 CA ALA A 424 −5.974 24.991 45.288 1.00 16.52 ATOM 1630 CB ALA A 424 −6.940 25.972 45.924 1.00 15.07 ATOM 1631 C ALA A 424 −5.603 23.812 46.165 1.00 15.42 ATOM 1632 O ALA A 424 −6.206 23.507 47.182 1.00 16.31 ATOM 1633 N PRO A 425 −4.545 23.118 45.774 1.00 16.63 ATOM 1634 CD PRO A 425 −3.694 23.394 44.593 1.00 14.62 ATOM 1635 CA PRO A 425 −4.096 21.935 46.484 1.00 18.01 ATOM 1636 CB PRO A 425 −2.965 21.392 45.635 1.00 17.36 ATOM 1637 CG PRO A 425 −3.064 22.047 44.301 1.00 16.07 ATOM 1638 C PRO A 425 −3.655 22.217 47.908 1.00 19.52 ATOM 1639 O PRO A 425 −3.304 23.325 48.294 1.00 16.80 ATOM 1640 N ASN A 426 −3.670 21.143 48.707 1.00 21.90 ATOM 1641 ND2 ASN A 426 −6.177 19.346 50.674 1.00 32.22 ATOM 1642 OD1 ASN A 426 −5.934 21.437 51.378 1.00 30.53 ATOM 1643 CG ASN A 426 −5.407 20.380 51.018 1.00 30.42 ATOM 1644 CB ASN A 426 −3.898 20.167 50.928 1.00 27.25 ATOM 1645 CA ASN A 426 −3.224 21.249 50.088 1.00 24.17 ATOM 1646 C ASN A 426 −1.695 21.270 50.121 1.00 22.87 ATOM 1647 O ASN A 426 −1.014 21.025 49.127 1.00 19.72 ATOM 1648 N GLU A 427 −1.148 21.695 51.247 1.00 24.03 ATOM 1649 OE2 GLU A 427 3.209 21.859 55.259 1.00 39.86 ATOM 1650 OE1 GLU A 427 2.503 23.818 54.605 1.00 37.70 ATOM 1651 CD GLU A 427 2.640 22.595 54.427 1.00 37.41 ATOM 1652 CG GLU A 427 2.167 21.979 53.132 1.00 36.42 ATOM 1653 CB GLU A 427 0.679 22.110 52.857 1.00 32.16 ATOM 1654 CA GLU A 427 0.305 21.775 51.409 1.00 29.42 ATOM 1655 C GLU A 427 0.998 20.507 50.975 1.00 29.51 ATOM 1656 O GLU A 427 1.971 20.497 50.213 1.00 29.26 ATOM 1657 N ASP A 428 0.488 19.358 51.414 1.00 31.72 ATOM 1658 OD2 ASP A 428 −1.918 16.341 52.011 1.00 41.88 ATOM 1659 OD1 ASP A 428 −1.452 18.328 52.816 1.00 37.31 ATOM 1660 CG ASP A 428 −1.103 17.267 52.267 1.00 38.88 ATOM 1661 CB ASP A 428 0.320 16.958 51.853 1.00 36.50 ATOM 1662 CA ASP A 428 1.042 18.054 51.077 1.00 32.85 ATOM 1663 C ASP A 428 1.081 17.735 49.610 1.00 32.15 ATOM 1664 O ASP A 428 1.827 16.851 49.173 1.00 32.63 ATOM 1665 N GLN A 429 0.302 18.414 48.772 1.00 29.90 ATOM 1666 NE2 GLN A 429 −0.844 15.151 46.445 1.00 35.05 ATOM 1667 OE1 GLN A 429 −0.895 15.061 48.694 1.00 36.32 ATOM 1668 CD GLN A 429 −1.190 15.629 47.636 1.00 35.53 ATOM 1669 CG GLN A 429 −1.923 16.955 47.621 1.00 32.82 ATOM 1670 CB GLN A 429 −1.138 18.032 46.865 1.00 30.20 ATOM 1671 CA GLN A 429 0.307 18.190 47.347 1.00 26.44 ATOM 1672 C GLN A 429 1.041 19.302 46.621 1.00 22.82 ATOM 1673 O GLN A 429 0.832 19.463 45.426 1.00 21.67 ATOM 1674 N GLY A 430 1.812 20.142 47.320 1.00 18.52 ATOM 1675 CA GLY A 430 2.534 21.185 46.583 1.00 15.09 ATOM 1676 C GLY A 430 1.982 22.581 46.889 1.00 14.53 ATOM 1677 O GLY A 430 2.582 23.559 46.432 1.00 16.43 ATOM 1678 N GLY A 431 0.898 22.745 47.615 1.00 11.39 ATOM 1679 CA GLY A 431 0.314 24.011 47.958 1.00 12.94 ATOM 1680 C GLY A 431 −0.505 24.702 46.871 1.00 10.35 ATOM 1681 O GLY A 431 −0.764 24.181 45.795 1.00 11.85 ATOM 1682 N LYS A 432 −0.845 25.936 47.147 1.00 11.65 ATOM 1683 CA LYS A 432 −1.637 26.762 46.245 1.00 13.87 ATOM 1684 CB LYS A 432 −2.343 27.862 47.049 1.00 16.54 ATOM 1685 CG LYS A 432 −3.250 27.146 48.043 1.00 20.67 ATOM 1686 CD LYS A 432 −4.058 28.036 48.933 1.00 24.37 ATOM 1687 CE LYS A 432 −5.090 27.228 49.718 1.00 25.86 ATOM 1688 NZ LYS A 432 −4.539 25.962 50.296 1.00 25.58 ATOM 1689 C LYS A 432 −0.810 27.312 45.112 1.00 12.71 ATOM 1690 O LYS A 432 0.414 27.398 45.187 1.00 11.37 ATOM 1691 N TYR A 433 −1.533 27.713 44.072 1.00 8.62 ATOM 1692 CA TYR A 433 −0.997 28.243 42.844 1.00 8.63 ATOM 1693 CB TYR A 433 −1.677 27.746 41.591 1.00 8.94 ATOM 1694 CG TYR A 433 −1.507 26.270 41.276 1.00 12.81 ATOM 1695 CD1 TYR A 433 −2.460 25.350 41.653 1.00 12.02 ATOM 1696 CE1 TYR A 433 −2.310 23.999 41.361 1.00 14.63 ATOM 1697 CD2 TYR A 433 −0.360 25.813 40.637 1.00 13.00 ATOM 1698 CE2 TYR A 433 −0.202 24.469 40.333 1.00 14.04 ATOM 1699 CZ TYR A 433 −1.180 23.579 40.713 1.00 15.76 ATOM 1700 OH TYR A 433 −1.018 22.241 40.429 1.00 18.68 ATOM 1701 C TYR A 433 −0.990 29.769 42.955 1.00 6.12 ATOM 1702 O TYR A 433 −1.576 30.319 43.866 1.00 7.36 ATOM 1703 N VAL A 434 −0.279 30.385 42.031 1.00 8.06 ATOM 1704 CA VAL A 434 −0.023 31.820 42.080 1.00 9.13 ATOM 1705 CB VAL A 434 1.026 32.189 41.035 1.00 9.24 ATOM 1706 CG1 VAL A 434 0.473 32.255 39.614 1.00 9.78 ATOM 1707 CG2 VAL A 434 1.656 33.531 41.432 1.00 9.67 ATOM 1708 C VAL A 434 −1.247 32.724 41.971 1.00 9.44 ATOM 1709 O VAL A 434 −1.224 33.807 42.521 1.00 8.77 ATOM 1710 N MET A 435 −2.348 32.242 41.373 1.00 9.61 ATOM 1711 CA MET A 435 −3.580 33.044 41.377 1.00 10.35 ATOM 1712 CB MET A 435 −4.313 32.866 40.054 1.00 9.92 ATOM 1713 CG MET A 435 −3.514 33.300 38.848 1.00 10.91 ATOM 1714 SD MET A 435 −2.789 34.945 38.866 1.00 11.06 ATOM 1715 CE MET A 435 −4.229 35.954 39.266 1.00 11.66 ATOM 1716 C MET A 435 −4.479 32.835 42.569 1.00 11.89 ATOM 1717 O MET A 435 −5.625 33.382 42.578 1.00 10.19 ATOM 1718 N TYR A 436 −4.004 32.200 43.636 1.00 9.70 ATOM 1719 CA TYR A 436 −4.776 32.133 44.873 1.00 10.59 ATOM 1720 CB TYR A 436 −4.154 31.274 45.976 1.00 12.19 ATOM 1721 CG TYR A 436 −5.187 30.700 46.929 1.00 12.41 ATOM 1722 CD1 TYR A 436 −6.086 29.710 46.528 1.00 13.54 ATOM 1723 CE1 TYR A 436 −7.026 29.190 47.405 1.00 10.84 ATOM 1724 CD2 TYR A 436 −5.275 31.200 48.218 1.00 12.72 ATOM 1725 CE2 TYR A 436 −6.216 30.710 49.104 1.00 15.95 ATOM 1726 CZ TYR A 436 −7.105 29.725 48.659 1.00 14.43 ATOM 1727 OH TYR A 436 −8.012 29.268 49.572 1.00 17.14 ATOM 1728 C TYR A 436 −4.977 33.571 45.304 1.00 10.80 ATOM 1729 O TYR A 436 −4.106 34.412 45.121 1.00 7.79 ATOM 1730 N PRO A 437 −6.178 33.938 45.778 1.00 11.93 ATOM 1731 CD PRO A 437 −7.340 33.037 45.939 1.00 11.26 ATOM 1732 CA PRO A 437 −6.467 35.326 46.139 1.00 10.62 ATOM 1733 CB PRO A 437 −7.962 35.319 46.495 1.00 12.25 ATOM 1734 CG PRO A 437 −8.320 33.884 46.714 1.00 12.44 ATOM 1735 C PRO A 437 −5.713 35.775 47.385 1.00 10.79 ATOM 1736 O PRO A 437 −5.577 36.995 47.602 1.00 11.50 ATOM 1737 N ILE A 438 −5.411 34.802 48.243 1.00 11.06 ATOM 1738 CA ILE A 438 −4.645 35.046 49.464 1.00 14.21 ATOM 1739 CB ILE A 438 −5.154 34.201 50.625 1.00 16.10 ATOM 1740 CG2 ILE A 438 −4.290 34.449 51.876 1.00 19.74 ATOM 1741 CG1 ILE A 438 −6.619 34.470 50.967 1.00 19.29 ATOM 1742 CD1 ILE A 438 −7.175 33.545 52.055 1.00 20.13 ATOM 1743 C ILE A 438 −3.173 34.778 49.119 1.00 14.66 ATOM 1744 O ILE A 438 −2.796 33.666 48.710 1.00 10.76 ATOM 1745 N ALA A 439 −2.342 35.803 49.202 1.00 12.90 ATOM 1746 CB ALA A 439 −0.137 36.968 49.129 1.00 13.51 ATOM 1747 CA ALA A 439 −0.946 35.702 48.748 1.00 12.56 ATOM 1748 C ALA A 439 −0.219 34.450 49.179 1.00 11.82 ATOM 1749 O ALA A 439 −0.053 34.221 50.350 1.00 12.72 ATOM 1750 N VAL A 440 0.244 33.624 48.232 1.00 12.54 ATOM 1751 CA VAL A 440 1.038 32.460 48.610 1.00 13.18 ATOM 1752 CB VAL A 440 1.194 31.545 47.405 1.00 13.89 ATOM 1753 CG1 VAL A 440 −0.203 30.964 47.060 1.00 14.71 ATOM 1754 CG2 VAL A 440 1.748 32.335 46.225 1.00 14.29 ATOM 1755 C VAL A 440 2.422 32.915 49.105 1.00 13.24 ATOM 1756 O VAL A 440 2.951 33.937 48.665 1.00 10.97 ATOM 1757 N SER A 441 3.009 32.117 49.958 1.00 13.77 ATOM 1758 CA SER A 441 4.320 32.448 50.541 1.00 15.67 ATOM 1759 CB SER A 441 4.602 31.531 51.741 1.00 14.54 ATOM 1760 OG SER A 441 4.895 30.230 51.251 1.00 12.13 ATOM 1761 C SER A 441 5.443 32.298 49.543 1.00 14.86 ATOM 1762 O SER A 441 6.393 33.042 49.627 1.00 16.15 ATOM 1763 N GLY A 442 5.365 31.340 48.626 1.00 15.69 ATOM 1764 CA GLY A 442 6.458 31.086 47.680 1.00 15.78 ATOM 1765 C GLY A 442 7.329 29.955 48.292 1.00 17.87 ATOM 1766 O GLY A 442 8.313 29.533 47.700 1.00 17.88 ATOM 1767 N ASP A 443 6.933 29.420 49.433 1.00 16.97 ATOM 1768 CA ASP A 443 7.639 28.297 50.053 1.00 19.48 ATOM 1769 CB ASP A 443 7.315 28.159 51.522 1.00 20.17 ATOM 1770 CG ASP A 443 7.612 29.371 52.357 1.00 23.62 ATOM 1771 OD1 ASP A 443 8.296 30.306 51.896 1.00 23.81 ATOM 1772 OD2 ASP A 443 7.119 29.399 53.505 1.00 25.54 ATOM 1773 C ASP A 443 7.308 26.945 49.435 1.00 21.78 ATOM 1774 O ASP A 443 8.052 25.962 49.619 1.00 20.22 ATOM 1775 N HIS A 444 6.163 26.878 48.737 1.00 18.42 ATOM 1776 CA HIS A 444 5.734 25.593 48.195 1.00 18.25 ATOM 1777 CB HIS A 444 4.263 25.329 48.628 1.00 19.33 ATOM 1778 CG HIS A 444 4.010 25.631 50.066 1.00 21.40 ATOM 1779 CD2 HIS A 444 3.475 26.703 50.697 1.00 21.56 ATOM 1780 ND1 HIS A 444 4.407 24.766 51.066 1.00 22.82 ATOM 1781 CE1 HIS A 444 4.098 25.274 52.242 1.00 22.65 ATOM 1782 NE2 HIS A 444 3.540 26.457 52.047 1.00 23.53 ATOM 1783 C HIS A 444 5.869 25.478 46.699 1.00 18.20 ATOM 1784 O HIS A 444 5.869 26.430 45.924 1.00 16.89 ATOM 1785 N GLU A 445 5.967 24.246 46.228 1.00 18.90 ATOM 1786 OE2 GLU A 445 7.287 19.466 44.909 1.00 37.32 ATOM 1787 OE1 GLU A 445 5.382 19.436 43.805 1.00 36.75 ATOM 1788 CD GLU A 445 6.406 20.025 44.213 1.00 34.73 ATOM 1789 CG GLU A 445 6.551 21.509 43.912 1.00 31.48 ATOM 1790 CB GLU A 445 5.641 22.370 44.753 1.00 24.36 ATOM 1791 CA GLU A 445 6.094 23.856 44.844 1.00 21.30 ATOM 1792 C GLU A 445 5.192 24.573 43.856 1.00 19.12 ATOM 1793 O GLU A 445 5.654 25.106 42.852 1.00 18.43 ATOM 1794 N ASN A 446 3.886 24.568 44.155 1.00 14.02 ATOM 1795 CA ASN A 446 2.931 25.161 43.217 1.00 12.89 ATOM 1796 CB ASN A 446 1.558 24.575 43.616 1.00 13.52 ATOM 1797 CG ASN A 446 1.492 23.081 43.416 1.00 11.57 ATOM 1798 OD1 ASN A 446 2.288 22.530 42.688 1.00 14.69 ATOM 1799 ND2 ASN A 446 0.580 22.359 44.016 1.00 14.47 ATOM 1800 C ASN A 446 2.880 26.669 43.236 1.00 12.30 ATOM 1801 O ASN A 446 2.299 27.295 42.349 1.00 11.18 ATOM 1802 N ASN A 447 3.432 27.299 44.274 1.00 12.22 ATOM 1803 CA ASN A 447 3.261 28.692 44.560 1.00 12.81 ATOM 1804 CB ASN A 447 3.943 29.244 45.794 1.00 13.02 ATOM 1805 CG ASN A 447 3.432 28.721 47.094 1.00 14.61 ATOM 1806 OD1 ASN A 447 4.151 28.922 48.081 1.00 15.02 ATOM 1807 ND2 ASN A 447 2.276 28.070 47.103 1.00 13.05 ATOM 1808 C ASN A 447 3.662 29.596 43.403 1.00 14.50 ATOM 1809 O ASN A 447 2.990 30.597 43.173 1.00 14.90 ATOM 1810 N LYS A 448 4.698 29.182 42.678 1.00 15.41 ATOM 1811 CA LYS A 448 5.123 30.032 41.582 1.00 19.44 ATOM 1812 CB LYS A 448 6.678 30.007 41.496 1.00 20.29 ATOM 1813 CG LYS A 448 7.319 30.599 42.725 1.00 22.70 ATOM 1814 CD LYS A 448 8.503 31.527 42.408 1.00 25.96 ATOM 1815 CE LYS A 448 8.285 32.968 42.835 1.00 24.34 ATOM 1816 NZ LYS A 448 8.963 33.438 44.090 1.00 16.70 ATOM 1817 C LYS A 448 4.568 29.566 40.271 1.00 19.62 ATOM 1818 O LYS A 448 5.136 29.990 39.263 1.00 25.92 ATOM 1819 N MET A 449 3.632 28.647 40.230 1.00 13.54 ATOM 1820 CA MET A 449 3.122 28.149 38.956 1.00 14.78 ATOM 1821 CB MET A 449 3.181 26.610 39.000 1.00 17.23 ATOM 1822 CG MET A 449 4.638 26.182 39.231 1.00 23.71 ATOM 1823 SD MET A 449 5.557 26.266 37.701 1.00 35.18 ATOM 1824 CE MET A 449 6.512 27.753 37.876 1.00 29.45 ATOM 1825 C MET A 449 1.660 28.558 38.779 1.00 10.74 ATOM 1826 O MET A 449 1.051 28.898 39.776 1.00 7.03 ATOM 1827 N PHE A 450 1.104 28.330 37.629 1.00 9.72 ATOM 1828 CA PHE A 450 −0.319 28.583 37.393 1.00 11.38 ATOM 1829 CB PHE A 450 −0.503 29.170 35.975 1.00 11.13 ATOM 1830 CG PHE A 450 −0.071 30.631 35.959 1.00 12.52 ATOM 1831 CD1 PHE A 450 −0.930 31.655 36.320 1.00 12.19 ATOM 1832 CD2 PHE A 450 1.207 30.955 35.549 1.00 10.84 ATOM 1833 CE1 PHE A 450 −0.508 32.973 36.265 1.00 11.08 ATOM 1834 CE2 PHE A 450 1.624 32.264 35.490 1.00 10.58 ATOM 1835 CZ PHE A 450 0.770 33.283 35.856 1.00 10.00 ATOM 1836 C PHE A 450 −1.150 27.312 37.490 1.00 11.07 ATOM 1837 O PHE A 450 −0.799 26.260 36.954 1.00 9.07 ATOM 1838 N SER A 451 −2.323 27.410 38.138 1.00 11.36 ATOM 1839 CA SER A 451 −3.268 26.315 38.270 1.00 10.14 ATOM 1840 CB SER A 451 −4.487 26.735 39.155 1.00 10.95 ATOM 1841 OG SER A 451 −5.179 27.782 38.420 1.00 9.02 ATOM 1842 C SER A 451 −3.844 25.958 36.901 1.00 9.35 ATOM 1843 O SER A 451 −3.770 26.735 35.963 1.00 9.40 ATOM 1844 N GLN A 452 −4.577 24.855 36.824 1.00 12.16 ATOM 1845 CA GLN A 452 −5.351 24.521 35.618 1.00 13.47 ATOM 1846 CB GLN A 452 −5.964 23.125 35.803 1.00 16.94 ATOM 1847 CG GLN A 452 −6.700 22.595 34.601 1.00 21.50 ATOM 1848 CD GLN A 452 −5.827 22.669 33.361 1.00 23.04 ATOM 1849 OE1 GLN A 452 −4.673 22.244 33.400 1.00 21.47 ATOM 1850 NE2 GLN A 452 −6.377 23.285 32.307 1.00 23.25 ATOM 1851 C GLN A 452 −6.430 25.554 35.338 1.00 13.65 ATOM 1852 O GLN A 452 −6.638 25.907 34.165 1.00 14.17 ATOM 1853 N CYS A 453 −7.045 26.104 36.363 1.00 14.02 ATOM 1854 CA CYS A 453 −8.092 27.127 36.197 1.00 17.31 ATOM 1855 CB CYS A 453 −8.719 27.417 37.560 1.00 21.49 ATOM 1856 SG CYS A 453 −9.533 26.093 38.447 1.00 29.58 ATOM 1857 C CYS A 453 −7.500 28.361 35.535 1.00 15.91 ATOM 1858 O CYS A 453 −7.993 28.886 34.524 1.00 12.98 ATOM 1859 N SER A 454 −6.301 28.786 36.002 1.00 10.78 ATOM 1860 CA SER A 454 −5.584 29.858 35.390 1.00 9.42 ATOM 1861 CB SER A 454 −4.341 30.410 36.146 1.00 8.01 ATOM 1862 OG SER A 454 −4.692 30.709 37.471 1.00 8.77 ATOM 1863 C SER A 454 −5.186 29.538 33.979 1.00 9.67 ATOM 1864 O SER A 454 −5.237 30.413 33.113 1.00 9.80 ATOM 1865 N LYS A 455 −4.691 28.304 33.763 1.00 11.07 ATOM 1866 CA LYS A 455 −4.240 27.987 32.421 1.00 12.98 ATOM 1867 CB LYS A 455 −3.599 26.587 32.376 1.00 13.14 ATOM 1868 CG LYS A 455 −2.146 26.611 32.855 1.00 17.01 ATOM 1869 CD LYS A 455 −1.656 25.166 32.882 1.00 19.15 ATOM 1870 CE LYS A 455 −0.242 25.104 33.451 1.00 20.39 ATOM 1871 NZ LYS A 455 0.195 23.673 33.295 1.00 23.90 ATOM 1872 C LYS A 455 −5.367 28.049 31.401 1.00 12.31 ATOM 1873 O LYS A 455 −5.180 28.539 30.315 1.00 12.74 ATOM 1874 N GLN A 456 −6.529 27.527 31.755 1.00 14.47 ATOM 1875 NE2 GLN A 456 −10.676 25.407 33.099 1.00 30.34 ATOM 1876 OE1 GLN A 456 −9.503 23.500 32.899 1.00 29.79 ATOM 1877 CD GLN A 456 −9.664 24.686 32.606 1.00 28.31 ATOM 1878 CG GLN A 456 −8.670 25.342 31.686 1.00 25.00 ATOM 1879 CB GLN A 456 −8.814 26.832 31.511 1.00 19.95 ATOM 1880 CA GLN A 456 −7.661 27.516 30.804 1.00 16.41 ATOM 1881 C GLN A 456 −7.967 28.942 30.401 1.00 15.24 ATOM 1882 O GLN A 456 −7.936 29.330 29.244 1.00 15.99 ATOM 1883 N SER A 457 −8.038 29.821 31.393 1.00 14.14 ATOM 1884 CA SER A 457 −8.377 31.231 31.194 1.00 14.81 ATOM 1885 CB SER A 457 −8.518 31.976 32.530 1.00 15.12 ATOM 1886 OG SER A 457 −9.565 31.464 33.315 1.00 16.45 ATOM 1887 C SER A 457 −7.354 31.967 30.377 1.00 12.94 ATOM 1888 O SER A 457 −7.697 32.696 29.467 1.00 12.19 ATOM 1889 N ILE A 458 −6.051 31.825 30.722 1.00 12.21 ATOM 1890 CA ILE A 458 −5.038 32.567 29.982 1.00 9.86 ATOM 1891 CB ILE A 458 −3.699 32.500 30.795 1.00 11.36 ATOM 1892 CG2 ILE A 458 −2.555 32.898 29.890 1.00 6.36 ATOM 1893 CG1 ILE A 458 −3.853 33.384 32.036 1.00 9.88 ATOM 1894 CD1 ILE A 458 −2.730 33.281 33.059 1.00 11.89 ATOM 1895 C ILE A 458 −4.854 32.048 28.573 1.00 9.53 ATOM 1896 O ILE A 458 −4.640 32.816 27.634 1.00 9.61 ATOM 1897 N TYR A 459 −4.939 30.731 28.423 1.00 9.48 ATOM 1898 CA TYR A 459 −4.767 30.100 27.112 1.00 11.60 ATOM 1899 CB TYR A 459 −5.038 28.600 27.250 1.00 11.22 ATOM 1900 CG TYR A 459 −5.045 27.843 25.943 1.00 16.31 ATOM 1901 CD1 TYR A 459 −4.013 27.976 25.041 1.00 16.99 ATOM 1902 CE1 TYR A 459 −4.028 27.303 23.827 1.00 19.40 ATOM 1903 CD2 TYR A 459 −6.103 26.999 25.626 1.00 18.93 ATOM 1904 CE2 TYR A 459 −6.108 26.299 24.422 1.00 21.51 ATOM 1905 CZ TYR A 459 −5.075 26.458 23.532 1.00 20.71 ATOM 1906 OH TYR A 459 −5.095 25.772 22.341 1.00 21.74 ATOM 1907 C TYR A 459 −5.720 30.750 26.110 1.00 12.72 ATOM 1908 O TYR A 459 −5.334 31.252 25.073 1.00 14.82 ATOM 1909 N LYS A 460 −6.974 30.779 26.528 1.00 14.14 ATOM 1910 NZ LYS A 460 −10.468 26.961 25.743 1.00 30.41 ATOM 1911 CE LYS A 460 −9.733 27.718 24.702 1.00 27.82 ATOM 1912 CD LYS A 460 −9.809 29.219 24.921 1.00 26.35 ATOM 1913 CG LYS A 460 −9.794 29.689 26.345 1.00 23.26 ATOM 1914 CB LYS A 460 −9.375 31.156 26.477 1.00 19.80 ATOM 1915 CA LYS A 460 −8.043 31.371 25.721 1.00 18.07 ATOM 1916 C LYS A 460 −7.739 32.806 25.384 1.00 16.65 ATOM 1917 O LYS A 460 −7.735 33.206 24.228 1.00 16.84 ATOM 1918 N THR A 461 −7.225 33.546 26.348 1.00 14.44 ATOM 1919 CA THR A 461 −6.847 34.932 26.129 1.00 14.79 ATOM 1920 CB THR A 461 −6.597 35.590 27.509 1.00 13.79 ATOM 1921 OG1 THR A 461 −7.813 35.528 28.254 1.00 13.87 ATOM 1922 CG2 THR A 461 −6.192 37.054 27.345 1.00 16.01 ATOM 1923 C THR A 461 −5.709 35.061 25.159 1.00 14.88 ATOM 1924 O THR A 461 −5.830 35.765 24.142 1.00 14.86 ATOM 1925 N ILE A 462 −4.569 34.417 25.419 1.00 14.52 ATOM 1926 CA ILE A 462 −3.422 34.528 24.542 1.00 17.34 ATOM 1927 CB ILE A 462 −2.223 33.642 24.975 1.00 18.43 ATOM 1928 CG2 ILE A 462 −1.130 33.699 23.904 1.00 20.28 ATOM 1929 CG1 ILE A 462 −1.643 34.018 26.316 1.00 18.70 ATOM 1930 CD1 ILE A 462 −0.726 32.967 26.946 1.00 19.10 ATOM 1931 C ILE A 462 −3.757 34.102 23.124 1.00 18.59 ATOM 1932 O ILE A 462 −3.420 34.813 22.189 1.00 17.11 ATOM 1933 N GLU A 463 −4.473 32.979 22.968 1.00 22.82 ATOM 1934 OE2 GLU A 463 −8.026 29.422 22.532 1.00 41.03 ATOM 1935 OE1 GLU A 463 −7.006 28.787 20.674 1.00 39.73 ATOM 1936 CD GLU A 463 −7.293 29.635 21.536 1.00 39.22 ATOM 1937 CG GLU A 463 −6.723 31.032 21.405 1.00 36.15 ATOM 1938 CB GLU A 463 −5.228 31.095 21.624 1.00 30.56 ATOM 1939 CA GLU A 463 −4.692 32.520 21.587 1.00 26.30 ATOM 1940 C GLU A 463 −5.492 33.530 20.800 1.00 27.72 ATOM 1941 O GLU A 463 −5.233 33.704 19.607 1.00 29.03 ATOM 1942 N SER A 464 −6.399 34.283 21.418 1.00 26.79 ATOM 1943 CA SER A 464 −7.190 35.312 20.764 1.00 26.80 ATOM 1944 CB SER A 464 −8.395 35.611 21.666 1.00 25.15 ATOM 1945 OG SER A 464 −9.060 36.806 21.404 1.00 25.60 ATOM 1946 C SER A 464 −6.434 36.623 20.582 1.00 27.79 ATOM 1947 O SER A 464 −6.686 37.340 19.612 1.00 27.52 ATOM 1948 N LYS A 465 −5.598 36.959 21.560 1.00 25.83 ATOM 1949 CA LYS A 465 −4.956 38.267 21.585 1.00 28.04 ATOM 1950 CB LYS A 465 −5.065 38.846 22.993 1.00 28.65 ATOM 1951 CG LYS A 465 −6.217 39.766 23.316 1.00 30.43 ATOM 1952 CD LYS A 465 −7.570 39.136 23.099 1.00 31.72 ATOM 1953 CE LYS A 465 −8.699 40.165 23.068 1.00 32.17 ATOM 1954 NZ LYS A 465 −8.593 41.165 24.149 1.00 32.20 ATOM 1955 C LYS A 465 −3.505 38.293 21.145 1.00 27.28 ATOM 1956 O LYS A 465 −3.053 39.353 20.704 1.00 27.45 ATOM 1957 N ALA A 466 −2.767 37.193 21.184 1.00 28.49 ATOM 1958 CA ALA A 466 −1.373 37.191 20.753 1.00 28.95 ATOM 1959 CB ALA A 466 −0.788 35.788 20.750 1.00 27.44 ATOM 1960 C ALA A 466 −1.152 37.821 19.385 1.00 30.12 ATOM 1961 O ALA A 466 −0.295 38.708 19.256 1.00 28.37 ATOM 1962 N GLN A 467 −1.922 37.440 18.373 1.00 30.63 ATOM 1963 NE2 GLN A 467 0.360 36.582 14.061 1.00 41.77 ATOM 1964 OE1 GLN A 467 −0.196 35.394 15.846 1.00 42.22 ATOM 1965 CD GLN A 467 −0.524 36.191 14.967 1.00 40.84 ATOM 1966 CG GLN A 467 −1.903 36.768 14.813 1.00 40.14 ATOM 1967 CB GLN A 467 −2.609 37.306 16.027 1.00 36.55 ATOM 1968 CA GLN A 467 −1.712 38.007 17.038 1.00 33.94 ATOM 1969 C GLN A 467 −1.891 39.519 16.996 1.00 33.19 ATOM 1970 O GLN A 467 −1.208 40.231 16.271 1.00 33.32 ATOM 1971 N GLU A 468 −2.797 40.063 17.768 1.00 33.44 ATOM 1972 OE2 GLU A 468 −7.657 40.802 18.969 1.00 44.61 ATOM 1973 OE1 GLU A 468 −6.465 41.900 20.497 1.00 44.24 ATOM 1974 CD GLU A 468 −6.664 41.480 19.332 1.00 44.10 ATOM 1975 CG GLU A 468 −5.602 41.832 18.305 1.00 41.64 ATOM 1976 CB GLU A 468 −4.238 41.582 18.934 1.00 38.28 ATOM 1977 CA GLU A 468 −3.092 41.457 17.917 1.00 35.15 ATOM 1978 C GLU A 468 −1.956 42.299 18.485 1.00 33.88 ATOM 1979 O GLU A 468 −1.706 43.397 17.980 1.00 32.88 ATOM 1980 N CYS A 469 −1.382 41.873 19.618 1.00 32.54 ATOM 1981 CA CYS A 469 −0.374 42.738 20.230 1.00 32.43 ATOM 1982 CB CYS A 469 −1.019 43.591 21.320 1.00 34.38 ATOM 1983 SG CYS A 469 −1.294 42.874 22.918 1.00 36.46 ATOM 1984 C CYS A 469 0.888 42.055 20.713 1.00 29.85 ATOM 1985 O CYS A 469 1.786 42.811 21.105 1.00 30.62 ATOM 1986 N PHE A 470 1.027 40.739 20.624 1.00 26.22 ATOM 1987 CA PHE A 470 2.314 40.147 21.073 1.00 25.07 ATOM 1988 CB PHE A 470 2.163 38.694 21.471 1.00 21.88 ATOM 1989 CG PHE A 470 1.492 38.480 22.808 1.00 21.60 ATOM 1990 CD1 PHE A 470 0.810 39.497 23.450 1.00 19.78 ATOM 1991 CD2 PHE A 470 1.556 37.251 23.414 1.00 19.41 ATOM 1992 CE1 PHE A 470 0.182 39.309 24.658 1.00 20.26 ATOM 1993 CE2 PHE A 470 0.932 37.046 24.634 1.00 20.13 ATOM 1994 CZ PHE A 470 0.257 38.065 25.257 1.00 20.62 ATOM 1995 C PHE A 470 3.351 40.383 19.999 1.00 24.85 ATOM 1996 O PHE A 470 2.994 40.592 18.836 1.00 23.37 ATOM 1997 N GLN A 471 4.610 40.404 20.389 1.00 23.76 ATOM 1998 CA GLN A 471 5.714 40.672 19.491 1.00 25.96 ATOM 1999 CB GLN A 471 6.350 42.028 19.794 1.00 27.26 ATOM 2000 CG GLN A 471 5.453 43.201 19.442 1.00 31.81 ATOM 2001 CD GLN A 471 6.014 44.575 19.678 1.00 33.37 ATOM 2002 OE1 GLN A 471 5.258 45.547 19.668 1.00 35.13 ATOM 2003 NE2 GLN A 471 7.323 44.723 19.885 1.00 35.41 ATOM 2004 C GLN A 471 6.772 39.578 19.615 1.00 25.85 ATOM 2005 O GLN A 471 6.668 38.670 20.433 1.00 23.32 ATOM 2006 N GLU A 472 7.771 39.683 18.760 1.00 27.21 ATOM 2007 OE2 GLU A 472 8.898 41.817 17.307 1.00 43.27 ATOM 2008 OE1 GLU A 472 9.685 41.624 15.282 1.00 44.72 ATOM 2009 CD GLU A 472 9.267 41.115 16.344 1.00 42.17 ATOM 2010 CG GLU A 472 9.207 39.605 16.387 1.00 39.41 ATOM 2011 CB GLU A 472 9.836 38.975 17.600 1.00 34.14 ATOM 2012 CA GLU A 472 8.867 38.730 18.759 1.00 30.87 ATOM 2013 C GLU A 472 9.656 38.993 20.037 1.00 30.26 ATOM 2014 O GLU A 472 9.773 40.161 20.396 1.00 29.23 ATOM 2015 N ARG A 473 10.256 37.970 20.584 1.00 31.97 ATOM 2016 CA ARG A 473 11.073 38.106 21.778 1.00 34.21 ATOM 2017 CB ARG A 473 11.230 36.691 22.340 1.00 34.97 ATOM 2018 CG ARG A 473 12.230 36.454 23.443 1.00 37.52 ATOM 2019 CD ARG A 473 11.661 35.449 24.436 1.00 39.68 ATOM 2020 NE ARG A 473 12.564 35.155 25.532 1.00 41.06 ATOM 2021 CZ ARG A 473 12.469 35.726 26.729 1.00 42.18 ATOM 2022 NH1 ARG A 473 13.327 35.423 27.693 1.00 42.83 ATOM 2023 NH2 ARG A 473 11.559 36.660 26.960 1.00 42.33 ATOM 2024 C ARG A 473 12.451 38.665 21.456 1.00 36.39 ATOM 2025 O ARG A 473 13.092 38.294 20.489 1.00 36.44 ATOM 2026 N SER A 474 12.918 39.567 22.276 1.00 37.92 ATOM 2027 OG SER A 474 15.308 38.413 23.524 1.00 36.38 ATOM 2028 CB SER A 474 15.293 39.122 22.290 1.00 37.61 ATOM 2029 CA SER A 474 14.200 40.202 22.359 1.00 37.96 ATOM 2030 C SER A 474 14.436 41.341 21.403 1.00 39.67 ATOM 2031 O SER A 474 13.589 42.259 21.336 1.00 40.16 END

EXAMPLE 5 TACE Inhubitor Design

[0119] The TACE x-ray diffraction coordinates were read into a Sybyl v.6.3 (Tripos Associates) software package and the x-ray structure analyzed graphically. The regions within the original x-ray coordinates were corrected for chirality and atom type. The modified x-ray model of TACE was energy minimized until all the TACE structural parameters were at their equilibrium or optimal values. The energy minimized structure was then compared to the original structure to confirm the absence of anomalies.

[0120] Sites of specific interaction(s) between TACE and the co-crystallized inhibitor were identified. The inhibitor was then removed from the X-ray complex model, leaving only the TACE structural model.

[0121] Candidate inhibitors were chosen based upon the sites of interaction with TACE and the candidate inhibitor in light of the sites of interaction identified previously for the co-crystallized inhibitor. Once specific candidate inhibitor-TACE interactions were determined, docking studies were performed to provide preliminary “modeled” complexes of selected candidate inhibitors with TACE.

[0122] Constrained conformational analysis was performed using molecular dynamics (MD) to check the integrity of the modeled TACE-inhibitor complex. Once the complex reached its most favorable conformational state, the structure as proposed by the MD study was analyzed visually to insure that the modeled complex complied with known experimental SAR/QSAR based on measured binding affinities.

[0123] The modeled candidate inhibitor-TACE complex was analyzed. The region of the complex associated with the S1′ regions of TACE containing a small solvent exposed channel was chosen as a target region for modification. A single modification, a benzyl group which becomes embedded within the target region, was selected based upon computational and synthetic chemical principles. The benzyl group was oriented on an appropriate zinc chelator core so as to be projected into the S1′ S3′ pocket. This modification converts an inhibitor which was generally MMP selective to one which is TACE selective. IC50 data for the inhibitor with a benzyl modification confirm this selectivity.

[0124] Structure-based analoging for optimization of inhibitor potency, selectivity and physical drug-like properties was performed in an iterative manner.

EXAMPLE 6 Measuring TACE Inhibition

[0125] 250 &mgr;M peptide substrate (Ac-SPLAQAVRSSSR-NH2) was incubate with 3.7 U/&mgr;L TACE in a buffer containing 10 mM TRIS HCl, pH 7.4, 10% glycerol at 25 degrees C. The reaction was quenched with 1% TFA (final concentration) after two hours. The reaction mixture was separated by HPLC on a Hewlett-Packard 1150. The product formation was monitored by absorbance at 220 nm.

[0126] The linearity of the reaction was confirmed (r2>0.85). The mean (x±sem) of the control rate was calculated and compared for statistical significance (p<0.05) with drug-tested rates using Dunnett's multiple comparison test. Dose-response relationships were generated using multiple doses of drug and IC50 values with 95% CI were estimated using linear regression.

[0127] From the foregoing description and examples, one skilled in the art can ascertain the essential characteristics of the invention and, without departing from the spirit and scope of the invention, can make changes, modifications, and variations of the invention to adapt it to various uses and conditions. Additionally, the disclosure of all publications and patent applications cited above, including U.S. provisional patent application serial No. 60/073,709; U.S. patent application Ser. No. 09/050,083; and US provisional patent application titled “Crystalline TNF-&agr;-Converdng Enzyme and Uses Thereof,” filed Jan. 27, 1999, are expressly incorporated herein by reference in their entireties to the same extent as if each were incorporated by reference individually.

Claims

1. A composition comprising a polypeptide in crystalline form, wherein the polypeptide is a TNF-&agr;-converting enzyme polypeptide.

2. A composition according to claim 1, wherein the TNF-&agr;-converting enzyme polypeptide comprises the TNF-&agr;-converting enzyme catalytic domain.

3. A composition according to claim 1, wherein the TNF-&agr;-converting enzyme polypeptide is the expression product of a polynucleotide encoding the pro and catalytic domains of TNF-&agr;-converting enzyme.

4. A composition according to claim 1, wherein the TNF-&agr;-converting enzyme polypeptide is the expression product of a polynucleotide encoding the amino acid residues 1-477 of TNF-&agr;-converting enzyme.

5. A composition according to claim 4, wherein the polynucleotide is substituted such that amino acid residue Ser266 is changed to Ala and amino acid residue Asn542 is changed to Gln, and wherein a second polynucleotide encoding the sequence Gly-Ser-(His)6 is fused to the C-terminus.

6. A composition according to claim 1, further comprising a binding partner suitable for co-crystallization with the TNF-&agr;-converting enzyme polypeptide.

7. A composition according to claim 6, wherein the binding partner is a hydroxamate-based binding partner.

8. A composition according to claim 6, wherein the binding partner is N-{D,L-2-(hydroxyaminocarbonyl)methylmethylpentanoyl}-L-3-amino-2-dimethylbutanoyl-L-alanine,2-(amino)ethyl amide.

9. A composition according to claim 1, wherein the crystal has a crystal structure diffracting to 2.0 Å.

10. A composition according to claim 1, wherein the crystal is monoclinic.

11. A composition according to claim 1, wherein the unit cell of the crystal comprises four crystallographically independent TNF-&agr;-converting enzyme catalytic domain (TCD) molecules.

12. A composition according to claim 11, wherein the TCD molecules are in an asymmetric unit.

13. A composition according to claim 1, wherein the crystal is of monoclinic space group P21 and the cell has the constants a=61.38 A, b=126.27 A, c=81.27 A, and &bgr;=107.4°.

14. A composition according to claim 1, wherein the polypeptide is characterized by the structure coordinates according to Table 1, or a substantial part thereof.

15. A method for crystallizing a TNF-&agr;-converting enzyme polypeptide, comprising:

(A) mixing a solution comprising a TACE polypeptide and a binding partner with a crystallization buffer; and
(B) crystallizing the mixture of step (A) by drop vapor diffusion to form a crystalline precipitate.

16. The method according to claim 15, further comprising:

(C) transferring seeds from the crystalline precipitate formed by the drop vapor diffusion and a crystallization promotor into a mixture of a concentrated solution comprising a TACE polypeptide and binding partner substrate, and a crystallization buffer; and
(D) crystallizing the mixture of step (C) by drop vapor diffusion to form a crystal.

17. The method of claim 15, wherein said crystallization buffer is 0.1M Na Citrate pH 5.4, 20% w/v PEG 4000, and 20% v/v Isopropanol.

18. The method of claim 15 or 16, wherein the binding partner is N-{D,L-2-(hydroxyaminocarbonyl)methyl-4-methylpentanoyl}-L-3-amino-2-dimethylbutanoyl-L-alanine, 2-(amino)ethyl amide.

18. The method of claims 15, wherein crystallization is at a temperature ranging from 4 to 20 degrees Celsius.

19. The method of claim 15, wherein the solution comprising the TACE polypeptide and the inhibitor is at a concentration of about 5 mg/mL to about 12 mg/mL in a buffer.

20. The method of claim 19, wherein the solution comprising a TACE polypeptide and the binding partner is mixed with the crystallization buffer in a 1:1 ratio.

21. A tumor necrosis factor-&agr; (TNF-&agr;)-converting enzyme crystal made by co-crystallizing a TNF-&agr;-converting enzyme polypeptide with a co-crystallization substrate.

22. A computer-readable medium having recorded thereon x-ray crystallographic coordinate data for the catalytic domain of TNF-&agr; converting enzyme, or a portion thereof.

23. A computer-readable medium having recorded thereon the x-ray crystallographic coordinate data set forth in Table 1, or a portion thereof.

24. A computer-readable medium of claim 22, wherein the medium is selected from the group consisting of a floppy disc, a hard disc, computer tape, RAM, ROM, CD, DVD, a magnetic disk, and an optical disk.

25. A computer-readable medium having recorded thereon machine-readable data, wherein the computer-readable medium, when used in conjunction with a machine programmed with instructions for using the data, is capable of generating image signals for depicting a graphical, three-dimensional representation of a TNF-&agr; converting enzyme polypeptide, or portion thereof.

26. A system for studying a TNF-&agr; converting enzyme polypeptide, said system comprising:

(a) a memory capable of storing information representing at least a portion of a TNF-&agr; converting enzyme polypeptide, wherein said memory comprises at least one first-type storage region, including a set of spatial coordinates specifying a location in a three dimensional space, and at least one second-type storage region comprising information representing a characteristic of one of a plurality of amino acids, said second-type storage regions being logically associated with said first-type storage regions in said memory to represent a geometric arrangement of at least one characteristic of said at least a portion of said TNF-&agr; converting enzyme peptide in said three dimensional space;
(b) a processor coupled to said memory to access said first-type storage regions and said second-type storage regions, wherein the processor generates image signals for depicting a visual image representing three dimensional image of said at least one characteristic of said at least a portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space based on data from said memory; and
(c) a display coupled to said processor to receive said image signals, wherein the display depicts a visual three dimensional image of said at least one characteristic of said at least a portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space based on said image signals.

27. A system as set forth in claim 26, wherein said image signals include signals for depicting a visual three dimensional image of a ribbon structure of said at least a portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space.

28. A system as set forth in claim 26, wherein said image signals include signals for depicting a visual image of a solid model representation of said at least a portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space.

29. A system as set forth in claim 26, wherein said image signals include signals for depicting a visual three dimensional image of electrostatic surface potential of said at least a portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space.

30. A system as set forth in claim 26, wherein said image signals include signals for depicting a visual three dimensional stereo image of said at least a portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space.

31. A system as set forth in claim 26, further comprising:

a storage device capable of storing data representing a geometric arrangement of a characteristic of a composition other than said TNF-&agr; converting enzyme polypeptide; and
an operator interface for receiving instructions from a operator; and wherein said processor is coupled to said storage device and to said operator interface and generates additional image signals for depicting said geometric arrangement of said characteristic of said composition relative to said visual three dimensional image of said at least one characteristic of said at least a portion of said TNF converting enzyme polypeptide on said display based on instructions from the operator interface.

32. A system as set forth in claim 31, wherein said storage device is part of said memory.

33. A system as set forth in claim 26, comprising a plurality of first-type and second-type storage regions.

34. A video memory capable of storing information for generating a visual display of at least a portion of a TNF-&agr; converting enzyme polypeptide, said video memory comprising:

(a) at least one first-type storage region, each of said first-type storage regions including a set of spatial coordinates specifying a location in a three dimensional space; and
(b) at least one second-type storage region, each of said second-type storage regions containing information for visually depicting a characteristic of one of a plurality of amino acids; wherein said second-type storage regions are logically associated with said first-type storage regions in said video memory to represent a geometric arrangement of at least one characteristic of said at least a portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space.

35. A video memory as set forth in claim 34, wherein said second-type storage regions are logically associated with said first-type storage regions in said video memory to represent a geometric arrangement of at least one characteristic of a catalytic domain portion of said TNF-&agr; converting enzyme polypeptide in said three dimensional space.

36. A video memory as set forth in claim 34, wherein said first-type storage regions and said second-type storage regions are regions of a semiconductor memory.

37. A video memory as set forth in claim 34, wherein said first-type storage regions and said second-type storage regions are regions of an optical disk.

38. A video memory as set forth in claim 34, wherein said first-type storage regions and said second-type storage regions are regions of a magnetic memory.

39. A video memory as set forth in claim 34, comprising a plurality of first-type and second-type storage regions.

40. A method of identifying a compound that associates with TNF-&agr;-converting enzyme, comprising:

(A) designing an associating compound for said polypeptide that forms a bond with the TNF-&agr;-converting enzyme catalytic domain based on x-ray diffraction coordinates of a TNF-&agr;-converting enzyme polypeptide crystal;
(B) synthesizing said compound; and
(C) determining the associate capability of said compound with said TNF-&agr;-converting enzyme.

41. The method according to claim 40, wherein said associating compound is an inhibitor, mediator, or other compound that regulates TNF-&agr;-converting enzyme activity.

42. The method of claim 41, wherein said associating compound is a competitive inhibitor, uncompetitive inhibitor, or non-competitive inhibitor.

43. The method according to claim 40, wherein the coordinates are the coordinates of Table 1, or a substantial part thereof.

44. The method of claim 40, wherein said TNF-&agr;-converting enzyme polypeptide crystal comprises the TNF-&agr;-converting enzyme catalytic domain.

45. The method of claim 40, wherein said TNF-&agr;-converting enzyme polypeptide is the expression product of a polynucleotide encoding the pro and catalytic domains of TNF-&agr;-converting enzyme.

46. The method of claim 40, wherein said TNF-&agr;-converting enzyme polypeptide is the expression product of a polynucleotide encoding the amino acid residues 1-477 of TNF-&agr;-converting enzyme.

47. The method of claim 46, wherein the polynucleotide is substituted such that amino acid residue Ser266 is changed to Ala and amino acid residue Asn542 is changed to Gln, and wherein a second polynucleotide encoding the sequence Gly-Ser-(His)6 is fused to the C-terminus.

48. The method of claim 40, wherein said TNF-&agr;-converting enzyme polypeptide crystal is co-crystallized with a binding partner.

49. The method of claim 48, wherein the binding partner is a hydroxamate-based binding partner.

50. The method of claim 48, wherein the binding partner is N-{D,L-2-(hydroxyaminocarbonyl)methyl-4-methylpentanoyl}-L-3-amino-2dimethylbutanoyl-L-alanine, 2-(amino)ethyl amide.

51. The method of claim 40, wherein said TNF-&agr;-converting enzyme polypeptide crystal has a crystal structure diffracting to 2.0 Å.

52. The method of claim 40, wherein said TNF-&agr;-converting enzyme polypeptide crystal is monoclinic.

53. The method of claim 40, wherein said TNF-&agr;-converting enzyme polypeptide crystal has a unit cell comprising four crystallographically independent TNF-&agr;-converting enzyme catalytic domain (TCD) molecules.

54. The method of claim 53, wherein the TCD molecules are in an asymmetric unit.

55. The method of claim 40, wherein said TNF-&agr;-converting enzyme polypeptide crystal is of monoclinic space group P21 and the cell has the constants a=61.38 Å, b=126.27 Å, c=81.27 Å, and &bgr;=107.41°.

56. The method of claim 40, wherein the associating compound is designed to associate with the S1′ region of TNF-&agr;-converting enzyme.

57. The method of claim 40, wherein the associating compound is designed to associate with the S1′S3′ pocket of TNF-&agr;-converting enzyme.

58. The method of claim 40, wherein the associating compound is designed to incorporate a moiety that chelates zinc.

59. The method of claim 40, wherein the associating compound is designed to form a hydrogen bond with Leu348 or Gly349 of TNF-&agr;-converting enzyme.

60. The method of claim 40, wherein the associating compound is designed to introduce a non-polar group which occupies the S1′ pocket of TNF-&agr;-converting enzyme.

61. The method of claim 40, wherein the associating compound is designed to introduce a group which lies within the channel joining S1′-S3′ pockets of TNF-&agr;-converting enzyme and which makes appropriate van der Waal contact with the channel.

62. The method of claim 40, wherein the associating compound is designed to form a hydrogen bond with Leu348 or Gly349 on the backbone amide groups of TNF-&agr;-converting enzyme.

Patent History
Publication number: 20030004651
Type: Application
Filed: Sep 24, 2001
Publication Date: Jan 2, 2003
Inventors: Roy A. Black (Seattle, WA), Raymond James Paxton (Bellevue, WA), Wolfram Bode (Gauting), Klaus Maskos (Holzkirchen), Carlos Fernandez-Catalan (Martinsried-Planegg), James Ming Chen (Bedminister, NJ), Jeremy Ian Levin (New City, NY)
Application Number: 10057321