Passive membrane microvalves

An exemplary device and method for microfluidic transport is disclosed as providing inter alia a valve membrane sheet (400), an inlet channel (140) and an outlet channel (150). The valve membrane sheet effectively confines transport of fluid from the inlet channel to the outlet channel where fluid may be purged. The valve membrane sheet also generally provides means for preventing or otherwise substantially decreasing the incidence of purged fluid re-entering the inlet channel. Accordingly, the reduction of backflow generally tends to enhance overall pumping performance and efficiency. Disclosed features and specifications may be variously controlled, adapted or otherwise optionally modified to improve micropump operation in any microfluidic application. Exemplary embodiments of the present invention representatively provide for substantially self-priming micropumps that may be readily integrated with, for example, existing portable LTCC technologies for the improvement of device package form factors, weights and other manufacturing and/or device performance metrics.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF INVENTION

[0001] The present invention relates to micropumps, and more particularly, in one representative and exemplary embodiment, to piezoelectrically actuated micropumps having passive membrane valves for improved performance and efficiency in microfluidic applications.

BACKGROUND

[0002] Development of microfluidic technology has generally been driven by parallel ontological advancements in the commercial electronics industry with an ever-increasing demand for sophisticated devices having reduced part counts, weights, form factors and power consumption while improving or otherwise maintaining overall device performance. In particular, advancement of microfluidic technology has met with some success in the areas of packaging and the development of novel architectures directed to achieving many of these aims at relatively low fabrication cost.

[0003] The development of microfluidic systems, based on for example, multilayer laminate substrates with highly integrated functionality, have been of particular interest. Monolithic substrates formed from laminated ceramic have been generally shown to provide structures that are relatively inert or otherwise stable to most chemical reactions as well as tolerant to high temperatures. Additionally, monolithic substrates typically provide for miniaturization of device components, thereby improving circuit and/or fluidic channel integration density. Potential applications for integrated microfluidic devices include, for example, fluidic management of a variety of microsystems for life science and portable fuel cell applications. One representative application includes the use of ceramic materials to form micro-channels and/or cavities within a ceramic structure to define, for example, a monolithic micropump device.

[0004] Conventional pumps and pumping designs have been used in several applications; however, many of these are generally too cumbersome and complex for application with microfluidic systems. For example, existing designs typically employ numerous discrete components externally assembled or otherwise connected together with plumbing and/or component hardware to produce ad hoc pumping systems. Accordingly, conventional pump designs have generally not been regarded as suitable for integration with portable ceramic packages, microfluidic technologies or in various applications requiring, for example, reduced form factor, weight or other desired performance and/or fabrication process metrics. Moreover, previous attempts with integrating microfluidic pumps in monolithic substrates have met with considerable difficulties in producing reliable fluidic connections and/or hermetic seals capable of withstanding manufacturing processes and/or operational stress while maintaining or otherwise reducing production cost. Accordingly, despite the efforts of prior art pump designs to miniaturize and more densely integrate components for use in microfluidic systems, there remains a need for micropumps having high aspect ratio integrated valves suitably adapted for incorporation with, for example, a monolithic package.

SUMMARY OF THE INVENTION

[0005] In various representative aspects, the present invention provides a system and method for fluid transport in microfluidic systems. A representative design is disclosed as comprising a fluid inlet cavity, a fluid outlet cavity, a passive membrane valve disposed substantially between each of the cavities, and means for moving fluid through the device. An integrated micropump, in accordance with one embodiment of the present invention, may be formed utilizing multilayer ceramic technology in which passive membrane valves are integrated into a ceramic structure; however, the disclosed system and method may be readily and more generally adapted for use in any fluid transport system. For example, the present invention may embody a device and/or method for providing integrated pumping and/or valving systems for use in fuel cell fuel delivery and/or partitioning applications.

[0006] One representative advantage of the present invention would allow for improved process control and manufacturing of integrated micropump systems at substantially lower cost. Additional advantages of the present invention will be set forth in the Detailed Description which follows and may be obvious from the Detailed Description or may be learned by practice of exemplary embodiments of the invention. Still other advantages of the invention may be realized by means of any of the instrumentalities, methods or combinations particularly pointed out in the Claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] Representative elements, operational features, applications and/or advantages of the present invention reside inter alia in the details of construction and operation as more fully hereafter depicted, described and claimed—reference being made to the accompanying drawings forming a part hereof, wherein like numerals refer to like parts throughout. Other elements, operational features, applications and/or advantages will become apparent to skilled artisans in light of certain exemplary embodiments recited in the detailed description, wherein:

[0008] FIG. 1 representatively depicts a cross-section, elevation view of a micropump device package in accordance with one embodiment of the present invention;

[0009] FIG. 2 representatively illustrates a cross-section, elevation view of the micropump device package of FIG. 1 during an intake stroke in accordance with one operational embodiment of the present invention;

[0010] FIG. 3 representatively illustrates a cross-section, elevation view of the micropump device package of FIG. 1 during an output stroke in accordance with another operational embodiment of the present invention;

[0011] FIG. 4 representatively illustrates a valve membrane sheet in accordance with one exemplary embodiment of the present invention;

[0012] FIG. 5 representatively illustrates a valve membrane sheet in accordance with another exemplary embodiment of the present invention;

[0013] FIG. 6 representatively illustrates a valve membrane sheet in accordance with still another exemplary embodiment of the present invention; and

[0014] FIG. 7 representatively illustrates a valve membrane sheet in accordance with yet another exemplary embodiment of the present invention.

[0015] Those skilled in the art will appreciate that elements in the Figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the Figures may be exaggerated relative to other elements to help improve understanding of various embodiments of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

[0016] The following descriptions are of exemplary embodiments of the invention and the inventors' conceptions of the best mode and are not intended to limit the scope, applicability or configuration of the invention in any way. Rather, the following description is intended to provide convenient illustrations for implementing various embodiments of the invention. As will become apparent, changes may be made in the function and/or arrangement of any of the elements described in the disclosed exemplary embodiments without departing from the spirit and scope of the invention.

[0017] Various representative implementations of the present invention may be applied to any system and/or method for fluid transport. As used herein, the terms “fluid”, “fluidic” and/or any contextual, variational or combinative referent thereof, are generally intended to include anything that may be regarded as at least being susceptible to characterization as generally referring to a gas, a liquid, a plasma and/or any matter, substance or combination of compounds substantially not in a solid or otherwise effectively immobile condensed phase. As used herein, the terms “inlet” and “outlet” are generally not used interchangeably. For example, “inlet” may generally be understood to comprise any dross-sectional area or component feature of a device, the flux through which tends to translate fluid from a volume element substantially external to the device to a volume element substantially internal to the device; whereas “outlet” may be generally understood as referring to any cross-sectional area or component feature of a device, the flux through which tends to translate fluid from a volume element substantially internal to the device to a volume element substantially external to the device. On the other hand, as used herein, the terms “liquid” and “gas” may generally be used interchangeably and may also be understood to comprise, in generic application, any fluid and/or any translationally mobile phase of matter. As used herein, the term “purged”, as well as any contextual or combinative referent or variant thereof, is generally intended to include any method, technique or process for moving a volume element of fluid through the outlet of a device so as to dispose or otherwise positionally locate the “purged” volume element external to the device. Additionally, as used herein, the terms “valve” and “valving”, as well as any contextual or combinative referents or variants thereof, are generally intended to include any method, technique, process, apparatus, device and/or system suitably adapted to control, affect or otherwise parameterize fluid flow scalar quantities (e.g., volume, density, viscosity, etc.) and/or fluid flow vector quantities (i.e., direction, velocity, acceleration, jerk, etc.). Additionally, as used herein, the terms “pump” and “pumping”, or any contextual or combinative referents or variants thereof, are generally intended to include any method, technique, process, apparatus, device and/or system suitably adapted to flow or otherwise translate a fluid volume element from a first location to a second location.

[0018] A detailed description of an exemplary application, namely a system and method for pumping a fluid in an integrated microfluidic package is provided as a specific enabling disclosure that may be readily generalized by skilled artisans to any application of the disclosed system and method for microfluidic transport in accordance with various embodiments of the present invention. Moreover, skilled artisans will appreciate that the principles of the present invention may be employed to ascertain and/or realize any number of other benefits associated with fluid transport such as, but not limited to: improvement of pumping efficiency; reduction of device weight; reduction of device form factor; improved sample loading in microfluidic assays; improvement in sample throughput; sample multiplexing and/or parallel sample processing; integration with micro-array techniques and/or systems; microfluidic sample transport; pumping of fuel and/or fuel components in a fuel cell system and/or device; and any other applications now known or hereafter developed or otherwise described in the art.

[0019] In one representative application, in accordance with an exemplary embodiment of the present invention, a passive membrane valve 400, as generally depicted in FIG. 4, is disclosed for application with a microfluidic pump. Membrane valve 400 generally comprises opening regions 410 for providing a path for fluid transport across the valve membrane. In one representative application, in accordance with an exemplary embodiment of the present invention, a laminar micropump system, as generally depicted in FIG. 1 is disclosed. The system generally includes at least one substantially flexible or otherwise at least partially deformable material comprising a valve membrane sheet 130, 160. A piezoelectric membrane 120 is anchored to one surface of substrate 100 via anchoring element 110. Membrane sheets 130, 160 generally form a substantially hermetic seal when sealed against seating element 170. In one embodiment, seating element 170 may comprise a glass ring or other substantially annular feature demonstrating relatively low surface roughness. The disclosed valving system, in certain representative embodiments, may include features to control the effective magnitude of cross-sectional area presented for fluid acceptance in order to at least partially control or otherwise parameterize fluid flux through said inlet opening 140 and/or outlet opening 150. For example, inlet opening 140 and/or outlet opening 150 may comprise a taper, a flare, a constriction, a plurality of corrugations, a bend, a pinch, an oblique plane of fluid acceptance (e.g., wherein inlet opening 140 and/or outlet opening 150 facial alignment generally may be other than normal to the instantaneous vector of fluid flow) or such other means, features and/or methods now known, subsequently developed or otherwise hereafter described in the art.

[0020] The operation of membrane valves 130, 160 generally provide passive means for substantially preventing or otherwise controlling or restricting the backflow of purged outlet fluid into inter alia the pumping chamber. For example, outlet membrane valve 160 generally permits fluid flow when the flow vector (i.e., the direction of fluid pressure; also termed the “fluid transport gradient”) corresponds to translation of fluid volume elements away from inlet opening 140 through fluidic channels toward outlet opening 150. Additionally, outlet flapper valve 160, in accordance with representative aspects of the present invention, conjunctively provides for effective prevention of fluid flow to outlet opening 150 when the instantaneous fluid transport gradient corresponds to translation of fluid volume elements away from outlet opening 150 through fluidic channels toward inlet opening 140 (i.e., “backflow”). In an alternative exemplary embodiment, the pumping chamber may further or alternatively comprise a mixing chamber, a reservoir chamber, a reaction chamber and/or a fuel reformer chamber (in the case of application of the present invention, for example, to fuel cell systems).

[0021] One exemplary implementation of the present invention may be manufactured from the substrate representatively illustrated in FIG. 1, wherein a laminar substrate 100 is provided for the fabrication of a piezo-driven micropump. Outlet opening 150 is suitably configured to provide a path for fluid transport to the pumping chamber. Fluidic channels provide fluidic communication between the inlet opening 140 and outlet opening 150. Skilled artisans, however, will appreciate that other channel configurations and/or circuit geometries may be employed in order to define inter alia various fluidic transport paths, for example, in a laminar substrate in accordance with various other embodiments of the present invention.

[0022] Skilled artisans will appreciate that the term “passive”, as it may refer to valving devices and/or function, generally connotes the ability of a valve and/or valve device feature so characterized, to actuate the operation of restriction, constriction and/or dilation of fluid inlet acceptance and/or fluid outlet purging in effective correspondence to the forces nominally inherent to the translation of fluid volume elements through the valve device. That is to say, when the fluid flow is in a first direction, the fluidic forces operate to actuate the valve into a first conformation (e.g., substantially open); and, when the fluid flow is in a second direction (i.e., for a binary valve, generally given as the “opposite direction”), the fluidic forces operate to actuate the valve into a second conformation (e.g., substantially closed).

[0023] In various exemplary embodiments, passive membrane valves 130, 160 may be fabricated from silicone, silicone-based rubber, rubber, metal, metal alloy, polymer or such other materials whether now known or subsequently discovered or otherwise hereafter described in the art. In an exemplary application, the membrane valves may comprise a silicone-based rubber material. Additionally, passive membrane valves 130, 160 may optionally comprise means for attachment, such as, for example, an extension tab having a substantially annular retaining ring for securing or otherwise at least partially immobilizing membrane valve 130, 160 within device package substrate 100. Various other attachment means and/or packaging features for retaining, localizing or otherwise disposing check valves known in the art may be used as well. For example, the following retaining means may be conjunctively, alternatively or sequentially employed: adhesives, organic epoxies, a mechanical anchor, press-fit clips, solder, clamps, seals, adaptors and/or such other retention, connection or attachment devices, means and/or methods, whether now known or otherwise hereafter described in the art.

[0024] FIG. 2 generally depicts two passive membrane valves 230, 160 disposed within an exemplary monolithic package substrate 100 during the intake pumping stroke. During the intake stroke, actuator element 220 distends away from the substrate surface so as to generally enlarge the volume of the pumping chamber. Also during the intake stroke, inlet valve membrane sheet 230 distends away and unseats from the glass sealing ring seating element beneath the membrane sheet. FIG. 3 generally depicts two passive membrane valves 130, 320 disposed within an exemplary monolithic package substrate 100 during the output pumping stroke. During the output stroke, actuator element 320 distends toward the substrate surface so as to generally decrease the volume of the pumping chamber. Also during the output stroke, output valve membrane sheet 360 distends away and unseats from the glass sealing ring seating element beneath the membrane sheet. In one representative embodiment, pump actuator may comprise a piezoelectric micropump element. In an exemplary embodiment, piezoelectric element 220 may be secured to the package substrate 100 by, for example, solder 110. Accordingly, substrate 100 may comprise solder-wettable features that are generally provided to permit secure solder attachment of piezoelectric element 220 and/or a cover. Various other means for attaching piezoelectric element 220 and/or a cover may include, for example: epoxy, adhesive and/or such other attachment means and/or methods whether now known or hereafter described in the art. In yet another exemplary embodiment of the present invention, piezoelectric element 220 may alternatively be integrated within the package substrate; for example, between ceramic layers in a position substantially internal to the device as the package is built up.

[0025] As electric current is supplied to the package, piezoelectric element 120 operates as a deformable diaphragm membrane whose deformation (i.e., “stroke volume”) causes oscillating over- and under-pressures in the pump chamber. The pump chamber, in an exemplary embodiment, may be bounded by, for example, two passive membrane valves 130, 160. The pump actuation mechanism 120 need not be limited to piezoelectric actuation, but may alternatively, sequentially or conjunctively be driven by electrostatic or thermopneumatic actuation or such other means and/or methods now known, subsequently derived or otherwise hereafter described in the art.

[0026] During the movement of the diaphragm element (i.e., piezoelectric element 120) in a direction which tends to enlarge the pump chamber volume, an under-pressure is generated in the pump chamber causing fluid to flow through inlet channel 140 in a flow direction which causes inlet passive membrane valve 230 to distend toward piezoelectric element 220 thereby permitting fluid to flow through membrane valve 230 to enter into the pump chamber. Since the fluid transport gradient during the under-pressure stroke is anti-parallel to the fluid flow acceptance conformation of outlet passive membrane valve 160, membrane valve 160 seals against seating element 170 so as to at least partial reduce the occurrence of fluid disposed in outlet channel 150 re-entering into the pump chamber (i.e., backflow). Accordingly, this component of the pump cycle is termed the “supply mode” or the “supply stroke”.

[0027] In the alternate and next phase of the stroke cycle, the movement of the diaphragm element 320 in a direction which tends to reduce the pump chamber volume causes an over-pressure to be generated in the pump chamber, thereby flowing fluid through outlet opening 150 as a result of fluid flowing out of the pump chamber in a flow direction which causes outlet membrane valve 360 to distend away from diaphragm element 320 thereby permitting fluid to flow through outlet membrane valve 360 to outlet channel 150. Since the fluid transport gradient during the over-pressure stroke is anti-parallel to the fluid flow acceptance conformation of inlet membrane valve 130, membrane valve 130 seals against the corresponding seating element so as to at least partial reduce the occurrence of fluid disposed in the pump chamber from back-flowing into the inlet channel 140. Accordingly, this component of the pump cycle is termed the “pumping mode” or the “delivery stroke”.

[0028] The volume of the pump chamber upon relaxation of the actuation diaphragm is known as the dead volume V0 and the volume the actuation membrane deflects during a pump cycle generally defines the stroke volume &Dgr;V. The ratio between the stroke volume and dead volume may be used to express the compression ratio E. Due in part to the relatively small stroke of micro-actuators and the relatively large dead volume, the compression ratio 1 ϵ = Δ ⁢   ⁢ V V 0

[0029] is usually relatively small.

[0030] The pressure cycles (i.e., “pressure waves”) generated from the actuation supply and pump modes typically operate to alternately switch the passive membrane valves. In the limit of the pump chamber being filled with an ideally incompressible fluid, the pressure waves would ideally propagate from the actuation diaphragm to the valves with no net pressure loss—in which case, the compression ratio is generally not regarded as an important metric of pump performance and/or efficiency. However, where the fluid medium is not ideally incompressible, there exists a compressibility factor &kgr;>0 which may be employed to characterize the tendency of a real fluid to dampen the propagation of the actuation pressure wave &Dgr;p. If the pressure change &Dgr;p falls below a certain value p′ (e.g., the threshold pressure differential for actuation of a valve), the pump generally will not properly operate. Accordingly, a minimum condition for operation of any micropump may be expressed as |&Dgr;p|≧|p′51 .

[0031] Given the compressibility &kgr; of a liquid, the pressure change &Dgr;p may be calculated (if the volume change &Dgr;V induced by the actuator is known) in accordance with the equation V0 +&Dgr;V=V0(1−&kgr;&Dgr;p). If this expression is substituted into those previously presented, the compressibility ratio &egr; for liquid micropumps may be expressed as &egr;liquid≧&kgr;|p′|. Accordingly, a threshold valve actuation pressure p′ of 1 kPa in combination with the compression ratio for water &kgr;water (5*10−9 m2/N) would yield a minimum compression ratio &egr;water of 5*10−6. In this case, where the stroke volume &Dgr;V is assumed to be 50 nl, the dead volume V0 generally may not exceed 10 ml. Skilled artisans, however, will appreciate that the preceding example will generally only hold true where the pump chamber is completely filled with liquid and no degassing and/or bubble occlusion occurs during micropump operation and therefore provides a first-order approximation for the determination of operational parameters and/or design specifications.

[0032] In the case of a gas pump, assuming an ideal gas having an adiabatic coefficient of &ggr;(1.4 for air), at atmospheric pressure p0 and an actuation pressure wave of magnitude &Dgr;p, the following expression may be obtained: p0V0&ggr;=(p0+&Dgr;p)(V0+&Dgr;V)&ggr;

[0033] Accordingly, it may be shown that the criterion for the compression ratio of a gas micropump may be similarly derived as 2 ϵ gas ≥ ( p 0 p 0 - &LeftBracketingBar; p ′ &RightBracketingBar; ) 1 γ - 1

[0034] and, in the case of isothermal state transitions, the adiabatic coefficient &ggr; may be taken as equal to unity. For the device previously presented for the micropumping of water (e.g., p′=1 kPa and &Dgr;V=50 nl), the dead volume V0 for the same system adapted for the micropumping of air must generally not exceed 5 &mgr;l.

[0035] In conventional micropump operation, gas bubbles may often remain in the pump chamber during the priming procedure and/or the liquid may even volatized in response to temperature changes during operation. In these cases, the expression for the compression ratio of a liquid &egr;liquid≧&kgr;|p′| will no longer hold true since the compressibility of the gas bubble is generally much larger than the compressibility of the liquid. Depending on the volume of the gas bubble, the actuation pressure wave will be dampened in an amount that may be calculated if the volume of the gas bubble is substituted for the dead volume in the appropriate equation presented vide supra. If the gas bubble volume becomes so large that the actuation pressure wave falls below the threshold valve actuation pressure, the micropump will fail. Consequently, in the limit of the entire pump chamber volume being filled with a gas, the operational design criteria for liquid self-priming pumps converges to the design criteria for those of gas micropumps.

[0036] Additionally, in practical applications, the design criteria may even need to be more stringent to account for higher-order fluid dynamics. For example, self-priming liquid micropumps must typically suck the liquid meniscus from the inlet 140 into the pump chamber, thereby increasing the threshold critical pressure p′ in parity with the surface tension of the meniscus at the juncture between and/or within, for example, the microfluidic channels and the microfluidic valves. Those skilled in the art will recognize that other fluid dynamics and/or parametric contributions may require consideration in the determination of optimal operational specifications for a micropump in accordance with the present invention as they may be employed in a variety of practical applications and/or operating environments. The same shall be regarded as within the scope and ambit of the present invention.

[0037] Skilled artisans will appreciate that various other configurations or geometries for slit opening regions 410 may be defined in membrane valve sheet 400 so as to produce substantially the same result in accordance with other representative embodiments of the present invention. Opening regions may comprise symmetric patterns, asymmetric patterns, polygonal geometries 510, slits 610 and/or fanciful or parametric designs 710 as generally depicted, for example, in membrane valve sheets 500, 600, 700 corresponding to FIGS. 5, 6 and 7 respectively.

[0038] In accordance with various operational embodiments of the present invention, very low frequency actuation of the micropump was able to achieve flow rates in excess of 1.5 mL/min. Skilled artisans will appreciate that low frequency operation generally corresponds to low power consumption. Additionally, when driven with a sinusoidal signal, near silent operation was observed.

[0039] In the foregoing specification, the invention has been described with reference to specific exemplary embodiments; however, it will be appreciated that various modifications and changes may be made without departing from the scope of the present invention as set forth in the claims below. The specification and figures are to be regarded in an illustrative manner, rather than a restrictive one and all such modifications are intended to be included within the scope of the present invention. Accordingly, the scope of the invention should be determined by the claims appended hereto and their legal equivalents rather than by merely the examples described above. For example, the steps recited in any method or process claims may be executed in any order and are not limited to the specific order presented in the claims. Additionally, the components and/or elements recited in any apparatus claims may be assembled or otherwise operationally configured in a variety of permutations to produce substantially the same result as the present invention and are accordingly not limited to the specific configuration recited in the claims.

[0040] Benefits, other advantages and solutions to problems have been described above with regard to particular embodiments; however, any benefit, advantage, solution to problems or any element that may cause any particular benefit, advantage or solution to occur or to become more pronounced are not to be construed as critical, required or essential features or components of any or all the claims.

[0041] As used herein, the terms “comprises”, “comprising”, or any variation thereof, are intended to reference a non-exclusive inclusion, such that a process, method, article, composition or apparatus that comprises a list of elements does not include only those elements recited, but may also include other elements not expressly listed or inherent to such process, method, article, composition or apparatus. Other combinations and/or modifications of the above-described structures, arrangements, applications, proportions, elements, materials or components used in the practice of the present invention, in addition to those not specifically recited, may be varied or otherwise particularly adapted by those skilled in the art to specific environments, manufacturing specifications, design parameters or other operating requirements without departing from the general principles of the same.

Claims

1. A passive membrane valve for use with a microfluidic pump, said valve comprising:

a valve membrane sheet, an inlet channel and an outlet channel;
said inlet channel suitably adapted to receive fluid for transport across said valve membrane sheet;
said valve membrane sheet comprising an opening region and a valve seating region;
said valve membrane sheet effectively confining transport of fluid from said inlet channel to said outlet channel where fluid may be purged;
said valve membrane sheet comprising passive means for substantially restricting backflow of purged fluid back into said inlet channel wherein said valve seating region seats against a sealing element.

2. The passive membrane valve of claim 1, wherein said means for restricting the backflow of purged fluid further comprises:

means for effectively unseating at least a portion of said valve membrane sheet from said sealing element when the direction of fluid pressure tends to flow fluid in a direction away from said inlet channel across said valve membrane sheet toward said outlet channel; and
means for effectively seating said valve membrane sheet against said sealing element when the direction of fluid pressure tends to flow fluid in a direction away from said outlet channel across said valve membrane toward said inlet channel.

3. The passive membrane valve of claim 2, wherein said sealing element comprises a printed ring.

4. The passive membrane valve of claim 3, wherein said printed ring comprises at least one of glass, silicone, silicone-based rubber, rubber and polymer.

5. The passive membrane valve of claim 2, wherein said valve membrane sheet comprises at least one of an inorganic material, an organic material, a metal, a metal alloy, silicone, silicone-based rubber, rubber and polymer.

6. The passive membrane valve of claim 2, further comprising means for retaining said valve membrane sheet between said inlet channel and said outlet channel.

7. The passive membrane valve of claim 2, wherein said valve membrane sheet effectively confines transport of fluid from said inlet channel to said outlet channel by means of peripheral slits oriented normal to the direction of fluid transport.

8. The passive membrane valve of claim 7, wherein said peripheral slits comprise said opening region.

9. A microfluidic pumping system, comprising a passive membrane valve according to claim 1 and at least one of a pump actuator and a piezoelectric actuator.

10. The microfluidic pumping system of claim 9, wherein said means for restricting the backflow of purged fluid comprises:

means for effectively unseating at least a portion of said valve membrane sheet from said sealing element when the direction of fluid pressure tends to flow fluid in a direction away from said inlet channel across said valve membrane sheet toward said outlet channel; and
means for effectively seating said valve membrane sheet against said sealing element when the direction of fluid pressure tends to flow fluid in a direction away from said outlet channel across said valve membrane sheet toward said inlet channel.

11. The microfluidic pumping system of claim 9, further comprising means for retaining said valve membrane sheet within a microfluidic channel.

12. The microfluidic pumping system of claim 9, wherein said pump actuator comprises at least one of a unimorphic piezoelectric element and a bimorphic piezoelectric element.

13. The microfluidic pumping system of claim 9, further comprising a plurality of microfluidic pumps in fluidic communication with each other.

14. The microfluidic pumping system of claim 13, wherein said fluidic communication of said microfluidic pumps comprises at least one of a series configuration and a parallel configuration.

15. A multilayer micropump device, comprising a substrate, the passive membrane valve according to claim 1, a pump actuator and a pumping cavity.

16. The multilayer micropump of claim 15, wherein said substrate comprises at least one of ceramic, metal, glass, polymer and wood.

17. The multilayer micropump of claim 15, wherein said means for restricting the backflow of purged fluid comprises means for effectively seating said valve membrane sheet against said sealing element when the direction of fluid pressure tends to flow fluid in a direction away from said outlet channel across said valve membrane sheet toward said inlet channel.

18. The multilayer micropump of claim 15, wherein said pump actuator comprises at least one of a unimorphic piezoelectric element and a bimorphic piezoelectric element.

19. A method of fabricating the multilayer micropump device of claim 15, comprising:

providing a plurality of substrate layers;
forming into said plurality of substrate layers a transport conduit and a cavity, said transport conduit and said cavity in microfluidic communication to define a fluid transport path and a pumping cavity respectively;
placing within said fluid transport path a passive membrane valve according to claim 1; and
laminating each of the plurality of substrate layers to form a substantially monolithic micropump device.

20. The method of claim 19, wherein said substrate layers comprise at least one of ceramic, metal, glass, polymer and wood.

21. The method of claim 20, wherein said step of providing ceramic layers further comprises the step of providing a plurality of green sheets comprised of a ceramic material dispersed in an organic binder.

22. The method of claim 21, wherein the step of forming said channel and said cavity in said plurality of ceramic layers comprises at least one of mechanically punching and laser drilling into each ceramic layer.

23. The method of claim 22, further comprising the step of sintering said ceramic layers to form said monolithic package.

24. The method of claim 23, further comprising the step of providing a pumping actuator element on a surface of said monolithic package, said pumping actuator suitably adapted to exert a pumping force as a result of application of a voltage to the monolithic micropump package.

25. The method claim 23, further comprising the step of providing a pumping actuator element embedded in said monolithic package, said pumping actuator suitably adapted to exert a pumping force as a result of application of a voltage to the monolithic micropump package.

Patent History
Publication number: 20040120836
Type: Application
Filed: Dec 18, 2002
Publication Date: Jun 24, 2004
Inventors: Xunhu Dai (Gilbert, AZ), Andrew Christie (Vancouver), Chenggang Xie (Phoenix, AZ)
Application Number: 10323035
Classifications
Current U.S. Class: Piezoelectric Driven (417/413.2)
International Classification: F04B017/00;