Methods and devices for protecting a passageway in a body when advancing devices through the passageway
A liner is advanced through a narrowed region in a vessel such as the internal carotid artery. The liner is advanced through the narrowed region in a collapsed position. A stent is then advanced through the liner and expanded to open the narrowed region. The liner may also have an anchor which expands an end of the liner before the stent is introduced.
The present invention is directed to methods and devices for protecting a passageway in a body when advancing devices through the passageway. A specific application of the present invention is for treatment of blood vessels although the invention may be used in any part of the body. For example, the present invention is used to protect blood vessels during intravascular procedures for treating aneurysms, arteriovenous malformations, and atherosclerotic disease of vessels. A particular application of the present invention is for atherosclerotic disease of the carotid arteries or saphenous vein grafts. Carotid artery atherosclerotic occlusive disease contributes to hundreds of thousands of strokes annually in the United States. Atherosclerotic disease of the internal carotid artery is particularly problematic since plaque dislodged from the internal carotid artery leads directly to the cerebral vasculature.
A conventional method of treating carotid artery occlusive disease is by surgical removal of the plaque (carotid endarterectomy). The carotid artery is opened surgically, the plaque is removed and the carotid artery is then closed. Carotid endarterectomies have demonstrated significant clinical benefit over conservative treatment with medication by reducing strokes over the next five years. Although carotid endarteretomy reduces strokes over a period of time after the procedure, the procedure still has a 6% risk of death or stroke.
Another method of treating carotid artery disease is to use interventional devices such as stents. A problem with treating carotid artery occlusive disease with stents is that the user is wary of dislodging plaque when advancing the stent through the carotid artery. Any plaque which breaks free during introduction of the stent travels directly to the patient's brain and can cause a stroke or death.
Yet another method of treating carotid artery occlusive disease is to introduce a filter through the carotid artery to trap emboli released during subsequent deployment of a stent or angioplasty balloon. This method suffers the same drawback in that advancement of the filter itself may dislodge plaque. Moreover, exchange of various therapeutic catheters over the filter element result in undesirable movement of the filter with attendant risk of losing filtered emboli or damaging the vessel wall with the filter.
The present invention is directed to improved methods of protecting a body passageway when advancing devices through the body passageway. The present invention is also directed to improved methods of treating atherosclerotic vessels and, in particular, occlusive disease of the internal carotid artery.
SUMMARY OF THE INVENTIONIn accordance with the objects of the invention, a liner is provided to protect a body passageway during introduction of other devices into the passageway. In a specific application, the methods and devices of the present invention are used to protect blood vessels, such as the internal carotid artery, during intravascular procedures. It is understood that use of the present invention for protection of blood vessels is discussed as an example of how the present invention may be used, however, the invention may be used in any other part of the body without departing from the scope of the invention. The liner is collapsed for introduction into the patient and advanced to a narrowed region of a blood vessel. The liner is passed through a region of the blood vessel in the collapsed condition and an intravascular device, such as a stent or filter, is then introduced into the liner. The liner may be used to protect vessels from any type of problem including atherosclerotic disease, perforation, aneurysm or AVM.
The liner protects the vessel as the intravascular device is passed through the region to prevent the device from dislodging plaque. When the device is a stent, the stent is preferably expanded within the liner to trap the liner between the stent and the vessel. The liner may be expanded by the stent or may be partially or fully expanded before introduction of the stent. The devices and methods of the present invention are particularly useful for treating occlusive disease of the internal carotid artery. The liner may be any suitable material and suitable materials include expanded PTFE, woven dacron, nylon, low durometer silicone, or thin-walled polyethylene.
The liner is preferably mounted to a delivery catheter and is advanced over a guidewire. The liner may have an anchor at a proximal end which is used to open the proximal end of the liner. The anchor may be self-expanding or balloon expandable. Once the proximal end of the liner is opened, the liner can be designed so that blood pressure opens the liner. Alternatively, the liner may open automatically or may be opened with a separate device, the delivery catheter or the stent itself. When treating occlusive disease of the internal carotid artery, the anchor may be positioned completely in the internal carotid artery or may extend from the common carotid artery across the bifurcation of the internal and external carotid arteries and into the internal common carotid. The anchor preferably has an open structure which permits blood flow into the external carotid artery.
The liner may be an elastic liner or may be folded into a collapsed position. The liner may be collapsed in any suitable manner and preferably has a number of folded sections which are wrapped around one another. The folded sections are preferably adhered to one another to hold the liner in the collapsed position. The folded sections may be adhered together by application of heat or with an adhesive or coating. The distal end of the liner may be coated to form a curved surface which covers the ends of the folded sections. Alternatively, the ends of the liner may be scalloped or contoured so that when folded the edge tapers down more cleanly.
The liner may also be designed to evert when expanding. The everting liner reduces sliding between the liner and vessel so that plaque is not dislodged when introducing the liner. An end of the everting liner may be releasably attached to the delivery catheter.
The proximal end of the liner may also be opened with an expandable device, such as a balloon, on the delivery catheter rather than with an anchor attached to the liner. Once the proximal end is open, the stent or other device is advanced through the liner.
In yet another aspect of the invention, the catheter holds the proximal end partially open. The stent or other device is then advanced through the open proximal end. The liner can be released when using a stent or may be removed after use.
These and other features and advantages of the invention will become evident from the following description of the preferred embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS
A system 2 for protecting vessels during intravascular procedures is shown in
A liner 10 is used to protect the body passageway when passing other devices through the body passageway. For example, the liner 10 may be used to protect the carotid artery to prevent plaque from being dislodged when passing other devices through the carotid artery. A proximal end 11 of the liner 10 may be attached to an anchor 12 which expands and opens the liner 10 and holds the liner 10 against the vessel wall to reduce or eliminate flow around the liner. The liner is preferably non-metallic and is relatively flexible to conform to the body passageway. The anchor 12, as will be discussed below, is mounted to one end of the liner 10 while the other end of the liner 10 is preferably free.
The liner 10 is advanced through the vessel in the collapsed condition of
The liner 10 is preferably made of expanded PTFE having a thickness of 0.006 to 0.002 inch, more preferably 0.001 to 0.002 inch and most preferably about 0.001+/−0.0005 inch although any other suitable material may be used. For example, the liner 10 may have a woven construction such as silk or polyester as shown in
The liner 10 may also be elastic so that the liner 10 remains substantially cylindrical and without folds in the collapsed and expanded positions. When using an elastic liner 10, the liner 10 is preferably a tube of low durometer silicone, latex or natural rubber, thermoplastic elastomers such as Kraton or hydrogenated thermoplastic isoprenes having a thickness of 0.001 to 0.0005 inch. Alternatively, the liner 10 could be made of an inelastic but plastically deformable material. Initially the liner 10 would be sized to allow easy passage of the devices such as the balloons, stents and filters described herein. The liner 10 is then plastically deformed by the devices which pass therethrough. For example, a pre-dilatation balloon may be introduced to dilate the liner 10. The stent 27 can then be advanced into the dilated liner 10 and expanded to open the narrowed vessel. Expansion of the stent continues plastic deformation of the liner 10 to a final size. Any of the liners 10 described herein may be substituted for any of the other liners 10 without departing from the scope of the invention.
The liner 10 may also be covered by a removable sheath 21 as shown in
Referring again to
The relatively small size of the liner 10 advantageously permits the liner 10 to be introduced through small and heavily stenosed vessels. The carotid artery is often occluded 95 to 98% and may have diameters as small as 0.020 inch or even 0.010 inch before surgical or interventional procedures are performed. Conventional stents used in the internal carotid artery have a collapsed diameter of about 0.065 to 0.092 inch and, thus, must often displace the plaque to pass through the vessel. It is believed that some strokes which occur when using stents in the carotid artery are caused by plaque which is dislodged when the stent is advanced through and expanded within highly stenosed regions. The liner 10 of the present invention protects the vessel as the stent or other device is passed through the vessel. The liner 10 preferably has a length (of at least 2 cm and preferably 2-10 cm (
Referring again to
The anchor 12 and liner 10 may form a continuous, cylindrical shape in the expanded position (
The anchor 12 is positioned within an anchor retention catheter 22 (
The anchor 12 may be deployed to extend into the common carotid artery at the bifurcation of the external and internal carotid arteries (
After the anchor 12 has been expanded, the liner 10 can be configured to automatically open with blood pressure (
Referring to
The elongate element 29A is preferably made of a superelastic material, such as nitinol, which forms a loop 47 in the expanded position. The elongate element 29A is contained within the tube 41 when the liner 10A is advanced through the vasculature. The liner 10A is advanced over the guidewire 15 by pushing the tube 41. When the user is ready to expand the proximal end of the liner 10A, the element 29A is advanced into the pocket 35 so that the loop 47 opens the liner 10A as shown in
When the device introduced into the liner 10 is the stent 26, the stent 26 is preferably expanded to open the narrowed portion of the vessel as shown in
Referring to
The expanding section 32 is inflated to expand the proximal end of the liner 10 as shown in
Referring to
After the liner 10 has been fully everted, the retention catheter 37 is retracted so that the anchor 12 expands and holds the proximal end of the liner 10 open. The liner 10 is then detached from the inner member 42. The liner 10 may have a mechanical connection which is released with a push rod or guidewire 43. The liner 10 may also have a severable bond with the inner member 42 such as a thermally, chemically or electrolytically severable bond using the guidewire 43. The device, such as the stent 26, is then delivered through the liner 10.
Referring now to
Referring to
The liner 10 is positioned between a flexible sheath 74 and an inner tube 76. The sheath 74 and inner tube 76 prevent the liner 10 from contacting the walls of the vessel and guidewire 15 when the liner 10 is advanced through the vasculature. The sheath 74 and tube 76 also hold the liner 10 in the collapsed position although the liner 10 may be collapsed without requiring the sheath 74 and tube 76. The sheath 74 is attached to the outer wall 72 and is retracted together with the outer wall 72.
A shaft 80 extends through the catheter 62 and a flexible shaft extension 82 extends from the shaft 80. The shaft extension 82 and inner tube 76 provide a relatively flexible distal portion to navigate tortuous vessels such as the cerebral vasculature. The flexible shaft extension 82 may be a coil 84 as shown in
Referring to
The catheter 70 and liner 10 are used in substantially the same manner as the catheters and liners 10 described above and the discussion above is equally applicable here. The liner 10 is advanced over the guidewire 15 to a narrowed region of a blood vessel such as the internal carotid artery. The liner 10 and catheter have a small profile, as discussed above and incorporated here, so that the liner 10 may be advanced into the narrowed region without dislodging plaque. When the liner 10 is at the desired location, the handle 94 and shaft 80 are manipulated to retract the sheath 74 and the outer wall 72. When the outer wall 72 and sheath 74 are retracted, the anchor 12 is free to expand. The liner 10 may then be used in the manner described above. For example, the stent 26 or filter 36 may be advanced into the liner 10.
Referring to
A tube 112 is fused to the shaft 108 and an inner tube 114 is attached to the tube 114. The arm 104 travels in a slot 116 in the tube 114 to stabilize retraction of the collar 102. The tube 112 and inner tube 114 form a lumen 118 through which the guidewire 15 passes.
Referring to
The present invention is also directed to kits 124 which include various assemblies as described above. For example, the kit 124 may include the liner 10, delivery catheter 22 and instructions for use 126 setting forth any of the methods described herein as shown in
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims. For example, any of the delivery catheters may have a balloon for occluding the vessel while delivering the liner or advancing the device through the liner and any of the liners may have perforations to filter blood or may be made of a tightly woven material. Furthermore, the preferred dimensions described herein with respect to any of the embodiments is equally applicable to other embodiments.
Claims
1. A method of opening a narrowed region in a blood vessel, comprising the steps of:
- providing a liner movable from a collapsed condition to an expanded condition;
- advancing the liner to a narrowed region of a blood vessel with the liner in the collapsed position;
- passing at least a portion of the liner through the narrowed region of the blood vessel in the collapsed position;
- positioning a stent in the liner so that the stent is also positioned in the narrowed region of the blood vessel, the liner preventing the stent from contacting the narrowed region of the blood vessel; and
- expanding the stent to open the narrowed region of the vessel.
2. The method of claim 1, wherein:
- the advancing and passing steps are carried out with the blood vessel being a vessel selected from the group comprising the internal carotid artery and saphenous vein graft.
3. The method of claim 1, further comprising the step of:
- expanding the liner before expanding the stent.
4. The method of claim 1, wherein:
- the liner is expanded by the stent.
5. The method of claim 1, wherein:
- the providing step is carried out with the liner being mounted to a delivery catheter.
6. The method of claim 1, wherein:
- the providing step is carried out with the liner having an expandable anchor coupled to the liner.
7. The method of claim 6, wherein: the anchor is attached to the proximal end of the liner.
8. The method of claim 6, further comprising the step of:
- expanding the anchor with a balloon.
9. The method of claim 6, further comprising the steps of:
- holding the anchor in a collapsed position; and the expanding step is carried out by releasing the anchor so that the anchor moves into contact with the vessel wall and toward an expanded condition.
10. The method of claim 9, wherein:
- the anchor is expanded in the internal carotid artery.
11. The method of claim 10, wherein:
- the anchor expanding step is carried out so that the anchor is positioned at the bifurcation of the internal and external carotid arteries.
12. The method of claim 1, wherein:
- the providing step is carried out with the liner having a number of folded sections in the collapsed position.
13. The method of claim 12, wherein:
- the folds are separated by longitudinal creases.
14. The method of claim 12, wherein:
- the providing step is carried out with the folded sections being wrapped.
15. The method of claim 12, wherein:
- the providing step is carried out with at least two folded sections.
16. The method of claim 12, wherein:
- the providing step is carried out with the folded sections being adhered to one another to hold the folded sections in the collapsed position.
17. The method of claim 16, wherein:
- the providing step is carried out with the folded sections adhering to one another by application of heat to the folded sections.
18. The method of claim 16, wherein:
- the providing step is carried out with the folded sections adhering to one another with an adhesive.
19. The method of claim 16, wherein:
- the providing step is carried out with the folded sections being adhered to one another with gelatin, sucrose, glue, low molecular weight polyvinyl alcohol, suture, or fusion or soldered with radiopaque wire or ribbon.
20. The method of claim 1, wherein:
- the providing step is carried out with the liner being at least partially covered by a coating in the collapsed position, the coating dissolving in blood.
21. The method of claim 1, wherein:
- the providing step is carried out with the distal end of the liner being covered with a coating which forms a curved, atraumatic surface and covers a distal end of the folded sections.
22. The method of claim 1, wherein:
- the providing step is carried out with the liner being carried by a delivery catheter, the liner extending from a distal end of the delivery catheter.
23. The method of claim 1, wherein:
- the advancing the step is carried out by advancing the liner over a guidewire.
24. The method of claim 23, wherein:
- the providing step is carried out with the liner having a radial thickness of less than 0.020 inch in the collapsed position, the thickness being measured in a radial direction relative to a hole in which a guidewire is positioned.
25. A method of protecting a body passage, comprising the steps of:
- providing a liner movable from a collapsed condition to an expanded condition, the liner everting when moving from the collapsed condition to the expanded condition;
- advancing the liner to a region of a passageway in a body with the liner in the collapsed position;
- passing at least a portion of the liner through the region of the passageway in the collapsed position, at least a portion of the liner everting when moving from the collapsed position to the expanded position;
- positioning a device in the liner so that the device is also positioned in the region of the passageway, the liner preventing the device from contacting the region of the passageway.
26. A device for protecting a passageway in a body when passing other devices through the passageway, comprising:
- a delivery catheter having a distal end;
- and a liner coupled to the delivery catheter, the liner being movable from a collapsed position to an expanded position, the liner extending for a length of at least 2 cm and having a diameter of no more than 0.060 inch along the length when in the collapsed position.
27-67. Canceled
Type: Application
Filed: Oct 1, 2004
Publication Date: Feb 24, 2005
Inventors: Hanson Gifford (Woodside, CA), Ivan Sepetka (Los Altos, CA), Mark Deem (San Francisco, CA), Allan Will (Atherton, CA), Martin Dieck (Cupertino, CA), Sunmi Chew (San Jose, CA)
Application Number: 10/956,433