Semiconductor structure and method of fabrication
Fabricating a semiconductor includes depositing a metal layer outwardly from a dielectric layer and forming a mask layer outwardly from a first portion of the metal layer. Atoms are incorporated into an exposed second portion of the metal layer to form a composition-altered portion of the metal layer. The mask layer is removed from the first portion of the metal layer and a barrier layer is deposited outwardly from the metal layer. A poly-Si layer is deposited outwardly from the barrier layer to form a semiconductor layer, where the barrier layer substantially prevents reaction of the metal layer with the poly-Si layer. The semiconductor layer is etched to form gate stacks, where each gate stack operates according to one of a plurality of work functions.
This invention relates generally to the field of integrated circuit fabrication and specifically to a semiconductor structure and method of fabrication.
BACKGROUND OF THE DISCLOSURETransistors are generally fabricated by forming gate stacks on a semiconducting substrate. A gate stack typically includes a layer of polycrystalline silicon (poly-Si) on a gate dielectric. The poly-Si layer may be doped in order to set the work function of the poly-Si and reduce its resistivity. This technique of gate stack fabrication, however, may result in the formation of a relatively thick depletion layer. The thick depletion layer may cause a reduction in the overall gate capacitance, which may decrease the drive current of a device, resulting in the degradation of device performance. Thus, it may be challenging to dope poly-Si to a sufficiently high level to minimize depletion.
Known techniques to reduce this effect of the depletion layer may include increasing the doping level of the poly-Si. This known technique, however, may be difficult to implement because there is a limit to the number of carriers that can be attained by doping. Another known technique may involve using a metal layer instead of the doped poly-Si layer to increase the overall gate capacitance and to reduce the formation of the depletion layer. This technique, however, may be unsatisfactory because the metal may react with adjacent layers when exposed to high temperatures during a fabrication flow. The effect of the reaction of the metal with an adjacent layer may be reduced by using a thick metal layer or by limiting the thermal budget of the device, both of which may also affect the size and performance of the semiconductor device. Consequently, known techniques for fabricating a semiconductor structure may be unsatisfactory in certain situations.
SUMMARY OF THE DISCLOSUREIn accordance with the present invention, disadvantages and problems associated with previous techniques for fabricating a semiconductor structure may be reduced or eliminated.
According to one embodiment, fabricating a semiconductor includes depositing a metal layer outwardly from a dielectric layer and forming a mask layer outwardly from a first portion of the metal layer, where the mask layer masks the first portion of the metal layer. A plurality of atoms is incorporated into an exposed second portion of the metal layer to alter the composition of the metal layer. The mask layer is removed from the first portion of the metal layer and a barrier layer is deposited outwardly from the first portion and the second portion of the metal layer. A poly-Si layer is deposited outwardly from the barrier layer to form a gate film stack, where the barrier layer substantially prevents reaction of the metal layer with the poly-Si layer. The gate film stack is etched to form a gate stack structure that includes a first gate stack and a second gate stack, where the first gate stack includes at least part of the first portion of the metal layer and operates according to a first work function, and where the second gate stack includes at least part of the composition-altered portion of the metal layer and operates according to a second work function by virtue of the composition alteration.
Certain embodiments of the invention may provide one or more technical advantages. A technical advantage of one embodiment may include a barrier layer that prevents reaction of the metal layer with adjacent layers in order to inhibit the formation of metal compounds. Use of a barrier layer may allow the use of a metal layer in semiconductor fabrication, while maintaining the integrity of the metal layer throughout the thermal budget of the device. Another technical advantage may be that a thin metal layer may be used, which may allow for more effective etching of the gate stack. Yet another technical advantage of one embodiment may be that a dual work function gate structure using metal gates may be obtained. Yet another technical advantage of one embodiment may be that a metal layer may be used to effectively control implantation of atoms into the metal layer, which may prevent possible damage to the gate dielectric.
Certain embodiments of the invention may include none, some, or all of the above technical advantages. One or more other technical advantages may be readily apparent to one skilled in the art from the figures, descriptions, and claims included herein.
BRIEF DESCRIPTION OF THE DRAWINGSFor a more complete understanding of the present invention and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Embodiments of the present invention and its advantages are best understood by referring to
Transistors are typically fabricated by forming gate stacks on a semiconducting substrate. A gate stack typically includes a layer of polycrystalline silicon (poly-Si) on a gate dielectric. The poly-Si layer may be doped with different dopants in order to set the work function of the poly-Si and reduce its resistivity. For example, boron may be used to set the work function of the poly-Si for PMOS transistors, and phosphorous may be used to set the work function for NMOS transistors.
This technique of gate stack fabrication, however, may result in the formation of a depletion layer that is thicker than desired for ultra-scaled transistors. The solubility limit of the dopants in the poly-Si may lead to a carrier concentration lower than that required to decrease the depletion to negligible levels, which may result in a thicker depletion layer. The depletion layer may cause a reduction in the overall gate capacitance, which may decrease the drive current of a device, resulting in the degradation of device performance. The dopant concentration may be increased by using higher activation temperatures, but this may be impractical since the thermal budget of CMOS devices is decreasing rather than increasing. The illustrated embodiment, however, may allow for sufficient doping of the poly-Si layer to reduce depletion.
Referring to
Metal layer 12 may comprise any metal compound suitable for forming metal gates. According to the illustrated embodiment, metal layer 12 comprises a molybdenum (Mo) layer, and has a thickness in a range between 5 angstroms and 500 angstroms. At a minimum, metal layer 12 may have a thickness of one monolayer.
Referring to
Referring to
Mask layer 14 is operable to prevent at least a portion of the nitrogen from penetrating first portion 20 of metal layer 12. As was described with reference to
Referring to
Referring to
Referring to
Referring to
After depositing poly-Si layer 24, semiconductor layer 30 may undergo further manufacturing process stages to fabricate transistors according to the application. For example, semiconductor layer 30 may be treated with an anti-reflective coating during the etching and masking process to substantially eliminate the reflectivity of poly-Si layer 24. As another example, semiconductor layer 30 may be encapsulated to protect the metal layers of first gate stack 26 and second gate stack 28 during the fabrication process.
Certain embodiments of the invention may provide one or more technical advantages. A technical advantage of one embodiment may include a barrier layer that prevents reaction of the metal layer with adjacent layers in order to inhibit the formation of metal compounds. Use of a barrier layer may allow the use of a metal layer in semiconductor fabrication, while maintaining the integrity of the metal layer throughout the thermal budget of the device. Another technical advantage may be that a thin metal layer may be used, which may allow for more effective etching of the gate stack. Yet another technical advantage of one embodiment may be that a dual work function gate structure using metal gates may be obtained. Yet another technical advantage of one embodiment may be that a metal layer may be used to effectively control implantation of atoms into the metal layer, which may prevent possible damage to the gate dielectric.
Although an embodiment of the invention and its advantages are described in detail, a person skilled in the art could make various alterations, additions, and omissions without departing from the spirit and scope of the present invention as defined by the appended claims.
Claims
1-10. (canceled)
11. A semiconductor structure, comprising:
- a dielectric layer;
- a metal layer disposed outwardly from the dielectric layer, the metal layer comprising a first portion and a composition-altered portion;
- a barrier layer disposed outwardly from the metal layer;
- a poly-Si layer deposited outwardly from the barrier layer, the barrier layer operable to prevent diffusion and reaction between the metal layer and the poly-Si layer;
- a first stack structure comprising the first portion of the metal layer and operating according to a first work function; and
- a second stack structure comprising the composition-altered portion of the metal layer and operating according to a second work function.
12. The semiconductor structure of claim 11, wherein the metal layer has a thickness in a range between one monolayer and 500 angstroms.
13. The semiconductor structure of claim 11, wherein the metal layer comprises molybdenum.
14. The semiconductor structure of claim 11, wherein the composition-altered metal layer comprises molybdenum nitride (MoN).
15. The semiconductor structure of claim 11, wherein the composition-altered portion of the metal layer comprises a plurality of atoms incorporated using at least one of an ion implantation, direct plasma nitridation, a remote plasma nitridation, an ammonia anneal, an SiH4 anneal, and Si2H6 anneal.
16. The semiconductor structure of claim 11, wherein the plurality of atoms comprises a plurality of nitrogen ions.
17. The method of claim 10, wherein the plurality of atoms comprises a plurality of silicon atoms.
18. The semiconductor structure of claim 11, wherein the barrier layer has a thickness in a range between 25 angstroms and 100 angstroms.
19. The semiconductor structure of claim 11, wherein the barrier layer comprises a compound selected from one of a titanium nitride (TiN) compound, a tantalum nitride (TaN) compound, a molybdenum nitride (MoN) compound, a hafnium nitride (HfN) compound, and a zirconium nitride (ZrN) compound.
20. The semiconductor structure of claim 11, wherein:
- the first work function corresponds to a p-channel metal oxide semiconductor (PMOS); and
- the second work function corresponds to a n-channel metal oxide semiconductor (NMOS).
21-23. (canceled)
Type: Application
Filed: Mar 30, 2006
Publication Date: Sep 14, 2006
Inventors: Mark Visokay (Richardson, TX), Luigi Colombo (Dallas, TX)
Application Number: 11/394,351
International Classification: H01L 29/00 (20060101); H01L 21/302 (20060101);