Patents by Inventor Luigi Colombo

Luigi Colombo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250113548
    Abstract: A method includes forming, on a dielectric layer of an integrated circuit, a first layer of a first material, forming, on the first layer, a second layer of a second material, and patterning the second layer to expose the first layer. Via the patterned second layer, the exposed first layer is etched to form protrusion structures of the first layer and the second layer and grooves between adjacent ones of the protrusion structures. The method also includes forming a graphitic carbon layer on at least part of the second layer of the protrusion structures, and depositing carbon nanotubes into the grooves between the adjacent ones of the protrusion structures.
    Type: Application
    Filed: September 30, 2023
    Publication date: April 3, 2025
    Applicant: Texas Instruments Incorporated
    Inventors: Luigi Colombo, Baher S. Haroun
  • Publication number: 20250066526
    Abstract: A method of forming a composite material includes photo-initiating a polymerization of a monomer in a pattern of interconnected units to form a polymer microlattice. Unpolymerized monomer is removed from the polymer microlattice. The polymer microlattice is coated with a metal. The metal-coated polymer microlattice is dispersed in a polymer matrix.
    Type: Application
    Filed: November 11, 2024
    Publication date: February 27, 2025
    Applicant: Texas Instruments Incorporated
    Inventors: Nazila Dadvand, Benjamin Stassen Cook, Archana Venugopal, Luigi Colombo
  • Patent number: 12139569
    Abstract: A method of forming a composite material includes photo-initiating a polymerization of a monomer in a pattern of interconnected units to form a polymer microlattice. Unpolymerized monomer is removed from the polymer microlattice. The polymer microlattice is coated with a metal. The metal-coated polymer microlattice is dispersed in a polymer matrix.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: November 12, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Nazila Dadvand, Benjamin Stassen Cook, Archana Venugopal, Luigi Colombo
  • Publication number: 20240312862
    Abstract: An integrated circuit includes a semiconductor substrate. The integrated circuit also includes a trench in the semiconductor substrate, the trench including a layer of a nanoparticle material. The integrated circuit further includes an interconnect region above the trench.
    Type: Application
    Filed: May 24, 2024
    Publication date: September 19, 2024
    Applicant: Texas Instruments Incorporated
    Inventors: Benjamin Stassen Cook, Archana Venugopal, Luigi Colombo, Robert Reid Doering
  • Publication number: 20240246317
    Abstract: A microstructure comprises a plurality of interconnected units wherein the units are formed of graphene tubes. The graphene tubes may be formed by photo-initiating the polymerization of a monomer in a pattern of interconnected units to form a polymer microlattice, removing unpolymerized monomer, coating the polymer microlattice with a metal, removing the polymer microlattice to leave a metal microlattice, depositing graphitic carbon on the metal microlattice, converting the graphitic carbon to graphene, and removing the metal microlattice.
    Type: Application
    Filed: February 23, 2024
    Publication date: July 25, 2024
    Inventors: Luigi COLOMBO, Nazila DADVAND, Benjamin Stassen COOK, Archana VENUGOPAL
  • Patent number: 11996343
    Abstract: An integrated circuit has a substrate that includes a semiconductor material, and an interconnect region disposed on the substrate. The integrated circuit includes a thermal routing trench in the substrate. The thermal routing trench includes a cohered nanoparticle film in which adjacent nanoparticles are cohered to each other. The thermal routing trench has a thermal conductivity higher than the semiconductor material contacting the thermal routing trench. The cohered nanoparticle film is formed by an additive process.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: May 28, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Archana Venugopal, Luigi Colombo, Robert Reid Doering
  • Patent number: 11938715
    Abstract: A microstructure comprises a plurality of interconnected units wherein the units are formed of graphene tubes. The graphene tubes may be formed by photo-initiating the polymerization of a monomer in a pattern of interconnected units to form a polymer microlattice, removing unpolymerized monomer, coating the polymer microlattice with a metal, removing the polymer microlattice to leave a metal microlattice, depositing graphitic carbon on the metal microlattice, converting the graphitic carbon to graphene, and removing the metal microlattice.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: March 26, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Luigi Colombo, Nazila Dadvand, Benjamin Stassen Cook, Archana Venugopal
  • Patent number: 11866848
    Abstract: A method of growing a cadmium zinc telluride (CdZnTe) crystal includes providing a crucible including a solid CdZnTe source and forming a Te-rich Cd—Zn—Te melt on the solid CdZnTe source. The method also includes positioning a CdZnTe seed crystal in physical contact with the Te-rich Cd—Zn—Te melt and growing the CdZnTe crystal from the Te-rich Cd—Zn—Te melt.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: January 9, 2024
    Inventors: Lance Robertson, Luigi Colombo, Victor Perez-Rubio, Tim Svoboda, Fred Raymel Harris, Kathryn O'Brien
  • Publication number: 20230307312
    Abstract: An integrated circuit has a substrate and an interconnect region disposed on the substrate. The interconnect region includes a plurality of interconnect levels. Each interconnect level includes interconnects in dielectric material. The integrated circuit includes a thermal via in the interconnect region. The thermal via extends vertically in at least one of the interconnect levels in the interconnect region. The thermal via includes a cohered nanoparticle film in which adjacent nanoparticles are cohered to each other. The thermal via has a thermal conductivity higher than dielectric material touching the thermal via. The cohered nanoparticle film is formed by a method which includes an additive process.
    Type: Application
    Filed: May 4, 2023
    Publication date: September 28, 2023
    Inventors: Benjamin Stassen Cook, Archana Venugopal, Luigi Colombo, Robert Reid Doering
  • Publication number: 20230243770
    Abstract: A gas sensor has a microstructure sensing element which comprises a plurality of interconnected units wherein the units are formed of connected graphene tubes. The graphene tubes may be formed by photo-initiating the polymerization of a monomer in a pattern of interconnected units to form a polymer microlattice, removing unpolymerized monomer, coating the polymer microlattice with a metal, removing the polymer microlattice to leave a metal microlattice, depositing graphitic carbon on the metal microlattice, converting the graphitic carbon to graphene, and removing the metal microlattice.
    Type: Application
    Filed: March 8, 2023
    Publication date: August 3, 2023
    Applicant: Texas Instruments Incorporated
    Inventors: Archana VENUGOPAL, Benjamin Stassen Cook, Nazila Dadvand, Luigi Colombo
  • Patent number: 11710764
    Abstract: An integrated circuit (IC) including a semiconductor surface layer of a substrate including functional circuitry having circuit elements formed in the semiconductor surface layer configured together with a Metal-Insulator-Metal capacitor (MIM) capacitor on the semiconductor surface layer for realizing at least one circuit function. The MIM capacitor includes a multilevel bottom capacitor plate having an upper top surface, a lower top surface, and sidewall surfaces that connect the upper and lower top surfaces (e.g., a bottom plate layer on a three-dimensional (3D) layer or the bottom capacitor plate being a 3D bottom capacitor plate). At least one capacitor dielectric layer is on the bottom capacitor plate. A top capacitor plate is on the capacitor dielectric layer, and there are contacts through a pre-metal dielectric layer to contact the top capacitor plate and the bottom capacitor plate.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: July 25, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Poornika Fernandes, Sagnik Dey, Luigi Colombo, Haowen Bu, Scott Robert Summerfelt, Mark Robert Visokay, John Paul Campbell
  • Patent number: 11676880
    Abstract: An integrated circuit has a substrate and an interconnect region disposed on the substrate. The interconnect region includes a plurality of interconnect levels. Each interconnect level includes interconnects in dielectric material. The integrated circuit includes a thermal via in the interconnect region. The thermal via extends vertically in at least one of the interconnect levels in the interconnect region. The thermal via includes a cohered nanoparticle film in which adjacent nanoparticles are cohered to each other. The thermal via has a thermal conductivity higher than dielectric material touching the thermal via. The cohered nanoparticle film is formed by a method which includes an additive process.
    Type: Grant
    Filed: November 26, 2016
    Date of Patent: June 13, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Benjamin Stassen Cook, Archana Venugopal, Luigi Colombo, Robert Reid Doering
  • Patent number: 11670671
    Abstract: In a described example, an integrated circuit includes a capacitor first plate; a dielectric stack over the capacitor first plate comprising silicon nitride and silicon dioxide with a capacitance quadratic voltage coefficient less than 0.5 ppm/V2; and a capacitor second plate over the dielectric stack.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: June 6, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Poornika Fernandes, Luigi Colombo, Haowen Bu
  • Patent number: 11569342
    Abstract: In a described example, a method for forming a capacitor includes: forming a capacitor first plate over a non-conductive substrate; flowing ammonia and nitrogen gas into a plasma enhanced chemical vapor deposition (PECVD) chamber containing the non-conductive substrate; stabilizing a pressure and a temperature in the PECVD chamber; turning on radio frequency high frequency (RF-HF) power to the PECVD chamber; pretreating the capacitor first plate for at least 60 seconds; depositing a capacitor dielectric on the capacitor first plate; and depositing a capacitor second plate on the capacitor dielectric.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: January 31, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Poornika Fernandes, Luigi Colombo, Haowen Bu
  • Publication number: 20220250909
    Abstract: A microstructure comprises a plurality of interconnected units wherein the units are formed of hexagonal boron nitride (h-BN) tubes. The graphene tubes may be formed by photo-initiating the polymerization of a monomer in a pattern of interconnected units to form a polymer microlattice, removing unpolymerized monomer, coating the polymer microlattice with a metal, removing the polymer microlattice to leave a metal microlattice, depositing an h-BN precursor on the metal microlattice, converting the h-BN precursor to h-BN, and removing the metal microlattice.
    Type: Application
    Filed: April 26, 2022
    Publication date: August 11, 2022
    Inventors: Luigi COLOMBO, Nazila DADVAND, Benjamin Stassen COOK, Archana VENUGOPAL
  • Patent number: 11390527
    Abstract: A microstructure comprises a plurality of interconnected units wherein the units are formed of graphene tubes. The graphene tubes may be formed by photo-initiating the polymerization of a monomer in a pattern of units to form a polymer microlattice, removing unpolymerized monomer, coating the polymer microlattice with a metal, removing the polymer microlattice to leave a metal microlattice, depositing graphitic carbon on the metal microlattice, converting the graphitic carbon to graphene, and removing the metal microlattice. A ceramic may be deposited on the graphene and another graphene layer may be deposited on top of the ceramic to create a multi-layered sp2-bonded carbon tube.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: July 19, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Nazila Dadvand, Luigi Colombo, Archana Venugopal
  • Patent number: 11370662
    Abstract: A microstructure comprises a plurality of interconnected units wherein the units are formed of hexagonal boron nitride (h-BN) tubes. The graphene tubes may be formed by photo-initiating the polymerization of a monomer in a pattern of interconnected units to form a polymer microlattice, removing unpolymerized monomer, coating the polymer microlattice with a metal, removing the polymer microlattice to leave a metal microlattice, depositing an h-BN precursor on the metal microlattice, converting the h-BN precursor to h-BN, and removing the metal microlattice.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: June 28, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Luigi Colombo, Nazila Dadvand, Benjamin Stassen Cook, Archana Venugopal
  • Publication number: 20220169773
    Abstract: A method of forming a composite material includes photo-initiating a polymerization of a monomer in a pattern of interconnected units to form a polymer microlattice. Unpolymerized monomer is removed from the polymer microlattice. The polymer microlattice is coated with a metal. The metal-coated polymer microlattice is dispersed in a polymer matrix.
    Type: Application
    Filed: February 18, 2022
    Publication date: June 2, 2022
    Inventors: Nazila DADVAND, Benjamin Stassen COOK, Archana VENUGOPAL, Luigi COLOMBO
  • Patent number: 11309388
    Abstract: A switchable array includes: a microstructure of interconnected units formed of graphene tubes with open spaces in the microstructure bounded by the graphene tubes; at least one JFET gate in at least one of the graphene tubes; and a control line having an end connected to the at least one JFET gate. The control line extends to a periphery of the microstructure.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: April 19, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Benjamin Stassen Cook, Luigi Colombo, Nazila Dadvand, Archana Venugopal
  • Patent number: 11296237
    Abstract: A microelectronic device includes a gated graphene component over a semiconductor material. The gated graphene component includes a graphitic layer having at least one layer of graphene. The graphitic layer has a channel region, a first connection and a second connection make electrical connections to the graphitic layer adjacent to the channel region. The graphitic layer is isolated from the semiconductor material. A backgate region having a first conductivity type is disposed in the semiconductor material under the channel region. A first contact field region and a second contact field region are disposed in the semiconductor material under the first connection and the second connection, respectively. At least one of the first contact field region and the second contact field region has a second, opposite, conductivity type. A method of forming the gated graphene component in the microelectronic device with a transistor is disclosed.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: April 5, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Archana Venugopal, Luigi Colombo, Arup Polley