Visual prosthesis including enhanced receiving and stimulating portion
A visual prosthesis including an enhanced receiving and stimulating portion for electrically stimulating retinal tissue to present an apparent image to a user. The prosthesis includes an extraocular camera which responds to a real image to generate a real image signal. The real image signal is coupled, e.g., RF coupling, from an extraocular primary coil to a secondary coil. The secondary coil is preferably affixed within the vitreous body of the user's eye positioned for good signal coupling to the primary coil and arranged to be in good thermal contact with the vitreous body which acts as a heat sink. A hermetically sealed housing containing signal processing circuitry is also preferably placed in the vitreous body to assure efficient heat transfer away from the housing. The circuitry is electrically connected to the secondary coil and responds to an output signal therefrom to produce an apparent image signal for driving an electrode array. The electrode array is configured to electrically stimulate the eye's retinal tissue to enable a user to perceive an apparent image.
This application claims priority of U.S. patent application Ser. No. 09/761,270, filed Jan. 16, 2001 the disclosure of which is incorporated herein by reference.
FIELD OF THE INVENTIONThis invention relates generally to a visual prosthesis for restoring at least partial vision to a user afflicted with photoceptor degeneration.
BACKGROUND OF THE INVENTIONU.S. Pat. No. 5,935,155 describes a visual prosthesis generally comprised of (1) an image acquiring and transmitting portion and (2) a receiving and retina stimulating portion. The acquiring portion includes a camera for generating a visual signal output representative of an acquired image. The stimulating portion includes an electrode array adapted to be operatively attached to the user's retina. The visual signal output is used to modulate a radio frequency (RF) carrier signal which is applied to a primary coil. A secondary coil receives the RF signal which is then demodulated to recover the visual signal output for driving the electrode array to electrically stimulate retinal tissue. In use, the acquiring and transmitting portion is mounted outside of the eye (extraocular) and the receiving and stimulating portion is primarily mounted in the eye (intraocular) The components of the intraocular portion are powered from energy extracted from the transmitted visual signal.
The present invention is directed to a visual prosthesis and more particularly to an enhanced receiving and stimulating portion for electrically stimulating retinal tissue to present an apparent image to a user. Visual prosthesis embodiments in accordance with the invention utilize an image acquiring and transmitting portion having an extraocular camera and primary coil. The camera responds to a real image to generate a real image signal which is coupled, e.g., RF coupling, from the primary coil to the secondary coil of the receiving and stimulating portion.
In accordance with a firs preferred embodiment of the invention, the secondary coil is placed within the vitreous body of the user's eye positioned and oriented for good signal coupling to the extraocular primary coil. For example, both coils are located in close proximity substantially coincident with the optic axis of the user's eye. Moreover, the secondary coil is arranged to be in good thermal contact with the vitreous body which acts as a heat sink.
In accordance with a significant aspect of the first preferred embodiment, a signal processing circuitry electrically connected to the secondary coil is also placed in the vitreous body to assure efficient heat transfer therefrom. The circuitry is preferably contained in a protective hermetically sealed housing which preferably comprises a metal can but which also can constitute any coating or envelope for protecting the circuitry from adverse effects of salt water. The circuitry responds to an output signal from the secondary coil to produce an apparent image signal for driving an electrode array. The electrode array is configured to electrically stimulate the eye's retinal tissue to enable a user to perceive an apparent image.
In accordance with a further feature of the preferred embodiment, the housing, which is preferably metal, is placed and/or oriented in a manner to minimize the generation of eddy currents in the housing wall which would diminish energy transmission efficiency, In one arrangement, the housing is located posteriorly of the secondary coil but oriented with its shortest dimensions perpendicular to the secondary coil axis. In an alternative arrangement, the housing is displaced from the secondary coil axis but in substantially the same plane as the secondary coil.
In a still further embodiment the invention, the housing is placed outside the sclera wall and electrically connected through the sclera to the secondary coil and retina electrode array.
In accordance with a still further prosthesis embodiment, the primary coil and secondary coil are both located to the side of the optic axis outside of the sclera wall enabling them to be closely coupled. The circuit housing is preferably located very close to the secondary coil and is electrically connected through the sclera to the retina electrode array.
BRIEF DESCRIPTION OF THE DRAWINGS
It should be noted that the dashed line 24 in
The image acquiring and transmitting portion 26 of the visual prosthesis 10 is illustrated in greater detail in
The encoding scheme is preferably optimized for the target image resolution which is primarily determined by the size of the implanted electrode array. The encoded information typically includes such parameters as the magnitude, timing, and sequence of the stimulation pulses which will be generated by the electrode array to simulate the image through retinal stimulation.
The RF signal applied to primary coil 16 is received by the secondary coil 18 of the stimulating portion 28 as illustrated in greater detail in
Attention is now directed to
It is significant to note that the secondary coil 18, housing 60 and electrode array 22 are all mounted in the vitreous body 52 in good thermal contact therewith. Thus, the vitreous body acts as a heat sink to cool the coil and electronic circuitry enabling the system to more efficiently utilize the signal energy derived from primary coil 16.
The housing 60 preferably comprises a hermetically sealed metal container having perpendicular width, depth, and length dimensions. In order to minimize eddy current induction into the housing wall, it is preferable to orient the housing with its smallest dimensions oriented parallel to the plane of coil 18 and preferably displaced from the coil axis.
Attention is now directed to
From the foregoing, it should now be appreciated that several enhanced prosthesis embodiments have been described characterized by one or more of the following features:
1-secondary coil mounted within the vitreous body;
2-circuitry housing mounted within the vitreous body;
3-secondary coil and circuitry housing collocated outside of the sclera wall displaced from the optic axis.
Although only a limited number of embodiments have been specifically described, it is recognized that various modifications and alternatives will occur to those skilled in the art which fall within the spirit and scope of the invention as defined by the appended claims.
Claims
1. A prosthesis for at least partially restoring vision to a user suffering from a photoreceptor degenerative condition, said prosthesis including: a secondary coil configured for mounting in the vitreous body of a user's eye for responding to a coupled input signal to produce an output signal; an electrode array configured for implantation in said user's eye; and signal processing circuitry responsive to said output signal for applying an image signal to said electrode array for stimulating retinal cells in said user's eye.
2. The prosthesis of claim 1 wherein said signal processing circuitry is contained in a hermetically sealed housing configured for mounting in said vitreous body.
3. The prosthesis of claim 2 wherein said housing is oriented relative to said secondary coil to minimize the generation of eddy currents in said housing.
4. The prosthesis of claim 1 wherein said signal processing circuitry is contained in a protective housing configured for extraocular mounting; and further including conductive wires for electrically connecting said signal processing circuitry through the user 's scleral wall to said secondary coil and said electrode array.
5. The prosthesis of claim 1 wherein said secondary coil is configured for mounting in said vitreous body with the axis of said secondary coil extending substantially coincident with the optic axis of the user's eye.
6. In combination with a user's eye characterized by a lens and a sclera wall enclosing a vitreous chamber containing a vitreous body, and including a retina supported adjacent to said vitreous body proximate to the intraocular side of said sclera wall, a visual prosthesis comprising: a secondary coil for responding to input signal energy to produce an output signal, said coil being mounted in said vitreous chamber in thermal contact with said vitreous body; an array of electrodes implanted proximate to said retina; and signal processing circuitry coupled to said secondary coil and responsive to said output signal for applying an image signal to said array of electrodes for electrically stimulating said retina to present an apparent image to said user.
7. The combination of claim 6 further including a hermetically sealed housing containing said signal processing circuitry; and wherein said housing is supported in said vitreous chamber in thermal contact with said vitreous body.
8. The combination of claim 7 wherein said housing defines first and second perpendicularly oriented dimensions and wherein the housing is oriented in said vitreous chamber with the lesser of said dimensions extending substantially perpendicular to the axis of said secondary coil.
9. The combination of claim 6 further including a housing containing said signal processing circuitry; said housing being mounted proximate to the extraocular side of said sclera wall; and conductive wires electrically connecting said signal processing circuitry through said sclera wall to said secondary coil and said array of electrodes.
10. The combination of claim 6 wherein said secondary coil is mounted with its axis substantially coincident with the optic axis of said user's eye.
11. A visual prosthesis for at least partially restoring vision to a user suffering from a photoceptor degenerative condition, said prosthesis comprising: an image acquiring portion for producing a real image signal representative of a real image; and a stimulating portion for electrically stimulating the user's retina to present an apparent image to the user; said stimulating portion including: an array of electrodes mounted in the user's eye proximate to said retina and electrically connected thereto; and a protective housing containing signal processing circuitry responsive to said real image signal for applying an apparent image signal to said electrode array for stimulating said retina to present said apparent image; and wherein said housing is mounted in the vitreous body of the user's eye in good thermal contact therewith.
12. The prosthesis of claim 11 wherein said image acquiring portion includes a primary coil; and said stimulating portion includes a secondary coil; and wherein said primary and secondary coils are mounted in close proximity tor coupling said real image signal from said image acquiring portion to said stimulating portion.
13. The prosthesis of claim 12 wherein said secondary coil is mounted in the vitreous body of the user's eye in good thermal contact therewith.
14. The prosthesis of claim 12 wherein said primary and secondary coils are supported substantially coincident with the optic axis of the user's eye.
15. The prosthesis of claim 13 wherein said housing is oriented relative to said secondary coil to minimize the generation of eddy currents therein.
16. A visual prosthesis for at least partially restoring vision to a user suffering from a photoceptor degenerative condition, said prosthesis comprising: an image acquiring portion including an extraocular primary coil for producing a real image signal representative of a real image; and a stimulating portion for electrically stimulating the user's retina to present an apparent image to the user; said stimulating portion including: a secondary coil coupled to said primary coil for producing an output signal in response to said real image signal; an array of electrodes mounted in the user's eye proximate to said retina and electrically connected thereto; and a protective housing containing signal processing circuitry responsive to said output signal for applying an apparent image signal to said electrode array for stimulating said retina to present said apparent image; and wherein said housing is mounted adjacent to the extraocular side of the user's sclera wall.
17. The prosthesis of claim 16 wherein said secondary coil is mounted in the vitreous body of the user's eye.
18. The prosthesis of claim 16 wherein said primary coil and said secondary coil are mounted substantially in alignment with the optic axis of the user's eye.
19. The prosthesis of claim 16 wherein said primary coil and said secondary coil are substantially aligned with one another along an axis displaced from the optic axis of the user's eye.
20. A method for implanting a visual prosthesis in the eye of a user including: fixing a secondary coil in the vitreous chamber of the user's eye in thermal contact with the vitreous body in the chamber; mounting a protective housing containing signal processing circuitry in close proximity to said secondary coil; connecting an electrode array to the user's retina; and electrically connecting said signal processing circuitry to said secondary coil and said electrode array.
21. A method of deploying a visual prosthesis for a user to at least partially restore vision comprising the steps of: generating a real image signal representative of a real image; mounting a protective housing containing signal processing circuitry in the vitreous body of a user's eye in good thermal contact therewith; coupling said real image signal to said signal processing circuitry to produce an apparent image signal; connecting an electrode array to the user's retina; and applying said apparent image signal to said electrode array.
Type: Application
Filed: Jun 12, 2006
Publication Date: Oct 19, 2006
Inventors: Jerry Ok (Glendale, CA), Robert Greenberg (Los Angeles, CA), Mark Humayun (Glendale, CA)
Application Number: 11/451,956
International Classification: A61F 9/00 (20060101); A61N 1/36 (20060101);