Intelligent station using multiple RF antennae and inventory control system and method incorporating same
An inventory control system and method that tracks inventories of items with RFID tags, includes a reader unit and an intelligent station that tracks RFID tags to determine item information of items to be inventoried. The reader unit transmits and receives RF signals. The intelligent station includes a first RF antenna connected to the reader unit by a first transmission cable through a first switch, and one or more additional RF antennae connected to the reader unit by the same first transmission cable through additional switches. An inventory control processing unit receives item information from the intelligent stations to update inventory information regarding the items to be inventoried.
This application claims the benefit of priority under 35 U.S.C. § 119(e) of provisional application Ser. Nos. 60/346,388, filed Jan. 9, 2002, and 60/350,023, filed on Jan. 23, 2002, the disclosures which are incorporated herein in their entireties.
FIELD OF THE INVENTIONThe present invention relates generally to the field of using multiple RF (radio frequency) antennae in an intelligent station to track items tagged with RFID (radio frequency identification) tags. More generally, the present invention is directed to an inventory control method and system that uses the intelligent station to track and inventory items that are tagged with RFID tags.
BACKGROUND OF THE INVENTIONRadio frequency identification (RFID) systems typically use one or more reader antennae to send radio frequency (RF) signals to items tagged with RFID tags. The use of such RFID tags to identify an item or person is well known in the art. In response to the RF signals from a reader antenna, the RFID tags, when excited, produce a disturbance in the magnetic field (or electric field) that is detected by the reader antenna. Typically, such tags are passive tags that are excited or resonate in response to the RF signal from a reader antenna when the tags are within the detection range of the reader antenna. One example of such a RFID system including details of suitable RF antennae is described in U.S. Pat. No. 6,094,173, the contents of which are incorporated herein in their entirety. In order to improve the detection range and expand “coverage” it is known to use coplanar antennae that are out of phase. One example of such an antenna is provided in U.S. Pat. No. 6,166,706.
The detection range of the RFID systems is typically limited by signal strength to short ranges, for example, frequently less than about one foot for 13.56 MHz systems. Therefore, portable reader units are moved past a group of tagged items in order to detect all the tagged items since the tagged items are typically stored in a space significantly greater than the detection range of a stationary or fixed single reader antenna. Alternately, a large reader antenna with sufficient power and range to detect a larger number of tagged items may be used. However, such an antenna may be unwieldy and may increase the range of the radiated power beyond allowable limits. Furthermore, these reader antennae are often located in stores or other locations were space is at a premium and it is expensive and inconvenient to use such large reader antennae. In another possible solution, multiple small antennae may be used but this configuration may be awkward to set up keeping in mind that space is often at a premium.
However, use of multiple antennae (or components) has the drawback that multiple transmission cables are used to connect a reader unit to the multiple antennae and/or that the multiple antennae cannot be individually controlled when they are all connected by a single transmission cable to the reader unit.
By way of background,
The transmission cable 203 is typically characterized by its impedance, which in a simplified form, is approximately the square root of inductance L divided by capacitance C of the transmission cable. For coaxial cables, the impedance is commonly 50 or 75 ohms.
Generally, the transmission cable 203, antenna loop 201, and tuning circuit 202 are connected together in a manner that most efficiently utilizes the RF power at a desired frequency, which for a given RFID system using a loop antenna, such as antenna 200, is typically a “high” frequency such as 13.56 MHz. Another common “low” frequency that is often used for RFID systems is 125 kHz. “Ultrahigh” (UHF) frequencies such as 900 MHz or 2.45 GHz within the RF range are also used with different antenna designs.
A system using multiple antennae powered by a single reader unit and using a multiplexer switch to alternate between the antennae has also been known. Such a system is conceptually represented in
In one aspect, the present invention provides an intelligent station that tracks RFID tags, the intelligent station including: a reader unit that transmits and receives RF signals; a first RF antenna connected to the reader unit by a first transmission cable through a first switch; and one or more additional RF antennae connected to the reader unit by the same first transmission cable through one or more additional switches. The term “intelligent,” as used herein, means that the system can, through transmission of radio frequency signals, capture, store, and lookup data, and monitor unique identifiers associated with trackable items.
In a further aspect, each of the first and one or more additional RF antennae includes a loop and a tuning circuit.
In another aspect of the present invention, the reader unit includes a tuning circuit for the first and one or more additional RF antennae, with the tuning circuit connected to the first and one or more additional RF antennae through the first transmission cable.
In another aspect, the present invention includes: a reader unit that generates and receives RF signals; and a control unit that is operatively connected to the reader unit and to first and one or more additional switches, wherein the control unit is configured to selectively operate the first and one or more additional switches to connect the reader to the first and one or more additional RF antennae, respectively. The reader unit and the control unit may be separate devices or combined in a single unit.
In yet another aspect of the present invention, the intelligent station further includes a second transmission cable that connects the reader unit to auxiliary RF antenna loops, each of the auxiliary RF antenna loops arranged proximate to a corresponding one of the first and one or more additional RF antennae. The auxiliary antennae receive an unmodulated RF signal that powers up the tags, which are normally not powered in the absence of an RF signal. As used herein, “unmodulated RF signal” is an RF signal without superimposed data. A “modulated RF signal” is an RF signal carrying superimposed data.
In a further aspect, the reader unit includes a second tuning circuit, proximate to the reader unit, that is connected to the auxiliary RF antenna loops through the second transmission cable. The second tuning circuit is configured to tune the auxiliary RF antenna loops.
In yet another aspect, the present invention provides a second transmission cable that connects the reader unit to the first and one or more additional RF antennae through the first and one or more additional switches, respectively. The reader unit transmits an unmodulated RF signal to the first and one or more additional RF antennae through the second transmission cable, and transmits a modulated RF signal to the first and one or more additional antennae through the first transmission cable.
In a further aspect of the present invention, the first switch is configured to operate in only three states: a first state such that the first switch only transmits the modulated RF signal to the first RF antenna; a second state such that the first switch only transmits the unmodulated RF signal to the first RF antenna; and a third state such that both the modulated RF signal and the unmodulated RF signal bypass the first RF antenna. The second switch includes a multi-pole switch configured to operate in only three states: a first state such that the second switch only transmits the modulated RF signal to the associated second RF antenna; a second state such that the second switch only transmits the unmodulated RF signal to the second associated RF antenna; and a third state such that both the modulated RF signal and the unmodulated RF signal bypass the associated second RF antenna. Each of the switches can be controlled independently of each other, thus, for example, the first and second switches may be set to transmit modulated and unmodulated signals, respectively, at the same time. In addition, a two-pole switch may be used which is configured to operate in one of two states (one state being to pass modulated RF signals to the associated antenna, and the other state being to pass no signals to the associated antenna).
In a further aspect, the present invention provides: additional RF antennae connected to the reader unit through the same first transmission cable; and additional switches arranged between the first transmission cable and the additional RF antennae, respectively.
In one aspect, an RF transmission cable has a single branch serving all antennae, that is antennae are connected to a reader unit through a RF transmission cable in a series arrangement.
In another aspect, an RF transmission cable has two or more branches, each serving one or more antennae, That is, antennae are connected to the reader unit through the RF transmission cable in a parallel-series arrangement, with each branch on the RF transmission cable selectable by use of a switch.
In another aspect, intelligent stations contain RF signal processing electronics to perform some of the signal processing otherwise done by the reader.
In yet another aspect, each of the one or more additional switches include a PIN type diode.
In another aspect, the present invention provides an intelligent inventory control system that uses RFID tags to determine item information of items to be inventoried, the intelligent inventory control system including one or more intelligent stations. Each intelligent station comprises a first RF antenna connected to the reader unit by a first transmission cable through a first switch; and one or more additional RF antennae connected to the reader unit by the same first transmission cable through respective one or more additional switches. The reader unit may be located apart from or within one of the intelligent stations. The inventory control system further includes an inventory control processing unit, connected to a data store, that receives item information from the intelligent station to update inventory information regarding the items to be inventoried.
In yet another aspect, the present invention provides a method of inventory control for items tagged with RFID tags, the method including: providing a plurality of intelligent stations, each intelligent station including a reader unit that transmits and receives RF signals, a first RF antenna connected to the reader unit by a first transmission cable through a first switch; and a one or more additional RF antennae connected to the reader unit by the same first transmission cable through respective one or more additional switches; determining item information of items to be inventoried by selectively energizing the first and one or more additional RF antennae of each of the intelligent stations to determine item information of items that are located on the respective intelligent stations; and processing the determined item information to update inventory information of the items to be inventoried.
In one aspect, each station has its own reader unit. However, one reader unit may also serve many stations.
In a further aspect of the present invention, the inventory control method includes selectively controlling the first and one or more additional switches to energize the first and one or more additional RF antennae and detect item information from items with RFID tags that are within range of the respective energized one or more additional RF antennae.
In a further aspect of the present invention, the inventory control method includes software control of the RF power level generated by the reader unit. In a preferred embodiment, testing would determine how much RF power the reader unit must provide to achieve optimal results for each connected antenna, which are positioned at different distances along the RF cable. This information would be stored, for example, in a look-up table or other equivalent indexed data storing means. Thereafter during operation, the power level for each antenna would be set based on this predetermined level stored in the look-up table, so that antennae at differing distances along the RF transmission cable may all operate at essentially equal power.
In an alternate embodiment, the power provided to each antenna could also depend on additional factors, for example, on the type of antenna. Therefore, in the alternate embodiment, both the distance and type of the antenna could be used to determine and store the optimal power level for a particular antenna.
In a further aspect of the present invention, the inventory control method includes RF amplifier devices, such as RF filter amplifiers, located periodically along the RF transmission cable such as in every Nth shelf to boost the RF signal strength.
In a further aspect of the present invention, the inventory control method includes updating the determined item information of items in a data store.
In a further aspect, the present invention provides that the inventory control method includes, for each intelligent station, providing a second transmission cable to connect the reader unit to one or more auxiliary antenna loops arranged proximate to respective ones of the first and one or more additional RF antennae, wherein the reader unit transmits a modulated RF signal through the first transmission cable and transmits an unmodulated RF signal through the second transmission cable.
In yet another aspect, the inventory control method according to the present invention includes providing, for each intelligent station, a second transmission cable that connects the reader unit to the first and one or more additional RF antennae through first and one or more additional switches, respectively, wherein the reader unit transmits an unmodulated RF signal to the first and one or more additional RF antennae through the second transmission cable, and transmits a modulated RF signal to the first and one or more additional RF antennae through the first transmission cable.
In another aspect the inventory control method of the present invention provides, for each intelligent station, configuring the first and one or more additional switches to operate in one of only three states: a first state that only transmits a modulated RF signal to a respective one of the first and one or more additional RF antennae; a second state that only transmits an unmodulated RF signal to the respective one of the first and one or more additional RF antennae; and a third state such that both the modulated RF signal and the unmodulated RF signal bypass the respective one of the first and one or more additional RF antennae.
BRIEF DESCRIPTION OF THE DRAWINGSThe accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate without limitation presently preferred embodiments of the invention, and, together with the general description given above and the detailed description of the preferred embodiments given below, serve to explain the principles of the invention.
FIGS. 18A-B illustrate foil strips folded over.
Unless otherwise specified, “a” or “an” means one or more. The present invention provides an intelligent inventory control system including one or more intelligent stations that can detect RFID tags using multiple antennae. The RFID tags are attached to items to be detected or tracked. In certain preferred embodiments discussed herein, the intelligent station system is designated as an intelligent “shelf” system since the intelligent station system provided by the present invention is suitable for tracking items on shelves of stores and warehouses for inventory control or other tracking purposes. However, it is to be understood that the present invention is not limited to intelligent shelf systems since one skilled in the art would recognize its applicability to other uses such as, for example, tracking items in closed receptacles, other storage volumes, and particular spaces. Examples of such closed receptacles or storage volumes include, without limitation, rooms, closets, cabinets, cupboards, refrigerators, freezers, pegboards, clothing racks, trailers, warehouses, pallets, counters, and other similar enclosures, spaces, or racks. It may be used in doors, doorways and other portals, in floors or floor mats, or in ceilings. It is also to be understood that the intelligent stations may be used in orientations other than the horizontal orientation typically associated with a shelf. For example, the intelligent shelves may be used in a vertical orientation as, for example, on the wall of a container, or the back or side area or surface of a storage volume.
For use in clothing racks, various embodiments are envisioned including linear or circular racks. For circular racks in particular, it is envisioned that two antennas may be used that are orthogonally disposed in two vertical planes within the center of the circular rack. The antenna may be driven by a single reader but the length of their lead-in cables differs, preferably, by ¼ of the RF wavelength, or alternately, a two-way 90 degree power splitter is used (e.g. MiniCircuits PSCQ-2-13) to put the two antennas 90 degrees out of phase. As a consequence the magnetic field orientation set up by the two antennas “rotates” once each cycle of the RF wave, so that all RFID tags around the circular rack may be read.
For use with clothing racks, another embodiment provides, on the clothing rack, one or more antenna loops, for example positioned or hanging at one or both ends of the rack, or distributed as hangers amidst the clothing. If the antenna loops are provided in the form of hangers, these may be fabricated by running conductive wire through narrow (e.g. ¼″-⅜″ diameter) thermoplastic tubing, then heat-forming the tubing to create hanger-shaped antennas. The same method could be used to create self-supporting antennas in any shape.
A planar antenna can be limited in its ability to read tags that are oriented parallel to the magnetic field lines created by the antenna. The read range may be extended and tag orientation limitations overcome by providing for an RF-powered antenna (antenna connected to a reader) and one or more passively coupled antennae that are not connected directly to the reader. These passively connected antennae are excited or powered through inductive coupling with the powered antenna. The passively coupled antenna will have a magnetic field, preferably, 180 degrees out of phase with the actively coupled antenna. Thus the orientation of the resulting magnetic field will oscillate, so that RFID tags in otherwise unfavorable orientations may still be read. In one embodiment, the passively coupled antennas could be provided in the shelf itself, for example, with actively powered antennas in the front of the shelf and passively coupled antennas in the back of the shelf, with all antennas being in the plane of the shelf. Other embodiments include having passively coupled antennae in the vertical plane at the ends of shelves or backs of shelves. Other embodiments include using at least one actively powered antenna within an enclosure such as a box, cabinet, or passageway, with one or more passively coupled antennae to provide better reading range or better flexibility in reading tags that are disposed in any orientation. Other embodiments include having passively coupled antennae in the vertical plane at the ends of shelves or backs of shelves. Other embodiments include for a given shelf having passively coupled antennae in the horizontal plane some distance above the shelf, preferably just under the next shelf up.
In a preferred embodiment, the multiple antennae may be put on a self-supporting shelf or may be embedded into a thin mat that can be laid on existing store shelves.
For example, as shown in the block diagram of
The block diagram of
The control unit 124 may selectively operate any or all the switches by sending commands through a digital data communication cable 221, for example by sending a unique address associated with each switch, as with would be possible, for example, by using a Dallas Semiconductor DS2405 “1-Wire®” addressable switch. Each such addressable switch provides a single output that may be used for switching a single antenna. Preferably the control unit 124 may selectively operate any or all the switches by utilizing one or more secondary control units 125. For example, the secondary control unit 125 may be a microprocessor such as a Microchip Technology Incorporated PICmicro® Microcontroller, which can provide multiple outputs for switching more than one antenna, such as all the antennas in proximity to the secondary control unit 125. The control unit 124 may also be a microprocessor such as a MicroChip Technology Incorporated PICmicro® Microcontroller. Communications between the control unit 124 and the secondary control unit 125 can be implemented by using digital communication signals in accordance with well known communication protocols such as RS-232, RS-485 serial protocols, or Ethernet protocols or Token Ring networking protocols. Such communications through the secondary control unit 125 may, in addition to selecting the desired antennae, also include commands to operate additional features. Examples of such features include providing displays (for example, light LED's) proximate to the antennae, displaying alphanumeric text through appropriate visual displays, or outputting audible information in the proximity of the antennae.
In a preferred embodiment, the intelligent shelf system is controlled through the electronic network. A controlling system that controls the intelligent shelf system will send command data to the control unit 124 via RS-232 or similar protocol. These commands include but are not limited to instructions for operating reader unit 120, instructions for operating the antennae switches, and auxiliary information to be displayed by shelves for example with lights, visual displays, or sound. The control unit 124 is programmed to interpret these commands. If a command is intended for the reader unit 120, the control unit 124 passes that command to the reader unit 120. Other commands could be for selecting antennae or displaying information, and these commands will be processed if necessary by control unit 124 to determine what data should be passed through digital data communication cable 221 to the secondary control units 125. Likewise the secondary control units 125 can pass data back to the controller 124, as can the reader unit 120. The controller 124 then relays result data back to the controlling system through the electronic network. The inventory control processing unit 550, shown in
At a minimum, control unit 124 must decide whether a command from the electronic network should be sent to reader 120, or should be send on the digital communication cable 221. Also, control unit 124 must relay data it receives from the digital communication cable 221, and from reader unit 120, back to the electronic network. In the minimum configuration for example, the electronic network would for example issue a command to read a single antenna. The control unit 124 would a) set the proper switch for that antenna, b) activate the reader, c) receive data back from the reader, d) deactivate the reader, and e) send the data back to the electronic network.
The control unit 124 may also perform some management functions otherwise handled by the electronic network. For example, the electronic network might issue a command to find a certain article on the entire shelf system associated with control unit 124. In such a case, the control unit would manage a series of tasks such as a) determine how many antennae were in its system, b) set the proper switch for the first antenna, c) activate the reader, d) receive data back from the reader and save it, e) deactivate the reader, f) set the proper switch for the next antenna until all the antennae have been activated, g) activate the reader until all the antennae have been read. In the preferred embodiment, when all antennae had been read, the control unit 124 or the electronic network (“host” or the “controlling system”) would analyze its accumulated data and report back only the location(s) of the desired item.
An additional advantage of placing the control unit 124 between the electronic network and the reader units is that different types of readers 120 can be used as desired. The commands from the electronic network to the control unit may be generic and not reader-specific. For example the electronic network can send to the control unit a “read antennas” command. The control unit in turn can translate this command into the appropriate command syntax required by each reader unit. Likewise the control unit can receive the response syntax from the reader unit (which may differ based on the type of the reader unit), and parse it into a generic response back to the electronic network. The command and response syntax may differ for each type of reader unit 120, but the control unit 124 makes this transparent to the electronic network.
The block diagram of
The block diagram of
In
The combined RF and digital signals pass down cable 222a to one or more intelligent stations 261, 262, 263, etc. (only 261 and 262 shown in
The secondary controller 125 may send information back to the primary controller 124 through a transmitter circuit 257, for example operating at a frequency other than the RF frequency of reader 120, and optionally at a different frequency than used for communicating from the primary controller (or control unit) 124 to the secondary controller (or control unit) 125. Such information may be received by receiver circuitry 258, converted to appropriate digital signals 259 and returned to the primary controller 124.
A variation on the method for digital communication between the primary controller 124 and secondary controller 125 is to send digital communications from the primary controller 124 as a series of pulses at two or more DC voltages. Preferably, both voltages are high enough to power any circuitry associated with the secondary controller 125, peripherals 510, etc that require DC power. These voltages may be sent from digital transmitter circuit 251, and received by receiver circuitry 256, which could be a simple voltage comparator circuit. Communication from the secondary controller 125 back to the primary controller may be provided by having the digital transmit circuitry 257 provide two different levels of current draw or load on the communications cable, for example by switching in and out a transistor feeding a resistor. Such variations in the current draw would then be sensed by the receiver circuit 258 and converted into digital data for the primary controller 124.
The distance between successive antennae is, preferably, an integer submultiple of a quarter-wavelength of the RF signal. For example, an RF signal at 13.56 MHz travelling through standard coaxial cable with polyethylene dielectric has a quarter wavelength of approximately 12 feet. Thus, as shown in
To illustrate the method, the Nth antenna 373 could be selected by closing select switch 385 to direct the RF signal to antenna 373. Also, shunt switch 386 is closed to short the RF signal to the coaxial shield at antenna 375, which is located a quarter wavelength further along the RF cable. A short circuit at one-quarter wavelength distance along the RF cable is seen as an infinite impedance, and minimizes the adverse effects of the RF cable extension past the selected antenna. At the end of the series of antennae, there may optionally be additional shunting switches as denoted by 378 and 379.
In the preferred embodiments, the intelligent station system is modular, using inexpensive components to handle data from the multiple antennae. Multiple antennae within a shelf may be activated in sequence or, optionally, with phase delays to enhance their effectiveness as is within the abilities of those skilled in the art.
With reference to the figures,
In one embodiment, the switches 204 and 214 are connected to the control unit 124 by a separate cable 221. Those skilled in the art would recognize that other means, including wireless means, or different frequency signals superimposed on the RF signal carried on the cable 222, may be used to connect the control unit 124 to the switches 204 and 214. The switches 204, 214 are controlled so that at any time, only one of the antennae 200, 210 is connected to the reader unit 120 through the cable 222.
In one embodiment, the unmodulated RF system, including the tuning circuit 232, the cable 230, and the antenna loops 231 may all be powered continuously. In contrast, the reader antenna data loops 201 may only be turned on one at a time by suitably controlling the switches 204 and 214. Because the loops 231 can be powered continuously, there is no start-up time required for RFID tags to charge up during data transfer. Such a system could advantageously be used in situations where the RFID tags need to be frequently read. Furthermore, this embodiment also allows handheld reader units to read the tags at any time because the tags are always powered in view of the continuous powering of the unmodulated RF system. The unmodulated cable 230 has a terminator 216 at the end of the cable 230. In this context, it should be understood that the term “continuous” power may include a percentage duty cycle if required by legal or other limits. Alternatively, the unmodulated RF system can be activated just prior to activating the modulated RF system for each antenna.
Such a switching operation can be implemented with groups of single or multi-pole RF switches. In operation, this embodiment allows for an antenna 201 to be inactive until just before its turn to be polled. At that point, the unmodulated RF signal can be switched into the antenna 201 through the tuning circuit 232, the transmission cable 230 and the appropriate switch 204, 214 to “warm up” the nearby RFID tags. Thereafter, the modulated RF signal is switched into that antenna 201 through the tuning circuit 212, the cable 222, and the appropriate switch 204, 214 to efficiently acquire data from the RFID tags that have just been warmed up.
Using a PIN diode such as 207a to short out tuning capacitors and detune an antenna means that PIN diode 207a may be run under power for significant lengths of time. This may generate heat and waste power. Therefore the system may be designed to only detune antennae that are immediately adjacent to the antenna currently being read. Which antennae are adjacent may be determined by several methods. For example, this may be specified during design, or found by observation after assembly, or may be determined with the RFID reader during operation as described further herein.
While the examples here include use of PIN diodes for the switching and detuning functions, other electronic components such as, for example, FET (field effect transistor) or MESFET (metal-semiconductor FET) devices may also be used as would be recognized by those skilled in the art.
Furthermore, since tuning an antenna can be a trial and error process and time-consuming, it is desirable to permit the tuning to be done automatically. According to one aspect of the present invention, this is accomplished by providing an automatic tuning unit (not shown) that would temporarily attach computer-controlled servo-driven screwdrivers to adjustment screws associated with the adjustable capacitors. To achieve optimal tuning, the automatic tuning unit (which may include a computer or other suitably programmed microprocessor) would receive feedback from a conductive connection to the antenna being tuned, or from an RFID reader that would detect which tags were identified from an array of tags in a predetermined or known spatial (preferably two or three-dimensional) arrangement. The tuning unit, based on a set of rules, experimentally developed or developed from experience, would manipulate the adjustment screws to achieve optimal tuning. Alternatively, the controller or secondary controller may adjust the tuning of each antenna by electronic adjustment, for example by remotely setting adjustable voltage-controlled capacitors within the tuning circuit. This method would minimize the need for using mechanical or servo controlled adjustments for tuning. Voltage-controlled capacitors in the tuning circuit could also be used to detune antennae so they would not resonate when they were not selected for reading.
In one embodiment, RFID tags may be placed within the shelf itself, preferably one or more situated within the read range of each individual antenna. These RFID tags provide for each antenna a known response when that antenna is read during a self-test mode. Thus, whether or not the shelf supported any RFID-tagged items, there would always be at least one self-test RFID tag that should be found in range of the antenna. If such RFID tags were not found, the control unit 124 or secondary control unit 125 may institute a self-tuning process. If after self tuning the self-test RFID tags could still not be read, then a message could be sent to the electronic network indicating the need for shelf maintenance. Instead of placing the self-test RFID tags within the shelf, they could also be placed elsewhere in range of the antennae, for example on the rear or side wall of a shelf.
As seen in
For example, if antenna 411 is turned on at a relatively low power, it should be able to read tag 411c, which is located, for example, approximately in the center of antenna 411. Of course, one of skill in the art would recognize that depending on the antenna and tag design, at low power, tags at locations closer to the antenna conductor may be used since they would be read more readily. Thus tag 411c may be used to test whether antenna 411 is functioning properly. If the power is increased antenna 411 should also be able to read tags 411a, b, and d, which are located near the periphery of antenna 411. By varying the power during a diagnostic or self-check mode, the system should be able to determine how much power is required for antenna 411 to function effectively. Shelf tags may be arranged at several distances from the center of each antenna in order to provide this information.
As the power to antenna 411 is increased, it may eventually be able to read shelf tag 412b associated with the adjacent antenna 412. The system may thus determine that antenna 411 and 412 are adjacent. This information may then be used by the system to determine which adjacent antenna may need to be detuned when a given antenna is operating. The fact that antennae 411 and 412 are adjacent could already have been established when shelf 410 was fabricated. However, when several shelves are placed adjacently in a retail store, it may not be possible or convenient to determine in advance which shelves are to be adjacent. The shelf tags may be used to establish which shelves or antennae are adjacent after the system is assembled.
For example, antenna 411 operated at normal power may also detect shelf tag 404d associated with adjacent antenna 404 on adjacent shelf 400, whose adjacent position may not have been established prior to shelf placement, and shelf tag 441a associated with adjacent antenna 441 on the adjacent shelf 440 on the opposite side of the gondola (or a common support structure for shelves), whose adjacent position may not have been established prior to shelf placement.
It is may be designed that antenna 411 operated at normal power or slightly higher power may be able to read further into adjacent antenna areas, for example reading shelf tags 404c, 412c, and 441c. Thus the functionality described herein may be achieved using only a single shelf tag in the center of each antenna.
Although shelf tags may be useful for the purposes described above, they may slow the system response by increasing the number of tags to be read. It may therefore be a desirable option to use for the shelf tag unique ID serial numbers a specific range of serial numbers that may be directed by the system to a “quiet” mode, that is, not to respond during normal operation, but only to respond during diagnostic or setup operations.
One or more antennae may be contained or hidden within each shelf. The antenna loops may be made using conductive materials. These conductive materials may include metallic conductors such as metal wire or foil. The conductive material may also be strips of mesh or screen. In one embodiment, the antenna loops may be made of copper foil approximately 0.002″ thick and 0.5″ wide. These loops may be contained within a thin laminate material such as a decorative laminate that is applied to the surface of a supporting shelf material. The loops may also be laminated within glass. The loops may also be adhered to the exterior of a laminated material, glass, or other supporting structure. If additional load bearing support or stiffness is desired, such supporting shelf material may be any material capable of supporting the shelf contents, or providing structural rigidity, as would be recognized by those skilled in the art. Examples of such materials include wood, plastic, rigid plastic foam, glass, fiberglass, or paperboard that is corrugated or otherwise designed to provide stability. An RF-blocking material may be applied to or incorporated into the bottom surface of the shelf, if desired, to prevent detecting RFID tags that may be under instead of the target tags above the shelf. It is to be understood that the intelligent station herein described as a shelf could also be used in a vertical or other angular orientation and the RF blocking material would then be applied in an appropriate orientation to better isolate target tags intended to be read from other adjacent tags.
An RF-blocking material applied to or incorporated into the bottom surface of the shelf, or present in any underlying metal support such as an existing metal shelf, will substantially prevent RF energy from going “below” the shelf. Alternatively, an RF blocking material may also be incorporated within the interior of a shelf. This is an advantage if it is desired that the shelf sense only tagged items on (above) the shelf. However, a consequence of such an RF-blocking material (whether deliberately provided in the shelf construction, or coincidentally present as a pre-existing shelf structure) is that while nearly completely restricting the RF energy below the shelf, the RF-blocking material under the shelf also reduces the “read range” above the shelf. To compensate for this otherwise reduced read range, a layer of compensating material may be provided just below the antenna loops (that is near the top of the shelf structure). Such a material would be non-conductive and have a high magnetic permeability. Examples are Magnum Magnetics RubberSteel™ or a flexible ferrite magnetic sheet having a high in-plane magnetic permeability. Such an in-plane magnetic permeability is achieved by using an isotropic ferrite sheet, not a conventional anisotropic ferrite sheet whose permeability by design is normal to the sheet. The presence of a layer of this compensating material between the antenna and the RF-blocking material, enables higher flux density between the antenna and the RF-blocking material. Consequently the flux density can be higher above the shelf, thus giving better sensing range (“read range”) for a given shelf thickness.
The antenna loops, laminated within or attached externally to thin supporting materials, may be disposed in a non-planar form, for example, as curved panels that may be used in certain display cases, beside some clothing racks, or for tunnel readers that may be used at a checkout stand, etc.
The examples herein discuss loop antennas, which are typically used for readers operating at RF frequencies such as 13.56 MHz. It is possible that items within the intelligent station may contain tags operating at other widely different frequencies, such as 915 MHz, 2.45 GHz, or 125 kHz. The intelligent station may be configured to read these or other frequencies, by providing suitable antennae, for example multiple loop antennae for 125 kHz, and dipole antennae for 915 MHz or 2.45 GHz. Antennae within the intelligent station may be provided for one or several of these frequencies. Each antenna would preferably have its own separate switch and tuning circuit. All intelligent stations would share a single common RF cable, and a single common control cable. Intelligent stations may be constructed so that all areas on each intelligent station may read all desired frequencies (that is each area is served by multiple antennae), or different areas on a given intelligent station may be provided with specific antennae for a specific frequency. Intelligent stations operating at different frequencies could all be interconnected. An intelligent station operating at more than one frequency would require a so-call “agile reader” unit that can be configured operate at more than one frequency.
In the preferred embodiments, the antenna loops discussed in present application may be placed, for example, upon shelves so they would be placed underneath products by being incorporated into mats that are placed on shelves. The loops are thus encapsulated in an appropriate rigid or flexible substrate well known to those skilled in the art. Examples of suitable substrate material include a laminated structural material, silicone rubber, urethane rubber, fiberglass, plastic, or other similar material that protect the antenna loops and provide some physical offset to prevent electromagnetic interference in case the antennae are placed on metal shelves, walls, or surfaces.
The encapsulation material or the shelves may be provided with holes or grommets for hanging on vertical surfaces such as the backs of shelves. In an alternate embodiment, the encapsulation material also may be provided with a pressure sensitive adhesive to help attach to a desired surface. The “front” or “shelf” edge of the encapsulation may also be provided with low power light emitting or other display devices that may be turned on by the reader unit or a sequencer unit such as a secondary controller unit within the shelf so that activity of particular display devices may be visually coordinated with the activities of correspondingly positioned reader antennae. Alternatively or in addition, the display devices may also be used to display additional information such as pricing or discounts.
Besides the ability to read RFID tags, the intelligent station may have additional “peripheral” devices that may communicate information through the digital data cable. For example, the intelligent station system would provide a digital data communication highway for add-on or peripheral attachment devices including but not limited to computer terminals, display devices, modems, bar code readers, temperature sensors, locking devices for enclosed or tethered merchandise, etc. The digital data communication highway may be incorporated into the wiring system that sends digital control and data information between controller 124 and secondary controllers 125, or it may be one or more separate digital data communication highways that are made up of wiring that runs through and connects between the stations, with the stations provided with ports through which to connect the add-on or peripheral devices. The digital data communication highway facilitates the transmission of data in both directions between the intelligent stations system (including the controller 124 and secondary controller 125) and the electronic network. Electrical power may also be provided for the add-on or peripheral devices through wires that run through the stations.
It should be understood that, whether or not add-on or peripheral devices are used, electrical power other than RF power may be used by the stations, for example direct current (DC) used by the secondary controller 125, and by the switches and tuning electronics. Such electrical power may be provided by one or more dedicated wires, or it may be incorporated into the digital communication highway or with an RF cable.
As an example, an RF cable may comprise two conductors, for example in a coaxial cable, the center conductor and the sheath conductor. The RF cable carries an RF signal. A DC voltage may be superimposed on the RF signal, in the same RF cable, to provide DC power to intelligent stations. If the DC voltage, for instance 18 volts DC, is higher than needed for some devices in the intelligent station (for instance 5 volts DC), a voltage regulator may be used to decrease the voltage to within usable limits.
As a further example, digital communications may be carried on the same RF cable. For instance, the DC voltage superimposed on the RF cable may be switched between two DC levels (for example 18 volts DC and 12 volts DC) to accomplish non-RF digital communications on the RF cable Therefore, a primary controller may send information to secondary controllers by using such digital communications.
As a further example, a secondary controller may send information to a primary controller in digital form over an RF cable by switching on and off an electrical load to thereby drain current from the RF cable. This in turn may be sensed at the primary controller. The use of voltage level and the use of load level may be done simultaneously to achieve two-way digital non-RF communication through the RF cable.
As another example, in the shelf embodiment, another device that may advantageously be incorporated into the shelf is a plug-in bar code reader that could interface to the secondary control unit 125. When the shelf was being stocked, the bar code reader could be used to scan the packages being placed on the shelf. The bar code data would then be sent back to the electronic network along with the unique RFID tag serial number. If the product identity defined by the bar code was not previously associated with the unique RFID tag serial number, the association would now be completed within the data store. Otherwise the bar code scan could serve as a verification of the data store information. The use of the bar code device would further enable the shelf to provide benefits even during staged introduction of RFID tagged merchandise. By comparing the number of items stocked onto the shelf (as identified by the bar code scanner in conjunction with a simple numeric keypad), against the number of same items sold (as determined by existing scanners at the checkout line) it could be determined approximately how much merchandise remained on the shelf, and whether restocking was necessary. Likewise barcode scanning at the shelf itself could be utilized to provide current pricing information retrieved from the electronic network and displayed through alphanumeric displays at the shelf.
In another embodiment, the shelf or intelligent station may be provided with environmental sensors, to monitor or measure, for example, temperature, humidity, light, or other environmental parameters or factors. Since the system is able to determine what items are on the shelf, the system could keep track of the environment for each item and provide a warning if environmental conditions were out of limits for specific types of items. Separate limits could be defined for each group of items.
One or more proximity sensors, for example, infrared sensors or capacitive sensors, may be located on the shelf to detect the presence of a shopper and determine whether to increase the reading frequency at that shelf in order to give the shopper rapid feedback when an item is moved from the shelf. The means of detecting a shopper would be located at the front edge of the shelf, where they would not be obstructed by merchandise. Infrared or capacitive sensors could sense the presence of a shopper by detecting body heat from the shopper, or a change in local capacitance due to the shopper being in front of the shelf, or the shopper's hand or arm, or merchandise, moving near the front of the shelf. Other means of detecting the presence of a shopper could include visible or infrared light sensors along the front edge of the shelf to detect the shadow of a hand or arm reaching for merchandise on the shelf. The light source in this case could be ambient visible light, or visible or IR light from sources located below the next higher shelf, or from sources overhead or on the ceiling of the store. Store security cameras could also be used to detect the presence of shoppers and to direct the intelligent station to increase reading frequency. Likewise, audible/visual signals or displays or can be activated when a shopper is sensed and for some time thereafter rather than being activated at all times in order to conserve power and component life. Likewise information regarding the proximity of a shopper to the shelf could be relayed back to the electronic network to help analyze shopper traffic patterns, or length of time spent at a particular shelf. The shopper location data could also be fed to store security systems for use in conjunction with scanning patterns of store surveillance cameras.
Likewise the shelf data relayed back to the electronic network can be used to determine if an unusually large number of items are suddenly removed from the shelf. If this occurs, a security camera can be directed at the shelf to take a picture of the shopper who removed the items. If the items are not paid for when the shopper leaves the store, appropriate action can be taken to stop the theft.
Another device that may be incorporated into the shelf is a Hall effect or other similar proximity type sensor to detect movement of tags or presence of a shopper. This information may be used similarly to that described in the preceding description regarding an infrared sensor.
Another use of the shelf would be to detect the presence of “customer tags” associated with shoppers, that could be used to help shoppers find predetermined merchandise items, such as the correct size of clothing items, whereby visual or audible indicators on the shelf could be activated to direct the shopper toward the desired items. Also the “customer tag” when placed on a shelf where a desired item was out of stock, could be used to give the customer a “rain check” and or discount on the item when it came back into stock, or information about the item being in the stock room, at another store, or on order. This could be useful to track when a shopper did not purchase an item because it was out of stock.
Another use of the shelf would be to provide “feedforward” information to predict when more cashiers would be required at the checkout lanes, or when more stockers were required. This could, for example, be done by monitoring the amount of merchandise being removed from shelves, and thereby deducing the volume of merchandise that would be arriving at the checkout lanes. The storekeeper or store manager thereby could schedule the checkout or restocking personnel to optimize how their time is spent, help schedule break time, etc.
Another use of the shelf could be to detect the presence of a “stocking tag” or “employee tag,” or a pushbutton or keyed input sequence, to alert the system that the shelf is stocked completely and the database is made aware that the current stock level is the full or target level. This method could be used when item stocking patterns were changed, to update the target level.
The shelf system could be used to suggest, for all shelves covered by the system, based on the price, traffic, and shelf space, the most optimal stocking pattern, which may involve changing the target inventory for all items. Calculating such a stocking pattern would require knowledge of how many of each SKU item would fit on a given shelf area, and how much shelf area was covered by each shelf antenna.
In one aspect of the present invention, it would be advantageous for the shelf system to know the physical location of each shelf, which may not necessarily be obvious even from unique Ethernet or RS-485 addresses or other networking addresses. Therefore, the present invention contemplates incorporating a GPS transducer into each shelf. A more practical solution may be to, instead, provide a portable GPS unit that could be plugged into a USB port (or other similar compatible port) on each shelf, when the shelf was assembled, to identify its location. For example, a GPS unit could be combined with the servomechanical tuning unit used to set up the shelf after its installation.
Alternately, a GPS unit with a programmable RFID tag could be placed upon a shelf and communicate back to the main controller, through the RFID system, what the coordinates of the shelf are. One way of accomplishing this would to use a GPS system connected to a specialized RFID tag having additional storage blocks for information besides its unique serial number. Such a tag would use an integrated circuit with connections to its tag antenna also to communication circuitry to receive data from an outside source, such as the GPS system. The GPS system could be configured to write the spatial coordinates in the additional storage blocks. A known serial number or numbers could be used in the specialized RFID tag, and the RFID system, upon detecting such a specialized RFID tag could interrogate the tag to determine the stored spatial coordinates and associate then with the shelf and antenna that was being read.
The antenna shape need not be confined to single-loop antennae. A single loop antenna is a form factor that may typically be used with high RFID frequencies such as 13.56 MHz. A multi-loop antenna 1215 may be used at a lower frequency such as 125 kHz, or to permit lower current operation at high frequencies such as 13.56 MHz. The use of lower current antennae may permit using lower power switching components. Forming multi-loop antenna may require antenna components such as the wire in the loops to be in close proximity to one another, and therefore the wire may preferably be insulated.
Tuning components associated with the RFID antennae, for example, rotary trim capacitors or capacitor banks, may require access during use. Suitable access may be provided, for example in a shelf embodiment, by providing removable cover devices, or holes in the shelf
For attaching conductive antenna materials onto supporting laminate or other structures, a variety of methods may be utilized. For example, a metal foil may be laid down onto a substrate in web form (such as a web of paperboard) or planar form (such as a sheet of paperboard, sheet of laminate, wood or plastic board, etc.) by an automated machine using two or three dimension positioning mechanisms to feed the foil from a reel onto the substrate in the desired antenna pattern.
If the supporting material is wood, a milling machine may be used to form grooves into which conductive wire may be secured in order to form antenna loops. The same method may be used if the supporting material is plastic, or, a heated pattern may be pressed into the plastic to form grooves in which conductive wire may be secured. A plastic substrate may be molded with grooves to hold wire conductors, or the plastic substrate may be molded with a repeating rectilinear pattern of perpendicular grooves that permit forming antenna loops in a large number of patterns. In any of these methods, holes may be drilled, punched, or molded for securing the ends of the antenna wires. These holes may extend through the substrate to become accessible for connection or insertion into tuning circuits used to tune the antenna loops.
Another method of forming antenna loops is to wrap the conductive wire around a series of pins similar to a loom, then invert the loom and press the conductors onto a substrate. The substrate may be precoated with adhesive to hold the conductors when the loom is removed. Alternately the substrate may be soft enough to allow the conductors to be pressed into the surface of the substrate. Alternately the substrate may be a thermoplastic and the conductors may be preheated so that they partly melt the substrate on contact and become embedded in it's the surface of the substrate. The pins used on the loom to form the antenna loops may optionally be spring-loaded so that when the loom is pressing the conductors onto the substrate, the pins may optionally retract into the loom.
In more detail,
Antenna loop 1200 is shown that has been formed by placing or pressing wire of a suitable diameter into some of the grooves 1110. The ends 1201 of the antenna loop are held in place by securing them into holes 1130. The holes can be entirely through substrate 1100, so that they may be connected to circuitry on the other side of the substrate. Likewise antenna loop 1210 is shown being formed, with wire end 1211 already secured in one hole and wire end 1212 shown ready to be secured into another hole.
Besides simply pressing bare wire through the holes to secure the ends, the wire may be precut to the needed length, and the ends fitted with grommets 1140, buttons, or other mechanical devices that fit into holes 1130. These grommets may be soldered onto the wire for better conductivity. As an alternative to inserting them into holes 1130, the grommets may be slightly larger diameter than the width of the grooves 1110, so that the grommets will only fit at points where two grooves intersect, as shown in
The substrate 1100 may be provided with recesses (not shown) in which to position circuitry (not shown), and such circuitry installed before or after the wires, and the wires attached to the circuitry by soldering or use of grommets, barbs, etc.
Instead of the grooves 1110 forming a regular grid or criss-cross pattern, which allows for multiple antenna patterns to be created, the grooves can instead be provided in “custom” form to comprise only the grooves desired for the actual antennae to be produced.
Since the grooves and holes hold the wire securely, the wire may be easily inserted by hand into the substrate, or the process may be mechanized. After all desired antennae have been formed in the substrate, any open grooves may be filled with plastic or any other suitable material. A covering laminate, film, or other layer may then be applied on top of the substrate. This covering may be an injection-molded layer of material, or melt-cast layer, or liquid cast layer that cures by chemical reaction or heat (such as an epoxy material or silicone compound), or evaporation (such as a latex material).
The combined substrate and covering then comprise an antenna mat. Depending on the materials, the antenna mat may be flexible or rigid. The antenna mat may also be attached to a planar or non-planar supporting material such as a wood, plastic, fiberglass, etc. board.
The antenna shape need not be confined to single-loop antennae.
In the embodiment of
A lower plate 1310 is provided with matching holes 1311. When the plates 1300 and 1310 are brought together as shown at arrow “A”, pins 1302 protrude through holes 1311. Pins 1302 may then be used to define the corners of wire antennae that are wound around the pins under the lower plate 1310. For example antenna 1240 is formed using pins to hold the wire at three corners. At the fourth corner, the two wire ends 1241 are inserted up through open holes 1311 in the lower plate 1310. Another example antenna 1250 is formed using pins at all four corners. Grommets 1251 attached to the ends of the wire loop are held over two additional pins. Instead of securing the wire ends within the plate area, they may also extend beyond the plate as shown by the dotted lines at 1252. In this case the wire ends would be secured by other means (not shown).
The combined assembly 1330 of upper plate 1300 and lower plate 1310 with attached pins, wires, grommets, etc. is then inverted over substrate 1320 as shown by arrow “B”. The antennae 1240 and 1250 are transferred onto the substrate 1320 by one or more of the following or similar methods.
a) An adhesive coating or film is applied to the substrate 1320. The combined assembly 1330 is lowered onto the substrate 1320, and lower plate 1310 is pressed against the substrate. The antennae 1240 and 1250 adhere to the adhesive. If upper plate 1300 is lifted slightly during the pressing step, the pins 1302 will not penetrate the substrate 1320. If upper plate 1300 is also kept under downward pressure, the pins 1302 will make holes in the substrate 1320. Any grommets 1251 will be pressed into the substrate. After the adhesive set, the combined assembly 1330 is lifted, leaving the antenna pattern attached to substrate 1320.
b) Method (a) may be used, with sufficient pressure to force the antenna wires partly or completely below the surface of the substrate 1320. This method could be used, for example, with a high density foam substrate 1320 which requires minimal force to press the wires below the surface.
c) Method (b) may be used, with the wires 1240 and 1250 and grommets 1251 heated to a temperature above the softening point of substrate 1320, so that on contact and pressure, the substrate is softened or melted slightly to accept the wires and grommets. One method of heating the wires is to pass an electric current through them before or during pressing against the substrate. The upper plate 1300 may be released during the pressing step so that the pins 1302 retract and do not penetrate into substrate 1320.
d) The substrate instead of being a solid material 1320 may at this point be cast onto the wires by liquid casting of chemical, thermal, evaporative or otherwise setting material, or by injection molding, of a material to the lower surface of lower plate 1310.
Lower plate 1310 and pins 1302 may be precoated with a release agent to prevent sticking. Such a release agent would be applied before the wires are attached, so that release agent is not applied to the wires. Also, lower plate 1310 may be a non-stick material, for example Teflon or coated with Teflon or a similar non-stick material. If an injection molding is used, lower plate 1310 may be cooled by internal passageways to speed up cooling of the injection-molded material.
After these steps, the antennae 1240 and 1250 may be attached to circuitry using wire ends 1241 or 1252, or grommets 1251.
In all embodiments, it is understood that the wires may be bare (except at crossovers) or insulated. The cross section of the wires may be a solid cylinder as is typically the case with wire, but it may also be square, rectangular, oval, U shaped or channel shaped, vee-shaped, etc. The main requirement of the wire is that regardless of shape it must be conductive and must have a shape and cross-sectional stiffness that promotes its being held in the grooves. The wire may be single conductor (typically known as “solid” conductor), or multistrand. It may be twisted or woven. It may be coaxial cable, in which case the external braid would be used as the active conductor for the RF signal.
A support plate 2120 is provided under the substrate. This support plate 2120 may incorporate a vacuum hold-down system (not shown) to temporarily fix the substrate 2100 to the support plate 2120. The support plate 2120 itself may also be movable in the X and Y directions to assist in the process of depositing conductive pathways.
An applicator means 2200 is provided for depositing the conductive pathways 2300. This applicator 2200 will be described in more detail later. An x-y stage 2400 is provided for moving applicator 2200. The x-y stage may include a frame 2401, a positioning means 2402 that moves in the principal substrate axis (“x” or “machine” direction), and a second positioning means 2403 that moves in a perpendicular axis (“y” or “cross” direction.) A rotational positioning means 2404 may be provided to turn the applicator 2200 in any angle relative to substrate 2100, to facilitate the operation of applicator 2200. It is anticipated that the substrate 2100 movement and the applicator 2200 movement will be automated by computer means that control motors driving traction rollers 2110, and positioning means 2402, 2403, and 2404, in addition to more controls within applicator 2200.
In
Support member 2510 extends across the substrate and holds a traversing means 2511 that in turns supports another applicator 2200. Traversing means 2511 can move on demand across the substrate in the cross direction (y) to deposit crossways conductive pathways 2304 and 2305 that connect the lengthwise conductive pathways 2301, 2302.
Operation according to
At the appropriate times, the substrate 2100 movement is paused so that the applicator 2200 attached to traversing means 2511 can deposit crosswise conductive pathways 2304, 2305. The pause in the X direction movement of substrate 2100 may occur in the middle of the process of depositing one or more of the lengthwise conductive pathways 2301, 2302. Alternately, for depositing the crosswise conductive pathways 2304, 2305, applicator 2200 may be fixed in position and the Y direction movement provided by movement of support plate 2120.
The decision of whether to move substrate 2100 in web form or in sheet form will depend on several factors. The substrate may be available in roll form advantageous to web handling, or in cut form advantageous to sheet handling. Some substrates may not be flexible enough for handling in web form, for example thick sheet substrates or substrates that have been partly or completely laminated and are no longer flexible.
The decision of which applicator system to use will also be made based on several factors. The single head applicator design of
Instead of moving the applicators as in
A second, optional supply roll 2220 provides a continuous insulating strip 2221 through a pair of feed rolls 2222 that are computer controlled to provide the insulating strip 2221 only when demanded. The strip 2221 goes into a chute 2223 and past a cutter 2224 that is computer controlled. The strip 2221 continues forward and out of the applicator 2200, at which point an optional release liner 2225 can be removed and wound around roller 2226 to be taken up onto tension winding roll 2227.
A pressure device 2230 is provided to push the strips 2211 and/or 2221 onto the substrate 2100. The pressure device may be a wheel or roll as shown, or a sliding member, or a reciprocating clamping means. The pressure device 2230 may be heated to help set an adhesive integral to strips 2211 or 2221, or provided externally as described later. The pressure device 2230 may be patterned or knurled, for example to help press the strips 2211 or 2221 onto the substrate 2100, or even to slightly crimp the strips 2211 or 2221 into the material of the substrate 2100. This might remove the need for adhesive, at least in sheet-fed operations. It is also envisioned that strip 2211 may be perforated with holes to improve the adhesion of resin between layers of substrate in the final laminate, even in the areas where the strip 2211 exists.
A hole punch 2240 is provided to perforate the substrate 2100 on demand to create openings through which electrical connections may be made to the conductive strip 2211. Preferably the hole punch 2240 is provided with an internal vacuum connection to remove the waste substrate material created during a hole punching operation.
An adhesive dispenser 2250 is provided to dispense glue 2252 through needle 2251, in order to hold strip 2211 or 2221 to the substrate. Preferably the adhesive is a rapid set material such as a hot melt glue, heat set glue, or epoxy. This adhesive is deposited on demand under computer control to be present under the strip 2211 or 2221, but not deposited if no strip is deposited in a given area. Any adhesive that may be used should not degas when pressed at high temperature, otherwise the integrity of the laminate may be compromised.
The conductive strip 2211 or insulating strip 2221 may also be provided with their own adhesive layers to attach it to the substrate 2100.
The adhesive used to attach the strips 2211 and 2221 to substrate 2100 would typically be non-conductive, since conductive adhesives are more expensive. However, it will be necessary in some places to electrically join parts of the conductive pathway 2300, and for this a conductive adhesive or material would be required. For simplicity it might be decided to use conductive strip 2211 with an integral conductive adhesive, but this would be expensive. Another solution is to provide within the applicator 2200 a reservoir 2260 of conductive adhesive to be applied through needle 2261 in droplet form 2262. A drop 2262 of the conductive adhesive could be applied on top of a previous segment of conductive trace 2300, just before starting the next segment on top of the previous segment. The action of pressing means 2230, with heat and pressure, would then electrically join the two segments. The conductive adhesive drop 2262 could be a drop of metal solder in either a low melting form, or in suspension (either form would be remelted by the pressure means 2230).
Substrate 2100 is indexed forward in the x direction by rollers 2110.
Using X positioning means 2402 and y positioning means 2403, the applicator 2200 is moved to point “a” and “h” where the hole punch 2240 makes two holes in the substrate 2100.
Using X positioning means 2402, the applicator 2200 is positioned to point “b”.
The applicator 2200 moved by X positioning means 2402, uses internal devices 2210-2217 to lay down a conductive pathway 2300 from points “b” to “c.” During this operation, cutter 2214 cuts the strip 2211 at a precisely determined moment so that the conductive pathway 2300 ends at point “c.” Note that the beginning of the conductive strip 2300, at point “b,” slightly overlaps the hole punched at “a.”
X positioning means 2402 is used to move the conductive adhesive applicator 2261 to point “c”, where a drop of conductive adhesive 2262 is placed on the end of the conductive pathway 2300.
Rotational positioning means 2404 rotates the applicator 2200 by 90 degrees so that it can run in the cross direction Y.
X and Y positioning means 2402 and 2403 are used to place the applicator 2200 to point “c.”
The applicator 2200 moved by Y positioning means 2403, uses internal devices 2210-2217 to lay down a conductive pathway 2300 from points “c” to “d.” During this operation, cutter 2214 cuts the strip 2211 at a precisely determined moment so that the conductive pathway 2300 ends at point “d.”
Y positioning means 2403 is used to move the conductive adhesive applicator 2261 to point “d”, where a drop of conductive adhesive 2262 is placed on the new end of the conductive pathway 2300.
Rotational positioning means 2404 rotates the applicator 2200 by 90 degrees so that it can run in the machine direction X.
X and Y positioning means 2402 and 2403 are used to place the applicator 2200 to point “d.”
The applicator 2200 moved by x positioning means 2402, uses internal devices 2210-2217 to lay down a conductive pathway 2300 from points “d” to “e.” During this operation, cutter 2214 cuts the strip 2211 at a precisely determined moment so that the conductive pathway 2300 ends at point “e.”
X positioning means 2403 is used to move the conductive adhesive applicator 2261 to point “e”, where a drop of conductive adhesive 2262 is placed on the new end of the conductive pathway 2300.
Rotational positioning means 2404 rotates the applicator 2200 by 90 degrees so that it can run in the cross direction Y.
X and Y positioning means 2402 and 2403 are used to place the applicator 2200 to point “e”
The applicator 2200 moved by y positioning means 2403, uses internal devices 2210-2217 to lay down a conductive pathway 2300 from points “e”to “f”. During this operation, cutter 2214 cuts the strip 2211 at a precisely determined moment so that the conductive pathway 2300 ends at point “f.”
Y positioning means 2403 is used to move the conductive adhesive applicator 2261 to point “f”, where a drop of conductive adhesive 2262 is placed on the new end of the conductive pathway 2300.
Rotational positioning means 2404 rotates the applicator 2200 by 90 degrees so that it can run in the machine direction X.
X and Y positioning means 2402 and 2403 are used to place the applicator 2200 to point “f.”
The applicator 2200 moved by x positioning means 2402, uses internal devices 2210-2217 to lay down a conductive pathway 2300 from points “f” to “g.” This last portion of the pathway 2300 is not yet completed in
Steps 2-20 are repeated for each conductive trace 2300 to be applied to substrate 2100 on the exposed area of the substrate. Then the substrate is indexed forward again starting with step 1.
Instead of forming the conductive trace 2300 by connecting separate pieces of the foil strip 2211, the conductive trace 2300 may be formed from a continuous strip 2211. Instead of using cutter 2214 to cut the foil 2211 between segments at each corner, the strip 2211 may be automatically folded over. For example, this may be done by turning rotary positioning means 2404 through a 90 degree turn and pressing down on the folded corner so that the trace 2300 lays flat at the corner.
Before the overlapping segments of the second conductive trace 2300 are laid down, strips “I” and “J” of non-conductive film are laid down over the first trace, using applicator 2200. These insulating strips “I” and “J” prevent electrical contact between the separate conductive loops that are formed by the conductive trace 2300. In similar manner, “cross-over” circuitry can be laid down.
It is anticipated that the substrate 2100 with conductive traces 2300, whether in sheet or web form, may be incorporated into a laminated structure that may be used in a shelf, panel, enclosure, spaces, or other form. An example of such a laminated structure is shown in
A conductive or metallic backplane 2625 may optionally be applied to the bottom of the shelf to block RF energy from going below the shelf, thus making the shelf operate with approximately the same RF behavior regardless whether or not it was supported by metal brackets or placed upon an existing metal shelf.
Tuning components within circuitry 2634, for example rotary trim capacitors (not shown) may require access after assembly, which can be provided through openings such as holes 2611 drilled through laminate 2610 in
It should be understood that while the preferred embodiment of the inventory control system and method utilizes a multiple antenna RFID detection system with a single transmission cable 222 corresponding to the embodiment of
As shown in
In operation, the inventory control system would determine item information from the intelligent shelves 501a-501n and 502a-502n that are connected to the inventory control processing unit 550 through an electronic network 525. In one embodiment, the various intelligent shelves 501a-501n and 502a-502n would be under the control of inventory control processing unit 550 that would determine when the reader units 120 would poll the antennae 200 to determine item information of items to be inventoried. In an alternate embodiment, the reader units 120 may be programmed to periodically poll the connected multiple antennae for item information and then transmit the determined item information to the inventory control processing unit using a reverse “push” model of data transmission. In a further embodiment, the polling and data transmission of item information by the reader units 120 may be event driven, for example, triggered by a periodic replenishment of inventoried items on the intelligent shelves. In each case, the reader unit 120 would selectively energize the multiple antennae connected to it to determine item information from the RFID tags associated with the items to be inventoried.
Once the item information is received from the reader units 120 of the intelligent shelves 501a-501n and 502a-502n of the present invention, the inventory control processing unit 550 processes the received item information using programmed logic, code, and data at the inventory control processing unit 550 and at the associated data store 555. The processed item information is then typically stored at the data store 555 for future use in the inventory control system and method of the present invention.
One skilled in the art would recognize that inventory control processing unit 550 could be implemented on a general purpose computer system connected to an electronic network 525, such as a computer network, The computer network can also be a public network, such as the Internet or Metropolitan Area Network (MAN), or other private network, such as a corporate Local Area Network (LAN) or Wide Area Network (WAN), or even a virtual private network. A computer system includes a central processing unit (CPU) connected to a system memory. The system memory typically contains an operating system, a BIOS driver, and application programs. In addition, the computer system contains input devices such as a mouse and a keyboard, and output devices such as a printer and a display monitor.
The computer system generally includes a communications interface, such as an Ethernet card, to communicate to the electronic network 525. Other computer systems may also be connected to the electronic network 525. One skilled in the art would recognize that the above system describes the typical components of a computer system connected to an electronic network. It should be appreciated that many other similar configurations are within the abilities of one skilled in the art and all of these configurations could be used with the methods and systems of the present invention. Furthermore, it should be recognized that the computer system and network disclosed herein can be programmed and configured as an inventory control processing unit to perform inventory control related functions that are well known to those skilled in the art.
In addition, one skilled in the art would recognize that the “computer” implemented invention described herein may include components that are not computers per se but also include devices such as Internet appliances and Programmable Logic Controllers (PLCs) that may be used to provide one or more of the functionalities discussed herein. Furthermore, while “electronic” networks are generically used to refer to the communications network connecting the processing sites of the present invention, one skilled in the art would recognize that such networks could be implemented using optical or other equivalent technologies. Likewise, it is also to be understood that the present invention utilizes known security measures for transmission of electronic data across networks. Therefore, encryption, authentication, verification, and other security measures for transmission of electronic data across both public and private networks are provided, where necessary, using techniques that are well known to those skilled in the art.
Other embodiments of the invention will be apparent to those skilled in the art from a consideration of the specification and the practice of the invention disclosed herein. It is intended that the specification be considered as exemplary only, with the true scope and spirit of the invention being indicated by the following claims.
Claims
1-96. (canceled)
97. A system for detecting RFID tags comprising:
- a reader unit that transmits or receives an RF signal; and
- a first intelligent station comprising: a first RF antenna connected to the reader unit by a first transmission cable through a first switch; and at least a second RF antenna connected to the reader unit by the first transmission cable through at least a second switch, wherein the first switch and the at least a second switch receive control signals via the first transmission cable.
98. The system of claim 97, wherein the RFID tags comprise one or more of the group consisting of: active tags, semi-active tags, passive tags, low frequency tags, high frequency tags, and ultra high frequency tags.
99. The system of claim 97, wherein the RFID reader and RFID tags communicate using one or more of the group consisting of: load modulation, back scatter modulation, amplitude shift keying, frequency shift keying, and phase shift keying.
100. The system of claim 97, wherein the control signals comprise one or more of the group consisting of: switch control commands, switch control query commands, sensor control commands, sensor data signals, peripheral device control commands, peripheral device data signals, controller communications, secondary controller communications.
101. The system of claim 97, wherein the intelligent station receives DC power through the first transmission cable.
102. The system of claim 97, wherein the intelligent station detects the presence of a stocking RFID tag or a pushbutton or keyed input sequence, alerts the intelligent station that the shelf is completely stocked, and sends a message to a database which indicates that a current stock level is full or at a target level.
103. The system of claim 97, wherein the intelligent station detects the presence of a customer RFID tag, the customer RFID tag being placed on a shelf where a desired item is in an out-of-stock condition,
- wherein the detection of the customer RFID tag results in one or more actions selected from the group consisting of: alerting a customer of the condition, generating a rain check, discounting a price of the item when it is in a subsequent in-stock condition, and providing information about the item.
104. The system of claim 103, wherein the information is selected from the group consisting of: being in a stock room, at another store, and on order.
105. The system of claim 97, wherein the first transmission cable carries signals with superimposed data other than the RF signals.
106. The system of claim 105, wherein the first transmission cable carries a modulated DC signal with DC offset voltage used for data and control communications.
107. The system of claim 105, wherein the first transmission cable carries a modulated DC signal without DC offset voltage for data and control communications.
108. The system of claim 105, wherein the first transmission cable carries a data or control signal at a frequency different than the RF signal.
109. The system of claim 105, wherein the first transmission cable carries a data or a control signal utilizing load modulation or back scatter modulation.
110. The system of claim 97, wherein a polling scheme is utilized to determine the order in which the RF antennae are interrogated.
111. The system of claim 110, wherein the polling scheme is sequential.
112. The system of claim 110, wherein the polling scheme is altered based on external events from sensors.
113. The system of claim 97, wherein each of the first switch and the at least a second switch is uniquely addressable.
114. The system of claim 97, wherein each of the first RF antenna and the at least a second RF antenna is uniquely addressable.
115. The system of claim 97, further comprising a tuning adjustment system that automatically performs electronic adjustments of variable tuning components based on feedback information from the first RF antenna or the at least a second RF antenna.
116. The system of claim 115, wherein the variable tuning components comprise one or more voltage controlled capacitors.
117. The system of claim 115, wherein the variable tuning components comprises a switched capacitor bank.
118. The system of claim 97, wherein the intelligent station further comprises signal processing circuits to perform at least a part of the signal processing performed by the reader unit.
119. The system of claim 97, further comprising at least one RF amplifier device to amplify the RFID signals.
120. The system of claim 97, wherein a common tuning circuit is used for the first RF antenna and the at least a second RF antenna.
121. The system of claim 97, wherein the first transmission cable comprises an RF cable, and wherein a bypass switch is provided between the RF cable and an intelligent station to either allow an RF signal to enter the intelligent station, or to prevent an RF signal from entering the intelligent station.
122. The system of claim 97, further comprising:
- an inline switch,
- wherein the first transmission cable comprises an RF cable, and
- wherein the inline switch is configured to either allow the RF signal to continue along the RF cable past an intelligent station or to prevent the RF signal from continuing along the RF cable.
123. The system of claim 97, wherein the first RF antenna and the at least a second RF antenna are each associated with a selector switch and are connected in a series arrangement.
124. The system of claim 97, wherein the first RF antenna and the at least a second RF antenna are each associated with a selector switch and are connected in a parallel-series arrangement.
125. The system of claim 97, wherein the intelligent station is connected to or contained within an object from the group consisting of: a shelf, a closed receptacle, a storage volume, a room, a closet, a cabinet, a cupboard, a refrigerator, a freezer, a pegboard, a clothing rack, a trailer, a warehouse, a pallet, a counter, an enclosure, a rack, a door, a doorway, a portal, a floor, a floor mat, a ceiling, and a wall.
126. The system of claim 97, further comprising a controller.
127. The system of claim 126, wherein the controller controls the reader unit.
128. The system of claim 127, wherein the controller determines the number of antennae contained within the system.
129. The system of claim 127, wherein the controller unit is operatively connected to the first switch and the at least a second switch, the controller unit generating a control signal that selectively operates the first switch and the at least a second switch.
130. The system of claim 127, wherein signals from the controller unit are routed to distributed secondary control units that in turn operate the first switch and the at least a second switch.
131. The system of claim 130, wherein signals from the controller unit to distributed secondary control units include address information to determine which switches are selected.
132. The system of claim 97, further comprising one or more passive antennae associated with one or more of the first RF antenna and at least a second RF antenna such that the passive antennae are powered through inductive coupling by the associated RF antennae when the associated RF antennae are powered.
133. The system of claim 97, further comprising:
- a data store; and
- an inventory control processing unit connected to the data store, the inventory control processing unit receiving item information from the intelligent station to update inventory information regarding the items to be inventoried.
134. The system of claim 133, wherein the intelligent station is provided with locking devices for access control, the locking devices controlled by the inventory control processing unit.
135. The system of claim 133, wherein the intelligent station further comprises a plug-in bar code scanner to scan bar codes and provide bar coded item information that is correlated and stored with item information from the RFID tags.
136. The system of claim 97, further comprising a shelf, wherein the antennae are incorporated into decorative laminate materials associated with the shelf.
137. The system of claim 136, wherein the laminate materials containing antennae are applied to one face of a corrugated paperboard core to form the shelf or a panel for the shelf.
138. The system of claim 97, wherein at least two of the first RF antenna and the at least a second RF antenna are energized at the same time.
139. The system of claim 138, wherein at least two of the first RF antenna and the at least a second RF antenna are operated in phase with each other.
140. The system of claim 138, wherein at least two of the first RF antenna and the at least a second RF antenna are operated with a phase shift between them.
141. The system of claim 140, further comprising:
- respective RF cables for each of the at least two antennae,
- wherein each respective RF cable has a different length, and
- wherein the different RF cable lengths cause the phase shift.
142. The system of claim 140, further comprising:
- a two-way 90 degree power splitter,
- wherein the phase shift is created through the use of the two-way 90 degree power splitter.
143. The system of claim 97, further comprising a peripheral device other than an antenna.
144. The system of claim 143, wherein the peripheral device is selected from the group consisting of: a computer terminal, a display device, a modem, an audio output device, a bar code reader, a temperature sensor, a shelf-edge price label, a keypad, and a locking device for enclosed or tethered merchandise.
145. The system of claim 143, wherein the system interrogates each RF antenna according to a polling scheme.
146. The system of claim 143, wherein the peripheral device comprises a proximity sensor.
147. The system of claim 146, wherein the proximity sensor is used for controlling antenna selection.
148. The system of claim 146, wherein the proximity sensor comprises an infrared sensor or a capacitive sensor.
149. The system of claim 146, wherein the proximity sensor comprises one of visible light sensors or infrared light sensors.
150. The system of claim 146, wherein the proximity sensor comprises a camera.
151. The system of claim 146, wherein the proximity sensor comprises a proximity type sensor that can detect the movement of tags or the presence of a shopper.
152. The system of claim 151, wherein the proximity type sensor is a Hall effect sensor.
153. The system of claim 146, wherein the reading frequency of the shelf unit increases based on feedback from the proximity sensor
154. The system of claim 146, wherein the polling scheme is altered in response to proximity sensor measurements.
155. The system of claim 146, wherein the intelligent station performs an action in response to the proximity sensor detecting the presence or movement of a person or object.
156. The system of claim 155, wherein the action is selected from the group consisting of determining item information and activating auxiliary displays.
157. The system of claim 143, wherein the peripheral device allows a user to enter a pushbutton or keyed input sequence.
158. The system of claim 143, wherein the peripheral device comprises visual or audible indicators on the shelf that are activated to direct a customer toward the desired items.
159. The system of claim 97, wherein at least one antenna not being interrogated alter their tuning, the altering causing the at least one antenna not being interrogated to be substantially non-resonant at a frequency of the RF signal.
160. The system of claim 159, wherein the at least one antenna not being interrogated is altered to be substantially non-resonant at the frequency of the RF signal by shunting a tuning capacitor.
161. The system of claim 160, wherein the shunting is performed by a component selected from one or more of the group consisting of: a FET, a MESFET, and a PIN diode.
162. The system of claim 159, wherein the at least one RF antenna not being interrogated is altered to be substantially non-resonant at the frequency of the RF signal by a switching element in the tuning circuit.
163. The system of claim 162, wherein the switching element is selected from one or more of the group consisting of: a FET, a MESFET, and a PIN diode.
164. The system of claim 162, wherein the switching element can couple and decouple a capacitor within a capacitor bank.
165. The system of claim 159, wherein the at least one antenna not being interrogated is altered to be substantially non-resonant at the frequency of the RF signal by one or more varactors.
166. The system of claim 159, wherein:
- the at least one antenna not being interrogated is substantially non-resonant at the frequency of the RF signal; and
- an antenna being interrogated is put into a substantially tuned state.
167. The system of claim 166, wherein each antenna being interrogated is substantially tuned using one or more of the group consisting of: a FET, a MESFET, a PIN diode, or a varactor.
168. The system of claim 166, wherein each antenna being interrogated is substantially tuned through a coupling or decoupling of a capacitor within a capacitor bank.
169. The system of claim 159, wherein the tuning of the at least one RFID antennae adjacent to an RFID antenna under interrogation is altered.
170. The system of claim 169, wherein:
- a self-test RFID tag is placed within range of the at least two RFID antennae,
- the system detects the self-test RFID tags within adjacent RF antennae,
- and the system determines which RF antennae are adjacent.
171. The system of claim 169, wherein the system determines which RF antennae are adjacent to each other by detecting RFID tags that are read by more than one RF antenna.
172. The system of claim 171, wherein RF power delivered to the antennae is increased above a normal operating level to increase a chance of reading the RFID tags on adjacent antennae.
173. The system of claim 169, wherein the adjacent antennae are predetermined.
174. The system of claim 97, wherein:
- a self-test RFID tag is placed within range of each of the at least two RF antennae;
- the system detects the self-test RFID tags; and
- the system determines which other RF antenna are adjacent based on the detecting.
175. The system of claim 97, wherein the system determines which RF antennae are adjacent to each other by detecting RFID tags that are read by more than one RF antenna.
176. The system of claim 175, wherein RF power delivered to the antennae is increased above a normal operating level to increase a chance of reading the RFID tags on adjacent antennae.
177. The system of claim 97, wherein GPS information related to the location of each antenna is used to determine which RF antennae are adjacent.
178. The system of claim 97, wherein a test determines how much RF power must be delivered to each connected RF antenna to deliver the desired power level.
179. The system of claim 178, wherein a power detect sensor measures the RF power level delivered to the RF antenna.
180. The system of claim 178, wherein at least one self test RFID tag is used to determine the desired RF power that needs to be delivered to the RF antenna.
181. The system of claim 97, wherein the desired power level for each RF antenna is determined based on an antenna type.
182. The system of claim 181, wherein a power detect sensor measures the RF power level delivered to the RF antenna.
183. The system of claim 181, wherein at least one self test RFID tag is used to determine the desired RF power that needs to be delivered to the RF antenna.
184. The system of claim 97, further comprising an environmental sensor.
185. The system of claim 184, wherein the environmental sensor comprises a sensor selected from the group consisting of: a temperature sensor, a humidity sensor, a light sensor, and a weight sensor.
186. The system of claim 184, wherein an environmental condition is recorded with the RFID tags located on an intelligent station during an interrogation.
187. The system of claim 184, wherein the system provides a warning if an environmental condition is out of a specified limit for specific products located on an intelligent station.
188. The system of claim 184, wherein a polling scheme is utilized to determine an order in which the RF antennae are interrogated.
189. The system of claim 188, wherein the polling scheme is sequential.
190. The system of claim 188, wherein the polling scheme is event driven.
191. The system of claim 188, wherein the polling scheme is determined by the system.
192. The system of claim 188, wherein the polling scheme is altered in response to the environmental sensor measurements.
193. A system for detecting RFID tags comprising:
- a reader unit that transmits or receives an RF signal; and
- a first intelligent station comprising: a first RF antenna connected to the reader unit by a first transmission cable through a first switch; and at least a second RF antenna connected to the reader unit by the first transmission cable through at least a second switch, wherein the first switch and the at least a second switch receive control signals via a wireless communications channel.
194. The system of claim 193, wherein the RFID tags comprise one or more of the group consisting of: active tags, semi-active tags, passive tags, low frequency tags, high frequency tags, and ultra high frequency tags.
195. The system of claim 193, wherein the RFID reader and RFID tags communicate using one or more of the group consisting of: load modulation, back scatter modulation, amplitude shift keying, frequency shift keying, and phase shift keying.
196. The system of claim 193, wherein the control signals comprise one or more of the following: switch control commands, switch control query commands, sensor control commands, sensor data signals, peripheral device control commands, peripheral device data signals, controller communications, secondary controller communications.
197. The system of claim 193, wherein the intelligent station detects the presence of a tag or a pushbutton or keyed input sequence, alerts the intelligent station that the shelf is completely stocked, and sends a message to a database which indicates that a current stock level is full or at a target level.
198. The system of claim 193, wherein the intelligent station detects the presence of a customer RFID tag, the customer RFID tag being placed on a shelf where a desired item is in an out-of-stock condition,
- wherein the detection of the customer RFID tag results in one or more actions selected from the group consisting of: alerting a customer of the condition, generating a rain check, discounting a price of the item when it is in a subsequent in-stock condition, and providing information about the item.
199. The system of claim 198, wherein the information is selected from the group consisting of: being in a stock room, at another store, and on order.
200. The system of claim 193, wherein a polling scheme is utilized to determine the order in which the RF antenna are interrogated.
201. The system of claim 200, wherein the polling scheme is sequential.
202. The system of claim 200, wherein the polling scheme is altered based on external events from sensors.
203. The system of claim 193, wherein each of the first switch and the at least a second switch is uniquely addressable.
204. The system of claim 193, wherein each of the first RF antenna and the at least a second RF antenna is uniquely addressable.
205. The system of claim 193, further comprising a tuning adjustment system that automatically performs electronic adjustments of variable tuning components based on feedback information from the first RF antenna or the at least a second RF antenna.
206. The system of claim 205, wherein the variable tuning components comprise one or more voltage controlled capacitors.
207. The system of claim 205, wherein the variable tuning components comprises a switched capacitor bank.
208. The system of claim 193, wherein the intelligent station internally contain signal processing circuits to perform at least a part of the signal processing otherwise performed by the reader unit.
209. The system of claim 193, comprising at least one RF amplifier device to amplify the RFID signals.
210. The system of claim 193, wherein a common tuning circuit is used for the first RF antenna and the at least a second RF antenna.
211. The system of claim 193, further comprising:
- an inline switch,
- wherein the first transmission cable comprises an RF cable, and
- wherein the inline switch is configured to either allow the RF signal to continue along the RF cable past an intelligent station or to prevent the RF signal-from continuing along the RF cable.
212. The system of claim 193, wherein the first transmission cable comprises and RF cable, and wherein an inline switch is provided to either allow the RF signal to continue along the RF cable or to prevent the RF signal from entering the intelligent station.
213. The system of claim 193, wherein the first RF antenna and the at least a second RF antenna are each associated with a selector switch and are connected in a series arrangement.
214. The system of claim 193, wherein the first RF antenna and the at least a second RF antenna are each associated with a selector switch and are connected in a parallel-series arrangement.
215. The system of claim 193, wherein the intelligent station is connected to or contained within an object from the group consisting of: a shelf, a closed receptacle, a storage volume, a room, a closet, a cabinet, a cupboard, a refrigerator, a freezer, a pegboard, a clothing rack, a trailer, a warehouse, a pallet, a counter, an enclosure, a rack, a door, a doorway, a portal, a floor, a floor mat, a ceiling, and a wall.
216. The system of claim 193, further comprising a controller.
217. The system of claim 216, wherein the controller controls the reader unit.
218. The system of claim 217, wherein the controller determines the number of antennae contained within the system.
219. The system of claim 217, wherein the controller unit is operatively connected to the first switch and the at least a second switch, the controller unit generating a control signal that selectively operates the first switch and the at least a second switch.
220. The system of claim 217, wherein signals from the controller unit are routed to distributed secondary control units that in turn operate the first switch and the at least a second switch.
221. The system of claim 220, wherein signals from the control unit to distributed secondary control units include address information to determine which switches are selected.
222. The system of claim 193, further comprising one or more passive antennae associated with one or more of the first RF antenna and at least a second RF antenna such that the passive antennae are powered through inductive coupling by the associated RF antennae when the associated RF antennae are powered.
223. The system of claim 193, further comprising:
- a data store; and
- an inventory control processing unit connected to the data store, the inventory control processing unit receiving item information from the intelligent station to update inventory information regarding the items to be inventoried.
224. The system of claim 223, wherein the intelligent station is provided with locking devices for access control, the locking devices controlled by the inventory control processing unit.
225. The system of claim 223, wherein the intelligent station further comprises: a plug-in bar code scanner to scan bar codes and provide bar coded item information that is correlated and stored with item information from the RFID tags.
226. The system of claim 193, further comprising a shelf, wherein the antennae are incorporated into decorative laminate materials associated with the shelf.
227. The system of claim 226, wherein the laminate materials containing antennae are applied to one face of a corrugated paperboard core to form the shelf or a panel for the shelf.
228. The system of claim 193, wherein at least two of the first RF antenna and the at least a second RF antenna are energized at the same time.
229. The system of claim 228, wherein at least two of the first RF antenna and the at least a second RF antenna are operated in phase with each other.
230. The system of claim 228, wherein at least two of the first RF antenna and the at least a second RF antenna are operated with a phase shift between them.
231. The system of claim 230, further comprising:
- respective RF cables for each of the at least two antennae,
- wherein each respective RF cable has a different length, and
- wherein the different RF cable lengths cause the phase shift.
232. The system of claim 230, further comprising:
- a two-way 90 degree power splitter,
- wherein the phase shift is created through the use of the two-way 90 degree power splitter.
233. The system of claim 193, further comprising a peripheral device other than an antenna.
234. The system of claim 233, wherein the peripheral device is selected from the group consisting of: a computer terminal, a display device, a modem, an audio output device, a bar code reader, a temperature sensor, a shelf-edge price label, a keypad, and a locking device for enclosed or tethered merchandise.
235. The system of claim 233, wherein the system interrogates each RF antenna according to a polling scheme.
236. The system of claim 233, wherein the peripheral device comprises a proximity sensor.
237. The system of claim 236, wherein the proximity sensor is used for controlling antenna selection.
238. The system of claim 236, wherein the proximity sensor comprises an infrared sensor or a capacitive sensor.
239. The system of claim 236, wherein the proximity sensor comprises one of:
- visible light sensors or infrared light sensors.
240. The system of claim 236, wherein the proximity sensor comprises a camera.
241. The system of claim 236, wherein the proximity sensor comprises a proximity type sensor that can detect the movement of tags or the presence of a shopper.
242. The system of claim 241, wherein the proximity type sensor is a Hall effect sensor.
243. The system of claim 236, wherein a reading frequency of the shelf unit increases based on feedback from the proximity sensor.
244. The system of claim 236, wherein the polling scheme is altered in response to proximity sensor measurements.
245. The system of claim 236, wherein the intelligent station performs an action in response to the proximity sensor detecting the presence or movement of a person or object.
246. The system of claim 245, wherein the action is selected from the group consisting of determining item information and activating auxiliary displays.
247. The system of claim 233, wherein the peripheral device allows a user to enter a pushbutton or keyed input sequence.
248. The system of claim 233, wherein the peripheral device comprises visual or audible indicators on the shelf that are activated to direct a customer toward the desired items.
249. The system of claim 193, wherein at least one antenna not being interrogated alter their tuning, the altering causing the at least one antenna not being interrogated to be substantially non-resonant at a frequency of the RF signal.
250. The system of claim 249, wherein the at least one antenna not being interrogated is altered to be substantially non-resonant at the frequency of the RF signal by shunting a tuning capacitor.
251. The system of claim 250, wherein the shunting is performed by a component selected from one or more of the group consisting of: a FET, a MESFET, and a PIN diode.
252. The system of claim 249, wherein the at least one RF antenna not being interrogated is altered to be substantially non-resonant at the frequency of the RF signal by a switching element in the tuning circuit.
253. The system of claim 252, wherein the switching element is selected from one or more of the group consisting of: a FET, a MESFET, and a PIN diode.
254. The system of claim 252, wherein the switching element can couple and decouple a capacitor within a capacitor bank.
255. The system of claim 249, wherein the at least one antenna not being interrogated is altered to be substantially non-resonant at the frequency of the RF signal by one or more varactors.
256. The system of claim 249, wherein:
- the at least one antenna not being interrogated is substantially non-resonant at the frequency of the RF signal; and
- an antenna being interrogated is put into a substantially tuned state.
257. The system of claim 256, wherein each antenna being interrogated is substantially tuned using one or more of the group consisting of: a FET, a MESFET, a:
- PIN diode, or a varactor.
258. The system of claim 256, wherein each antenna being interrogated is substantially tuned through a coupling or decoupling of a capacitor within a capacitor bank.
259. The system of claim 249, wherein the tuning of the at least one RFID antennae adjacent to an RFID antenna under interrogation is altered.
260. The system of claim 259, wherein:
- a self-test RFID tag is placed within range of the at least two RFID antennae,
- the system detects the self-test RFID tags within adjacent RF antenna,
- and the system determines which RF antennae are adjacent.
261. The system of claim 259, wherein the system determines which RF antennae are adjacent to each other by detecting RFID tags that are read by more than one RF antenna.
262. The system of claim 261, wherein RF power delivered to the antennae is increased above a normal operating level to increase a chance of reading the RFID tags on adjacent antennae.
263. The system of claim 259, wherein which of the antennae are adjacent is predetermined.
264. The system of claim 193, wherein:
- a self-test RFID tag is placed within range of each of the at least two RF antennae;
- the system detects the self-test RFID tags; and
- the system determines which other RF antenna are adjacent based on the detecting.
265. The system of claim 193, wherein the system determines which RF antennae are adjacent to each other by detecting RFID tags that are read by more than one RF antenna.
266. The system of claim 265, wherein RF power delivered to the antennae is increased above a normal operating level to increase a chance of reading the RFID tags on adjacent antennae.
267. The system of claim 193, wherein GPS information related to the location of each antenna is used to determine which RF antennae are adjacent.
268. The system of claim 193, wherein a test determines how much RF power must be delivered to each connected RF antenna to deliver the desired power level.
269. The system of claim 268, wherein a power detect sensor measures the RF power level delivered to the RF antenna.
270. The system of claim 268, wherein at least one self test RFID tag is used to determine the desired RF power that needs to be delivered to the RF antenna.
271. The system of claim 193, wherein the desired power level for each RF antenna is determined based on an antenna type.
272. The system of claim 271, wherein a power detect sensor measures the RF power level delivered to the RF antenna.
273. The system of claim 271, wherein at least one self test RFID tag is used to determine the desired RF power that needs to be delivered to the RF antenna.
274. The system of claim 193, further comprising an environmental sensor.
275. The system of claim 274, wherein the environmental sensor comprises a sensor selected from the group consisting of: a temperature sensor, a humidity sensor, a light sensor, and a weight sensor.
276. The system of claim 274, wherein an environmental condition is recorded with the RFID tags located on an intelligent station during an interrogation.
277. The system of claim 274, wherein the system provides a warning if an environmental condition is out of a specified limit for specific products located on an intelligent station.
278. The system of claim 274, wherein a polling scheme is utilized to determine an order in which the RF antenna are interrogated.
279. The system of claim 278, wherein the polling scheme is sequential.
280. The system of claim 278, wherein the polling scheme is event driven.
281. The system of claim 278, wherein the polling scheme is determined by the system.
282. The system of claim 278, wherein the polling scheme is altered in response to the environmental sensor measurements.
283. A system for detecting RFID tags comprising:
- a reader unit that transmits or receives an RF signal; and
- a first intelligent station comprising: a first RF antenna connected to the reader unit by a first transmission cable through a first switch; and at least a second RF antenna connected to the reader unit by the first transmission cable through at least a second switch, wherein the first switch and the at least a second switch receive control signals via a common control channel. The system of claim 283, wherein the system is composed of an additional intelligent station comprising: a first RF antenna connected to the reader unit by a first transmission cable through a first switch; and at least a second RF antenna connected to the reader unit by the first transmission cable through at least a second switch, wherein the first switch and the at least a second switch receive control signals via the common control channel.
284. The system of claim 283, wherein the common control channel is wireless.
285. The system of claim 283, wherein the RFID tags comprise one or more of the group consisting of: active tags, semi-active tags, passive tags, low frequency tags, high frequency tags, and ultra high frequency tags.
286. The system of claim 283, wherein the RFID reader and RFID tags communicate using one or more of the group consisting of: load modulation, back scatter modulation, amplitude shift keying, frequency shift keying, and phase shift keying.
287. The system of claim 283, wherein the control signals comprise one or more of the following: switch control commands, switch control query commands, sensor control commands, sensor data signals, peripheral device control commands, peripheral device data signals, controller communications, secondary controller communications.
288. The system of claim 283, wherein the common control channel comprises one of: an Ethernet connection, an RS-485 connection, or an RS-232 connection.
289. The system of claim 283, wherein the common control channel is wireless.
290. The system of claim 283, wherein the intelligent station detects the presence of a stocking RFID tag or a pushbutton or keyed input sequence, to alert the system that the shelf is stocked completely and the database is made aware that the current stock level is the full or target level.
291. The system of claim 283, wherein the intelligent station detects the presence of a customer RFID tag, the customer RFID tag being placed on a shelf where a desired item is in an out-of-stock condition,
- wherein the detection of the customer RFID tag results in one or more actions selected from the group consisting of: alerting a customer of the condition, generating a rain check, discounting a price of the item when it is in a subsequent in-stock condition, and providing information about the item.
292. The system of claim 291, wherein the information is selected from the group consisting of: being in a stock room, at another store, and on order.
293. The system of claim 283, wherein the intelligent station receives DC power through the common control channel.
294. The system of claim 283, wherein the intelligent station receives DC power through the first transmission cable.
295. The system of claim 283, wherein a polling scheme is utilized to determine the order in which the RF antenna are interrogated.
296. The system of claim 295, wherein the polling scheme is sequential.
297. The system of claim 295, wherein the polling scheme is altered based on external events from sensors.
298. The system of claim 283, wherein each of the first switch, and the at least a second switch is uniquely addressable.
299. The system of claim 283, wherein each of the first RF antenna and the at least a second RF antenna is uniquely addressable.
300. The system of claim 283, further comprising a tuning adjustment system that automatically performs electronic adjustments of variable tuning components based on feedback information from the first RF antenna or the at least a second RF antenna.
301. The system of claim 300, wherein the variable tuning components comprise one or more voltage controlled capacitors.
302. The system of claim 300, wherein the variable tuning components comprises a switched capacitor bank.
303. The system of claim 283, wherein the intelligent station internally contains signal processing circuits to perform at least a part of the signal processing otherwise performed by the reader unit.
304. The system of claim 283, comprising at least one RF amplifier device to amplify the RFID signals.
305. The system of claim 283, wherein the first transmission cable comprises an RF cable, and wherein a bypass switch is provided between the RF cable and an intelligent station to either allow an RF signal to enter the intelligent station, or to prevent an RF signal from entering the intelligent station.
306. The system of claim 283, further comprising:
- an inline switch,
- wherein the first transmission cable comprises an RF cable, and
- wherein the inline switch is configured to either allow the RF signal to continue along the RF cable past an intelligent station or to prevent the RF signal from continuing along the RF cable.
307. The system of claim 283, wherein a common tuning circuit is used for the first RF antenna and the at least a second RF antenna.
308. The system of claim 283, wherein the first RF antenna and the at least a second RF antenna are each associated with a selector switch and are connected in a series arrangement.
309. The system of claim 283, wherein the first RF antenna and the at least a second RF antenna are each associated with a selector switch and are connected in a parallel-series arrangement.
310. The system of claim 283, wherein the intelligent station is connected to or contained within an object from the group consisting of: a shelf, a closed receptacle, a storage volume, a room, a closet, a cabinet, a cupboard, a refrigerator, a freezer, a pegboard, a clothing rack, a trailer, a warehouse, a pallet, a counter, an enclosure, a rack, a door, a doorway, a portal, a floor, a floor mat, a ceiling, and a wall.
311. The system of claim 283, further comprising a controller.
312. The system of claim 311, wherein the controller controls the reader unit.
313. The system of claim 312, wherein the controller determines the number of antennae contained within the system.
314. The system of claim 312, wherein the controller unit is operatively connected to the first switch and the at least a second switch, the controller unit generating a control signal that selectively operates the first switch and the at least a second switch.
315. The system of claim 312, wherein signals from the controller unit are routed to distributed secondary control units that in turn operate the first switch and the at least a second switch.
316. The system of claim 315, wherein signals from the control unit to distributed secondary control units include address information to determine which switches are selected.
317. The system of claim 283, further comprising one or more passive antennae associated with one or more of the first RF antenna and at least a second RF antenna such that the passive antennae are powered through inductive coupling by the associated RF antennae when the associated RF antennae are powered.
318. The system of claim 283, further comprising:
- a data store; and
- an inventory control processing unit connected to the data store, the inventory control processing unit receiving item information from the intelligent station to update inventory information regarding the items to be inventoried.
319. The system of claim 318, wherein the intelligent station is provided with locking devices for access control, the locking devices controlled by the inventory control processing unit.
320. The system of claim 318, wherein the intelligent station further comprises: a plug-in bar code scanner to scan bar codes and provide bar coded item information that is correlated and stored with item information from the RFID tags.
321. The system of claim 283, further comprising a shelf, wherein the antennae are incorporated into decorative laminate materials associated with the shelf.
322. The system of claim 321, wherein the laminate materials containing antennae are applied to one face of a corrugated paperboard core to form the shelf or a panel for the shelf.
323. The system of claim 283, wherein at least two of the first RF antenna and the at least a second RF antenna are energized at the same time.
324. The system of claim 323, wherein at least two of the first RF antenna and the at least a second RF antenna are operated in phase with each other.
325. The system of claim 323, wherein at least two of the first RF antenna and the at least a second RF antenna are operated with a phase shift between them.
326. The system of claim 325, further comprising:
- respective RF cables for each of the at least two antennae,
- wherein each respective RF cable has a different length, and
- wherein the different RF cable lengths cause the phase shift.
327. The system of claim 325, further comprising:
- a two-way 90 degree power splitter,
- wherein the phase shift is created through the use of the two-way 90 degree power splitter.
328. The system of claim 283, further comprising a peripheral device other than an antenna.
329. The system of claim 328, wherein the peripheral device is selected from the group consisting of: a computer terminal, a display device, a modem, an audio output device, a bar code reader, a temperature sensor, a shelf-edge price label, a keypad, and a locking device for enclosed or tethered merchandise.
330. The system of claim 328, wherein the system interrogates each RF antenna according to a polling scheme.
331. The system of claim 328, wherein the peripheral device comprises a proximity sensor.
332. The system of claim 331, wherein the proximity sensor is used for controlling antenna selection.
333. The system of claim 331, wherein the proximity sensor comprises an infrared sensor or a capacitive sensor.
334. The system of claim 331, wherein the proximity sensor comprises one of: visible light sensors or infrared light sensors.
335. The system of claim 331, wherein the proximity sensor comprises a camera.
336. The system of claim 331, wherein the proximity sensor comprises proximity type sensor that can detect the movement of tags or the presence of a shopper.
337. The system of claim 336, wherein the proximity type sensor is a Hall effect sensor.
338. The system of claim 331, wherein a reading frequency of the shelf unit increases based on feedback from the proximity sensor.
339. The system of claim 236, wherein the polling scheme is altered in response to proximity sensor measurements.
340. The system of claim 331, wherein the intelligent station performs an action in response to the proximity sensor detecting the presence or movement of a person or object.
341. The system of claim 340, wherein the action is selected from the group consisting of determining item information and activating auxiliary displays.
342. The system of claim 328, wherein the peripheral device allows a user to enter a pushbutton or keyed input sequence.
343. The system of claim 328, wherein the peripheral device comprises visual or audible indicators on the shelf that are activated to direct a customer toward the desired items.
344. The system of claim 283, wherein at least one antenna not being interrogated alter their tuning, the altering causing the at least one antenna not being interrogated to be substantially non-resonant at a frequency of the RF signal.
345. The system of claim 344, wherein the at least one antenna not being interrogated is altered to be substantially non-resonant at the frequency of the RF signal by shunting a tuning capacitor.
346. The system of claim 345, wherein the shunting is performed by a component selected from one or more of the group consisting of: a FET, a MESFET, and a PIN diode.
347. The system of claim 344, wherein the at least one RF antenna not being interrogated is altered to be substantially non-resonant at the frequency of the RF signal by a switching element in the tuning circuit.
348. The system of claim 347, wherein the switching element is selected from one or more of the group consisting of: a FET, a MESFET, and a PIN diode.
349. The system of claim 347, wherein the switching element can couple and decouple a capacitor within a capacitor bank.
350. The system of claim 344, wherein he at least one antenna not being interrogated is altered to be substantially non-resonant at the frequency of the RF signal by one or more varactors.
351. The system of claim 344, wherein:
- the at least one antenna not being interrogated is substantially non-resonant at the frequency of the RF signal; and
- each antenna being interrogated is put into a substantially tuned state.
352. The system of claim 351, wherein each antenna being interrogated is substantially tuned using one or more of the group consisting of: a FET, a MESFET, a PIN diode, or a varactor.
353. The system of claim 351, wherein each antenna being interrogated is substantially tuned through a coupling or decoupling of a capacitor within a capacitor bank.
354. The system of claim 344, wherein the tuning of the at least one RFID antennae adjacent to an RFID antenna under interrogation is altered.
355. The system of claim 354, wherein:
- a self-test RFID tag is placed within range of the at least two RFID antennae,
- the system detects the self-test RFID tags within adjacent RF antenna,
- and the system determines which RF antennae are adjacent.
356. The system of claim 354, wherein the system determines which RF antennae are adjacent to each other by detecting RFID tags that are read by more than one RF antenna.
357. The system of claim 356, wherein RF power delivered to the antennae is increased above a normal operating level to increase a chance of reading the RFID tags on adjacent antennae.
358. The system of claim 354, wherein which of the antennae are adjacent is predetermined.
359. The system of claim 283, wherein:
- a self-test RFID tag is placed within range of each of the at least two RF antennae;
- the system detects the self-test RFID tags; and
- the system determines which other RF antenna are adjacent based on the detecting.
360. The system of claim 283, wherein the system determines which RF antennae are adjacent to each other by detecting RFID tags that are read by more than one RF antenna.
361. The system of claim 360, wherein RF power delivered to the antennae is increased above a normal operating level to increase a chance of reading the RFID tags on adjacent antennae.
362. The system of claim 283, wherein GPS information related to the location of each antenna is used to determine which RF antennae are adjacent.
363. The system of claim 283, wherein a test determines how much RF power must be delivered to each connected RF antenna to deliver the desired power level.
364. The system of claim 363, wherein a power detect sensor measures the RF power level delivered to the RF antenna.
365. The system of claim 363, wherein at least one self test RFID tag is used to determine the desired RF power that needs to be delivered to the RF antenna.
366. The system of claim 283, wherein the desired power level for each RF antenna is determined based on an antenna type.
367. The system of claim 366, wherein a power detect sensor measures the RF power level delivered to the RF antenna.
368. The system of claim 366, wherein at least one self test RFID tag is used to determine the desired RF power that needs to be delivered to the RF antenna.
369. The system of claim 283, further comprising an environmental sensor.
370. The system of claim 369, wherein the environmental sensor comprises a sensor selected from the group consisting of: a temperature sensor, a humidity sensor, a light sensor, and a weight sensor.
371. The system of claim 369, wherein an environmental condition is recorded with the RFID tags located on an intelligent station during an interrogation.
372. The system of claim 369, wherein the system provides a warning if an environmental condition is out of a specified limit for specific products located on an intelligent station.
373. The system of claim 369, wherein a polling scheme is utilized to determine an order in which the RF antennae are interrogated.
374. The system of claim 373, wherein the polling scheme is sequential.
375. The system of claim 373, wherein the polling scheme is event driven.
376. The system of claim 373, wherein the polling scheme is determined by the system.
377. The system of claim 373, wherein the polling scheme is altered in response to the environmental sensor measurements.
378. A system for detecting RFID tags comprising:
- a reader unit that transmits or receives an RF signal;
- a first RF antenna connected to the reader unit by a first transmission cable through a first switch; and
- at least a second RF antenna connected to the reader unit by the first transmission cable through at least a second respective switch,
- wherein at least two of the first RF antenna and the at least a second RF antenna are energized at the same time.
379. The system of claim 328, wherein at least two of the first RF antenna and the at least a second RF antenna are operated in phase with each other.
380. The system of claim 328, wherein at least two of the first RF antenna and the at least a second RF antenna are operated with a phase shift between them.
381. The system of claim 380, further comprising:
- respective RF cables for each of the at least two antennae,
- wherein each respective RF cable has a different length, and
- wherein the different RF cable lengths cause the phase shift.
382. The system of claim 380, further comprising:
- a two-way 90 degree power splitter,
- wherein the phase shift is created through the use of the two-way 90 degree power splitter.
383. A system for detecting RFID tags comprising:
- a reader unit that transmits or receives an RF signal; and
- a first intelligent station comprising: a first RF antenna connected to the reader unit by a first transmission cable through a first switch; and at least a second RF antenna connected to the reader unit by the first transmission cable through at least a second switch; and a control unit connected to a communications channel and that generates a control signal for selectively operating the first switch and the at least a second switch, wherein the control unit can control at least a peripheral device other than an antenna.
384. The system of claim 383, wherein the peripheral device is selected from the group consisting of: a computer terminal, a display device, a modem, an audio output device, a bar code reader, a temperature sensor, a shelf-edge price label, a keypad, and a locking device for enclosed or tethered merchandise.
385. The system of claim 383, wherein the system interrogates each RF antenna according to a polling scheme.
386. The system of claim 383, wherein the peripheral device comprises a proximity sensor.
387. The system of claim 386, wherein the proximity sensor is used for controlling antenna selection.
388. The system of claim 386, wherein the proximity sensor comprises an infrared sensor or a capacitive sensor.
389. The system of claim 386, wherein the proximity sensor comprises one of:
- visible light sensors or infrared light sensors.
390. The system of claim 386, wherein the proximity sensor comprises a camera.
391. The system of claim 386, wherein the proximity sensor comprises a proximity type sensor that can detect the movement of tags or the presence of a shopper.
392. The system of claim 391, wherein the proximity type sensor is a Hall effect sensor.
393. The system of claim 386, wherein a reading frequency of the shelf unit increases based on feedback from the proximity sensor
394. The system of claim 386, wherein the polling scheme is altered in response to proximity sensor measurements.
395. The system of claim 386, wherein the intelligent station determines item information or activate auxiliary displays or perform other actions in response to the proximity sensor detecting the presence or movement of a person or object.
396. The system of claim 383, wherein the peripheral device allows a user to enter a pushbutton or keyed input sequence.
397. The system of claim 383, wherein the peripheral device comprises visual or audible indicators on the shelf that are activated to direct a customer toward the desired items.
398. A system for detecting RFID tags comprising:
- at least one reader unit that transmits or receives an RF signal; and
- at least two RF antennae, wherein the at least two RF antennae are coupled to one or more of the at least one reader units,
- wherein the tuning of at least one antenna not being interrogated is altered, the altering causing the antennae not being interrogated to be substantially non-resonant at a frequency of the RF signal.
399. The system of claim 398, wherein at least one of the at least two RF antennae is directly coupled to the at least one reader unit.
400. The system of claim 398, wherein at least one of the at least two RF antennae is coupled to the at least one reader unit through one or more switches.
401. The system of claim 398, wherein the at least one antenna not being interrogated is altered to be substantially non-resonant at the frequency of the RF signal by shunting a tuning capacitor.
402. The system of claim 401, wherein the shunting is performed by a component selected from one or more of the group consisting of: a FET, a MESFET, and a PIN diode.
403. The system of claim 398, wherein the at least one RF antenna not being interrogated is altered to be substantially non-resonant at the frequency of the RF signal by a switching element in the tuning circuit.
404. The system of claim 403, wherein the switching element is selected from one or more of the group consisting of: FET, a MESFET, and a PIN diode.
405. The system of claim 403, wherein the switching element can couple and decouple a capacitor within a capacitor bank.
406. The system of claim 398, wherein the at least one antenna not being interrogated is altered to be substantially non-resonant at the frequency of the RF signal by one or more varactors.
407. The system of claim 398, wherein:
- the at least one antenna not being interrogated is substantially non-resonant at the frequency of the RF signal; and
- an antenna being interrogated is put into a substantially tuned state.
408. The system of claim 407, wherein each antenna being interrogated is substantially tuned using one or more of the group consisting of: a FET, a MESFET, a PIN diode, or a varactor.
409. The system of claim 407, wherein each antenna being interrogated is substantially tuned through a coupling or decoupling of a capacitor within a capacitor bank.
410. The system of claim 398, wherein the tuning of the at least one RFID antennae adjacent to an RFID antenna under interrogation is altered.
411. The system of claim 410, wherein:
- a self-test RFID tag is placed within range of the at least two RFID antennae,
- the system detects the self-test RFID tags within adjacent RF antenna,
- and the system determines which RF antennae are adjacent.
412. The system of claim 410, wherein the system determines which RF antennae are adjacent to each other by detecting RFID tags that are read by more than one RF antenna.
413. The system of claim 412, wherein RF power delivered to the antennae is increased above a normal operating level to increase a chance of reading the RFID tags on adjacent antennae.
414. The system of claim 410, wherein which of the antennae are adjacent is predetermined.
415. A system for detecting RFID tags comprising:
- at least one reader unit that transmits or receives an RF signal; and
- at least two RF antennae, wherein the at least two RF antennae are coupled to one or more of the at least one reader units,
- wherein the system automatically determines whether the RF antennae are adjacent to each other.
416. The system of claim 415, wherein at least one of the at least two RF antennae is directly coupled to the at least one reader unit.
417. The system of claim 415, wherein at least one of the at least two RF antennae is coupled to the at least one reader unit through one or more switches.
418. The system of claim 415, wherein the system automatically determines which of the at least two RF antennae are adjacent to each other.
419. The system of claim 415, wherein:
- a self-test RFID tag is placed within range of each of the at least two RF antennae,
- the system detects the self-test RFID tags, and
- the system determines which other RF antenna are adjacent based on the detecting.
420. The system of claim 415, wherein the system determines which RF antennae are adjacent to each other by detecting RFID tags that are read by more than one RF antenna.
421. The system of claim 420, wherein RF power delivered to the antennae is increased above a normal operating level to increase a chance of reading the RFID tags on adjacent antennae.
422. The system of claim 415, wherein GPS information related to the location of each antenna is used to determine which RF antennae are adjacent.
423. A system for detecting RFID tags comprising:
- a reader unit that transmits or receives an RF signal;
- a first RF antenna connected to the reader unit by a first transmission cable through a first switch;
- at least a second RF antenna connected to the reader unit by the first transmission cable through at least a second respective switch;
- a determining unit for determining the desired RF power to be provided to read each RF antenna connected to the reader,
- wherein the system uses the desired RF power when selectively energizing the RF antennae.
424. The system of claim 423, wherein a test determines how much RF power must be delivered to each connected RF antenna to deliver the desired power level.
425. The system of claim 424, wherein a power detect sensor measures the RF power level delivered to the RF antenna.
426. The system of claim 424, wherein at least one self test RFID tag is used to determine the desired RF power that needs to be delivered to the RF antenna.
427. The system of claim 423, wherein the desired power level for each RF antenna is determined based on an antenna type.
428. The system of claim 427, wherein a power detect sensor measures the RF power level delivered to the RF antenna.
429. The system of claim 427, wherein at least one self test RFID tag is used to determine the desired RF power that needs to be delivered to the RF antenna.
430. A system for detecting RFID tags comprising:
- one or more reader units that transmit or receive an RF signal;
- one or more intelligent stations comprising: a first RF antenna connected to the reader unit by a first transmission cable through a first switch; at least a second RF antenna connected to the reader unit by the first transmission cable through at least a second switch, respectively; and an environmental sensor, a memory; wherein the system records in memory sensor data from the environmental sensor, and wherein the system records RFID tags on the intelligent station in the memory.
431. The system of claim 430, wherein the environmental sensor comprises a sensor selected from the group consisting of: a temperature sensor, a humidity sensor, a light sensor, and a weight sensor.
432. The system of claim 430, wherein an environmental condition is recorded with the RFID tags located on an intelligent station during an interrogation.
433. The system of claim 430, wherein the system provides a warning if an environmental condition is out of a specified limit for specific products located on an intelligent station.
434. The system of claim 430, wherein a polling scheme is utilized to determine an order in which the RF antennae are interrogated.
435. The system of claim 434, wherein the polling scheme is sequential.
436. The system of claim 434, wherein the polling scheme is event driven.
437. The system of claim 434, wherein the polling scheme is determined by the system.
438. The system of claim 434, wherein the polling scheme is altered in response to the environmental sensor measurements.
439. A system for detecting RFID tags comprising:
- a reader unit that transmits or receives an RF signal; and
- a first intelligent station comprising: a first RF antenna connected to the reader unit through a first switch; and at least a second RF antenna connected to the reader unit through at least a second switch, wherein the first switch and the at least a second switch receive control signals.
440. A system for detecting RFID tags comprising:
- a reader unit that transmits or receives RF signals; and
- a first intelligent station comprising: a first RF antenna connected to the reader unit through a first switch; and at least a second RF antenna connected to the reader unit through at least a second switch, wherein the first switch and the at least a second switch receive control signals, and wherein the intelligent station detects the presence of a stocking RFID tag or a pushbutton or keyed input sequence, alerts the intelligent station that the shelf is completely stocked, and sends a message to a database which indicates that a current stock level is full or at a target level.
Type: Application
Filed: Jun 13, 2006
Publication Date: Oct 26, 2006
Inventors: Donald Bauer (Laurel, MD), Edward Buiel (Mount Pleasant, SC), Richard Campero (Ellicott City, MD), William Carpenter (Sykesville, MD), Steven Metzler (Chillicothe, OH), Richard Nordgren (Daleville, VA), Paul Rasband (Frederick, MD), Mark Taylor (Columbia, MD), Howard Wood (Covington, VA)
Application Number: 11/451,465
International Classification: H04Q 5/22 (20060101);