CAPACITOR STRUCTURE
A capacitor structure and method of forming it are described. In particular, a high-K dielectric oxide is provided as the capacitor dielectric. The high-K dielectric is deposited in a series of thin layers and oxidized in a series of oxidation steps, as opposed to a depositing a single thick layer. Further, at least one of the oxidation steps is less aggressive than the oxidation environment or environments that would be used to deposit the single thick layer. This allows greater control over oxidizing the dielectric and other components beyond the dielectric.
Latest Patents:
This application is a divisional of U.S. application Ser. No. 10/613,203, filed Jul. 3, 2003, which is a divisional of U.S. application Ser. No. 09/589,671, filed Jun. 7, 2000, now issued as U.S. Pat. No. 6,617,206, the specifications of which are incorporated herein by reference.
FIELD OF THE INVENTIONThe present invention relates generally to a capacitor structure and its method of manufacture. More particularly, the present invention relates to a capacitor structure for high-density memory arrays.
BACKGROUND OF THE INVENTIONWithout limiting the scope of the invention, its background is described in connection with prior methods of forming capacitor structures for dynamic random access memory (DRAM) using high-dielectric-constant materials (or high-K dielectrics). By high-dielectric-constant, it is meant a dielectric constant greater than 10 at room temperature, and preferably a dielectric constant greater than 20.
Advances in miniaturization of integrated circuits have led to smaller areas available for devices such as transistors and capacitors. For example, in semiconductor manufacture of a memory array for a DRAM, each memory cell comprises a capacitor and a transistor. In a conventional DRAM, pairs of memory cells are located within regions (“memory cell areas”) defined by intersecting row lines (“word lines”) and column lines (“bit lines” or “digit lines”). Accordingly, to increase memory cell density of the memory array, row lines and column lines are positioned with minimal spacing (“pitch”). Using minimal pitch in turn constrains memory cell area. In high-density memory array architecture, a memory array will have a bit line-to-bit line pitch equal to or less than 0.5 microns.
In conflict with reducing memory cell area is maintaining a sufficient amount of memory cell charge storage capacitance. Each DRAM memory comprises a capacitor for storing charge. A capacitor is two conductors separated by a dielectric, and its capacitance, C, is mathematically determinable as:
C=(εrεoA)/d,
where εo is a physical constant; dielectric constant, εr, is a material dependant property; distance, d, is distance between conductors; and area, A, is common surface area of the two conductors.
To increase capacitance, C, per unit area, the DRAM industry is pursuing depositing materials with a high permittivity for use as capacitor dielectrics. Many perovskites, ferroelectrics, and other high-dielectric-constant materials have capacitance densities greater than standard silicon dioxide (SiO2) and silicon nitride (Si3N4) capacitor dielectrics.
Many perovskites have the chemical formula ABO3, where A is one or more monovalent, divalent, or trivalent elements and B is one or more pentavalent, tetravalent, trivalent, or divalent elements. Examples of high-dielectric-constant ferroelectric oxides include niobium pentoxide (Nb2O5); tantalum pentoxide (Ta2O5); and titanates including lead zirconate titanate (PbTiZrO3, abbreviated PZT) and barium strontium titanate (BaSrTiO3, abbreviated BST). Other high-dielectric-constant materials include but are not limited to non-oxide ferroelectrics, such as barium fluoride (BaF2) and magnesium fluoride (MgF2). Depending on the dielectric constant, εr, of these materials, as well as the application, they may be used in parallel plate capacitor structures, such as stack capacitors or mini-stack capacitors, or vertical capacitor structures including container capacitors and trench capacitors.
High-dielectric-constant oxides are conventionally deposited in one step at elevated temperatures (greater than 500 degrees Celsius) in an oxygenated atmosphere (such as O2). Examples of processes for depositing high-dielectric-constant oxides are ion-beam sputtering, chemical vapor deposition, and pulsed laser deposition. It has been found that in such an environment, the capacitor electrode layer oxidizes, thereby causing an unwanted reduction in capacitance. Moreover, such high-dielectric-constant oxides are often annealed or re-oxidized after deposition, which further exacerbates the oxidation problem.
In addition, other problems may occur if high-dielectric-constant oxide dielectrics are deposited directly on silicon (Si) capacitor electrodes. In addition to oxidation or other undesirable reactions between the electrode and dielectric, silicon may migrate into the high-dielectric-constant oxide, thereby reducing its permittivity and the capacitor's capacitance.
One option to at least partially prevent these problems is to provide a barrier layer, such as a layer of germanium (Ge) or silicon nitride (Si3N4), between the silicon electrode and the high-dielectric-constant oxide. The oxidation conditions present after the deposition of this barrier layer may result in the oxidation of that layer, but this is actually preferable in certain circumstances. Regardless, it is desired in the art that this layer will prevent oxidation of the electrode. Unfortunately, the oxidation conditions in effect while forming the entirety of the high-K dielectric in one step often still cause oxidation of the silicon electrode despite the presence of the barrier layer. In addition, forming a barrier layer adds complexity to the manufacturing process and reduces the effective dielectric constant of the capacitor.
As an alternative to depositing dielectric on a silicon electrode, high-dielectric-constant oxides may be deposited on nonreactive metals or conductive metal oxides comprising the capacitor electrode. The term “nonreactive” when used in context with contact to a high-dielectric-constant oxide herein means a material that provides a stable conductive interface during and after processing. Examples of nonreactive metals include noble metals such as lead (Pd) or platinum (Pt). Exemplary conductive metal oxides include ruthenium oxide (RuO2). Single and multiple metal layers may used to form the capacitor electrode. However, while this solves some of the problems associated with silicon electrodes, the problem of oxidizing the electrode during or after the formation of the high-K dielectric still exists.
As a result, it would be desirable to form a high-dielectric-constant oxide such that the likelihood of decreasing capacitance is reduced.
BRIEF DESCRIPTION OF THE DRAWINGSFeatures and advantages of the present invention will become more apparent from the following description of the preferred embodiments described below in detail with reference to the accompanying drawings where:
Reference numbers refer to the same or equivalent parts of embodiments of the present invention throughout the several figures of the drawing.
DESCRIPTION OF THE PREFERRED EMBODIMENTSIn the following detailed Description of the Preferred Embodiments section, reference is made to the accompanying drawings which form a part of this disclosure, and which, by way of illustration, are provided for facilitating understanding of the exemplary embodiments. It is to be understood that embodiments other than the exemplary embodiments disclosed herein may be practiced without departing from the scope of the present invention. The following exemplary embodiments, directed to manufacture of dynamic random access memories (DRAMs), are provided to facilitate understanding of the present invention. Accordingly, some conventional details with respect to manufacture of DRAMs have been omitted to more clearly describe the exemplary embodiments herein.
Referring to
Conductive layer 20 is then polished to form a planar surface. As chemical-mechanical-polishing (CMP) is conventionally used for such polishing, photosensitive polymer 21 is deposited to protect substrate assembly 10 from potential contaminants associated with CMP. Conductive layer 20 provides bottom electrodes for container capacitor structures.
Dashed-lines 5 indicate a proximate location for a contact via for connection to a conductive stud 15 therebelow. Separation 7 between dashed-lines 5 and outer surface 9 of conductive layer 20 bottom electrodes is about or less than 0.1 microns for a high-density DRAM array.
Notably, though an exemplary embodiment of the present invention is described herein in terms of a container capacitor structure for a high-density DRAM array, it should be understood that the present invention may be employed to form container, stack, mini-stack, trench, or other capacitor structures in DRAM devices or in devices other than DRAM. The present invention may be implemented in a variety of other integrated circuit devices including but not limited to memory devices, logic devices having embedded memory, application specific integrated circuits, microprocessors, microcontrollers, digital signal processors, and the like incorporating a memory array which employs one or more capacitors. Moreover, a memory or a memory module having a capacitor formed in accordance with the present invention may be employed in various types of information handling systems. Such systems include network cards, telephones, scanners, facsimile machines, routers, televisions, video cassette recorders, copy machines, displays, printers, calculators, and personal computers, and the like systems incorporating memory.
Again, referring to
With respect to these examples, oxidation of the conductive layer 20 will occur during or after a one-step formation of the full amount of high-K dielectric that will be used in the completed capacitor. By way of example and not limitation, if conductive layer 20 comprises silicon and a high-dielectric-constant oxide is deposited on it, then silicon dioxide may be formed. In addition, oxygen may reach other layers under the conductive layer 20 and create undesirable effects in other materials. Further, other undesirable reactions or material migrations may also occur.
To mitigate unwanted interaction, the present invention offers exemplary embodiments that allow for formation of a high-K dielectric under conditions that minimize if not completely prevent oxidation beyond the dielectric. Rather than form the entire amount of dielectric at once under a given set of parameters, exemplary embodiments teach forming the dielectric in a plurality of steps, wherein each step provides only a portion of the total dielectric to be used in the completed device. Moreover, at least a first oxidation step involved with providing the dielectric is carried out under parameters that result in less aggressive oxidation in comparison to the prior art parameters.
Referring to
In either embodiment, a first layer 22 of capacitor dielectric 24 is subsequently formed. First layer 22 may be formed at least in part by chemical-vapor-deposition (CVD), physical-vapor-deposition (PVD), jet-vapor deposition (JVD), liquid deposition (e.g., spin-on, liquid injection, and the like), atomic layer deposition/epitaxy (ALD/ALE), or other means for controlled deposition of a material. Further, it should be noted that at least one oxidation step is used in providing many kinds of capacitor dielectric both in prior art and in exemplary embodiments of the current invention. For instance, oxidation may play an integral part of the initial deposition process so that an oxide is formed as a direct result of that process. Directly depositing a tantalum oxide is one example. Alternatively, a non-oxide may be initially deposited, followed by an oxidation step. Depositing tantalum and then oxidizing that layer into tantalum oxide serves as an example of this alternative process. Regardless of the method used to provide the oxide, such an oxide is often later subjected to an anneal in an oxidizing ambient in order to fill oxygen vacancies and burn away impurities in the oxide. Any of these oxidation steps can take place by way of one or a combination of oxidizing methods.
Many of these oxidizing methods involve subjecting the substrate assembly 10A/10B to a thermal process in an oxygen containing atmosphere. Such an atmosphere may contain a gas including O2, O3, N2O, NO, H2O, or combinations thereof. The thermal energy can be provided in a furnace, wherein resistance to the conduction of electricity through the furnace coils generates the heat for the substrate assembly 10A/10B. As another option, the substrate assembly 10A/10B could be placed in a rapid thermal process device such as the Centura HT tool, sold by Applied Materials, set to RTO (rapid thermal oxidation) mode. In such a device, a lamp shines light on the substrate assembly 10A/10B, which heats in reaction to absorbing the light. Alternatively, a reactor could be used to generate an oxygen-containing plasma, remote or local, for the substrate assembly 10A/10B. As yet another option, an anodic oxidation process using an electrolytic solution could be used to provide the oxidizing environment.
Returning to the tantalum oxide example, prior art indicates that it is known to deposit, in one step, 50 to 70 Angstroms of tantalum oxide. Exemplary parameters for doing so involve a CVD process wherein a tantalum precursor such as tantalum chloride (TaCl5) is carried by a gas such as argon into a furnace at a rate of 10 sccm to 2000 sccm. Further, an oxygen-containing gas such as N2O is introduced to the furnace at a rate of 0.1 SLM to 5 SLM. The pressure inside the furnace is at 0.1 Torr to 10 Torr, and the temperature inside the furnace ranges from 800° C. to 850° C. Under parameters such as these, the full amount of tantalum oxide will form after about 30 minutes. In contrast, an exemplary embodiment of the current invention involves providing a first layer 22 of tantalum oxide whose thickness is within the range of 10 to 40 Angstroms (preferably 20 Angstroms), wherein deposition can occur in the same furnace and with the same atmosphere but at a lower temperature—ranging from 400° C. to less than 800° C. (preferably around 450° C.)—and a process time of about 1 minute. Thus, assuming that it is desired to ultimately have a dielectric thickness of 50-70 Angstroms, this exemplary embodiment teaches initially providing about 14% to 80% of that total.
As another example, BST can be deposited as the first layer 22. Prior art teaches providing a full 200 Angstroms at 650° C. Embodiments of the current invention allow for initially providing a first layer 22 comprising BST, wherein the thickness ranges from 20-80 Angstroms and the temperature is less than 650° C., preferably between 400° C. and less than 650° C. Assuming that it is desired to ultimately have a dielectric thickness of 200 Angstroms, this exemplary embodiment teaches initially providing about 10% to 40% of that total.
As a third example, it is assumed that a Metal-Insulator-Metal (MIM) capacitor configuration is desired, wherein tantalum pentoxide Ta2O5 serves as the insulator. Prior art involves deposition parameters such as an ozone ambient and a temperature of 500° C., wherein the parameters result in the full amount of high-K dielectric being deposited. Exemplary embodiments of the current invention allow for less than the full amount of high-K dielectric to be initially deposited under less aggressive oxidation conditions in terms of time, temperature, pressure, oxygen source, other ambient gasses, or any other parameter.
These examples demonstrate that the oxidation environment used during or after the deposition of the full amount of high-K oxide to be used in the capacitor results from a cooperation of several parameters, including the ones specified above as well as others such as the presence of excitation sources (like plasma or UV radiation) and their associated values. The current invention includes within its scope exemplary embodiments wherein less than the full amount of high-K oxide is initially provided, and oxidation associated with that initial amount is less than the oxidation that occurs in relation to depositing the full amount. The oxidation may occur during the deposition of an oxide dielectric, after the deposition of a non-oxide layer, or after the oxide has been provided. The oxidation may occur by way of any known method of oxidation, such as RTO, furnace oxidation, or other methods described above. The lesser oxidation is achieved by altering the oxidation parameters, such as in the ways described above as well as others.
After depositing and oxidizing first layer 22, second layer 23 of capacitor dielectric 24 is formed, as illustratively shown in the cross-sectional views of
High-dielectric-constant materials that may be used include perovskites, ferroelectrics, high-dielectric-constant oxides, acceptor doped perovskites, acceptor doped ferroelectrics, acceptor doped high-dielectric-constant oxides, donor doped perovskites, donor doped ferroelectrics, donor doped high-dielectric-constant oxides, and combinations thereof. The high-dielectric-constant material may be doped with a material selected from: Na, Al, Mn, Ca, La, Nb, F, K, Cr, Mn, Co, Ni, Cu, Zn, Li, Mg, Cl, V, Mo, Ce, Pr, Nd, Sn, Eu, Gd, Tb, Dy, Ho, Er, Ta, W, and combinations thereof.
By repetitively forming sub-layers of capacitor dielectric 24, a desired thickness may be achieved while allowing greater control of the oxidation process than one would have by forming one layer of capacitor dielectric having that thickness. In embodiments such as the one depicted in
After forming a plurality of sub-layers of capacitor dielectric 24, conductive layer 25 may be deposited to provide a top electrode portion for capacitor 8. Conductive layer 25 may comprise acceptor doped silicon, donor doped silicon, copper, aluminum, platinum, palladium, rhodium, gold, iridium, silver, titanium nitride, tin nitride, ruthenium nitride, zirconium nitride, ruthenium dioxide, tin oxide, titanium monoxide, and combinations thereof.
It should be understood that substrate assembly 10A of
The present invention has been particularly shown and described with respect to certain preferred embodiments. However, it will be readily appreciated to those of ordinary skill in the art that a wide variety of alternate embodiments, adaptations or variations of the preferred embodiments, and/or equivalent embodiments may be made without departing from the intended scope of the present invention as set forth in the appended claims. For example, the thickness of the initially deposited dielectric sub-layer can be as little as the thickness of one atom comprising that layer (in which case the sub-layer would be considered to be a “monolayer”) depending upon the tendency of subsequent processing steps to encourage oxygen diffusion. Further, it should be understood that exemplary embodiments of the current invention have applications in metal-insulator-silicon (MIS) structures as well as MIM structures discussed above and other structures known in the art. For instance, at least one exemplary embodiment of the current invention allows for an MIS device comprising a top metal electrode, a top Ta2O5 layer under the top metal electrode, a bottom Ta2O5 layer under the top Ta2O5 layer, a silicon nitride layer under the bottom Ta2O5 layer, and a bottom silicon electrode under the silicon nitride layer. In addition, the current invention is not limited to providing a capacitor dielectric. Rather, the invention has applications in any circumstance wherein controlling the oxidation of a dielectric or other insulator layer is beneficial. Accordingly, the present invention is not limited except as by the appended claims.
Claims
1. A metal-insulator-silicon device, comprising:
- a top metal electrode;
- a top tantalum pentoxide (Ta2O5) layer under the top metal electrode;
- a bottom tantalum pentoxide (Ta2O5) layer under the top tantalum pentoxide (Ta2O5) layer and contacting the top tantalum pentoxide (Ta2O5) layer;
- a silicon nitride layer under the bottom tantalum pentoxide (Ta2O5)layer; and
- a bottom silicon electrode under the silicon nitride layer.
2. The device of claim 1, wherein the top metal electrode is comprised of at least one of copper, aluminum, platinum, palladium, rhodium, gold, iridium and silver.
3. The device of claim 1, wherein the top tantalum pentoxide (Ta2O5) layer includes a thickness that ranges between approximately 10 Angstroms and approximately 40 Angstroms.
4. The device of claim 1, wherein the top tantalum pentoxide (Ta2O5) layer includes a thickness of at least about 20 Angstroms.
5. The device of claim 1, further comprising a dielectric thickness that includes respective thicknesses of the top tantalum pentoxide (Ta2O5) layer, the bottom tantalum pentoxide (Ta2O5) layer and the silicon nitride layer, further wherein the thickness of the top tantalum pentoxide (Ta2O5) layer ranges between approximately 14% and approximately 80% of the dielectric thickness.
6. The device of claim 1, wherein the bottom silicon electrode is comprised of a hemispherical grain-silicon that further includes phosphorous.
7. The device of claim 1, wherein the top metal electrode comprises a first electrode of a capacitor structure and the bottom silicon electrode comprises an opposing second electrode structure of the capacitor structure, and further wherein the top tantalum pentoxide (Ta2O5) layer, the bottom tantalum pentoxide (Ta2O5) layer and the silicon nitride layer comprise a dielectric structure positioned between the first electrode structure and the second electrode structure.
8. The device of claim 7, wherein the capacitor structure further comprises a portion of a memory cell in a dynamic random access memory device.
9. A capacitor structure for a semiconductor device, comprising:
- a first electrode structure;
- a second electrode structure spaced apart from the first electrode structure; and
- a dielectric structure interposed between the first electrode structure and the second electrode structure, the dielectric structure further comprising at least two layers of a dielectric material.
10. The capacitor structure of claim 9, wherein the first electrode structure is comprised of one of an acceptor-doped and a donor-doped semiconductor material.
11. The capacitor structure of claim 9, wherein the first electrode structure is comprised of at least one of copper, aluminum, platinum, palladium, rhodium, gold, iridium, silver, titanium nitride, tin nitride, ruthenium nitride, zirconium nitride, ruthenium dioxide, tin oxide and titanium monoxide.
12. The capacitor structure of claim 9, wherein the second electrode structure is comprised of one of an acceptor-doped and a donor-doped semiconductor material.
13. The capacitor structure of claim 9, wherein the second electrode structure is comprised of at least one of copper, aluminum, platinum, palladium, rhodium, gold, iridium, silver, titanium nitride, tin nitride, ruthenium nitride, zirconium nitride, ruthenium dioxide, tin oxide and titanium monoxide.
14. The capacitor structure of claim 9, wherein at least one of the dielectric layers is comprised of barium strontium titanate (BST).
15. The capacitor structure of claim 14, wherein the barium strontium titanate (BST) layer includes a thickness that ranges between approximately 20 Angstroms and approximately 80 Angstroms.
16. The capacitor structure of claim 14, further comprising a thickness of the dielectric structure, wherein one of the at least two layers of a dielectric material includes a barium strontium titanate (BST) layer having a thickness that ranges between approximately 10% and approximately 40% of the thickness of the dielectric structure.
17. The capacitor structure of claim 9, wherein at least one of the dielectric layers is comprised of tantalum pentoxide (Ta2O5).
18. The capacitor structure of claim 9, wherein at least one of the dielectric layers is comprised of silicon nitride.
19. The capacitor structure of claim 9, wherein one of the at least two layers of a dielectric material includes a tantalum pentoxide layer having a thickness that ranges between approximately 10 Angstroms and approximately 40 Angstroms.
20. The capacitor structure of claim 9, wherein one of the at least two layers of a dielectric material includes a tantalum pentoxide (Ta2O5) layer having a thickness of at least about 20 Angstroms.
21. The capacitor structure of claim 9, further comprising a thickness of the dielectric structure, wherein one of the at least two layers of a dielectric material includes a tantalum pentoxide (Ta2O5) layer having a thickness that ranges between approximately 14% and approximately 80% of the thickness of the dielectric structure.
22. The capacitor structure of claim 9, wherein at least one of the first electrode and the second electrode is comprised of a hemispherical grain-silicon that further includes phosphorous.
Type: Application
Filed: Jul 26, 2006
Publication Date: Nov 16, 2006
Applicant:
Inventors: Gurtej Sandhu (Boise, ID), Guy Blalock (Boise, ID)
Application Number: 11/460,021
International Classification: H01L 29/94 (20060101); H01L 21/20 (20060101);