Low-cost flexible film package module and method of manufacturing the same
Provided are a flexible film package module and a method of manufacturing the same that can be adapted for manufacture at lower cost and/or to adapt the characteristics of the flexible film package module for specific applications. The lower-cost flexible film package module includes a tape film that combines both a first insulating substrate, typically formed from a higher-cost polyimide material, and a second insulating substrate, typically formed from an insulating material or materials that are less expensive and/or provide modified performance when compared with the first insulating material. Both the first and second substrates will include complementary circuit patterns that will be electrically and physically connected to allow the composite substrate to function as a unitary substrate. The first and second substrates will also include connection regions that may be adapted for connection to printed circuit boards and/or electronic devices such as liquid crystal displays.
This application claims priority from Korean Patent Application No. 2003-54221, which was filed on Aug. 5, 2003, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a semiconductor device used for a liquid crystal display (LCD) device and, more particularly, to a flexible film package.
2. Description of the Related Art
In recent years, the rapid development of LCD-related technologies has accelerated the shift to an information-oriented society. In general, data communication electronic devices in which an LCD is utilized are required to be thin, light-weight, and compact for portable use. Thus, new methods of mounting semiconductor chips on semiconductor packages have been proposed for LCD devices.
While micro ball grid array (μ-BGA)-type semiconductor packages were widely used for conventional data communication electronic devices that incorporated an LCD, flexible film packages are currently being increasingly utilized. A flexible film package is a semiconductor package in which a semiconductor chip is directly attached onto a flexible thin-tape-type film so as to reduce the area occupied by the mounted semiconductor chip.
Flexible film packages do not generally utilize solder balls as external connection terminals but instead rely on an anisotropic conductive film (ACF) that is directly attached to a printed circuit board (PCB) or a glass panel for an LCD. The flexible film packages include broad categories such as tape carrier packages (TCP), chip on film (CoF) packages and other configurations known in the packaging arts.
The flexible film packages 100 are bent and mounted on the glass panel 300 and connected to a PCB 200, which is positioned behind the glass panel 300. The PCB 200 may be considerably larger than the individual packages so that a plurality of flexible film packages 100 may all be attached thereto. A plurality of semiconductor devices 210 for operating the LCD device may be installed at other locations on the PCB 200.
A semiconductor chip (110 of
As illustrated in
A conventional flexible film package is disclosed in U.S. Pat. No. 6,061,246, dated May 9, 2000, entitled “Microelectric Package Including Flexible Layers and Flexible Extensions, and Liquid Crystal Display Modules Using the Same.” However, conventional flexible film packages have certain limitations. For example, although the polyimide films used to form the flexible film package tend to have excellent durability and CTE, they also tend to be very expensive so that a semiconductor package manufacturing process that uses a polyimide film will tend to be more costly than one that does not. Substantially, when a conventional flexible film package is manufactured, the production cost ratio between the semiconductor package and the incorporated semiconductor chip can be as much as 6:1, a cost ratio that is generally higher than that of other kinds of semiconductor packages. Therefore, reducing the production cost for flexible film semiconductor packages would strengthen the price competitiveness of such packages.
SUMMARY OF THE INVENTIONExemplary embodiments of the present invention provide a lower-cost flexible film package module in which a tape film used in the flexible film package is formed from a lower-cost flexible printed circuit (FPC) insulating substrate in combination with a polyimide insulating substrate and a method of manufacturing such lower-cost flexible film package modules.
Exemplary embodiments of the present invention provide lower-cost flexible film package modules, comprising a plurality of semiconductor package main bodies, each of which comprises a first insulating substrate constituting a flexible film package for an LCD, the first insulating substrate formed of a polyimide material, a chip paddle formed on the first insulating substrate and a semiconductor chip mounted on the chip paddle, an input circuit pattern formed on the first insulating pattern for connecting a circuit pattern of the chip paddle to a printed circuit board, and an output circuit pattern formed on the first insulating substrate for connecting the circuit pattern of the chip paddle to a glass panel; and a input terminal connecting portion connected to the input circuit pattern of each of the semiconductor package main bodies, the input terminal connecting portion comprising a common second insulating substrate formed of a material that is less expensive than that of the first insulating substrate of each of the semiconductor package main bodies, and extending common input circuit patterns formed on the common second insulating substrate that are electrically connected to the input circuit pattern of each of the semiconductor package main bodies and finally connected to the printed circuit board.
The first insulating substrate of each of the semiconductor package main bodies can be configured with a range of lengths, for example, about 7 mm to 20 mm, and a range of thicknesses, for example, about 25 μm to 75 μm. The common second insulating substrate of the input terminal connecting portion can be formed using a material that has a lower coefficient of thermal expansion and is less durable than that of the first insulating substrate. The common second insulating substrate of the input terminal connecting portion can include through holes to form the extending common input circuit patterns therein. The common second insulating substrate of the input terminal connecting portion can be formed of a flexible material and have a thickness of about 50 μm to 120 μm. The extending common input circuit patterns of the input terminal connecting portion can be formed on a front surface or a rear surface and connected vertically to each other.
The input circuit pattern of each of the semiconductor package main bodies can be connected to the extended common input circuit patterns of the input terminal connecting portion using an anisotropic conductive film. The input circuit pattern of each of the semiconductor package main bodies can be applied to the extended common input circuit patterns of the input terminal connecting portion using thermocompression bonding. The semiconductor chip of each of the semiconductor package main bodies can be mounted on the chip paddle using bump connectors.
Another exemplary embodiment the present invention provides a method of manufacturing lower-cost flexible film package modules. The method comprises preparing a plurality of semiconductor package main bodies, each of which including a chip paddle formed on a first insulating substrate, a semiconductor chip is mounted on the chip paddle, a circuit pattern of the chip paddle is connected to a printed circuit board by an input circuit pattern, and other circuit pattern of the chip paddle is connected to a glass panel by an output circuit pattern; preparing a input terminal connecting portion, the input terminal connecting portion being connected to the input circuit pattern of each of the semiconductor package main bodies, the input terminal connecting portion comprising a common second insulating substrate formed of a material that is less expensive than that of the first insulating substrate of each of the semiconductor package main bodies and extending common input circuit patterns formed on the common second insulating substrate; and connecting the input circuit pattern of each of the semiconductor package main bodies to the extending common input circuit patterns of the lower-cost input terminal connecting portion.
The input circuit pattern of each of the semiconductor package main bodies can be connected to the extended common input circuit patterns of the lower-cost input terminal connecting portion by an anisotropic conductive film. The input circuit pattern of each of the semiconductor package main bodies can be connected to the extended common input circuit patterns of the input terminal connecting portions using thermocompression bonding which can include applying ultrasonic vibration in conjunction with heating.
The printed circuit board can have a smaller width than that of the lower-cost input terminal connecting portion, each of the semiconductor package main bodies can be a tape carrier package and each of the semiconductor package main bodies can be a chip on film package. The exemplary flexible film package modules of the present invention may use a tape film, which combines a first insulating substrate formed of a polyimide material and a second insulating substrate formed of a material that is less expensive than that of the first insulating substrate. Thus, the production costs associated with the flexible film package module can be reduced.
BRIEF DESCRIPTION OF THE DRAWINGSThe above and other features and advantages of the present invention will become more apparent when exemplary embodiments are described in detail with reference to the attached drawings in which:
These drawings have been provided to assist in the understanding of the exemplary embodiments of the invention as described in more detail below and should not be construed as unduly limiting the invention. In particular, the relative spacing, positioning, sizing and dimensions of the various elements illustrated in the drawings are not drawn to scale and may have been exaggerated, reduced or otherwise modified for the purpose of improved clarity. Those of ordinary skill in the art will also appreciate that a range of alternative configurations have been omitted simply to improve the clarity and reduce the number of drawings.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTSThe present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as being limited to solely the embodiments set forth herein. Rather, these exemplary embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.
As illustrated in
The lower-cost input terminal connecting portion 150 is formed from a second insulating substrate, which tends to have a lower CTE and/or be less durable (and less expensive) than the polyimide material that is used to form the first insulating substrate. Thus, lower-cost flexible film package modules according to the present invention include a semiconductor package main body 100 and lower-cost input terminal connecting portion 150 which are connected to each other. In
Because PCB 200′ can also be scaled down by changing the shape of the lower-cost input terminal connecting portion 150, the production cost of an LCD device utilizing this construction can be reduced even further. In
Also, the lower-cost flexible film package module further comprises a lower-cost input terminal connecting portion 150, which is connected to the input circuit pattern 130 of each of the semiconductor package main bodies 100. The low-cost input terminal connection portion 150 is formed on a common second insulating substrate 170 and includes extended common input circuit patterns 152, 160 and 154. The common second insulating substrate 170 is formed of a material that is less expensive than that used to form the first insulating substrate 10, e.g., polyimide. The extended common input circuit patterns 152, 160 and 154 that are formed on the common second insulating substrate 170 may be connected to the input circuit patterns 130 of the semiconductor package main bodies 100 using an ACF or thermocompression bonding and, finally, connected to the PCB.
Because the lower-cost input terminal connecting portion 150 having a length L1 is formed of the second insulating substrate 170, which may have a lower CTE and be somewhat less durable a higher-cost polyimide material, but which can still provide acceptable performance and reliability, the entire production cost of the flexible package can be reduced.
The second insulating substrate 170 can be a flexible print circuit (FPC) insulating substrate. The pitch of the copper patterns formed on the FPC insulating substrate 170 will not generally be as fine as that of copper patterns formed on a polyimide insulating substrate, but the FPC insulating substrate 170 is flexible and can include through holes therein. Also, because the input circuit pattern 130 of the flexible film package 100 need not be as fine as the output circuit pattern 140 that is connected to the glass panel, the FPC insulating substrate can be used successfully as the second insulating substrate 170.
As illustrated in
As illustrated in
In the conventional flexible film package module shown in
As shown in
As long as the foregoing semiconductor package main body 100A, 100B or 100C is connected to the low-cost input terminal connecting portion, various changes in form can be made thereto, while preserving the advantages of this invention. As explained above, a flexible film package module constructed according to the present invention may use a tape film comprising a combination of a lower-cost FPC insulating substrate and a higher-cost polyimide film, thereby allowing the entire production cost of flexible film packages to be reduced. Also, because a PCB can be scaled down by changing the shape of the lower-cost input terminal connecting portion, a highly integrated LCD device can be embodied easily in a range of configurations.
While the present invention has been particularly shown and described with reference to certain exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.
Claims
1.-9. (canceled)
10. A method of manufacturing a flexible film package module comprising:
- preparing a plurality of semiconductor package main bodies, each package main body including an input circuit and an output circuit;
- mounting a semiconductor chip on each of the package main bodies;
- preparing a package common body, the package common body including a conductive pattern; and
- electrically and mechanically attaching each of the package main bodies to the package common body, whereby the input circuits are connected to the conductive pattern in a parallel configuration.
11. A method of manufacturing a flexible film package module according to claim 10, wherein:
- preparing the package main bodies includes preparing a plurality of first insulating substrates from a first insulating material; and
- preparing the package common body includes preparing a second insulating substrate from a second insulating material, wherein the first and second insulating materials are different materials.
12. A method of manufacturing a flexible film package module according to claim 11, wherein:
- the first insulating material is a polyimide having a first coefficient of thermal expansion CTE1; and
- the second insulating material is a material other than a polyimide and has a second coefficient of thermal expansion CTE2, wherein CTE1<CTE2.
13. A method of manufacturing a flexible film package module according to claim 11, wherein:
- electrically and mechanically attaching each of the package main bodies to the package common body includes positioning an anisotropic conductive film between each of the input circuits and a corresponding region of the conductive pattern.
14. A method of manufacturing a flexible film package module according to claim 11, wherein:
- electrically and mechanically attaching each of the package main bodies to the package common body utilizes a thermocompression bonding process.
15. The method of claim 14, wherein:
- the thermocompression bonding process includes the simultaneous application of ultrasonic vibrations and heat to complementary portions of the input circuits and the conductive pattern.
16. A method of manufacturing a flexible film package module according to claim 11, wherein:
- preparing the package common body includes forming a connection region arranged and configured to connect the conducive pattern to a printed circuit board (PCB).
17. A method of manufacturing a flexible film package module according to claim 16, wherein:
- the package common body has a first width Web and the connection region has a second width Wer, wherein a ratio of Web:Wer is at least 2:1.
18. A method of manufacturing a flexible film package module according to claim 16, wherein:
- the package common body has a first width Web and the printed circuit board has a second width Wpcb, wherein a ratio of Web:Wpcb is at least 2:1.
19. A method of manufacturing a flexible film package module according to claim 11, wherein:
- preparing the semiconductor package main bodies included preparing a plurality of packages having a configuration selected from a group consisting of tape carrier packages (TCPs) and chip on film (COF) packages.
20. A method of manufacturing a flexible film package module according to claim 11, comprising:
- preparing a connection region on the output circuit for connection with a liquid crystal display (LCD); and
- preparing a connection region on the conductive pattern for connection with a printed circuit board (PCB).
Type: Application
Filed: Aug 10, 2006
Publication Date: Nov 30, 2006
Inventors: Sa-Yoon Kang (Seoul), Dong-Han Kim (Osan-si), Ye-Chung Chung (Suwon-si)
Application Number: 11/501,883
International Classification: G02F 1/1345 (20060101);