White light emitting device
A white light emitting device includes a structure for emitting white light having at least four wavelengths by using two or less LEDs, where the LEDs include a blue/green LED emitting blue and green wavelengths of light. The device also includes means for emitting red wavelength of light.
Latest Patents:
This application claims the benefit of Korean Patent Application No. 2005-130652 filed on Dec. 27, 2005, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a white light emitting device, and more particularly, to a white light emitting device using up to two LEDs to achieve superior color reproducibility and high efficiency.
2. Description of the Related Art
In general, a white LED apparatus is preferred over a conventional small-sized lamp or a fluorescent lamp as a backlight of a Liquid Crystal Display (LCD). The white LED apparatus can be manufactured by forming a ceramic phosphor layer on a light exiting surface of a blue LED.
The most representative type of conventional white LED apparatus is realized by combining a GaN-based blue LED with YAG-based yellow phosphor. The blue light emitted from the blue LED excites the phosphor to emit yellow light. A mixture of blue light and yellow light is perceived as white light by the observer. Such a white LED apparatus has advantages like relatively high efficiency and low costs but also drawbacks like mediocre color reproducibility.
Alternatively, a white light LED apparatus may be realized by combining blue, green and red LEDs.
As a further alternative, LEDs can be used to realize a white light emitting device by combining an ultraviolet LED (UV LED) with green/blue/red phosphor or a mixture of blue, green and red phosphors. Such a white light emitting device has superior color reproducibility with low costs, but is not yet commonly used and has low efficiency. Therefore, there exists a need for developing a white light emitting device which satisfies a need for high efficiency and high color reproducibility.
SUMMARY OF THE INVENTIONThe present invention has been made to solve the foregoing problems of the prior art and therefore an object of certain embodiments of the present invention is to provide a high-quality white light emitting device having high efficiency and superior color reproducibility.
According to an aspect of the invention for realizing the object, there is provided a white light emitting device including: a structure for emitting white light having at least four wavelengths by using two or less light emitting diodes (LEDs), wherein the LEDs comprise a blue/green LED emitting blue and green wavelengths of light; and the device comprising means for emitting red wavelength of light.
The blue/green LED may be an InGaN-based LED. Also the red light emitting means may be an InGaAlP-based LED. Alternatively, the red light emitting means may be red phosphor or a red Photon Recycling System (PRS).
Preferably, the white light emitting device emits white light having a light emission spectrum with a blue peak wavelength in the range of 440 to 470 nm, and a green peak wavelength in the range of 500 to 530 nm, a yellow peak wavelength in the range of 560 to 580 nm and a red peak wavelength in the range of 620 to 640 nm. More preferably, the white light emitting device emits white light having a light emission spectrum with a blue peak wavelength in the range of 450 to 460 nm, a green peak wavelength in the range of 505 to 515 nm, and a yellow peak wavelength in the range of 565 to 575 nm, and a red peak wavelength in the range of 630 to 640 nm. In this case, the white light has a color rendering index of at least 95.
According to an embodiment of the present invention, the white light emitting device may further comprise yellow phosphor, wherein the red light emitting means may comprise at least one selected from a group consisting of a red LED, a red PRS and red phosphor. In this case, the white light emitting device attains white light by mixing the blue, green, yellow and red colors. Preferably, the yellow phosphor has a peak wavelength in the range of 540 to 590 nm.
According to another embodiment of the present invention, the red light emitting means may be an amber/red LED emitting amber and red wavelengths of light. In this case, the white light emitting device attains white light by mixing the blue, green, amber and red colors.
According to further another embodiment of the present invention, the blue/green LED is adapted to emit amber wavelength of light along with blue and green wavelengths of light, and the red light emitting means may be a red LED emitting red wavelength of light. In this case, the white light emitting device uses two LEDs to attain white light by mixing the blue, green, amber and red colors.
The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Preferred embodiments of the present invention will now be described in detail with reference to the accompanying drawings. The invention may however be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the shapes and dimensions may be exaggerated for clarity, and the same reference numerals are used throughout to designate the same or like parts.
The blue/green LED 101 and the red LED 102 are encapsulated by a light-transmitting resin 105. The yellow phosphor 103 powders are dispersed in the resin 105. The yellow phosphor 103 may be for example YAG-based yellow phosphor which absorbs the blue light to generate yellow light. In this case, the YAG-based yellow phosphor 103 absorbs a portion of the output light of the blue/green LED 101 and generates the yellow light Y. Preferably, the yellow phosphor 103 emits light having a peak wavelength in the range of 540 to 590 nm.
The white light emitting device 100 with the above described configuration outputs white light in a wide range of wavelength using the blue, green, yellow and red light beams generated from the LEDs 101 and 102 and the yellow phosphor 103. Particularly, the white light emitting device 100 generates visible rays with 4 wavelengths using only two LEDs, thus improved in color reproducibility and efficiency at the same time.
To realize white light having a color rendering index of at least 90, it is preferable that the white light emitting device 100 emits white light having a light emission spectrum with a blue peak wavelength in the range of 440 to 470 nm, a green peak wavelength in the range of 500 to 530 nm, a yellow peak wavelength in the range of 560 to 580 nm, and a red peak wavelength in the range of 620 to 640 nm. More preferably, the blue peak wavelength may range from 450 to 460 nm, the green peak wavelength may range from 505 to 515 nm, the yellow peak wavelength may range from 565 to 575 nm, and the red peak wavelength may range from 630 to 640 nm. This allows realizing a high-quality white light emitting device having a color rendering index of at least 95.
With each of the peak wavelengths in each of the above preferable wavelength ranges, the white light emitting device 100 achieves a superior color rendering index (or color reproducibility) and improved power and light efficiency. In particular, in the case where the blue/green LED 101 is an InGaN-based LED and the red LED 102 is an InGaAlP-based LED, the blue/green LED 101 may have a short peak wavelength of up to 470 nm and the red LED 102 may have a long peak wavelength of at least 620 nm to achieve further improved efficiency, which is confirmed as shown in
In general, the PRS, like any phosphor, absorbs light from other light source to generate a different wavelength of light without any voltage applied. However, unlike the phosphor, the PRS is made of semiconductor material. Such red PRS 112 is disposed on a light exiting surface of the blue/green LED 101, absorbing the blue light (or green light) emitted from the LED 101 to generate red light R. Using only one LED (blue/green LED 101) to output white light having a wide spectrum with 4 wavelengths, the white light emitting device 200 has high efficiency and superior color reproducibility.
As shown in
The blue light B, green light G and amber light A emitted from the blue/green LED 170 and the red light R emitted from the red LED 102 are mixed to produce high-quality white light having a wide spectrum with 4 wavelengths. The light emission spectrum of the white light emitting device 500 is shown in
According to the present invention set forth above, the white light emitting device uses two or less LEDs to output white light having a wide spectrum with 4 wavelengths, thereby achieving superior color reproducibility and high efficiency.
While the present invention has been shown and described in connection with the preferred embodiments, it will be apparent to those skilled in the art that modifications and variations can be made without departing from the spirit and scope of the invention as defined by the appended claims.
Claims
1. A white light emitting device comprising: a structure for emitting white light having at least four wavelengths by using two or less light emitting diodes (LEDs),
- wherein the LEDs comprise a blue/green LED emitting blue and green wavelengths of light; and
- the device comprising red light emitting means.
2. The white light emitting device according to claim 1, wherein the blue/green LED comprises an InGaN-based LED.
3. The white light emitting device according to claim 1, wherein the red light emitting means comprises an InGaAlP-based LED.
4. The white light emitting device according to claim 1, wherein the red light emitting means comprises red phosphor.
5. The white light emitting device according to claim 1, wherein the red light emitting means comprises a red Photon Recycling System (PRS).
6. The white light emitting device according to claim 1, the white light has a light emission spectrum with a blue peak wavelength in the range of 440 to 470 nm, and a green peak wavelength in the range of 500 to 530 nm, a yellow peak wavelength in the range of 560 to 580 nm and a red peak wavelength in the range of 620 to 640 nm.
7. The white light emitting device according to claim 1, the white light has a light emission spectrum with a blue peak wavelength in the range of 450 to 460 nm, a green peak wavelength in the range of 505 to 515 nm, and a yellow peak wavelength in the range of 565 to 575 nm, and a red peak wavelength in the range of 630 to 640 nm.
8. The white light emitting device according to claim 7, the white light has a color rendering index of at least 95.
9. The white light emitting device according to claim 1, further comprising yellow phosphor,
- wherein the red light emitting means comprises at least one selected from a group consisting of a red LED, a red PRS and red phosphor.
10. The white light emitting device according to claim 9, wherein the yellow phosphor has a peak wavelength in the range of 540 to 590 nm.
11. The white light emitting device according to claim 1, wherein the red light emitting means comprises an amber/red LED emitting amber and red wavelengths of light.
12. The white light emitting device according to claim 1, wherein the blue/green LED is adapted to emit amber wavelength of light along with blue and green wavelengths of light, and
- the red light emitting means comprises a red LED emitting red wavelength of light.
Type: Application
Filed: Nov 16, 2006
Publication Date: Jul 12, 2007
Applicant:
Inventors: Pun Jae Choi (Yongin), Masayoshi Koike (Suwon), Sang Yeob Song (Seoul)
Application Number: 11/600,107
International Classification: H01J 1/62 (20060101);