Trophic factor combinations for nervous system treatment

The present invention relates to a composition including an effective amount of at least one of an antimicrobial peptide and a substance having an antimicrobial peptide effect and an effective amount of a neurotrophin. The composition can also include an effective amount of at least one of a growth factor and a neuropeptide. The present invention also relates a method of treating an injury to a nervous system of an animal that includes the steps of identifying the injury to the nervous system and applying to the injury an effective amount of at least one of antimicrobial peptide and a substance having an antimicrobial peptide effect. The method can also include applying an effective amount of one or more trophic factors selected from the group consisting of a growth factor, a neurotrophin, and a neuropeptide to the injury.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application No. 60/604,912, filed Aug. 27, 2004, the entirety of which is incorporated by reference herein.

REFERENCE TO GOVERNMENT GRANT

This invention was made with United States government support awarded by the National Institutes of Health, Grant # HL069064. The United States has certain rights in this invention.

FIELD OF THE INVENTION

The invention relates to combinations of neurochemically active agents for treating a nervous system and the methods of treating a nervous system with the combinatorial treatments.

BACKGROUND OF THE INVENTION

The nervous system is comprised of two divisions: the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS includes the brain and the spinal cord and controls most functions of the body and mind. The remainder of the nervous system is the PNS. Nerves of the PNS connect the CNS to sensory organs (such as the eyes and ears), other organs of the body, muscles, blood vessels, and glands. The peripheral nerves include the cranial nerves, the spinal nerves, and roots.

The CNS controls all voluntary movement, such as movement of the legs during walking, and all involuntary movement, such as beating of the heart. The spinal cord connects the body and the brain by transmitting information to and from the body and the brain.

The nervous system can be injured in numerous ways, and injuries can be traumatic. For instance, sudden physical assault on a portion of the nervous system results in a traumatic injury. In the case of a traumatic brain injury, the injury can be focal, i.e., confined to a specific area of the brain, or diffuse, i.e., involving more than one area of the brain.

Injuries to the nervous system include contusions, which are bruises of the nervous system, and blood clots. Blood clots can form in or around the nervous system. For example, when bleeding occurs between the skull and the brain, the blood forms a clot. This puts pressure on the brain, which can lead to changes in brain function.

Spinal cord injuries (SCI) are a particular type of injury to the nervous system. As of the year 2000, approximately 450,000 people in the United States have sustained SCI, with more than 10,000 new cases reported in the United States every year. Motor vehicle accidents are the leading cause of SCI (44 percent), followed by acts of violence (24 percent), falls (22 percent), sports injuries (8 percent), and other causes (2 percent). Of the 10,000 new cases of SCI in the United States each year, 51.7% have tetraplegia, i.e., injuries to one of the eight cervical segments of the spinal cord, and 56.7% have paraplegia, i.e., lesions in the thoracic, lumbar, or sacral regions of the spinal cord. Since 1990, the most frequent neurologic category is incomplete tetraplegia (29.5%), followed by complete paraplegia (27.9%), incomplete paraplegia (21.3%), and complete tetraplegia (18.5%).

With spinal cord injuries in the neck, significant impairment of breathing may result. The most frequent site of spinal injury is the neck or cervical region and, of these, the major cause of death arises from respiratory complications. For patients that survive a major spinal cord injury in the neck, they may spend the rest of their lives depending on an artificial ventilator or phrenic nerve pacemaker to sustain their lives. For others with less severe respiratory impairment, they may be able to breathe normally, but are unable to sigh or breathe deeply and maintain the integrity of the lung. As a consequence, regions of the lung will collapse in these patients, causing pneumonia and allowing other respiratory infections to become established. Clearly, restoration of normal breathing ability, including deep breaths and sighs, is a major goal in the treatment of spinal cord injury patients.

Injury to the spinal cord and other parts of the nervous system may be particularly devastating to life and the quality of life. In addition, injury to the nervous system can engender serious economic losses to the individual and to society. Currently, there are few effective treatment options available for patients with spinal cord injuries, although there are a few promising indications that physical therapy or chronic intermittent hypoxia (CIH), may have beneficial effects. Exposure to intermittent hypoxic episodes has been shown to initiate spinal protein synthesis. However, studies have also shown that chronic intermittent hypoxia has other drawbacks as a treatment for spinal cord injuries. For example, certain CIH treatment methods can cause systemic hypertension, altered sympathetic chemoreflexes, and hippocampal cell death by the process of apoptosis.

Physical training and preconditioning have been used to treat SCI. Almost all patients with spinal cord injuries can now achieve a partial return of function with proper physical therapy that maintains flexibility and function of the muscles and joints, and strengthens the neural pathways that underlie movement. Physical therapy can also help reduce the risk of blood clots and boost the patient's morale. Physical training currently being investigated includes body weight-supported treadmill training, in which patients with partial spinal cord injury “walk” on a treadmill while they are partially supported through the use of a specially designed harness attached to an overhead lift. Unfortunately, this type of therapy is very expensive, and efficacy is far from complete.

SUMMARY OF THE INVENTION

The invention, which is defined by the claims set out at the end of this disclosure, is intended to solve at least some of the problems noted above. A composition is provided that includes an effective amount of at least one of an antimicrobial peptide and a substance having an antimicrobial peptide effect. The composition also includes an effective amount of a neurotrophin.

In another embodiment, the composition also includes an effective amount of at least one of a growth factor and a neuropeptide.

Also provided is a method of treating an injury to a nervous system of an animal. In one embodiment, the method includes the steps of identifying the injury to the nervous system and applying to the injury an effective amount of at least one of antimicrobial peptide and a substance having an antimicrobial peptide effect.

In another embodiment, an injury to the nervous system is identified. An effective amount of at least one of an antimicrobial peptide and a substance having an antimicrobial peptide effect is combined with an effective amount of one or more trophic factors selected from the group consisting of a growth factor, a neurotrophin, and a neuropeptide. The combination is applied to the injury.

A kit is also provided. In an embodiment, the kit includes at least one of an antimicrobial peptide and a substance having an antimicrobial peptide effect. The kit also includes a neurotrophin. In another embodiment, the kit also includes a viscous substance. In some embodiments, the kit also includes at least one of a growth factor and a neuropeptide.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred exemplary embodiments of the invention are illustrated in the accompanying drawings in which:

FIG. 1 is a graph showing change in body weight at 2 weeks after spinal cord injury (Y-axis) in two strains of rats, Sprague Dawley and Lewis (X-axis). For each strain of rats, the body weight is shown for spinal injury alone (black bar) and for spinal injury and a trophic factor combination made in accordance with the invention (grey bar). In addition, corresponding data are shown for all rats combined.

FIG. 2 is a graph showing peak neurogram voltages from the phrenic nerve during inspiration on the side of injury (Y-axis) at 2 weeks post-injury in two strains of rats, Sprague Dawley and Lewis (X-axis). For each strain of rats, neurogram voltages are shown for spinal injury alone (black bar) and for spinal injury and the trophic factor combination (grey bar). In addition, corresponding data are shown for all rats combined.

FIG. 3 is a graph showing evoked potential voltage (in volts) from the phrenic neurogram on the side of injury at 2 weeks post-injury (Y-axis) in two strains of rats, Sprague Dawley and Lewis (X-axis). The stimulating current was 1000 uA. For each strain of rats, evoked potential voltages are shown for spinal injury alone (black bar) and for spinal injury and the trophic factor combination (grey bar). In addition, corresponding data are shown for all rats combined.

FIG. 4 is a graph showing the stimulating current (in uAmps) required to evoke potentials in the phrenic nerve on the side of injury at 2 weeks post-injury (Y-axis) in two strains of rats, Sprague Dawley and Lewis (X-axis). For each strain of rats, stimulating currents are shown for spinal injury alone (black bar) and for spinal injury and the trophic factor combination (grey bar). In addition, corresponding data are shown for all rats combined.

FIG. 5 is a graph showing the change in body mass in grams at 2 weeks post-injury (Y-axis) in different Lewis rats (X-axis). The body weight is shown for spinal injury alone (SCI) and for spinal injury and a trophic factor combination made in accordance with the invention (SCI+NTs). FIG. 5 also shows change in phrenic amplitude at 2 weeks post-injury (Y-axis) in the rats (X-axis) for spinal injury alone (SCI) and for spinal injury and a trophic factor combination made in accordance with the invention (SCI+NTs).

Before explaining embodiments of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.

DETAILED DESCRIPTION

Definitions

To facilitate understanding of the invention, a number of terms are defined below.

As used herein, the term “antimicrobial polypeptide” refers to polypeptides that inhibit the growth of microbes (e.g., bacteria). Examples of antimicrobial polypeptides include, but are not limited to, the polypeptides described in Tables 1 and 2 below. Antimicrobial polypeptides include peptides synthesized from both L-amino and D-amino acids.

As used herein, the term “pore forming agent” refers to any agent (e.g., peptide or other organic compound) that forms pores in a biological membrane. When the pore forming agent is a peptide, the peptide can be synthesized from both L-amino and D-amino acids.

As used herein, the term “growth factor” refers to any compound that is involved in cell differentiation and growth. Growth factors can be proteins (e.g., IGF-1 (insulin-like growth factor 1), IGF-2 (insulin-like growth factor 2), NGF-β (nerve growth factor-β), EGF (epidermal growth factor), CSGF (colony-stimulating growth factor), FGF (fibroblast growth factor), PDGF (platelet-derived growth factor), VEGF (vascular endothelial growth factor), TGF-β (transforming growth factor β, and bone morphogenetic proteins)), either purified from natural sources or genetically engineered, as well as fragments, mimetics, and derivatives or modifications thereof. Further examples of growth factors are provided in U.S. Pat. Nos. 5,183,805; 5,218,093; 5,130,298; 5,639,664; 5,457,034; 5,210,185; 5,470,828; 5,650,496; 5,998,376; and 5,410,019; all of which are incorporated herein by reference.

The term “trophic factor” as used herein refers to a substance that stimulates growth and development or stimulates increased activity.

The term “hyaluronic acid” includes hyaluronic acid and its derivatives, for instance, esters, salts such as the sodium, potassium, magnesium, calcium, alkaline, alkaline earth metals, and the like, and derivatives such as sulphated or polysulphated hyaluronates, or hyaluronates that have been otherwise modified in a manner way such that the function of hyaluronic acid is retained.

The term “recombinant protein” or “recombinant polypeptide” as used herein refers to a protein molecule expressed from a recombinant DNA molecule. In contrast, the term “native protein” or “native polypeptide” is used herein to indicate a protein isolated from a naturally occurring (i.e., a nonrecombinant) source. Molecular biological techniques may be used to produce a recombinant form of a protein or polypeptide with similar or identical properties as compared to the native form of the protein.

Where an amino acid sequence is recited herein to refer to an amino acid sequence of a naturally occurring protein molecule, amino acid sequence and like terms, such as polypeptide or protein are not meant to limit the amino acid sequence to the complete, native amino acid sequence associated with the recited protein molecule.

As used herein in reference to an amino acid sequence or a protein, the term “portion” (as in “a portion of an amino acid sequence”) refers to fragments of that protein. The fragments may range in size from four amino acid residues to the entire amino acid sequence minus one amino acid (e.g., 5, 6, 7, 8, . . . x−1).

As used herein, the term “variant,” when used in reference to a protein, refers to a protein encoded by partially homologous nucleic acids so that the amino acid sequence of the protein varies. As used herein, the term “variant” encompasses proteins encoded by homologous genes having both conservative and nonconservative amino acid substitutions that do not result in a change in protein function, as well as proteins encoded by homologous genes having amino acid substitutions that cause decreased protein function or increased protein function.

As used herein, the term “fusion protein” refers to a chimeric protein containing the protein of interest (e.g., defensins and fragments thereof) joined to a heterologous protein fragment (e.g., the fusion partner which consists of a non-defensin protein). The fusion partner may enhance the solubility of a defensin as expressed in a host cell, may provide an affinity tag to allow purification of the recombinant fusion protein from the host cell or culture supernatant, or both. If desired, the fusion protein may be removed from the protein of interest (e.g., defensin or fragments thereof) by a variety of enzymatic or chemical processes known to the art.

As used herein, the term “purified” refers to molecules, either nucleic or amino acid sequences, that are removed from their natural environment, isolated, or separated. The percent of a purified component is thereby increased in the sample. For example, an isolated defensin is therefore a purified defensin. Substantially purified molecules are at least 60% free, preferably at least 75% free, and more preferably at least 90% free from other components with which they are naturally associated.

The term “gene” as used herein, refers to a DNA sequence that comprises control and coding sequences necessary for the production of a polypeptide or protein precursor. The polypeptide can be encoded by a full length coding sequence or by any portion of the coding sequence, as long as the desired protein activity is retained.

The term “homology” refers to a degree of complementarity. There may be partial homology or complete homology (i.e., identity). A “partially complementary sequence” is one that at least partially inhibits a completely complementary sequence from hybridizing to a target nucleic acid. This situation is referred to using the functional term “substantially homologous.” The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (e.g., Southern or Northern blot, solution hybridization, and the like) under conditions of low stringency. A substantially homologous sequence or probe will compete for and inhibit the binding (i.e., the hybridization) of a completely homologous sequence or probe to a target under conditions of low stringency. This is not to say that conditions of low stringency are such that non-specific binding is permitted; low stringency conditions require that the binding of two sequences to one another be a specific (i.e., selective) interaction. The absence of non-specific binding may be tested by the use of a second target that lacks even a partial degree of complementarity (e.g., less than about 30% identity). In this case, in the absence of non-specific binding, the probe will not hybridize to the second non-complementary target.

When used in reference to a double-stranded nucleic acid sequence such as a cDNA or a genomic clone, the term “substantially homologous” refers to any probe which can hybridize to either or both strands of the double-stranded nucleic acid sequence under conditions of low stringency as described herein.

As used herein, the term “hybridization” is used in reference to the pairing of complementary nucleic acid strands. Hybridization and the strength of hybridization (i.e., the strength of the association between nucleic acid strands) is impacted by many factors well known in the art including the degree of complementarity between the nucleic acids, stringency of the conditions involved affected by such conditions as the concentration of salts, the Tm (melting temperature) of the formed hybrid, the presence of other components (e.g., the presence or absence of polyethylene glycol), the molarity of the hybridizing strands, and the G:C content of the nucleic acid strands.

As used herein, the term “stringency” is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds, under which nucleic acid hybridizations are conducted. With high stringency conditions, nucleic acid base pairing will occur only between nucleic acid fragments that have a high frequency of complementary base sequences. Thus, conditions of medium or low stringency are often required when it is desired that nucleic acids that are not completely complementary to one another be hybridized or annealed together. It is well known in the art that numerous equivalent conditions can be employed to comprise medium or low stringency conditions. The choice of hybridization conditions is generally evident to one skilled in the art and is normally guided by the purpose of the hybridization, the type of hybridization (DNA-DNA or DNA-RNA), and the level of desired relatedness between the sequences (e.g., Sambrook et al., 1989, Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington D.C., 1985, for a general discussion of the state of the art).

The stability of nucleic acid duplexes is known to decrease with an increased number of mismatched bases, and further to be decreased to a greater or lesser degree depending on the relative positions of mismatches in the hybrid duplexes. Thus, the stringency of hybridization can be used to maximize or minimize stability of such duplexes. Hybridization stringency can be altered, for example, by adjusting the temperature of hybridization; adjusting the percentage of helix destabilizing agents, such as formamide, in the hybridization mix; and adjusting the temperature and/or salt concentration of the wash solutions. For filter hybridizations, the final stringency of hybridizations can be determined by the salt concentration and/or temperature used for the post-hybridization washes.

“High stringency conditions” when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42° C. in a solution consisting of 5×SSPE (43.8 g/l NaCl, 6.9 g/l NaH2PO4.H2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5× Denhardt's reagent and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1×SSPE, 1.0% SDS at 42° C. when a probe of about 500 nucleotides in length is employed.

“Medium stringency conditions” when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42° C. in a solution consisting of 5×SSPE (43.8 g/l NaCl, 6.9 g/l NaH2PO4.H2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5× Denhardt's reagent and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 1.0×SSPE, 1.0% SDS at 42° C. when a probe of about 500 nucleotides in length is employed.

“Low stringency conditions” comprise conditions equivalent to binding or hybridization at 42° C. in a solution consisting of 5×SSPE (43.8 g/l NaCl, 6.9 g/l NaH2PO4.H2O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5× Denhardt's reagent [50× Denhardt's contains per 500 ml: 5 g Ficoll (Type 400, Pharamcia), 5 g BSA (Fraction V; Sigma)] and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 5×SSPE, 0.1% SDS at 42° C. when a probe of about 500 nucleotides in length is employed.

As used herein, the term “Tm” is used in reference to the melting temperature, which is the temperature at which 50% of a population of double-stranded nucleic acid molecules becomes dissociated into single strands. The equation for calculating the Tm of nucleic acids is well known in the art. The Tm of a hybrid nucleic acid can be estimated using a formula adopted from hybridization assays in 1 M salt, and commonly used for calculating Tm for PCR primers: [(number of A+T)×2° C.+(number of G+C)×4° C.]. (C. R. Newton et al., PCR, 2nd Ed., Springer-Verlag (New York, 1997), p. 24). This formula was found to be inaccurate for primers longer than 20 nucleotides. (Id.) Another simple estimate of the Tm value can be calculated by the equation: Tm=81.5+0.41(% G+C), when a nucleic acid is in aqueous solution at 1 M NaCl. (e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization (1985). Other more sophisticated computations exist in the art which take structural as well as sequence characteristics into account for the calculation of Tm. A calculated Tm is merely an estimate; the optimum temperature is commonly determined empirically.

As used herein, the term “vector” is used in reference to nucleic acid molecules that transfer DNA segment(s) from one cell to another and capable of replication in a cell. Vectors may include plasmids, bacteriophages, viruses, cosmids, and the like.

The terms “recombinant vector” and “expression vector” as used herein refer to DNA or RNA sequences containing a desired coding sequence and appropriate DNA or RNA sequences necessary for the expression of the operably linked coding sequence in a particular host organism. Prokaryotic expression vectors include a promoter, a ribosome binding site, an origin of replication for autonomous replication in host cells and can also include other sequences, e.g., an optional operator sequence. A “promoter” is defined as a DNA sequence that directs RNA polymerase to bind to DNA and to initiate RNA synthesis. Eukaryotic expression vectors include a promoter, polyadenylation signal and optionally an enhancer sequence.

As used herein the term “coding region” when used in reference to structural gene refers to the nucleotide sequences which encode the amino acids found in the nascent polypeptide as a result of translation of a mRNA molecule. Typically, the coding region is bounded on the 5′ side by the nucleotide triplet ATG, which encodes the initiator methionine, and on the 3′ side by a stop codon (e.g., TAA, TAG, TGA). In some cases, the coding region is also known to initiate by a nucleotide triplet TTG.

The terms “buffer” or “buffering agents” refer to materials that when added to a solution, cause the solution to resist changes in pH.

The term “monovalent salt” refers to any salt in which the metal (e.g., Na, K, or Li) has a net 1+ charge in solution (i.e., one more proton than electron).

The term “divalent salt” refers to any salt in which a metal (e.g., Mg, Ca, or Sr) has a net 2+ charge in solution.

The term “solution” refers to an aqueous mixture.

The term “buffering solution” refers to a solution containing a buffering reagent.

The present invention relates to neurochemically active agents and combinations thereof. Neurochemically active agents include one or more antimicrobial peptide and/or a substance having an antimicrobial peptide effect. Antimicrobial peptides themselves are known to have trophic effects. As such, an antimicrobial peptide and/or a substance having an antimicrobial peptide effect can be used by itself in the methods of the invention. Neurochemically active agents also include one or more growth factor, neurotrophin, and neuropeptide. Combinations of neurochemically active agents are referred to herein as “trophic factor combinations.”

According to the invention, neurochemically active agents can be used alone or in combination to treat injuries to the nervous system, i.e., the central nervous system and the peripheral nervous system. The one or more neurochemically active agents can be used to treat nervous system injuries, including trauma induced injuries, degenerative induced injuries, age induced injuries, and infection induced injuries. Injuries that can be treated include, but are not limited to, spinal cord injury, including severed spinal cords; peripheral nerve damage, brain injuries, e.g., blood clots, tumors, strokes, and ischemis and perfusion; and Parkinson's disease, Alzheimer disease, muscular dystrophy, amyotrophic lateral sclerosis, multiple sclerosis, Pick's disease, prion diseases, Huntington disease, and related disorders.

When applied to a the nervous system, trophic factor combinations of the invention result in at least one of the following: lower loss in body weight after the injury when compared to controls not receiving the trophic factor combinations, strengthened motor recovery in injured animals treated with the trophic factor combination when compared to animals not treated with the trophic factor combination, larger evoked potentials in nerves when compared to controls not receiving the trophic factor combination, and a lower current required to evoke a response (threshold current) when compared to controls not receiving the trophic factor combination.

It is contemplated that the trophic factor combinations of the present invention used to treat injuries of the nervous system result in reduced inflammation, growth of new cells, increased plasticity, among other beneficial effects.

I. Trophic Factor Combinations

The present invention contemplates the use of trophic factor combinations and their individual components for treatment of injuries to the nervous system. Trophic factor combinations according to the invention can include one or more of the following elements: antimicrobial polypeptides (e.g., defensins), a substance having an effect of an antimicrobial peptide, a growth factor, a neurotrophin, and a neuropeptide. Additional components can also be included and are discussed below.

A. Antimicrobial Peptides

In some embodiments, one or more antimicrobial polypeptides and/or one or more substances having an antimicrobial peptide effect are used as a trophic factor to treat an injury to a nervous system. For additional information on antimicrobial peptides, see, for example, Antimicrobial Peptide Protocols, ed. W. M. Shafer, Humana Press, Totowa, N.J., 1997; and databases including http://aps.unmc.edu/AP/main.php (discussed in Wang Z, Wang G., APD: the Antimicrobial Peptide Database, Nucleic Acids Res. 2004 Jan. 1; 32(Database issue):D590-2), http://sdmc.lit.org.sg/Templar/DB/Antimic/, and http://www.bbcm.units.it/˜zelezetsky/hdpdb.html (database of defense peptides) and Table 1 below.

In some embodiments, the antimicrobial peptide is a compound or peptide selected from the following: bovine defensin peptide (BNP-1, Romeo et al., J. Biol. Chem. 263(15):9573-9575 [1988]), magainin (e.g., magainin I, magainin II, xenopsin, xenopsin precursor fragment, caerulein precursor fragment), magainin I and II analogs (PGLa, magainin A, magainin G, pexiganin, Z-12, pexigainin acetate, D35, MSI-78A, MG0 [K10E, K11E, F12W-magainin 2], MG2+ [K10E, F12W-magainin-2], MG4+ [F12W-magainin 2], MG6+ [f12W, E19Q-magainin 2 amide], MSI-238, reversed magainin II analogs [e.g., 53D, 87-ISM, and A87-ISM], Ala-magainin II amide, magainin II amide), cecropin P1, cecropin A, cecropin B, indolicidin, nisin, ranalexin, lactoferricin B, poly-L-lysine, cecropin A (1-8)-magainin II (1-12), cecropin A (1-8)-melittin (1-12), CA(1-13)-MA(1-13), CA(1-13)-ME(1-13), gramicidin, gramicidin A, gramicidin D, gramicidin S, alamethicin, protegrin, histatin, dermaseptin, lentivirus amphipathic peptide or analog, parasin I, lycotoxin I or II, globomycin, gramicidin S, surfactin, ralinomycin, valinomycin, polymyxin B, PM2 [(+/−) 1-(4-aminobutyl)-6-benzylindane], PM2c [(+/−)-6-benzyl-1-(3-carboxypropyl)indane], PM3 [(+/−) 1-benzyl-6-(4-aminobutyl)indane], tachyplesin, buforin I or II, misgurin, melittin, PR-39, PR-26, 9-phenylnonylamine, (KLAKKLA)n, (KLAKLAK)n, where n=1, 2, or 3, (KALKALK)3, KLGKKLG)n, and KAAKKAA)n, wherein N=1, 2, or 3, paradaxin, Bac 5, Bac 7, ceratoxin, mdelin 1 and 5, bombin-like peptides, PGQ, cathelicidin, HD-5, Oabac5alpha, ChBac5, SMAP-29, Bac7.5, lactoferrin, granulysin, thionin, hevein and knottin-like peptides, MPG1, 1bAMP, snakin, lipid transfer proteins, and plant defensins. Exemplary sequences for the above listed compounds are provided in Table 1. In some embodiments, the antimicrobial peptides or substances having an antimicrobial peptide effect (where they are peptides) are synthesized from L-amino acids, while in other embodiments, the peptides are synthesized from or comprise D-amino acids.

The compounds listed above can be isolated and purified from natural sources as appropriate. The compounds can also be produced recombinantly or synthetically, as described below.

In preferred embodiments, the trophic factor combinations of the present invention comprise one or more antimicrobial polypeptides and/or one or more substance having an antimicrobial peptide effect at a concentration of about 0.01 to about 1000 mg/L. In preferred embodiments, the trophic factor combinations comprise a solution comprising one or more antimicrobial polypeptides at a concentration of about 0.1 to about 5 mg/L.

In some embodiments of the present invention, the antimicrobial polypeptide is a defensin. In preferred embodiments, the trophic factor combinations of the present invention comprise one or more defensins. In further preferred embodiments, the trophic factor combination comprises a solution comprising purified defensins at a concentration of about 0.01 to 1000 mg/L. In particularly preferred embodiments, the trophic factor combinations comprise a solution comprising defensins at a concentration of about 0.1 to 5 mg/L. In still further preferred embodiments, the antimicrobial polypeptide is BNP1 (also known as bactanecin and bovine dodecapeptide). In certain embodiments, the defensin comprises the following consensus sequence:

X1CN1CRN2CN3ERN4CN5GN6CCX2, wherein N and X represent conservatively or nonconservatively substituted amino acids and N1=1, N2=3 or 4, N3=3 or 4, N4=1, 2, or 3, N6=5-9, X1 and X2 may be present, absent, or equal from 1-2.

The present invention is not limited to any particular defensin. Indeed, trophic factor combinations comprising a variety of defensins are contemplated. Representative defensins are provided in Tables 1 and 2 below. In general, defensins are a family of highly cross-linked, structurally homologous antimicrobial peptides that can be found in the azurophil granules of polymorphonuclear leukocytes (PMNs) with homologous peptides being present in macrophages (e.g., Selsted et al., Infect. Immun. 45:150-154 [1984]). Originally described as “Lysosomal Cationic Peptides” in rabbit and guinea pig PMN (Zeya et al., Science 154:1049-1051 [1966]; Zeya et al., J. Exp. Med. 127:927-941 [1968]; Zeya et al., Lab. Invest. 24:229-236 [1971]; Selsted et al., [1984], supra.), this mixture was found to account for most of the microbicidal activity of the crude rabbit PMN extract against various microorganisms (Zeya et al., [1966], supra; Lehrer et al., J. Infect. Dis. 136:96-99 [1977]; Lehrer et al., Infect. Immun. 11:1226-1234 [1975]). Six rabbit neutrophil defensins have been individually purified and are designated NP-1, NP-2, NP-3A, NP-3B, NP-4, and NP-5. Their amino acid sequences were determined, and their broad spectra of activity were demonstrated against a number of bacteria (Selsted et al., Infect. Immun. 45:150-154 [1984]), viruses (Lehrer et al., J. Virol. 54:467 [1985]), and fungi (Selsted et al., Infect. Immun. 49:202-206 [1985]; Segal et al., 151:890-894 [1985]). Defensins have also been shown to possess mitogenic activity (e.g., Murphy et al., J. Cell. Physiol. 155:408-13 [1993]).

Four peptides of the defensin family have been isolated from human PMN's and are designated HNP-1, HNP-2, HNP-3, and HNP-4 (Ganz et al., J. Clin. Invest. 76:1427-1435 [1985]; Wilde et al., J. Biol. Chem. 264:11200-11203 [1989]). The amino acid sequences of HNP-1, HNP-2, and HNP-3 differ from each other only in their amino terminal residues, while each of the human defensins are identical to the six rabbit peptides in 10 or 11 of their 29 to 30 residues. These are the same 10 or 11 residues that are shared by all six rabbit peptides. Human defensin peptides have been shown to share with the rabbit defensins a broad spectrum of antimicrobial activity against bacteria, fungi, and enveloped viruses (Ganz et al., [1985], supra).

Three defensins designated RatNP-1, RatNP-2, and RatNP-4, have been isolated from rat (Eisenhauer et al., Infection and Immunity 57:2021-2027 [1989]). A guinea pig defensin (GPNP) has also been isolated, purified, sequenced and its broad spectrum antimicrobial properties verified (Selsted et al., Infect. Immun. 55:2281-2286 [1987]). Eight of its 31 residues were among those invariant in six rabbit and three human defensin peptides. The sequence of GPNP also included three nonconservative substitutions in positions otherwise invariant in the human and rabbit peptides. Of the defensins tested in a quantitative assay HNP-1, RatNP-1, and rabbit NP-1 possess the most potent antimicrobial properties, while NP-5 possesses the least amount of antimicrobial activity when tested against a panel of organisms in stationary growth phase (Selsted et al., Infect. Immun. 45:150-154 [1984]; Ganz et al., J. Clin. Invest. 76:1427-1435 [1985]). Defensin peptides are further described in U.S. Pat. Nos. 4,543,252; 4,659,692; and 4,705,777 (each of which is incorporated herein by reference).

Defensin peptides suitable for use alone in the methods and/or in trophic factor combinations of the present invention include natural defensin peptides isolated from known cellular sources, synthetic peptides produced by solid phase or recombinant DNA techniques, and defensin analogs which may be smaller peptides or other molecules having similar binding and biological activity as the natural defensin peptides (e.g., peptide mimetics). Methods for the purification of defensin peptides are described in U.S. Pat. Nos. 4,543,252; 4,659,692; and 4,705,777, the disclosures of which are incorporated herein by reference.

In preferred embodiments, suitable synthetic peptides will comprise all or part of the amino acid sequence of a known peptide, more preferably incorporating at least some of the conserved regions identified in Table 2. In particularly preferred embodiments, the synthetic peptides incorporate at least one of the conserved regions, more typically incorporating two of the conserved regions, preferably conserving at least three of the conserved regions, and more preferably conserving four or more of the conserved regions. In preferred embodiments, the synthetic peptides comprise fifty amino acids or fewer, although there may be advantages in increasing the size of the peptide above that of the natural peptides in certain instances. In certain embodiments, the peptides have a length in the range from about 10 to 50 amino acids, preferably being in the range from about 10 to 40 amino acids, and most preferably being in the range from about 30 to 35 amino acids which corresponds generally to the length of the natural defensin peptides.

In some cases, it may be desirable to incorporate one or more non-natural amino acids in the synthetic defensin peptides of the present invention. In preferred embodiments, non-natural amino acids comprise at least an N-terminus and a C-terminus of the peptide and have side chains that are either identical to or chemically modified or substituted from a natural amino acid counterpart. An example of a non-natural amino acid is an optical isomer of a naturally-occurring L-amino acid, such as a peptide containing all D-amino acids. Examples of the synthesis of peptides containing all D-amino acids include Merrifield et al., Ciba Found Symp. 186:5-26 (1994); Wade et al., Proc. Natl. Acad. Sci. USA 87(12):4761-5 (1990); and U.S. Pat. No. 5,792,831, which is herein incorporated by reference. Examples of chemical modifications or substitutions include hydroxylation or fluorination of C—H bonds within natural amino acids. Such techniques are used in the manufacture of drug analogs of biological compounds and are known to one of ordinary skill in the art.

Synthetic peptides having biological and binding activity the same or similar to that of natural defensin peptides can be produced by either of two exemplary approaches. First, the polypeptides can be produced by the well-known Merrifield solid-phase chemical synthesis method wherein amino acids are sequentially added to a growing chain (Merrifield, J. Am. Chem. Soc. 85:2149-2156 [1963]). Automatic peptide synthesis equipment is available from several commercial suppliers, including PE Biosystems, Inc., Foster City, Calif.; Beckman Instruments, Inc., Waldwick, N.J.; and Biosearch, Inc., San Raphael, Calif. Using such automatic synthesizers according to manufacturer's instructions, peptides can be produced in gram quantities for use in the present invention.

Second, the synthetic defensin peptides of the present invention can be synthesized by recombinant techniques involving the expression in cultured cells of recombinant DNA molecules encoding a gene for a desired portion of a natural or analog defensin molecule. The gene encoding the defensin peptide can itself be natural or synthetic. Conveniently, polynucleotides can be synthesized by well-known techniques based on the desired amino acid sequence. For example, short single-stranded DNA fragments can be prepared by the phosphoramidite method (Beaucage et al., Tetra. Lett. 22:1859-1862 [1981]). A double-stranded fragment can then be obtained either by synthesizing the complementary strand and annealing the strands together under appropriate conditions, or by adding the complementary strand using DNA polymerase under appropriate conditions, or by adding the complementary strand using DNA polymerase with an appropriate primer sequence. The natural or synthetic DNA fragments coding for the desired defensin peptide can then be incorporated in a suitable DNA construct capable of introduction to and expression in an in vitro cell culture. The DNA fragments can be portions or variants of wild-type nucleic acids encoding defensins. Suitable variants include those both with conservative and nonconservative amino acid substitutions.

The methods, compositions, and trophic factor combinations of the present invention can also employ synthetic non-peptide compositions that have biological activity functionally comparable to that of known defensin peptides. By functionally comparable, it is meant that the shape, size, flexibility, and electronic configuration of the non-peptide molecule is such that the biological activity of the molecule is similar to defensin peptides. In particular, the non-peptide molecules should display comparable mitogenic activity and/or antimicrobial activity or pore forming ability, preferably possessing both activities. Such non-peptide molecules will typically be small molecules having a molecular weight in the range from about 100 to about 1000 daltons. The use of such small molecules is frequently advantageous in the preparation of trophic factor combinations. Candidate mimetics can be screened in large numbers to identify those having the desired activity.

The identification of such nonpeptide analog molecules can be performed using techniques known in the art of drug design. Such techniques include, but are not limited to, self-consistent field (SCF) analysis, configuration interaction (CI) analysis, and normal mode dynamics computer analysis, all of which are well described in the scientific literature (e.g., Rein et al., Computer-Assisted Modeling of Receptor-Ligand Interactions, Alan Liss, N.Y., [1989]). Preparation of the identified compounds will depend on the desired characteristics of the compounds and will involve standard chemical synthetic techniques (e.g., Cary et al., Advanced Organic Chemistry, part B, Plenum Press, New York [1983]).

In some embodiments of the present invention, one or more substances having an effect that an antimicrobial peptide has can be used. Effects that antimicrobial peptides have include, but are not limited to, the following: form pores on the cell membrane; enter cells without membrane lysis and, once in the cytoplasm, bind to, and inhibit the activity of specific molecular targets essential to bacterial growth, thereby causing cell death; induce expression of syndecan, an integral membrane proteoglycan associated largely with epithelial cells, in mesenchymal cells and inhibit the NADPH oxidase activity of neutrophils, suggesting a role of this peptide in wound repair and inflammation; exert a protective effect in various animal models of ischemia-reperfusion injury, preventing the post-ischemic oxidant production; induce angiogenesis both in vitro and in vivo; inhibit membrane protein synthesis; inhibit DNA synthesis; antitumor effect; stimulate cell proliferation; interfere with signal pathways; chemoattractant for immune cells; stimulate cytokine expression; stimulate adhesion molecule expression; angiogenesis; and chloride secretion.

TABLE 1 Human Antimicrobial Peptides Organism Protein Name Name Length Sequence Antibacterial 170 MKTQRDGHSLGRWSLVLLLLGLVMPLAIIAQV peptide LL-37 LSYKEAVLRAIDGINQRSSDANLYRLLDLDPR precursor PTMDGDPDTPKPVSFTVKETVCPRTTQQSP EDCDFKKDGLVKRCMGTVNLNQARGSFDIS CDKDNKRFALLGDFFRKSKEKIGKEFKRIVQR IKDFLRNLVPRTES Antibacterial Homo 170 MKTQRDGHSLGRWSLVLLLLGLVMPLAIIAQV protein FALL- sapiens LSYKEAVLRAIDGINQRSSDANLYRLLDLDPR 39 precursor PTMDGDPDTPKPVSFTVKETVCPRTTQQSP EDCDFKKDGLVKRCMGTVTLNQARGSFDISC DKDNKRFALLGDFFRKSKEKIGKEFKRIVQRI KDFLRNLVPRTES Antimicrobial Homo 476 MQPVMLALWSLLLLWGLATPCQELLETVGTL peptide RYA3 sapiens ARIDKDELGKAIQNSLVGEPILQNVLGSVTAV NRGLLGSGGLLGGGGLLGHGGVFGVVEELS GLKIEELTLPKVLLKLLPGFGVQLSLHTKVGM HCSGPLGGLLQLAAEVNVTSRVALAVSSRGT PILILKRCSTLLGHISLFSGLLPTPLFGVVEQM LFKVLPGLLCPVVDSVLGVVNELLGAVLGLVS LGALGSVEFSLATLPLISNQYIELDINPIVKSVA GDIIDFPKSRAPAKVPPKKDHTSQVMVPLYLF NTTFGLLQTNGALDMDITPELVPSDVPLTTTD LAALLPEALGKLPLHQQLLLFLRVREAPTVTL HNKKALVSLPANIHVLFYVPKGTPESLFELNS VMTVRAQLAPSATKLHISLSLERLSVKVASSF THAFDGSRLEEWLSHVVGAVYAPKLNVALDV GIPLPKVLNINFSNSVLEIVENAVVLTVAS Azurocidin Homo 251 MTRLTVLALLAGLLASSRAGSSPLLDIVGGRK precursor sapiens ARPRQFPFLASIQNQGRHFCGGALIHARFVM TAASCFQSQNPGVSTVVLGAYDLRRRERQS RQTFSISSMSENGYDPQQNLNDLMLLQLDRE ANLTSSVTILPLPLQNATVEAGTRCQVAGWG SQRSGGRLSRFPRFVNVTVTPEDQCRPNNV CTGVLTRRGGICNGDGGTPLVCEGLAHGVA SFSLGPCGRGPDFFTRVALFRDWIDGVLNNP GPGPA Bactericidal Homo 483 MARGPCNAPRWVSLMVLVAIGTAVTAAVNP permeability- sapiens GVVVRISQKGLDYASQQGTAALQKELKRIKIP increasing DYSDSFKIKHLGKGHYSFYSMDIREFQLPSS protein QISMVPNVGLKFSISNANIKISGKWKAQKRFL precursor (BPI) KMSGNFDLSIEGMSISADLKLGSNPTSGKPTI (CAP 57) TCSSCSSHINSVHVHISKSKVGWLIQLFHKKIE SALRNKMNSQVCEKVTNSVSSKLQPYFQTLP VMTKIDSVAGINYGLVAPPATTAETLDVQMK GEFYSENHHNPPPFAPPVMEFPAAHDRMVY LGLSDYFFNTAGLVYQEAGVLKMTLRDDMIP KESKFRLTTKFFGTFLPEVAKKFPNMKIQIHV SASTPPHLSVQPTGLTFYPAVDVQAFAVLPN SSLASLFLIGMHTTGSMEVSAESNRLVGELKL DRLLLELKHSNIGPFPVELLQDIMNYIVPILVLP RVNEKLQKGFPLPTPARVQLYNVVLQPHQNF LLFGADVVYK bactericidal/per- Homo 487 MRENMARGPCNAPRWVSLMVLVAIGTAVTA meability- sapiens AVNPGVVVRISQKGLDYASQQGTAALQKELK increasing RIKIPDYSDSFKIKHLGKGHYSFYSMDIREFQL protein PSSQISMVPNVGLKFSISNANIKISGKWKAQK precursor RFLKMSGNFDLSIEGMSISADLKLGSNPTSGK PTITCSSCSSHINSVHVHISKSKVGWLIQLFHK KIESALRNKMNSQVCEKVTNSVSSKLQPYFQ TLPVMTKIDSVAGINYGLVAPPATTAETLDVQ MKGEFYSENHHNPPPFAPPVMEFPAAHDRM VYLGLSDYFFNTAGLVYQEAGVLKMTLRDDM IPKESKFRLTTKFFGTFLPEVAKKFPNMKIQIH VSASTPPHLSVQPTGLTFYPAVDVQAFAVLP NSSLASLFLIGMHTTGSMEVSAESNRLVGEL KLDRLLLELKHSNIGPFPVELLQDIMNYIVPILV LPRVNEKLQKGFPLPTPARVQLYNVVLQPHQ NFLLFGADVVYK beta defensin Homo 111 MKSLLFTLAVFMLLAQLVSGNWYVKKCLNDV 126 sapiens GICKKKCKPEEMHVKNGWAMCGKQRDCCV preproprotein; PADRRANYPVFCVQTKTTRISTVTATTATTTL epididymal MMTTASMSSMAPTPVSPTG secretory protein ESP13.2; beta defensin 26; chromosome 20 open reading frame 8 beta-defensin Homo 65 MRTFLFLFAVLFFLTPAKNAFFDEKCNKLKGT sapiens CKNNCGKNEELIALCQKFLKCCRTIQPCGSII D Beta-defensin Homo 67 MRIHYLLFALLFLFLVPVPGHGGIINTLQKYYC 103 precursor sapiens RVRGGRCAVLSCLPKEEQIGKCSTRGRKCC (Beta-defensin RRKK 3) (DEFB-3) (BD-3) (hBD-3) (HBD3) (Defensin like protein) Beta-defensin Homo 72 MQRLVLLLAVSLLLYQDLPVRSEFELDRICGY 104 precursor sapiens GTARCRKKCRSQEYRIGRCPNTYACCLRKW (Beta-defensin DESLLNRTKP 4) (DEFB-4) (BD-4) (hBD-4) beta-defensin Homo 77 MALIRKTFYFLFAMFFILVQLPSGCQAGLDFS 105 sapiens QPFPSGEFAVCESCKLGRGKCRKECLENEK PDGNCRLNFLCCRQR Beta-defensin Homo 78 MALIRKTFYFLFAMFFILVQLPSGCQAGLDFS 105 precursor sapiens QPFPSGEFAVCESCKLGRGKCRKECLENEK (Beta-defensin PDGNCRLNFLCCRQRI 5) (DEFB-5) (BD-5) beta-defensin Homo 57 MRTFLFLFAVLFFLTPAKNAFFDEKCNKLKGT 106 sapiens CKNNCGKNEELIALCQKSLKCCRTI Beta-defensin Homo 65 MRTFLFLFAVLFFLTPAKNAFFDEKCNKLKGT 106 precursor sapiens CKNNCGKNEELIALCQKSLKCCRTIQPCGSII (Beta-defensin D 6) (DEFB-6) (BD-6) Beta-defensin Homo 63 MKIFVFILAALILLAQIFQARTAIHRALISKRME 107 precursor sapiens GHCEAECLTFEVKIGGCRAELAPFCCKNR (Beta-defensin 7) (DEFB-7) (Fragment) beta-defensin Homo 59 MRIAVLFFTIFFFMSQVLPAKGKFKEICERPN 108 sapiens GSCRDFCLETEIHVGRCLNSRPCCLPL Beta-defensin Homo 73 MRIAVLLFAIFFFMSQVLPARGKFKEICERPN 108 precursor sapiens GSCRDFCLETEIHVGRCLNSQPCCLPLGHQP (Beta-defensin RIESTTPKKD 8) (DEFB-8) Beta-defensin Homo 123 MKLLLLALPMLVLLPQVIPAYSGEKKCWNRS 118 precursor sapiens GHCRKQCKDGEAVKDTCKNLRACCIPSNED (Beta-defensin HRRVPATSPTPLSDSTPGIIDDILTVRFTTDYF 18) (DEFB-18) EVSSKKDMVEESEAGRGTETSLPNVHHSS (Epididymal secretory protein 13.6) (ESP13.6) Beta-defensin Homo 84 MKLLYLFLAILLAIEEPXISGKRHILRCMGNSGI 119 precursor sapiens CRASCKKNEQPYLYCRNCQSCCLQSYMRISI (Beta-defensin SGKEENTDWSYEKQWPRLP 19) (DEFB-19) Beta-defensin Homo 88 MKLLYLFLAILLAIEEPVISVECWMDGHCRLLC 120 precursor sapiens KDGEDSIIRCRNRKRCCVPSRYLTIQPVTIHGI (Beta-defensin LGWTTPQMSTTAPKMKTNITNR 20) (DEFB-20) Beta-defensin Homo 67 MKLLLLTLTVLLLLSQLTPGGTQRCWNLYGK 123 precursor sapiens CRYRCSKKERVYVYCINNKMCCVKPKYQPK (Beta-defensin ERWWPF 23) (DEFB-23) Beta-defensin Homo 43 EFKRCWKGQGACQTYCTRQETYMHLCPDA 124 (Beta- sapiens SLCCLSYALKPPPV defensin 24) (DEFB-24) (Fragment) Beta-defensin Homo 152 MLTFIICGLLTRVTKGSFEPQKCWKNNVGHC 125 precursor sapiens RRRCLDTERYILLCRNKLSCCISIISHEYTRRP (Beta-defensin AFPVIHLEDITLDYSDVDSFTGSPVSMLNDLIT 25) (DEFB-25) FDTTKFGETMTPETNTPETTMPPSEATTPET TMPPSETATSETMPPPSQTALTHN Beta-defensin Homo 111 MKFLLFTLAVFMLLAQLVSGNWYVKKCLNDV 126 precursor sapiens GICKKKCKPEEMHVKNGWAMCGKQRDCCV (Beta-defensin PADRRANYPVFCVQTKTTRISTVTATTATTTL 26) (DEFB-26) MMTTASMSSMAPTPVSPTG (Epididymal secretory protein 13.2) (ESP13.2) Beta-defensin Homo 99 MGLFMIIAILLFQKPTVTEQLKKCWNNYVQGH 127 precursor sapiens CRKICRVNEVPEALCENGRYCCLNIKELEACK (Beta-defensin KITKPPRPKPATLALTLQDYVTIIENFPSLKTQ 27) (DEFB-27) ST Beta-defensin Homo 183 MKLLFPIFASLMLQYQVNTEFIGLRRCLMGLG 129 precursor sapiens RCRDHCNVDEKEIQKCKMKKCCVGPKVVKLI (Beta-defensin KNYLQYGTPNVLNEDVQEMLKPAKNSSAVIQ 29) (DEFB-29) RKHILSVLPQIKSTSFFANTNFVIIPNATPMNS ATISTMTPGQITYTATSTKSNTKESRDSATAS PPPAPPPPNILPTPSLELEEAEEQ Beta-defensin Homo 70 MRVLFFVFGVLSLMFTVPPGRSFISNDECPS 131 precursor sapiens EYYHCRLKCNADEHAIRYCADFSICCKLKIIEI (Beta-defensin DGQKKW 31) (DEFB-31) Beta-Defensin Homo 37 PVTCLKSGAICHPVFCPRRYKQIGTCGLPGT 2 sapiens KCCKKP Beta-defensin Homo 64 MRVLYLLFSFLFIFLMPLPGVFGGIGDPVTCL 2 precursor sapiens KSGAICHPVFCPRRYKQIGTCGLPGTKCCKK (BD-2) (hBD-2) P (Skin- antimicrobial peptide 1) (SAP1) beta-defensin Homo 156 MNILMLTFIICGLLTRVTKGSFEPQKCWKNNV 25 precursor sapiens GHCRRRCLDTERYILLCRNKLSCCISIISHEYT RRPAFPVIHLEDITLDYSDVDSFTGSPVSMLN DLITFDTTKFGETMTPETNTPETTMPPSEATT PETTMPPSETATSETMPPPSQTALTHN beta-defensin Homo 93 MKLFLVLIILLFEVLTDGARLKKCFNKVTGYCR 28 precursor sapiens KKCKVGERYEIGCLSGKLCCANDEEEKKHVS FKKPHQHSGEKLSVLQDYIILPTITIFTV Beta-Defensin Homo 45 GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGK 3 sapiens CSTRGRKCCRRKK beta-defensin Homo 95 MKFLLLVLAALGFLTQVIPASAGGSKCVSNTP 32 precursor sapiens GYCRTCCHWGETALFMCNASRKCCISYSFL PKPDLPQLIGNHWQSRRRNTQRKDKKQQTT VTS Beta-defensin- Homo 47 GNFLTGLGHRSDHYNCISSGGQCLYSACPIF 1 (Fragment) sapiens TKIQGTCYRGKAKCCK Beta-Defensin- Homo 41 GIGDPVTCLKSGAICHPVFCPRRYKQIGTCGL 2 sapiens PGTKCCKKP Beta-defensin- Homo 67 MRIHYLLFALLFLFLVPVPGHGGIINTLQKYYC 3 sapiens RVRGGRCAVLSRLPKEEQIGKCSTRGRKCC RRKK Calgranulin A Homo 93 MLTELEKALNSIIDVYHKYSLIKGNFHAVYRDD (Migration sapiens LKKLLETECPQYIRKKGADVWFKELDINTDGA inhibitory VNFQEFLILVIKMGVAAHKKSHEESHKE factor-related protein 8) (MRP-8) (Cystic fibrosis antigen) (CFAG) (P8) (Leukocyte L1 complex light chain) (S100 calcium-binding protein A8) (Calprotectin L1L subun Calgranulin B Homo 114 MTCKMSQLERNIETIINTFHQYSVKLGHPDTL (Migration sapiens NQGEFKELVRKDLQNFLKKENKNEKVIEHIME inhibitory DLDTNADKQLSFEEFIMLMARLTWASHEKMH factor-related EGDEGPGHHHKPGLGEGTP protein 14) (MRP-14) (P14) (Leukocyte L1 complex heavy chain) (S100 calcium- binding protein A9) (Calprotectin L1H subunit) Calgranulin C Homo 92 MTKLEEHLEGIVNIFHQYSVRKGHFDTLSKGE (CAGC) sapiens LKQLLTKELANTIKNIKDKAVIDEIFQGLDANQ (CGRP) DEQVDFQEFISLVAIALKAAHYHTHKE (Neutrophil S100 protein) (Calcium- binding protein in amniotic fluid 1) (CAAF1) (p6) [Contains: Calcitermin] cathelicidin Homo 170 MKTQRNGHSLGRWSLVLLLLGLVMPLAIIAQV antimicrobial sapiens LSYKEAVLRAIDGINQRSSDANLYRLLDLDPR peptide PTMDGDPDTPKPVSFTVKETVCPRTTQQSP EDCDFKKDGLVKRCMGTVTLNQARGSFDISC DKDNKRFALLGDFFRKSKEKIGKEFKRIVQRI KDFLRNLVPRTES Cathepsin G Homo 255 MQPLLLLLAFLLPTGAEAGEIIGGRESRPHSR precursor (EC sapiens PYMAYLQIQSPAGQSRCGGFLVREDFVLTAA 3.4.21.20) (CG) HCWGSNINVTLGAHNIQRRENTQQHITARRAI RHPQYNQRTIQNDIMLLQLSRRVRRNRNVNP VALPRAQEGLRPGTLCTVAGWGRVSMRRGT DTLREVQLRVQRDRQCLRIFGSYDPRRQICV GDRRERKAAFKGDSGGPLLCNNVAHGIVSY GKSSGVPPEVFTRVSSFLPWIRTTMRSFKLL DQMETPL chromogranin Homo 457 MRSAAVLALLLCAGQVTALPVNSPMNKGDTE A; parathyroid sapiens VMKCIVEVISDTLSKPSPMPVSQECFETLRGD secretory ERILSILRHQNLLKELQDLALQGAKERAHQQK protein 1 KHSGFEDELSEVLENQSSQAELKEAVEEPSS KDVMEKREDSKEAEKSGEATDGARPQALPE PMQESKAEGNNQAPGEEEEEEEEATNTHPP ASLPSQKYPGPQAEGDSEGLSQGLVDREKG LSAEPGWQAKREEEEEEEEEAEAGEEAVPE EEGPTVVLNPHPSLGYKEIRKGESRSEALAV DGAGKPGAEEAQDPEGKGEQEHSQQKEEE EEMAVVPQGLFRGGKSGELEQEEERLSKEW EDSKRWSKMDQLAKELTAEKRLEGQEEEED NRDSSMKLSFRARAYGFRGPGPQLRRGWR PSSREDSLEAGLPLQVRGYPEEKKEEEGSAN RRPEDQELESLSAIEAELEKVAHQLQALRRG Defensin 5 Homo 94 MRTIAILAAILLVALQAQAESLQERADEATTQK precursor sapiens QSGEDNQDLAISFAGNGLSALRTSGSQARAT (Defensin, CYCRTGRCATRESLSGVCEISGRLYRLCCR alpha 5) Defensin 6 Homo 101 MRTLTILTAVLLVALQAKAEPLQAEDDPLQAK sapiens AYEADAQEQRGANDQDFAVSFAEDASSSLR ALGGSTRAFTCHCRRSCYSTEYSYGTCTVM GINHRFCCL Defensin 6 Homo 100 MRTLTILTAVLLVALQAKAEPLQAEDDPLQAK precursor sapiens AYEADAQEQRGANDQDFAVSFAEDASSSLR (Defensin, ALGSTRAFTCHCRRSCYSTEYSYGTCTVMGI alpha 6) NHRFCCL defensin alpha- Homo 65 CCSPGADCSGHPRSGCFPCMGRKLGSKAS 3 precursor sapiens RLKEKHGLLLQNTSVHCRRTSLWNLHLPGKT (mistranslated) LGILL defensin beta Homo 60 MKIFFFILAALILLAQIFQARTAIHRALISKRME 107 sapiens GHCEAECLTFEVKIGGCRAELAPFCC defensin beta Homo 52 GKFKEICERPNGSCRDFCLETEIHVGRCLNS 108 sapiens QPCCLPLGHQPRIESTTPKKD Defensin beta Homo 21 SCTAIGGRCKNQCDDSEFRIS 112 (Fragment) sapiens Defensin beta Homo 39 KRYGRCKRDCLESEKQIDICSLPGKICCTEKL 114 (Fragment) sapiens YEEDDMF defensin beta Homo 101 GEKKCWNRSGXCRKQCKDGEAVKDTCKNX 118 sapiens RACCIPSNEDHRRVPATSPTPLSDSTPGIIDDI LTVRFTTDYFEVSSKKDMVEESEAGRGTETS LPNVHHSS defensin beta Homo 94 SLLFTLAVFMLLAQLVSGNWYVKKCLNDVGI 126 sapiens CKKKCKPEEMHVKNGWAMCGKQRDCCVPA DRRANYPVFCVQTKTTRISTVTATTATTTLMM TT defensin beta Homo 59 EQLKKCWNNYVQRHCRKICRVNEVPEALCE 127 sapiens NGRYCCLNIKELEACKKITKPPSPKQHLH defensin beta Homo 155 MKLLFPIFASLMLQYQVNTEFIGLRRCLMGLG 129 sapiens RCRDHCNVDEKEIQKCKMKKCCVGPKVVKLI KNYLQYGTPNVLNEDVQEMLKPAKNSSAVIQ RKHILSVLPQIKSTSFFANTNFVIIPNATPMNS ATISTMTPGQITYTATSTKSNTKESRDS defensin beta-1 Homo 36 DHYNCVSSGGQCLYSACPIFTKIQGTCYRGK sapiens AKCCK Defensin HNP- Homo 30 DCYCRIPACIAGERRYGTCIYQGRLWAFCC 3 - Chain B sapiens EP2E Homo 80 MKVFFLFAVLFCLVQTNSGDVPPGIRNTICRM sapiens QQGICRLFFCHSGEKKRDICSDPWNRCCVS NTDEEGKEKPEMDGRSGI gene TAP1 Homo 33 GYDTEVGEAGSQLSGGQRQAVALARALIRKP protein sapiens CV Hepcidin Homo 84 MALSSQIWAACLLLLLLLASLTSGSVFPQQTG precursor sapiens QLAELQPQDRAGARASWMPMFQRRRRRDT (Liver- HFPICIFCCGCCHRSKCGMCCKT expressed antimicrobial peptide) (LEAP-1) (Putative liver tumor regressor) (PLTR) [Contains: Hepcidin 25 (Hepc25); Hepcidin 20 (Hepc20)] High mobility Homo 215 MGKGDPKKPRGKMSSYAFFVQTCREEHKKK group protein 1 sapiens HPDASVNFSEFSKKCSERWKTMSAKEKGKF (HMG-1) EDMAKADKARYEREMKTYIPPKGETKKKFKD PNAPKRPPSAFFLFCSEYRPKIKGEHPGLSIG DVAKKLGEMWNNTAADDKQPYEKKAAKLKE KYEKDIAAYRAKGKPDAAKKGVVKAEKSKKK KEEEEDEEDEEDEEEEEDEEDEDEEEDDDD E liver-expressed Homo 81 MWHLKLCAVLMIFLLLLGQIDGSPIPEVSSAK antimicrobial sapiens RRPRRMTPFWRGVSLRPIGASCRDDSECITR peptide 2 LCRKGQQSPPTMLRSMEY isoform Liver- Homo 77 MWHLKLCAVLMIFLLLLGQIDGSPIPEVSSAK expressed sapiens RRPRRMTPFWRGVSLRPIGASCRDDSECITR antimicrobial LCRKRRCSLSVAQE peptide 2 precursor (LEAP-2) Lysozyme C Homo 148 MKALIVLGLVLLSVTVQGKVFERCELARTLKR precursor (EC sapiens LGMDGYRGISLANWMCLAKWESGYNTRATN 3.2.1.17) (1,4- YNAGDRSTDYGIFQINSRYWCNDGKTPGAV beta-N- NACHLSCSALLQDNIADAVACAKRVVRDPQG acetylmurami- IRAWVAWRNRCQNRDVRQYVQGCGV dase C) Neutrophil Homo 94 MRTLAILAAILLVALQAQAEPLQARADEVAAA defensin 1 sapiens PEQIAADIPEVVVSLAWDESLAPKHPGSRKN precursor MACYCRIPACIAGERRYGTCIYQGRLWAFCC (HNP-1) (HP-1) (HP1) (Defensin, alpha 1) [Contains: HP 1-56; Neutrophil defensin 2 (HNP-2) (HP-2) (HP2)] Neutrophil Homo 94 MRTLAILAAILLVALQAQAEPLQARADEVAAA defensin 3 sapiens PEQIAADIPEVVVSLAWDESLAPKHPGSRKN precursor MDCYCRIPACIAGERRYGTCIYQGRLWAFCC (HNP-3) (HP-3) (HP3) (Defensin, alpha 3) [Contains: HP 3-56; Neutrophil defensin 2 (HNP-2) (HP-2) (HP2)] Neutrophil Homo 97 MRIIALLAAILLVALQVRAGPLQARGDEAPGQ defensin 4 sapiens EQRGPEDQDISISFAWDKSSALQVSGSTRG precursor MVCSCRLVFCRRTELRVGNCLIGGVSFTYCC (HNP-4) (HP-4) TRVD (Defensin, alpha 4) Retrocyclin Homo 56 MPCFSWWPCRLRRSHFRQELMKLQPRSSLE sapiens QMIRKWLMPLHGMKVPLFRFQTQREA Ribonuclease 7 Homo 156 MAPARAGFCPLLLLLLLGLWVAEIPVSAKPKG precursor (EC sapiens MTSSQWFKIQHMQPSPQACNSAMKNINKHT 3.1.27.-) KRCKDLNTFLHEPFSSVAATCQTPKIACKNG (RNase 7) DKNCHQSHGPVSLTMCKLTSGKYPNCRYKE (Skin-derived KRQNKSYVVACKPPQKKDSQQFHLVPVHLD antimicrobial RVL protein 2) (SAP-2) Salivary gland Homo 46 MHDFWVLWVLLEYIYNSACSVLSATSSVSSR antimicrobial sapiens VLNRSLQVKVVKITN salvic Secretogranin I Homo 677 MQPTLLLSLLGAVGLAAVNSMPVDNRNHNE precursor (SgI) sapiens GMVTRCIIEVLSNALSKSSAPPITPECRQVLKT (Chromogranin SRKDVKDKETTENENTKFEVRLLRDPADASE B) (CgB) AHESSSRGEAGAPGEEDIQGPTKADTEKWA [Contains: EGGGHSRERADEPQWSLYPSDSQVSEEVKT GAWK peptide; RHSEKSQREDEEEEEGENYQKGERGEDSSE CCB peptide] EKHLEEPGETQNAFLNERKQASAIKKEELVA RSETHAAGHSQEKTHSREKSSQESGEEAGS QENHPQESKGQPRSQEESEEGEEDATSEVD KRRTRPRHHHGRSRPDRSSQGGSLPSEEKG HPQEESEESNVSMASLGEKRDHHSTHYRAS EEEPEYGEEIKGYPGVQAPEDLEWERYRGR GSEEYRAPRPQSEESWDEEDKRNYPSLELD KMAHGYGEESEEERGLEPGKGRHHRGRGG EPRAYFMSDTREEKRFLGEGHHRVQENQMD KARRHPQGAWKELDRNYLNYGEEGAPGKW QQQGDLQDTKENREEARFQDKQYSSHHTAE KRKRLGELFNPYYDPLQWKSSHFERRDNMN DNFLEGEEENELTLNEKNFFPEYNYDWWEK KPFSEDVNWGYEKRNLARVPKLDLKRQYDR VAQLDQLLHYRKKSAEFPDFYDSEEPVSTHQ EAENEKDRADQTVLTEDEKKELENLAAMDLE LQKIAEKFSQRG Similar to Homo 226 AEGKWGLAHGRAEAHVWPGQGGWRLGPP azurocidin 1 sapiens QGRWTGSSPLLDIVGGRKARPRQFPFLASIQ (Cationic NQGRHFCGGALIHARFVMTAASCFQSQNPG antimicrobial VSTVVLGAYDLRRRERQSRQTFSISSMSENG protein 37) YDPQQNLNDLMLLQLDREANLTSSVTILPLPL (Fragment) QNATVEAGTRCQVAGWGSQRSGGRLSRFP RFVNVTVTPEDQCRPNNVCTGVLTRRGGICN VSAPCGGRRGPERY

Nonhuman Animal Antimicrobial Peptides Organism Protein Name Name Length Sequence 11.5 kDa Carcinus 84 NKDCKYWCKDNLGLNYCCGQPGVTYPPFTK antibacterial maenas KHLGRCPAVRDTCTGVRTQLPTYCPHDGAC protein QFRSKCCYDTCLKHHVCKTAEYPY 27 kDa Cyprinus 19 GIGGKPVQTAFVDNDGIYD antibacterial carpio protein (Fragment) 4 kDa defensin Androctonus 37 GFGCPFNQGACHRHCRSIRRRGGYCAGLFK australis QTCTCYR 4 kDa defensin Leiurus 38 GFGCPLNQGACHRHCRSIRRRGGYCAGFFK (Antibacterial 4 quinquestriatus QTCTCYRN kDa peptide) 7.5 kDa Ovis aries 164 METQMASPSLGRCSLWLLLLGLLLPSASAQA bactinecin LSYREAVLRAVGQLNEKSSEVNLYRLLELDP (Fragment) PPKDAEDQGARKPVSFRVKETVCPRTSQQP PEQCDFKENGLVKQCVGTVSLDTSNDEFDL NCNELQSVRRLRPRRPRLPRPRPRPRPRPR SLPLPRPQPRRI Abaecin Bombus 39 FVPYNPPRPGQSKPFPSFPGHGPFNPKIQW pascuorum PYPLPNPGH Abaecin Apis mellifera 53 MKVVIFIFALLATICAAFAYVPLPNVPQPGRRP precursor FPTFPGQGPFNPKIKWPQGY Acaloleptin A1 Acalolepta 71 SLQPGAPNVNNKDQPWQVSPHISRDDSGNT luxuriosa RTDINVQRHGENNDFEAGWSKVVRGPNKAK PTWHIGGTHRW Achacin Achatina 531 MLLLNSALFILCLVCWLPGTSSSRVLTRREGP precursor fulica QCSRSVDVAVVGAGPSGTYSAYKLRNKGQT VELFEYSNRIGGRLFTTHLPNVPDLNLESGG MRYFKNHHKIFGVLVKELNLSNKEFTEGFGK PGRTRFFARGKSLTLEEMTSGDVPYNLSTEE KANQANLAGYYLKKLTGFDGEVLTIPQANKLE VDDGRKLYQLTVDEALDKVGTPEGKEFLKAF STGNTEFIEGVSAVNYFLVELGEREEEILTLTD GMSALPQALADAFLKSSTSHALTLNRKLQSL SKTDNGLYLLEFLETNTHEGYTEESNITDLVC ARKVILAIPQSALIHLDWKPLRSETVNEAFNAV KFIPTSKVFLTFPTAWWLSDAVKNPAFVVKST SPFNQMYDWKSSNVTGDAAMIASYADTSDT KFQENLNSKGELIPGSAPGANRVTVALKEELL SQLSQAYGIERSDIPEPKSGTSQFWSSYPFE GDWTVWKAGYHCEYTQYIIERPSLIDDVFVV GSDHVNCIENAWTESAFLSVENVFEKYF Acyl-CoA- Sus scrofa 87 MSQAEFEKAAEEVKNLKTKPADDEMLFIYSH binding protein YKQATVGDINTERPGILDLKGKAKWDAWNGL (ACBP) KGTSKEDAMKAYINKVEELKKKYGI (Diazepam binding inhibitor) (DBI) (Endozepine) (EP) [Contains: DBI(32-86)] Adenoregulin Phyllomedusa 81 MAFLKKSLFLVLFLGLVSLSICEEEKRENEDE precursor bicolor EEQEDDEQSEMKRGLWSKIKEVGKEAAKAA (Dermaseptin AKAAGKAALGAVSEAVGEQ BII) (Dermaseptin B2) Alpha-defensin Macaca 96 MRTLAILAAILLVALQAQAEPLQARTDEATAA 1 mulatta QEQIPTDNPEVVVSLAWDESLAPKDSVPGLR KNMACYCRIPACLAGERRYGTCFYMGRVWA FCC Alpha-defensin Macaca 96 MRTLAILAAILLVALQAQAEPLQARTDEATAA 1A mulatta QEQIPTDNPEVVVSLAWDESLAPKDSVPGLR KNMACYCRIPACLAGERRYGTCFYLGRVWA FCC Alpha-defensin Macaca 94 MRTLAILAAILLFALLAQAKSLQETADDAATQE 2 mulatta QPGEDDQDLAVSFEENGLSTLRASGSQARR TCRCRFGRCFRRESYSGSCNINGRIFSLCCR Alpha-S2 Bos taurus 222 MKFFIFTCLLAVALAKNTMEHVSSSEESIISQE casein TYKQEKNMAINPSKENLCSTFCKEVVRNANE precursor EEYSIGSSSEESAEVATEEVKITVDDKHYQKA [Contains: LNEINQFYQKFPQYLQYLYQGPIVLNPWDQV Casocidin-I] KRNAVPITPTLNREQLSTSEENSKKTVDMES TEVFTKKTKLTEEEKNRLNFLKKISQRYQKFA LPQYLKTVYQHQKAMKPWIQPKTKVIPYVRY L Androctonin Androctonus 25 RSVCRQIKICRRRGGCYYKCTNRPY australis Andropin Drosophila 57 MKYFVVLVVLALILAITVGPSDAVFIDILDKME precursor mauritiana NAIHKAAQAGIGIAKPIEKMILPK Andropin Drosophila 57 MKYFVVLVVLALILAISVGPSDAVFIDILDKVEN precursor melanogaster AIHNAAQVGIGFAKPFEKLINPK Andropin Drosophila 67 MKYFLVLVVLTLILAISVGQSDALFVDIIDNVEN precursor orena AIHKAAKTGIGMVKPIENIFIPNQQKKSTEASN Andropin Drosophila 57 MKYFVVLVVLALILAITVDPSDAVFIDILDKMEN precursor sechellia AIHKAAQAGIGLAKPIENMILPK Andropin Drosophila 60 MKYFVVLVVALILAIAVGPSDAVFIDILDKME precursor simulans NAIHKAAQAGIGIAKPIENMILPKLTK Andropin Drosophila 62 MKYFSVLVVLTLILAIVDQSDAFINLLDKVEDA precursor teissieri LHTGAQAGFKLIRPVERGATPKKSEKPEK Andropin Drosophila 60 MKYFSVLVVLTLILAISVGQSNAIFVDVLDNVE precursor yakuba TALHNAAKAGFKLIKPIEKMIMPSKEK Anionic Bombina 144 MNFKYIFAVSFLIASAYARSVQNDEQSLSQRD antimicrobial maxima VLEEESLREIRGIGGKILSGLKTALKGAAKELA peptide STYLHRKRTAEEHEEMKRLEAVMRDLDSLDY PEEASERETRGFNQDEIANLFTKKEKRILGPV LGLVSDTLDDVLGILG Antibacterial Carcinus 30 XXVPYPRPFPRPPIGPRPLPFPGGGRPFQS 6.5 kDa protein maenas (Fragment) Antibacterial Bos taurus 158 METQRASLSLGRWSLWLLLLGLALPSASAQA peptide BMAP- LSYREAVLRAVDQFNERSSEANLYRLLELDP 27 precursor PPKEDDENPNIPKPVSFRVKETVCPRTSQQP (Myeloid AEQCDFKENGLVKQCVGTVTLDAVKGKINVT antibacterial CEELQSVGRFKRFRKKFKKLFKKLSPVIPLLH peptide 27) LG Antibacterial Bos taurus 159 METQRASLSLGRWSLWLLLLGLALPSASAQA peptide BMAP- LSYREAVLRAVDQLNEKSSEANLYRLLELDP 28 precursor PPKEDDENPNIPKPVSFRVKETVCPRTSQQS (Myeloid PEQCDFKENGLLKECVGTVTLDQVGSNFDIT antibacterial CAVPQSVGGLRSLGRKILRAWKKYGPIIVPIIR peptide 28) IG Antibacterial Bos taurus 165 METQRASFSLGRSSLWLLLLGLVVPSASAQD peptide BMAP- LSYREAVLRAVDQFNERSSEANLYRLLELDP 34 precursor PPEQDVEHPGARKPVSFTVKETVCPRTTPQP PEQCDFKENGLVKQCVGTVTRYWIRGDFDIT CNNIQSAGLFRRLRDSIRRGQQKILEKARRIG ERIKDIFRG Antibacterial Bombyx mori 59 MNFTRIIFFLFVVVFATASGKPWNIFKEIERAV peptide ARTRDAVISAGPAVRTVAAATSVASG enbocin precursor (Moricin) Antibacterial Sus scrofa 153 METQRASLCLGRWSLWLLLLGLVVPSASAQ peptide PMAP- ALSYREAVLRAVDRLNEQSSEANLYRLLELD 23 precursor QPPKADEDPGTPKPVSFTVKETVCPRPTRQP (Myeloid PELCDFKENGRVKQCVGTVTLKEIRGNFDITC antibacterial NQLQSVRIIDLLWRVRRPQKPKFVTVWVR peptide 23) Antibacterial Sus scrofa 166 METQRASLCLGRWSLWLLLLGLVVPSASAQ peptide PMAP- ALSYREAVLRAVDRLNEQSSEANLYRLLELD 36 precursor QPPKADEDPGTPKPVSFTVKETVCPRPTWR (Myeloid PPELCDFKENGRVKQCVGTVTLNPSNDPLDI antibacterial NCDEIQSVGRFRRLRKKTRKRLKKIGKVLKWI peptide 36) PPIVGSIPLGCG Antibacterial Sus scrofa 167 METQRASLCLGRWSLWLLLLALVVPSASAQA peptide PMAP- LSYREAVLRAVDRLNEQSSEANLYRLLELDQ 37 precursor PPKADEDPGTPKPVSFTVKETVCPRPTWRP (Myeloid PELCDFKENGRVKQCVGTVTLDQIKDPLDITC antibacterial NEIQSVGLLSRLRDFLSDRGRRLGEKIERIGQ peptide 37) KIKDLSEFFQS Antibacterial Carcinus 88 GLFPNKDCKYWCKDNLGLNYCCGQPGVTYP protein 11.5 maenas PFTKKHLGRCPAVRDTCTGVRTQLPTYCPHD kDa GACQFRSKCCYDTCLKHHVCKTAEYPY (Fragment) Antibacterial Sus scrofa 172 METQRASLCLGRWSLWLLLLGLVVPSASAQ protein PR-39 ALSYREAVLRAVDRLNEQSSEANLYRLLELD precursor QPPKADEDPGTPKPVSFTVKETVCPRPTRQP PELCDFKENGRVKQCVGTVTLNPSIHSLDISC NEIQSVRRRPRPPYLPRPRPPPFFPPRLPPRI PPGFPPRFPPRFPGKR antibacterial Sus scrofa 172 METQRASLCLGRWSLWLLLLALVVPSASAQA protein LSYREAVLRAVDRLNEQSSEANLYRLLELDQ precursor PPKADEDPGTPKPVSFTVKETVCPRPTRQPP ELCDFKENGRVKQCVGTVTLNPSIHSLDISCN EIQSVRRRPRPPYLPRPRPPPFFPPRLPPRIP PGFPPRFPPRFPGKR antibacterial Cavia 42 GLRKKFRKTRKRIQKLGRKIGKTGRKVXKAW protein, 11 K porcellus REYGQIPYPCR Antifungal Galleria 76 MKIAFIVAISLAFLAVTSCIEFEKSTESHDIQKR peptide mellonella GVTITVKPPFPGCVFYECIANCRSRGYKNGG gallerimycin YCTINGCQCLR Antifungal Sarcophaga 85 MVKLFVIVILALIAVAFGQHGHGGQDQHGYG protein peregrina HGQQAVYGKGHEGHGVNNLGQDGHGQHG precursor YAHGHSDQHGHGGQHGQHDGYKNRGY (AFP) Antimicrobial Xenopus 66 LKCVNLQANGIKMTQECAKEDTKCLTLRSLK amphipathic laevis KTLKFCASGRTCTTMKIMSLPGEQITCCEGN helix-forming MCNA peptide Antimicrobial Acrocinus 34 CIKNGNGCQPDGSQGNCCSRYCHKEPGWV peptide ALO1 longimanus AGYCR Antimicrobial Acrocinus 34 CIANRNGCQPDGSQGNCCSGYCHKEPGWV peptide ALO2 longimanus AGYCR Antimicrobial Acrocinus 36 CIKNGNGCQPNGSQGNCCSGYCHKQPGWV peptide ALO3 longimanus AGYCRRK Antimicrobial Glossina 208 MQSFKICFFISCLSVVLVKGQFGGTVSSNPN peptide attacin morsitans GGLDVNARLSKTIGDPNANVVGGVFAAGNTD AttA GGPATRGAFLAANKDGHGLSLQHSKTDNFG SSLTSSAHAHLFNDKTHKLDANAFHSRTHLD NGFKFDRVGGGLRYDHVTGHGASLTASRIP QLDMNTLGLTGKANLWSSPNRATTLDLTGG VSKHFGGPFDGQTNKQIGLGLNSRF Antimicrobial Manduca 67 MKFSRVLFFVFACFAAFTVTAAKPWDFLKEL peptide sexta EGAGQRIRDAIISAQPAVETIAQATAIFKGQSK cecropin 6 EED Antimicrobial Gallus gallus 39 GRKSDCFRKSGFCAFLKCPSLTLISGKCSRF peptide CHP1 YLCCKRIR (Chicken heterophil peptide 1) Antimicrobial Gallus gallus 34 GRKSDCFRKNGFCAFLKCPYLTLISGLCSXF peptide CHP2 HLC (Chicken heterophil peptide 2) (Fragment) Antimicrobial Glossina 87 MKFYLVLAFLTLCAVAVTALPAGDETRIDLETL peptide morsitans EEDLRLVDGAQVTGELKRDKRVTCNIGEWV defensin DefA CVAHCNSKSKKSGYCSRGVCYCTN Antimicrobial Glossina 76 PQSPPAQIKDPKIYASGGGSPKDGYNVNVDV peptide morsitans RKNVWVSQNGRHSIDATGGYSQHLGGPYG diptericin DipA NSRPDFRGGASYTYRF (Fragment) Antimicrobial Equus 46 DVQCGEGHFCHDXQTCCRASQGGXACCPY peptide eNAP- caballus SQGVCCADQRHCCPVGF 1 (Fragment) Antimicrobial Equus 46 EVERKHPLGGSRPGRCPTVPPGTFGHCACL peptide eNAP- caballus CTGDASEPKGQKCCSN 2 (Fragment) Antimicrobial Manduca 171 AILFAAIVACACAQVSMPPQYAQIYPEYYKYS peptide sexta KQVRHPRDVTWDKQVGNNGKVFGTLGQND gloverin QGLFGKGGYQHQFFDDHRGKLTGQGYGSR (Fragment) VLGPYGDSTNFGGRLDWANKNANAALDVTK SIGGRTGLTASGSGVWQLGKNTDLSAGGTL SQTLGHGKPDVGFQGLFQHRW Antimicrobial Sus scrofa 82 MALSVQIRAACLLLLLLVSLTAGSVLPSQTRQ peptide LTDLRTQDTAGATAGLTPVAQRLRRDTHFPI hepcidin CIFCCGCCRKAICGMCCKT Antimicrobial Lumbricus 76 MSLCISDYLYLTLTFSKYERQKDKRPYSERKN peptide rubellus QYTGPQFLYPPERIPPQKVIKWNEEGLPIYEI lumbricin1 PGEGGHAEPAAA Antimicrobial Mytilus 82 MKAVFVLLVVGLCIMMMDVATAGFGCPNNY peptide galloprovincialis ACHQHCKSIRGYCGGYCASWFRLRCTCYRC MGD2b GGRRDDVEDIFDIYDNVAVERF Antimicrobial Manduca 67 MKLTSLFIFVIVALSLLFSSTDAAPGKIPVKAIK peptide moricin sexta QAGKVIGKGLRAINIAGTTHDWSFFRPKKKK H Antimicrobial Equus 160 MKKMGCGGRLSSCPTMTSRALLLLASALLGT peptide NK- caballus PGLTFSGLNPESYDLATAHLSDGEQFCQGLT lysin QEDLQGDLLTERERQGIACWSCRKILQKLED LVGEQPNEATINEAASRVCRNLGLLRGACKKI MRTCLRLISRDILAGKKPQEVCVDIKLCKHKA GLI Antimicrobial Xenopus 24 GVLSNVIGYLKKLGTGALNAVLKQ peptide PGQ laevis Antimicrobial Meleagris 65 MRIVYLLFPFILLLAQGAAGSSLALGKREKCL peptide THP1 gallopavo RRNGFCAFLKCPTLSVISGTCSRFQVCCKTLL precursor G (Turkey heterophil peptide 1) Antimicrobial Meleagris 64 MRILYLLFSLLFLALQVSPGLSSPKRDMLFCK peptide THP2 gallopavo RGTCHFGRCPSHLIKVGSCFGFRSCCKWPW precursor DA (Turkey heterophil peptide 2) Antimicrobial Meleagris 25 LSCKRGTCHFGRCPSHLIKGSCSGG peptide THP3 gallopavo (Turkey heterophil peptide 3) (Fragment) Antimicrobial Manduca 207 KMFTKFVVLVCLLVGAKARPQLGALTFNSDG protein attacin sexta TSGAAVKVPFGGNKNNIFSAIGGADFNANHK 2 (Fragment) LSSATAGVALDNIRGHGLSLTDTHIPGFGDKL TAAGKLNLFHNNNHDLTANAFATRNMPNIPQ VPNFNTVGGGLDYMFKNKVGASLGAAHTDFI NRNDYSVGGKLNLFRNPSTSLDFNAGFKKFD TPFMRSGWEPNMGFSLSKFF Antimicrobial Oryctolagus 171 METHKHGPSLAWWSLLLLLLGLLMPPAIAQD protein CAP18 cuniculus LTYREAVLRAVDAFNQQSSEANLYRLLSMDP precursor (18 QQLEDAKPYTPQPVSFTVKETECPRTTWKLP kDa EQCDFKEDGLVKRCVGTVTRYQAWOSFDIR lipopolysacchar- CNRAQESPEPTGLRKRLRKFRNKIKEKLKKIG ide- binding QKIQGFVPKLAPRTDY protein) (18 kDa cationic protein) (CAP18-A) Antimicrobial- Pheretima 67 MYSKYERQKDKRPYSERKDQYTGPQFLYPP like peptide tschiliensis DRIPPSKAIKWNEEGLPMYEVLPDGAGAKTA PP-1 VEAAAE Apidaecin Bombus 17 GNRPVYIPPPRPPHPRL pascuorum apidaecin Ib Apis mellifera 26 EAKPEAKPGNNRPVYIPQPRPPHPRL precursor Apidaecin Apis mellifera 168 MKNFALAILVVTFVVAVFGNTNLDPPTRPARL precursor, type RREAKPEAEPGNNRPIYIPQPRPPHPRLRRE 14 AEPKAEPGNNRPIYIPQPRPPHPRLRREAES EAEPGNNRPVYIPQPRPPHPRLRREPEAEPG NNRPVYIPQPRPPHPRLRREPEAEPGNNRPV YIPQPRPPHPRI Apidaecin Apis mellifera 144 MKNFALAILVVTFVVAVFGNTNLDPPTRPTRL precursor, type RREAEPEAEPGNNRPVYIPQPRPPHPRLRRE 22 AEPEAEPGNNRPVYIPQPRPPHPRLRREAEP EAEPGNNRPVYIPQPRPPHPRLRREAEPEAE PGNNRPVYIPQPRPPHPRI Apidaecin Apis mellifera 283 KNFALAILVVTFVVAVFGNTNLDPPTRPTRLR precursor, type REAKPEAEPGNNRPVYIPQPRPPHPRLRREA 73 (Fragment) EPEAEPGNNRPVYIPQPRPPHPRLRREAELE AEPGNNRPVYISQPRPPHPRLRREAEPEAEP GNNRPVYIPQPRPPHPRLRREAELEAEPGNN RPVYISQPRPPHPRLRREAEPEAEPGNNRPV YIPQPRPPHPRLRREAEPEAEPGNNRPVYIP QPRPPHPRLRREAEPEAEPGNNRPVYIPQPR PPHPRLRREAKPEAKPGNNRPVYIPQPRPPH PRI Apolipoprotein Bos taurus 76 QAEESNLQSLVSQYFQTVADYGKDLVEKAK A-II (Apo-AII) GSELQTQAKAYFEKTQEELTPFFKKAGTDLL (Antimicrobial NFLSSFIDPKKQPAT peptide BAMP- 1) ASABF Ascaris suum 93 MKTAIIVVLLVIFASTNAAVDFSSCARMDVPGL precursor SKVAQGLCISSCKFQNCGTGHCEKRGGRPT (ASABF-alpha) CVCDRCGRGGGEWPSVPMPKGRSSRGRR HS ASABF-epsilon Ascaris suum 65 MVTKGIVLFMLVILFASTDAATCGYDDAKLNR (ASABF- PTIGCILSCKVQGCETGACYLRDSRPICVCKR epsilon2) C ASABF-zeta Ascaris suum 94 MKAILIALLLTTFTVVNGGVVLTSCARMDTPVL SKAAQGLCITSCKYQNCGTGFCQKVGGRPT CMCRRCANGGGSWPVIPLDTLVKLALKRGK R ASABF-zeta2 Ascaris suum 35 TSCKYQNCGTGFCQKVGGRPTCMCRRCAN (Fragment) GGGSWP Attacin A Drosophila 224 MQKTSILIVALVALFAITEALPSLPTTGPIRVRR precursor melanogaster QVLGGSLTSNPAGGADARLDLTKGIGNPNHN VVGQVFAAGNTQSGPVTTGGTLAYNNAGHG ASLTKTHTPGVKDVFQQEAHANLFNNGRHNL DAKVFASQNKLANGFEFQRNGAGLDYSHING HGASLTHSNFPGIGQQLGLDGRANLWSSPN RATTLDLTGSASKWTSGPFANQKPNFGAGL GLSHHFG Attacin A Trichoplusia 254 MFTYKLILGLVLVVSASARYLVFEDLEGESYL precursor ni VPNQAEDEQVLEGEPFYENAVQLASPRVRR QAQGSVTLNSDGSMGLGAKVPIVGNEKNVL SALGSVDLNDQLKPASRGMGLALDNVNGHG LSVMKETVPGFGDRLTGAGRVNVFHNDNHDI SAKAFVTKNMPDFPNVPNFNTVGGGVDYMY KNKVGASLGMANTPFLDRKDYSAMGNLNVF RSPTTSVDFNAGFKKFDTPVFKSNWEPNFGL TFSRSFGNKW Attacin B Drosophila 218 MQKTSILILALFAIAEAVPTTGPIRVRRQVLGG precursor melanogaster SLASNPAGGADARLNLSKGIGNPNHNVVGQ VFAAGNTQSGPVTTGGTLAYNNAGHGASLT KTHTPGVKDVFQQEAHANLFNNGRHNLDAK VFASQNKLANGFEFQRNGAGLDYSHINGHG ASLTHSNFPGIGQQLGLDGRANLWSSPNRAT TLDLTGSASKWTSGPFANQKPNFGAGLGLS HHFG Attacin B Hyalophora 233 MFAKLFLVSVLLVGVNSRYVLVEEPGYYDKQ precursor cecropia YEEQPQQWVNSRVRRQAGALTINSDGTSGA (Immune VVKVPITGNENHKFSALGSVDLTNQMKLGAA protein P5) TAGLAYDNVNGHGATLTKTHIPGFGDKMTAA GKVNLFHNDNHDFSAKAFATKNMPNIPQVPN FNTVGAGVDYMFKDKIGASANAAHTDFINRN DYSLGGKLNLFKTPTTSLDFNAGWKKFDTPF FKSSWEPSTSFSFSKYF Aftacin E and F Hyalophora 235 MFGKIVFLLLVALCAGVQSRYLIVSEPVYYIEH precursor cecropia YEEPELLASSRVRRDAHGALTLNSDGTSGAV (Immune VKVPFAGNDKNIVSAIGSVDLTDRQKLGAATA protein P5) GVALDNINGHGLSLTDTHIPGFGDKMTAAGK VNVFHNDNHDITAKAFATRNMPDIANVPNFN TVGGGIDYMFKDKIGASASAAHTDFINRNDYS LDGKLNLFKTPDTSIDFNAGFKKFDTPFMKSS WEPNFGFSLSKYF Attacin Bombyx mori 214 MSKSVALLLLCACLASGRHVPTRARRQAGSF precursor TVNSDGTSGAALKVPLTGNDKNVLSAIGSAD (Nuecin) FNDRHKLSAASAGLALDNVNGHGLSLTGTRI PGFGEQLGVAGKVNLFHNNNHDLSAKAFAIR NSPSAIPNAPNFNTLGGGVDYMFKQKVGASL SAAHSDVINRNDYSAGGKLNLFRSPSSSLDF NAGFKKFDTPFYRSSWEPNVGFSFSKFF Attacin-A Drosophila 221 MQNTSILIVALVALFAITEALPTTGPIRVRRQVL CG10146-PA melanogaster GGSLTSNPAGGADARLDLTKGIGNPNHNVV GQVFAAGNTQSGPVTTGGTLAYNNAGHGAS LTKTHTPGVKDVFQQEAHANLFNNGRHNLD AKVFASQNKLANGFEFQRNGAGLDYSHINGH GASLTHSNFPGIGQQLGLDGRANLWSSPNR ATTLDLTGSASKWTSGPFANQKPNFGAGLGL SHHFG Attacin-B Drosophila 218 MQKTSILILALFAIAEAVPTTGPIRVRRQVLGG CG18372-PA melanogaster SLASNPAGGADARLNLSKGIGNPNHNVVGQ VFAAGNTQSGPVTTGGTLAYNNAGHGASLT KTHTPGVKDVFQQEAHANLFNNGRHNLDAK VFASQNKLANGFEFQRNGAGLDYSHINGHG GSLTHSNFPGIGQQLGLDGRANLWSSPNRA TTLDLTGSASKWTSGPFANQKPNFGAGLGLS HHFG Azurocidin Sus scrofa 219 IVGGRRAQPQEFPFLASIQKQGRPFCAGALV (Cationic HPRFVLTAASCFRGKNSGSASVVLGAYDLRQ antimicrobial QEQSRQTFSIRSISQNGYDPRQNLNDVLLLQ protein CAP37) LDREARLTPSVALVPLPPQNATVEAGTNCQV (Heparin- AGWGTQRLRRLFSRFPRVLNVTVTSNPCLP binding protein) RDMCIGVFSRRGRISQGDRGTPLVCNGLAQ (HBP) GVASFLRRRFRRSSGFFTRVALFRNWIDSVL NNPP bactenecin 5 Bos taurus 42 RFRPPIRRPPIRPPFYPPFRPPIRPPIFPPIRPP FRPPLRFP Bactenecin 5 Ovis aries 176 METQGASLSLGRWSLWLLLLGLVLPSASAQA precursor LSYREAVLRAVGQLNERSSEANLYRLLELDP (BAC5) APNDEVDPGTRKPVSFTVKETVCPRTTQQPP EECDFKENGLVKQCVGTVTLDPSNDQFDINC NELQSVRFRPPIRRPPIRPPFRPPFRPPVRPP IRPPFRPPFRPPIGPFPGRR Bactenecin 5 Bos taurus 176 METQRASLSLGRCSLWLLLLGLVLPSASAQA precursor LSYREAVLRAVDQFNERSSEANLYRLLELDP (BAC5) (PR- TPNDDLDPGTRKPVSFRVKETDCPRTSQQPL 42) EQCDFKENGLVKQCVGTVTLDPSNDQFDINC NELQSVRFRPPIRRPPIRPPFYPPFRPPIRPPI FPPIRPPFRPPLGPFPGRR Bactenecin 5 Capra hircus 176 METQGASLSLGRWSLWLLLLGLVVPLASAQA precursor LSYREAVLRAVGQLNERSSEANLYRLLELDP (CHBAC5) APNDEVDPGTRKPVSFTVKETVCPRTTQQPP EECDFKENGLVKQCVGTVTLDPSNDQFDINC NELQSVRFRPPIRRPPIRPPFNPPFRPPVRPP FRPPFRPPFRPPIGPFPGRR bactenecin 7 Bos taurus 59 RRIRPRPPRLPRPRPRPLPFPRPGPRPIPRPL PFPRPGPRPIPRPLPFPRPGPRPIPRP Bactenecin 7 Ovis aries 190 METQMASPSLGRCSLWLLLLGLLLPSASAQA precursor LSYREAVLRAVGQLNEKSSEVNLYRLLELDP (BAC7) PPKDAEDQGARKPVSFRVKETVCPRMSQQP PEQCDFKENGLVKQCVGTVSLDTSNDEFDL NCNELQSVRRLRPRRPRLPRPRPRPRPRPR SLPLPRPQPRRIPRPILLPWRPPRPIPRPQPQ PIPRWL Bactenecin 7 Bos taurus 190 METQRASLSLGRWSLWLLLLGLVLPSASAQA precursor LSYREAVLRAVDRINERSSEANLYRLLELDPP (BAC7) (PR- PKDVEDRGARKPTSFTVKETVCPRTSPQPPE 59) QCDFKENGLVKQCVGTITLDQSDDLFDLNCN ELQSVRRIRPRPPRLPRPRPRPLPFPRPGPR PIPRPLPFPRPGPRPIPRPLPFPRPGPRPIPR PL beta defensin Mus 74 MKISYFLLLILSLGSSQINPVSGDDSIQCFQKN 39 musculus NTCHTNQCPYFQDEIGTCYDRRGKCCQKRL LHIRVPRKKKV Beta defensin 9 Mus 78 MPVTKSYFMTVVVVLILVDETTGGLFGFRSSK precursor musculus RQEPWIACELYQGLCRNACQKYEIQYLSCPK (Hypothetical TRKCCLKYPRKITSF defensin-like structure containing protein) Beta defensin- Capra hircus 64 MRLHHLLLALFFLVLSAGSGFTQGIINHRSCY 2 precursor RNKGVCAPARCPRNMRQIGTCHGPPVKCCR KK Beta-defensin Bos taurus 38 DFASCHTNGGICLPNRCPGHMIQIGICFRPRV 1 (BNDB-1) KCCRSW (BNBD-1) Beta-defensin Capra hircus 64 MRLHHLLLVLFFLVLSAGSGFTQGIRSRRSCH 1 precursor RNKGVCALTRCPRNMRQIGTCFGPPVKCCR (BD-1) KK Beta-defensin Sus scrofa 64 MRLHRLLLVFLLMVLLPVPGLLKNIGNSVSCL 1 precursor RNKGVCMPGKCAPKMKQIGTCGMPQVKCC (BD-1) KRK (Defensin, beta 1) Beta-defensin Pan 68 MRTSYLLLFTLCLLLSEMASGGNFLTGLGHR 1 precursor troglodytes SDHYNCVSSGGQCLYSACPIFTKIQGTCYRG (BD-1) (hBD-1) KAKCCK (Defensin, beta 1) Beta-defensin Mus 69 MKTHYFLLVMICFLFSQMEPGVGILTSLGRRT 1 precursor musculus DQYKCLQHGGFCLRSSCPSNTKLQGTCKPD (BD-1) (mBD- KPNCCKS 1) Beta-defensin Rattus 69 MKTHYFLLVMLFFLFSQMELGAGILTSLGRRT 1 precursor norvegicus DQYRCLQNGGFCLRSSCPSHTKLQGTCKPD (BD-1) (RBD-1) KPNCCRS Beta-defensin Macaca 68 MRTSYLLLFTLCLLLSEMASGDNFLTGLGHR 1 precursor mulatta SDHYNCVRSGGQCLYSACPIYTRIQGTCYHG (BD-1) (RhBD- KAKCCK 1) (Defensin, beta 1) Beta-defensin Ovis aries 64 MRLHHLLLVLFFVVLSAGSGFTQGVRNRLSC 1 precursor HRNKGVCVPSRCPRHMRQIGTCRGPPVKCC (BD-1) (sBD1) RKK Beta-defensin Bos taurus 40 QGVRSYLSCWGNRGICLLNRCPGRMRQIGT 10 (BNDB-10) CLAPRVKCCR (BNBD-10) Beta-defensin Bos taurus 38 GPLSCRRNGGVCIPIRCPGPMRQIGTCFGRP 11 (BNDB-11) VKCCRSW (BNBD-11) Beta-defensin Macaca 123 MKLLLLALPILVLLPQVIPAYGGEKKCWNRSG 118 precursor mulatta HCRKQCKDGEAVKETCKNHRACCVPSNEDH (Epididymal RRLPTTSPTPLSDSTPGIIDNILTIRFTTDYFEI secretory SSKKDMVEESEAGQGTQTSPPNVHHTS protein 13.6) (ESP13.6) Beta-defensin Bos taurus 38 GPLSCGRNGGVCIPIRCPVPMRQIGTCFGRP 12 (BNDB-12) VKCCRSW (BNBD-12) Beta-defensin Macaca 123 MKSLLFTLAVFMLLAQLVSGNLYVKRCLNDIG 126 precursor fascicularis ICKKTCKPEEVRSEHGWVMCGKRKACCVPA (Epididymal DKRSAYPSFCVHSKTTKTSTVTARATATTATT secretory ATAATPLMISNGLISLMTTMAATPVSPTT protein 13.2) (ESP13.2) Beta-defensin Bos taurus 42 SGISGPLSCGRNGGVCIPIRCPVPMRQIGTCF 13 (BNDB-13) GRPVKCCRSW (BNBD-13) Beta-defensin Macaca 64 MRVLYLLFSFLFIFLMPLPGVFGGIGDPVTCL 2 mulatta KNGAICHPVFCPRRYKQIGTCGLPGTKCCKK P Beta-defensin Bos taurus 40 VRNHVTCRINRGFCVPIRCPGRTRQIGTCFG 2 (BNDB-2) PRIKCCRSW (BNBD-2) Beta-defensin Mus 71 MRTLCSLLLICCLLFSYTTPAVGSLKSIGYEAE 2 precursor musculus LDHCHTNGGYCVRAICPPSARRPGSCFPEK (BD-2) (mBD- NPCCKYMK 2) Beta-defensin Rattus 63 MRIHYLLFSFLLVLLSPLSAFTQSINNPITCLTK 2 precursor norvegicus GGVCWGPCTGGFRQIGTCGLPRVRCCKKK (BD-2) (RBD-2) Beta-defensin Ovis aries 64 MRLHHLLLVLFFVVLSAGSGFTHGVTDSLSC 2 precursor RWKKGICVLTRCPGTMRQIGTCFGPPVKCC (BD-2) (sBD2) RLK Beta-defensin Mus 63 MRIHYLLFAFLLVLLSPPAAFSKKINNPVSCLR 3 precursor musculus KGGRCWNRCIGNTRQIGSCGVPFLKCCKRK (BD-3) (mBD- 3) Beta-defensin Bos taurus 57 LALLFLVLSAGSGFTQGVRNHVTCRINRGFC 3 precursor VPIRCPGRTRQIGTCFGPRIKCCRSW (BNDB-3) (BNBD-3) (Fragment) Beta-defensin Mus 63 MRIHYLLFTFLLVLLSPLAAFTQIINNPITCMTN 4 precursor musculus GAICWGPCPTAFRQIGNCGHFKVRCCKIR (BD-4) (mBD- 4) Beta-defensin Bos taurus 63 MRLHHLLLAVLFLVLSAGSGFTQRVRNPQSC 4 precursor RWNMGVCIPFLCRVGMRQIGTCFGPRVPCC (BNDB-4) RR (BNBD-4) beta-defensin 4 Mus 63 MRIHYLLFTFLPVLLSPLAAFTQIINNPITCMTN variant musculus GAICWGPCPTAFRQIGNCGHFKVRCCKIR Beta-defensin Bos taurus 64 MRLHHLLLVLLFLVLSAGSGFTQVVRNPQSC 5 precursor RWNMGVCIPISCPGNMRQIGTCFGPRVPCC (BNDB-5) RRW (BNBD-5) Beta-defensin Mus 63 MKIHYLLFAFILVMLSPLAAFSQLINSPVTCMS 6 musculus YGGSCQRSCNGGFRLGGHCGHPKIRCCRR K Beta-defensin Bos taurus 42 QGVRNHVTCRIYGGFCVPIRCPGRTRQIGTC 6 (BNDB-6) FGRPVKCCRRW (BNBD-6) Beta-Defensin Mus 37 NSKRACYREGGECLQRCIGLFHKIGTCNFRF 7 musculus KCCKFQ Beta-defensin Bos taurus 40 QGVRNFVTCRINRGFCVPIRCPGHRRQIGTC 7 (BNDB-7) LGPRIKCCR (BNBD-7) Beta-defensin Mus 71 MRIHYVLFAFLLVLLSPFAAFSQDINSKRACY 7 precursor musculus REGGECLQRCIGLFHKIGTCNFRFKCCKFQIP EKKTKIL Beta-Defensin Mus 35 NEPVSCIRNGGICQYRCIGLRHKIGTCGSPFK 8 musculus CCK Beta-defensin Mus 60 MRIHYLLFTFLLVLLSPLAAFSQKINEPVSCIR 8 (Beta- musculus NGGICQYRCIGLRHKIGTCGSPFKCCK defensin 6) Beta-defensin Bos taurus 38 VRNFVTCRINRGFCVPIRCPGHRRQIGTCLG 8 (BNDB-8) PQIKCCR (BNBD-8) Beta-defensin Bos taurus 55 LALLFLVLSAGSGFTQGVRNFVTCRINRGFCV 9 precursor PIRCPGHRRQIGTCLAPQIKCCR (BNDB-9) (BNBD-9) (Fragment) Beta-defensin Bos taurus 53 LALLFLVLSAGSGISGPLSCRRKGGICILIRCP C7 precursor GPMRQIGTCFGRPVKCCRSW (BBD(C7)) (Fragment) Beta-defensin Gallus gallus 80 MRIVYLLIPFFLLFLQGAAGTATQCRIRGGFC prepropeptide RVGSCRFPHIAIGKCATFISCCGRAYEVDALN SVRTSPWLLAPGNNPH Beta-defensin Meleagris 59 MRIVYLLFPFFLLFLQSAAGTPIQCRIRGGFCR prepropeptide gallopavo FGSCRFPHIAIAKCATFIPCCGSIWG Beta-defensin- Equus 64 MRILHFLLAFLIVFLLPVPGFTAGIETSFSCSQ 1 caballus NGGFCISPKCLPGSKQIGTCILPGSKCCRKK Beta-defensin- Mus 85 MKNLPSNMALSREVFYFGFALFFIVVELPSGS 12 musculus WAGLEYSQSFPGGEIAVCETCRLGRGKCRR (Hypothetical TCIESEKIAGWCKLNFFCCRERI defensin-like structure containing protein) Beta-defensin- Pan 64 MRVLYLLFSFLFIELMPLPGVFGGISDPVTCLK 2 troglodytes SGAICHPVFCPRRYKQIGTCGLPGTKCCKKP beta-defensin-3 Bos taurus 42 QGVRNHVTCRINRGFCVPIRCPGRTRQIGTC FGPRIKCCRSW Beta-defensin- Pan 64 MRIHYLLFALLFLFLVPVPGHGGIINTLQKYYC 3 (Fragment) troglodytes RVRGGRCAVLTCLPKEEQIGKCSTRGRKCC R beta-defensin-4 Bos taurus 41 QRVRNPQSCRWNMGVCIPFLCRVGMRQIGT CFGPRVPCCRR beta-defensin-5 Bos taurus 40 QVVRNPQSCRWNMGVCIPISCPGNMRQIGT CFGPRVPCCR beta-defensin-9 Bos taurus 40 QGVRNFVTCRINRGFCVPIRCPGHRRQIGTC LGPQIKCCR Beta-defensin- Canis 65 MKAFLLTLAALVLLSQVTSGSAEKCWNLRGS like peptide 1 familiaris CREKCIKNEKLYIFCTSGKLCCLKPKFQPNML QR Beta-defensin- Canis 69 MKAFLLTLAALVLLSQVTSGSAEECWNLRGS like peptide 2 familiaris CREKCIKNEKLYIFCTSGKLCCLKPKFQPNML QRSVQF Beta-defensin- Canis 99 MKAFLLTLAALVLLSQVTSGSAEKCWNLRGS like peptide 3 familiaris CREKCIKNEKLYIFCTSGKLCCLKPKFQPNML QRNRKDNPKICLELQKILNIQSNLDKEEQSWK HCTS Big defensin Tachypleus 79 NPLIPAIYIGATVGPSVWAYLVALVGAAAVTA tridentatus ANIRRASSDNHSCAGNRGWCRSKCFRHEYV DTYYSAVCGRYFCCRSR bombinin H Bombina 20 IIGPVLGMVGSALGGLLKKI Met-8 variegata Bombinin Bombina 21 IIGPVLGMVGSALGGLLKKIG H1/H3 variegata Bombinin H4 Bombina 21 LIGPVLGLVGSALGGLLKKIG variegata Bombinin H5 Bombina 21 IIGPVLGLVGSALGGLLKKIG variegata Bombinin-like Bombina 27 GIGSAILSAGKSALKGLAKGLAEHFAN peptide 2 (BLP- orientalis 2) Bombinin-like Bombina 25 GIGAAILSAGKSIIKGLANGLAEHF peptide 4 (BLP- orientalis 4) Bombinin-like Bombina 144 MNFKYIVAVSFLIASTYARSVKNDEQSLSQRD peptide 7, BPL- orientalis VLEEESLREIRGIGGALLSAGKSALKGLAKGL 7 precursor AEHFANGKRTAEEHEVMKRLEAVMRDLDSL DYPEEASEMETRSFNQEEIANLFTKKEKRILG PVLDLVGRALRGLLKKIG Bombinin-like Bombina 204 MNFKYIVAVSILIASAYARSEENDIQSLSQRDV peptides 1 orientalis LEEESLREIRGIGASILSAGKSALKGLAKGLAE precursor HFANGKRTAEDHEVMKRLEAAIQSLSQRDVL [Contains: EEESLREIRGIGASILSAGKSALKGLAKGLAEH Acidic peptide FANGKRTAEEHEVMKRLEAVMRDLDSLDYP 1; Bombinin- EEASEMETRSFNQEEIANLYTKKEKRILGPIL like peptide 1 GLVSNALGGLLG (BLP-1); Octapeptide 1; Acidic peptide 2; Octapeptide 2; Acidic peptide 3; GH- 1 peptide] Bombinin-like Bombina 137 MNFKYIVAVSILIASAYARSEENDIQSLSQRDV peptides 1 variegata LEEESLREIRGIGGALLSAAKVGLKGLAKGLA precursor EHFANGKRTAEEREVMKRLEAAMRDLDSFE [Contains: HPEEASEKETRGFNQEEKEKRIIGPVLGLVGS Acidic peptide ALGGLLKKIG 1-1; Bombinin- like peptide 1 (BLP-1); Octapeptide 1; Acidic peptide 1-2; Bombinin H] Bombinin-like Bombina 137 MNFKYIVAVSILIASAYARREENNIQSLSQRDV peptides 2 variegata LEEESLREIRGIGASILSAGKSALKGFAKGLAE precursor HFANGKRTAEDHEMMKRLEAAVRDLDSLEH [Contains: PEEASEKETRGFNQEEKEKRIIGPVLGLVGSA Acidic peptide LGGLLKKIG 2-1; Bombinin- like peptide 2 (BLP-2); Octapeptide 2; Acidic peptide 2-2; Bombinin H2] Bombinin-like Bombina 200 MNFKYIVAVSILIASAYARSEENDIQSLSQRDV peptides 3 orientalis LEEESLREIRGIGAAILSAGKSALKGLAKGLAE precursor HFGKRTAEDHEVMKRLEAAIHSLSQRDVLEE [Contains: ESLREIRGIGAAILSAGKSALKGLAKGLAEHF Acidic peptide GKRTAEEHEMMKRLEAVMRDLDSLDYPEEA 1; Bombinin- SEMETRSFNQEEIANLYTKKEKRILGPILGLVS like peptide 3 NALGGLLG (BLP-3); Octapeptide 1; Acidic peptide 2; Octapeptide 2; Acidic peptide 3; GH- 1 peptide] Bovine Bos taurus 38 APLSCGRNGGVCIPIRCPVPMRQIGTCFGRP Neutrophil VKCCRSW Beta-Defensin 12 Brevinin-1 Rana 24 FLPVLAGIAAKVVPALFCKITKKC brevipoda Brevinin-1BA Rana 24 FLPFIAGMAAKFLPKIFCAISKKC berlandieri Brevinin-1BB Rana 24 FLPAIAGMAAKFLPKIFCAISKKC berlandieri Brevinin-1BC Rana 24 FLPFIAGVAAKFLPKIFCAISKKC berlandieri Brevinin-1BD Rana 24 FLPAIAGVAAKFLPKIFCAISKKC berlandieri Brevinin-1BE Rana 24 FLPAIVGAAAKFLPKIFCVISKKC berlandieri Brevinin-1BF Rana 24 FLPFIAGMAANFLPKIFCAISKKC berlandieri Brevinin-1E Rana 71 MFTLKKSMLLLFFLGTINLSLCEEERDADEEE precursor esculenta RRDNPDESEVEVEKRFLPLLAGLAANFLPKIF CKITRKC Brevinin-1Ea Rana 24 FLPAIFRMAAKVVPTIICSITKKC esculenta brevinin-1Eb Rana 24 VIPFVASVAAEMMQHVYCAASRKC esculenta Brevinin-1Eb Rana 23 VIPFVASVAAEMQHVYCAASRKC esculenta Brevinin-1LA Rana 24 FLPMLAGLAASMVPKLVCLITKKC luteiventris Brevinin-1LB Rana 24 FLPMLAGLAASMVPKFVCLITKKC luteiventris Brevinin-1PA Rana pipiens 24 ELPIIAGVAAKVFPKIFCAISKKC Brevinin-1PB Rana pipiens 24 FLPIIAGIAAKVFPKIFCAISKKC Brevinin-1PC Rana pipiens 24 FLPIIASVAAKVFSKIFCAISKKC Brevinin-1PD Rana pipiens 24 FLPIIASVAANVFSKIFCAISKKC Brevinin-1PE Rana pipiens 24 FLPIIASVAAKVFPKIFCAISKKC Brevinin-1Sa Rana 24 FLPAIVGAAGQFLPKIFCAISKKC sphenocephala Brevinin-1Sb Rana 24 FLPAIVGAAGKFLPKIFCAISKKC sphenocephala Brevinin-1Sc Rana 24 FFPIVAGVAGQVLKKIYCTISKKC sphenocephala Brevinin-1SY Rana 24 FLPVVAGLAAKVLPSIICAVTKKC sylvatica Brevinin-1T Rana 20 VNPIILGVLPKFVCLITKKC temporaria Brevinin-1TA Rana 17 FITLLLRKFICSITKKC temporaria Brevinin-2 Rana 33 GLLDSLKGFAATAGKGVLQSLLSTASCKLAKT brevipoda C Brevinin-2E Rana 33 GIMDTLKNLAKTAGKGALQSLLNKASCKLSG esculenta QC Brevinin-2Ea Rana 33 GILDTLKNLAISAAKGAAQGLVNKASCKLSGQ esculenta C Brevinin-2Eb Rana 33 GILDTLKNLAKTAGKGALQGLVKMASCKLSG esculenta QC Brevinin-2Ec Rana 34 GILLDKLKNFAKTAGKGVLQSLLNTASCKLSG esculenta QC Brevinin-2Ed Rana 29 GILDSLKNLAKNAGQILLNKASCKLSGQC esculenta Brevinin-2Ee Rana 29 GIFDKLKNFAKGVAQSLLNKASCKLSGQC esculenta Brevinin-2Ef Rana 74 MFTMKKSLLLIFFLGTISLSLCQEERNADDDD precursor esculenta GEMTEEEKRGIMDTLKNLAKTAGKGALQSLV KMASCKLSGQC Brevinin-2T Rana 33 GLLSGLKKVGKHVAKNVAVSLMDSLKCKISG temporaria DC Brevinin-2Tb Rana 74 MFTMKKSLLLFFFLGTISLSLCQEERNADEDD precursor temporaria GEMTEEEKRGILDTLKHLAKTAGKGALQSLL NHASCKLSGQC Brevinin-2TC Rana 29 GLWETIKNFGKKFTLNILHKLKCKIGGGC temporaria Brevinin-2TD Rana 29 GLWETIKNFGKKFTLNILHNLKCKIGGGC temporaria buforin I Bufo 129 MSGRGKQGGKVRAKAKTRSSRAGLQFPVG gargarizans RVHRLLRKGNYAQRVGAGAPVYLAAVLEYLT AEILELAGNAARDNKKTRIIPRHLQLAVRNDE ELNKLLGGVTIAQGGVLPNIQAVLLPKTESSK PAKSK Buthinin Androctonus 34 SIVPIRCRSNRDCRRFCGFRGGRCTYARQCL australis CGY Caeridin Litoria chloris 13 MGLLDGLLGTLGL 1.1/1.2/1.3 Caeridin Litoria 12 GLLDGLLGTLGL 1.1/1.2/1.3 xanthomera Caeridin 1.4 Litoria chloris 13 MGLLDGLLGGLGL Caeridin 1.4 Litoria 12 GLLDGLLGGLGL xanthomera Caerin 1.1 Litoria 26 MGLLSVLGSVAKHVLPHVVPVIAEHL caerulea Caerin 1.1 Litoria 25 GLLSVLGSVAKHVLPHVVPVIAEHL splendida Caerin 1.6 Litoria chloris 25 MGLFSVLGAVAKHVLPHVVPVIAEK Caerin 1.6 Litoria 24 GLFSVLGAVAKHVLPHVVPVIAEK xanthomera Caerin 1.7 Litoria chloris 25 MGLFKVLGSVAKHLLPHVAPVIAEK Caerin 1.7 Litoria 24 GLFKVLGSVAKHLLPHVAPVIAEK xanthomera Caerulein Litoria 10 QQDYTGWMDF xanthomera cathelin related Mus 172 MQFQRDVPSLWLWRSLSLLLLLGLGFSQTPS antimicrobial musculus YRDAVLRAVDDFNQQSLDTNLYRLLDLDPEP peptide QGDEDPDTPKSVRFRVKETVCGKAERQLPE QCAFKEQGWKQCMGAVTLNPAADSFDISC NEPGAQPFRFKKISRLAGLLRKGGEKIGEKLK KIGQKIKNFFQKLVPQPE Cathelin- Mus 173 MQFQRDVPSLWLWRSLSLLLLLGLGFSQTPS related musculus YRDAVLRAVDDFNQQSLDTNLYRLLDLDPEP antimicrobial QGDEDPDTPKSVRFRVKETVCGKAERQLPE peptide QCAFKEQGWKQCMGAVTLNPAADSFDISC precursor NEPGAQPFRFKKISRLAGLLRKGGEKIGEKLK (Cramp) KIGQKIKNFFQKLVPQPEQ (Cathelin-like protein) (CLP) Cathelin- Ovis aries 160 METQRASLSLGRCSLWLLLLGLALPSASAQV related peptide LSYREAVLRAADQLNEKSSEANLYRLLELDP SC5 precursor PPKQDDENSNIPKPVSFRVKETVCPRTSQQP 1 (Antibacterial AEQCDFKENGLLKECVGTVTLDQVRNNFDIT peptide SMAP- CAEPQSVRGLRRLGRKIAHGVKKYGPTVLRII 29) (Myeloid RIAG antibacterial peptide SMAP- 29) Cathelin- Ovis aries 160 METQRASLSLGRRSLWLLLLGLVLASASAQA related peptide LSYREAVLRAVDQLNEKSSEANLYRLLELDP SC5 precursor PPKQDDENSNIPKPVSFRVKETVCPRTSQQP 2 (Antibacterial AEQCDFKENGLLKECVGTVTLDQVGNNFDIT peptide SMAP- CAEPQSVRGLRRLGRKIAHGVKKYGPTVLRII 29) (Myeloid RIAG antibacterial peptide SMAP 29) cathelin-related Ovis aries 160 METQRAGLSLGRRSLWLLLLGLVLASASAQA protein 1 LSYREAVLRAVDQLNEKSSEANLYRLLELDP precursor PPKQDDENSNIPKPVSFRVKETVCPRTSQQP AEQCDFKENGLLKECVGTVTLDQVGNNFDIT CAEPQSVRGLRRLGRKIAHGVKKYGPTVLRII RIAG cathelin-related Ovis aries 152 SLGRCSLWLLLLGLALPSASAQVLSYREAVL protein 2 RAADQLNEKSSEANLYRLLELDPPPKQDDEN precursor SNIPKPVSFRVKETVCPRTSQQPAEQCDFKE NGLLKECVGTVTLDQVRNNFDITCAEPQSVR GLRRLGRKIAHGVKKYGPTVLRIIRIAG Cecropin Bombyx mori 35 RWKIFKKIEKVGQNIRDGIVKAGPAVAVVGQA (Antibacterial ATI peptide CM-IV) Cecropin 1 Ceratitis 63 MNFNKVFILVAIVIAIFAGQTEAGWLKKIGKKIE precursor capitata RVGQHTRDATIQTIAVAQQAANVAATARG Cecropin 1 Drosophila 63 MNFYKVFIFVALILAISLGQSEAGWLKKIGKKI precursor virilis ERIGQHTRDATIQGLGIAQQAANVAATARG Cecropin 2 Ceratitis 63 MNFNKVLVLLAVIFAVFAGQTEAGWLKKIGKK precursor capitata IERVGQHTRDATIQTIGVAQQAANVAATLKG Cecropin 2 Drosophila 63 MNFYKVFIFVALILAISLGQSEAGWLKKIGKKI precursor virilis ERVGQHTRDATIQGLGIAQQAANVAATARG Cecropin 3 Drosophila 63 MNFYKVFIFVALILAISLGQSEAGWLKKIGKKI precursor virilis ERIGQHTRDATIQGVGIAQQAANVAATARG Cecropin A Aedes 59 MNFTKLFLLIAVAVLLLTGQSEAGGLKKLGKK precursor aegypti LEGAGKRVFNAAEKALPVVAGAKALRK Cecropin A Bombyx mori 63 MNFVRILSFVFALVLALGAVSAAPEPRWKLFK precursor KIEKVGRNVRDGLIKAGPAIAVIGQAKSLGK Cecropin A Trichoplusia 62 MNLVKILFCVFACLVFTVTAVPEPRWKFFKKI precursor ni EKVGQNIRDGIIKAGPAVAWGQAASITGK Cecropin A Hyalophora 64 MNFSRIFFFVFACLTALAMVNAAPEPKWKLF precursor cecropia KKIEKVGQNIRDGIIKAGPAVAWGQATQIAK (Cecropin C) G Cecropin A Spodoptera 57 IFFFVFACLLALSAVSAAPEPRWKVFKKIEKV precursor litura GRNVRDGIIKAGPAIGVLGQAKALG (Fragment) Cecropin Drosophila 63 MNFYNIFVFVALILAITIGQSEAGWLKKIGKKIE A1/A2 melanogaster RVGQHTRDATIQGLGIAQQAANVAATARG precursor Cecropin B Antheraea 35 KWKIFKKIEKVGRNIRNGIIKAGPAVAVLGEAK pernyi AL Cecropin B Drosophila 63 MNFNKIFVFVALILAISLGNSEAGWLRKLGKKI precursor melanogaster ERIGQHTRDASIQVLGIAQQAANVAATARG Cecropin B Spodoptera 58 ILSFVFACLLALSAVSAAPEPRWKVFKKIEKM precursor litura GRNIRDGIVKAGPAIEVLGSAKALGK (Fragment) Cecropin B Hyalophora 62 MNFSRIFFFVFALVLALSTVSAAPEPKWKVFK precursor cecropia KIEKMGRNIRNGIVKAGPAIAVLGEAKALG (Immune protein P9) Cecropin B Bombyx mori 63 MNFAKILSFVFALVLALSMTSAAPEPRWKIFK precursor KIEKMGRNIRDGIVKAGPAIEVLGSAKAIGK (Lepidopteran A and B) Cecropin C Drosophila 63 MNENKIFVFVALILAISLGQSEAGWLKKLGKRI precursor erecta ERIGQHTRDATIQGLGIAQQAANVAATARG Cecropin C Drosophila 63 MNFYKIFVFVALILAISIGQSEAGWLKKLGKRI precursor mauritiana ERIGQHTRDATIQGLGIAQQAANVAATARG Cecropin D Bombyx mori 61 MKFSKIFVFVFAIVFATASVSAAPGNFFKDLE precursor KMGQRVRDAVISAAPAVDTLAKAKALGQG Cecropin D Hyalophora 62 MNFTKILFFWACVFAMRTVSAAPWNPFKEL precursor cecropia EKVGQRVRDAVISAGPAVATVAQATALAKGK Cecropin P1 Sus scrofa 31 SWLSKTAKKLENSAKKRISEGIAIAIQGGPR ceratotoxin A Ceratitis 29 SIGSALKKALPVAKKIGKIALPIAKAALP capitata Ceratotoxin A Ceratitis 71 MANLKAVFLICIVAFIALQCVVAEPAAEDSVVV precursor 1 capitata KRSIGSALKKALPVAKKIGKIALPIAKAALPVAA GLVG Ceratotoxin A Ceratitis 71 MANLKAVFLICIVAFIAFQCVVAEPAAEDSIVV precursor 2 capitata KRSIGSALKKALPVAKKIGKIALPIAKAALPVAA GLVG Ceratotoxin B Ceratitis 29 SIGSAFKKALPVAKKIGKAALPIAKAALP capitata Ceratotoxin C Ceratitis 67 MANIKAVFLICIVAFIAFHCVVAEPTAEDSVVV precursor capitata KRSLGGVISGAKKVAKVAIPIGKAVLPVVAKLV G Ceratotoxin D Ceratitis 71 MANLKAVFLICILAFIAFHCWGAPTAEDSIVV precursor capitata KRSIGTAVKKAVPIAKKVGKVAIPIAKAVLSVV GQLVG Chlamysin Chlamys 137 MMYFVLFCLLAAGTTYGSHNFATGIVPHSCL precursor islandica ECICKTESGCRAIGCKFDVYSDSCGYFQLKQ AYWEDCGRPGGSLTSCADDIHCSSQCVQHY MSRYIGHTSCSRTCESYARLHNGGPHGCEH GSTLGYWGHVQGHGC Chromogranin Bos taurus 449 MRSAAVLALLLCAGQVIALPVNSPMNKGDTE A precursor VMKCIVEVISDTLSKPSPMPVSKECFETLRGD (CgA) (Pituitary ERILSILRHQNLLKELQDLALQGAKERTHQQK secretory KHSSYEDELSEVLEKPNDQAEPKEVTEEVSS protein I) (SP-I) KDAAEKRDDFKEVEKSDEDSDGDRPQASPG [Contains: LGPGPKVEEDNQAPGEEEEAPSNAHPLASLP Vasostatin-1 SPKYPGPQAKEDSEGPSQGPASREKGLSAE Chromostatin; QGRQTEREEEEEKWEEAEAREKAVPEEESP Chromacin; PTAAFKPPPSLGNKETQRAAPGWPEDGAGK Pancreastatin; MGAEEAKPPEGKGEWAHSRQEEEEMARAP WE-14; QVLFRGGKSGEPEQEEQLSKEWEDAKRWS Catestatin] KMDQLAKELTAEKRLEGEEEEEEDPDRSMR LSFRARGYGFRGPGLQLRRGWRPNSREDSV EAGLPLQVRGYPEEKKEEEGSANRRPEDQE LESLSAIEAELEKVAHQLEELRRG chromogranin Bos taurus 170 MPVDIRNHNEEVVTHLRDPADTSEAPGLSAG B EPPGSQVAKEAKTRYSKSEGQNREEEMVKY QKRERGEVGSEERLSEGPQRNQTPAKKSSQ EGNPPLEEESHVGTGALEEGAERLPGELRNY LDYGEEKGEESAEFPDFYDSEEQMSPQHTA EDLELQKIAEKFSGTRRG Chrysophsin-1 Pagrus major 25 FFGWLIKGAIHAGKAIHGLIHRRRH Chrysophsin-2 Pagrus major 25 FFGWLIRGAIHAGKAIHGLIHRRRH Chrysophsin-3 Pagrus major 20 FIGLLISAGKAIHDLIRRRH Cicadin Cicada 55 NEYHGFVDKANNENKRKKQQGRDDFWKPN (Fragment) flammata NFANRRRKDDYNENYYDDVDAADVV Citropin 1.1 Litoria citropa 16 GLFDVIKKVASVIGGL [Contains: Citropin 1.1.1; Citropin 1.1.2] Citropin 1.1.3 Litoria citropa 18 GLFDVIKKVASVIGLASP Citropin 1.1.4 Litoria citropa 18 GLFDVIKKVASVIGLASQ Citropin 1.2 Litoria citropa 16 GLFDIIKKVASVVGGL [Contains: Citropin 1.2.1; Citropin 1.2.2; Citropin 1.2.3] Citropin 1.2.4 Litoria citropa 18 GLFDIIKKVASVVGLASP Citropin 1.2.5 Litoria citropa 18 GLFDIIKKVASVVGLASQ Citropin 1.3 Litoria citropa 16 GLFDIIKKVASVIGGL Citropin 2.1.3 Litoria citropa 26 GLIGSIGKALGGLLVDVLKPKLQAAS [Contains: Citropin 2.1.2; Citropin 2.1.1; Citropin 2.1] Citropin 3.1.2 Litoria citropa 24 DLFQVIKEKLKELTGGVIEGIQGV [Contains: Citropin 3.1.1; Citropin 3.1] Clavanin A Styela clava 80 MKTTILILLILGLGINAKSLEERKSEEEKVFQFL precursor GKIIHHVGNFVHGFSHVFGDDQQDNGKFYG HYAEDNGKHWYDTGDQ Clavanin B Styela clava 23 VFQFLGRIIHHVGNFVHGFSHVF Clavanin C Styela clava 80 MKTTILILLILGLGINAKSLEERKSEEEKVFHLL precursor GKIIHHVGNFVYGFSHVFGDDQQDNGKFYG HYAEDNGKHWYDTGDQ Clavanin D Styela clava 80 MKTTILILLILGLGINAKSLEERKSEEEKAFKLL precursor GRIIHHVGNFVYGFSHVFGDDQQDNGKFYG HYAEDNGKHWYDTGDQ Clavanin E Styela clava 80 MKTTILILLILGLGINAKSLEERKSEEEKLFKLL precursor GKIIHHVGNFVHGFSHVFGDDQQDNGKFYG YYAEDNGKHWYDTGDQ Coleoptericin Zophobas 74 SLQGGAPNFPQPSQQNGGWQVSPDLGRDD atratus KGNTRGQIEIQNKGKDHDFNAGWGKVIRGP NKAKPTWHVGGTYRR Corticostatin I Oryctolagus 93 MRTLILLAAILLAALQAQAELFSVNVDEVLDQ precursor (CS- cuniculus QQPGSDQDLVIHLTGEESSALQVPDTKGICA I) (Neutrophil CRRRFCPNSERFSGYCRVNGARYVRCCSRR antibiotic peptide NP-3A) (Microbicidal peptide NP-3A) (Antiadrenocort- icotropin peptide I) Corticostatin II Oryctolagus 34 GRCVCRKQLLCSYRERRIGDCKIRGVRFPFC (CS-II) cuniculus CPR (Neutrophil antibiotic peptide NP-3B) (Microbicidal peptide NP-3B) (Antiadrenocort- icotropin peptide II) Corticostatin III Oryctolagus 95 MRTLALLAAILLVALQAQAEHVSVSIDEVVDQ precursor (CS- cuniculus QPPQAEDQDVAIYVKEHESSALEALGVKAGV III) VCACRRALCLPRERRAGFCRIRGRIHPLCCR (Macrophage R antibiotic peptide MCP- 1) (NP-1) (Antiadrenocort- icotropin peptide III) Corticostatin IV Oryctolagus 95 MRTLALLAAILLVALQAQAEHISVSIDEVVDQQ precursor (CS- cuniculus PPQAEDQDVAIYVKEHESSALEALGVKAGVV IV) CACRRALCLPLERRAGFCRIRGRIHPLCCRR (Macrophage antibiotic peptide MCP- 2) (NP-2) (Antiadrenocort- icotropin peptide IV) Corticostatin VI Oryctolagus 34 GICACRRRFCLNFEQFSGYCRVNGARYVRC (CS-VI) cuniculus CSRR (Neutrophil antibiotic peptide NP-6) Corticostatin- Oryctolagus 32 MPCSCKKYCDPWEVIDGSCGLFNSKYICCRE related peptide cuniculus K RK-1 Crabrolin Vespa crabro 13 FLPLILRKIVTAL cryptdin Mus 23 CKRRERMNGTCRKGHLLYTLCCR musculus cryptdin 12 Mus 35 LRDLVCYCRARGCKGRERMNGTCRKGHLLY musculus MLCCR Cryptdin-1 Mus 35 LRDLVCYCRTRGCKRRERMNXTCRKGHLMY (CR1) musculus TLCCX Cryptdin-1 Mus 93 MKKLVLLFALVLLGFQVQADSIQNTDEETKTE precursor musculus EQPGEEDQAVSVSFGDPEGTSLQEESLRDL (DEFCR) VCYCRSRGCKGRERMNGTCRKGHLLYTLCC R cryptdin-10 Mus 35 LRDLVCYCRKRGCKGRERMNGTCRKGHLLY musculus TLCCR Cryptdin-10 Mus 92 KTLVLLSALVLLAFQVQADPIQNTDEETKTEE precursor musculus QPGEDDQAVSVSFGDPEGSSLQEESLRDLV (Fragment) CYCRKRGCKGRERMNGTCRKGHLLYTMCC R cryptdin-11 Mus 35 LRDLVCYCRSRGCKGRERMNGTCRKGHLLY musculus MLCCR Cryptdin-11 Mus 85 ALVLLAFQVQADPIQNTDEETKTEEQPGEED precursor musculus QAVSVSFGDPEGTSLQEESLRDLVCYCRSR (Fragment) GCKGRERMNGTCRKGHLLYMLCCR cryptdin-13 Mus 35 LRDLVCYCRKRGCKRREHMNGTCRRGHLM musculus YTLCCR Cryptdin-13 Mus 93 MKTLVLLSALVLLAFQVQADPIQNTDEETKTE precursor musculus EQPGEEDQAVSVSFGDPEGTSLQEESLRDL VCYCRKRGCKRREHMNGTCRRGHLMYTLC CR Cryptdin-14 Mus 85 ALVLLAFQVQADPIQNTDEETKTEEQPGEDD precursor musculus QAVSVSFGDPEGSSLQEESLRDLVCYCRTR (Fragment) GCKRRERMNGTCRKGHLMHTLCCR cryptdin-15 Mus 35 LRDLVCYCRKRGCKRREHINGTCRKGHLLY musculus MLCCR Cryptdin-15 Mus 93 MKTLVLLSALVLLAFQVQADPIQNTDEETKTE precursor musculus EQPGEDDQAVSVSFGDPEGSSLQEESLRDL VCYCRKRGCKRREHINGTCRKGHLLYMLCC R cryptdin-16 Mus 35 LRDLVCYCRSRGCKGRERMNGTCRKGHLM musculus YTLCCR Cryptdin-16 Mus 93 MKTLILLSALVLLAFQVQADPIQNTDEETKTEE precursor musculus QPGEEDQAVSVSFGDPEGTSLQEESLRDLV CYCRSRGCKGRERMNGTCRKGHLMYTLCC R Cryptdin-17 Mus 82 LLAFQVQADPIQNTDEETKTEEQPGEEDQAV precursor musculus SVSFGDPEGTSLQEESLRDLVCYCRKRGCK (CRYP17) RREHMNGTCRKGHLLYTLCCR (Fragment) Cryptdin-2 Mus 35 LRDLVCYCRARGXKGRERMNGTXRKGHLLY (CR2) musculus MXXXX Cryptdin-2 Mus 93 MKPLVLLSALVLLSFQVQADPIQNTDEETKTE precursor musculus EQSGEEDQAVSVSFGDREGASLQEESLRDL VCYCRTRGCKRRERMNGTCRKGHLMYTLC CR Cryptdin-3 Mus 93 MKTLVLLSALVLLAFQVQADPIQNTDEETKTE precursor musculus EQPGEDDQAVSVSFGDPEGSSLQEESLRDL VCYCRKRGCKRRERMNGTCRKGHLMYTLC CR cryptdin-4 Mus 34 LRGLLCYCRKGHCKRGERVRGTCGIRFLYCC musculus PRR Cryptdin-4 Mus 92 MKTLVLLSALVLLAFQVQADPIQNTDEETKTE precursor musculus EQPGEEDQAVSISFGGQEGSALHEKSLRGLL CYCRKGHCKRGERVRGTCGIRFLYCCPRR Cryptdin-5 Mus 93 MKTFVLLSALVLLAFQVQADPIHKTDEETNTE precursor musculus EQPGEEDQAVSISFGGQEGSALHEELSKKLI CYCRIRGCKRRERVFGTCRNLFLTFVFCCS Cryptdin-6/12 Mus 93 MKTLILLSALVLLAFQVQADPIQNTDEETKTEE precursor musculus QPGEEDQAVSVSFGDPEGTSLQEESLRDLV CYCRARGCKGRERMNGTCRKGHLLYMLCC R cryptdin-7 Mus 35 LRDLVCYCRTRGCKRREHMNGTCRKGHLMY musculus TLCCR Cryptdin-7 Mus 93 MKTLILLSALVLLAFQVQADPIQNTDEETKTEE precursor musculus QPGEDDQAVSVSFGDPEGSSLQEESLRDLV CYCRTRGCKRREHMNGTCRKGHLMYTLCC R cryptdin-8 Mus 35 LRDLVCYCRKRGCKRREHMNGTCRKGHLM musculus YTLCCR Cryptdin-8 Mus 81 LAFQVQADPIQNTDEETKTEEQPGEDDQAVS precursor musculus VSFGDPEGSSLQEESLRDLVCYCRKRGCKR (Fragment) REHMNGTCRKGHLMYTLCCR cryptdin-9 Mus 35 LRDLVCYCRKRGCKRREHMNGTCRKGHLLY musculus MLCCR Cryptdin-9 Mus 93 MKTLVLLSALVLLAFQVQADPIQNTDEETKTE precursor musculus EQPGEEDQAVSVSFGDPEGSSLQEESLRDL VCYCRKRGCKRREHMNGTCRKGHLLYMLC CR Cryptdin- Mus 116 MKTLVLLSALVLPCFQVQADPIQNTDEETKTE related protein musculus EQPEEEDQAVSVSFGGTEGSALQDVAQRRF 1C precursor PWCRKCRVCQKCQVCQKCPVCPTCPQCPK (CRS1C) QPLCEERQNKTAITTQAPNTQHKGC Cryptdin- Mus 91 MKKLVLLFALVLLAFQVQADSIQNTDEETKTE related protein musculus EQPGEKDQAVSVSFGDPQGSALQDAALGW 4C-1 precursor GRRCPQCPRCPSCPSCPRCPRCPRCKCNP (CRS4C) K Cryptdin- Mus 91 MKKLVLLFALVLLAFQVQADSIQNTDEETKTE related protein musculus EQQGEEDQAVSVSFGDPQGSGLQDAALGW 4C-2 precursor GRRCPRCPPCPRCSWCPRCPTCPRCNCNP (CRS4C) K Cryptdin- Mus 91 MKKLVLLSAFVLLAFQVQADSIQNTDEETKTE related protein musculus EQPGEENQAMSVSFGDPEGSALQDAAVGM 4C-4 precursor ARPCPPCPSCPSCPWCPMCPRCPSCKCNP (CRS4C) K Cryptdin- Mus 91 MKKLVLLSAFVLLAFQVQADSIQNTDEEIKTE related protein musculus EQPGEENQAVSISFGDPEGYALQDAAIRRAR 4C-5 precursor RCPPCPSCLSCPWCPRCLRCPMCKCNPK (CRS4C) Cyclic Bos taurus 155 METPRASLSLGRWSLWLLLLGLALPSASAQA dodecapeptide LSYREAVLRAVDQLNEQSSEPNIYRLLELDQP precursor PQDDEDPDSPKRVSFRVKETVCSRTTQQPP (Bactenecin 1) EQCDFKENGLLKRCEGTVTLDQVRGNFDITC NNHQSIRITKQPWAPPQAARLCRIVVIRVCR Cyclic Ovis aries 155 METQRASLSLGRCSLWLLLLGLALPSASAQV dodecapeptide LSYREAVLRAVDQLNEQSSEPNIYRLLELDQP precursor PQDDEDPDSPKRVSFRVKETVCPRTTQQPP (Bactenecin 1) EQCDFKENGLLKRCEGTVTLDQVRGNFDITC NNHQSIRITKQPWAPPQAARICRIIFLRVCR DEFB1-like Cercopithecus 68 MRTSYLLLFTLCLLLSEMASGDNFLTGLGHR protein aethiops SDHYNCVRSGGQCLYSACPIYTKIQGTCYHG KAKCCK DEFB1-like Cercopithecus 68 MRTSYLLLFTLCLLLSEMASGDNFLTGLGHR protein erythrogaster SDHYICVRSGGQCLYSACPIYTKIQGTCYHG KAKCCK DEFB1-like Gorilla gorilla 68 MRTSYLLLFTLCLLLSEIASGGNFLTGLGHRS protein DHYNCVSSGGQCLYSACPIFTKIQGTCYGGK AKCCK DEFB1-like Hylobates 68 MRTSYLLLFTLCLLLSEMASGDNFLTGLGHR protein concolor SDHYNCVRSGGQCLYSACPIYTKIQGTCYQG KAKCCK DEEBI-like Pan 68 MRTSYLLLFTLCLLLSEMASGGNFLTGLGHR protein troglodytes SDHYNCVSSGGQCLYSACPIFTKIQGTCYGG KAKCCK DEFB1-like Presbytis 68 MRTSYLLLFTLCLLMSEMASGDNFLTGLGHR protein obscura SDHYNCVRSGGQCLYSACPIYTKIQGTCYHG KAKCCK DEFB1-like Saguinus 68 MRTSYLLLFILCLVLCDMDSGDTFLTGLGHRS protein oedipus DHYNCVKGGGQCLYSACPIYTKVQGTCYGG KAKCCK DEFB36 Mus 43 MKLLLLTLAALLLVSQLTPGDAQKCWNLHGK (Fragment) musculus CRHRCSRKESVY Defensin Aeshna 38 GFGCPLDQMQCHRHCQTITGRSGGYCSGPL cyanea KLTCTCYR Defensin Allomyrina 43 VTCDLLSFEAKGFAANHSLCAAHCLAIGRRG dichotoma GSCERGVCICRR Defensin Anopheles 102 MKCATIVCTIAVVLAATLLNGSVQAAPQEEAA gambiae LSGGANLNTLLDELPEETHHAALENYRAKRA TCDLASGFGVGNNLCAAHCIARRYRGGYCN SKAVCVCRN defensin Anopheles 131 NSRVNGATPAKLKLVLLCLPRASSSPQLIMKC gambiae ATIVCTIAWLAATLLNGSVQAAPQEEAALSG GANLNTLLDELPEETHHAALENYRAKRATCD LASGFGVGSSLCAAHCIARRYRGGYCNSKAV CVCRN Defensin Bombus 51 VTCDLLSIKGVAEHSACAANCLSMGKAGGRC pascuorum ENGICLCRKTTFKELWDKRF Defensin Branchiostoma 117 MEKKTAYCLLFLVLLVPYTALGAVLKRAPAKK beicheri EKRAVPLAVPLVYWGASVSPAVWNWLLVTF GAAAVAAAAVTVSDNDSHSCANNRGWCRS RCFSHEYIDSWHSDVCGSYDCCRPRY Defensin Drosophila 92 MKFFVLVAIAFALLACMAQAQPVSDVDPIPED melanogaster HVLVHEDAHQEVLQHSRQKRATCDLLSKWN WNHTACAGHCIAKGFKGGYCNDKAVCVCRN Defensin Drosophila 92 MKFFVLVAIAFALLACMAQAQPVSDVDPIPED melanogaster HVLVHEDANQEVLQHSRQKRATCDLLSKWN WNHTACAGHCIAKGFKGGYCNDKAVCVCRN Defensin Drosophila 92 MKFFVLVAIAFALLTCMAQAQPVSDVDPIPED melanogaster HVLVHEDAHQEVLQHSRQKRATCDLLSKWN WNHTACAGHCIAKGFKGGYCNDKAVCVCRN Defensin Drosophila 92 MKFFVPVAIAFALLACVAQAQPVSDVDPIPED melanogaster HVLVHDDAHQEVLQHSRQKRATCDLLSKWN WNHTACAGHCIAKGFKGGYCNDKAVCVCRN Defensin Drosophila 92 MKFFVLVAIAFALLACMAQAQPVSDVDPIPED simulans HALVHEDAHQEWQHSRQKRATCDLLSKWN WNHTACAGHCIAKGFKGGYCNDKAVCVCRN Defensin Mamestra 98 MLCLADIRIVASCSAAIKSGYGQQPWLAHVA brassicae GPYANSLFDDVPADSYHAAVEYLRLIPASCYL LDGYAAGRDDGRAHCIAPRNRRLYCASYQV CVCRY Defensin Musca 92 MKYFTMFAFFFVAVCYISQSSASPAPKEEAN domestica FVHGADALKQLEPELHGRYKRATCDLLSGTG VGHSACAAHCLLRGNRGGYCNGKGVCVCR N Defensin Ornithodoros 73 MNKLFIVALVLALAVATMAHEVHDDIEEPSVP moubata RVRRGFGCPFNQYECHAHCSGVPGYKGGY CKGLFKQTCNCY Defensin Ornithodoros 73 MNKLFIVALVLALAVATMAHEVYDDVEEPSVP moubata RVRRGYGCPFNQYQCHSHCSGIRGYKGGY CKGLFKQTCNCY Defensin Palomena 43 ATCDALSFSSKWLTVNHSACAIHCLTKGYKG prasina GRCVNTICNCRN Defensin Phlebotomus 40 ATCDLLSAFGVGHAACAAHCIGHGYRGGYC duboscqi NSKAVCTCRR Defensin Pyrocoelia 55 MKLSVFVLVAVMLVLLCCAMQTEARRRCRS rufa CVPFCGSNERMISTCFSGGVVCCPR Defensin Pyrrhocoris 43 ATCDILSFQSQWVTPNHAGCALHCVIKGYKG apterus GQCKITVCHCRR Defensin Aedes 57 DELPEETYQAAVENYRRKRATCDLLSGFGVG (Fragment) albopictus DSACAAHCIARRNRGGYCNAKTVCVC Defensin Apis mellifera 57 FEPLEHFENEERADRHRRVTCDLLSFKGQVN (Fragment) DSACAANCHSLGKAGGHCEKGVCICR Defensin 1 Stomoxys 39 ATCDLLSGMGVNHSACAAHCVLRGNRGGYC (Fragment) calcitrans NSKAVCVCR Defensin 1 Acalolepta 83 MKFFITFTFVLSLWLTVYSAPREFAEPEEQD precursor luxuriosa EGHFRVKRFTCDVLSVEAKGVKLNHAACGIH CLFRRRTGGYCNKKRVCICR Defensin 1 Stomoxys 79 MKFLNVVAIALLVVACLAVYSNAAPHEGVKEV precursor calcitrans AAAKPMGITCDLLSLWKVGHAACAAHCLVLG DVGGYCTKEGLCVCKE Defensin 1A Stomoxys 79 MKFLNVVAIALLVVACLSVYSNAAPHEGVKEV precursor calcitrans AAAKPMGITCDLLSLWKVGHAACAAHCLVLG NVGGYCTKEGLCVCKE Defensin 2 Stomoxys 97 MKFFSLFPVIVVVVACLTMRANAAPSAGNEV precursor calcitrans DHHPDYVDGVEALRQLEPELHGRYKRATCD LLSMWNVNHSACAAHCLLLGKSGGRCNDDA VCVCRK Defensin 2A Stomoxys 97 MKFFSLFPVILVVVACLTMRANAAPSAGDEV precursor calcitrans DHHPDYVDGVEALRQLEPELHGRYKRATCD LLSMWNVNHSACAAHCLLLGKSGGRCNDDA VCVCRK Defensin 5 Rattus 93 MKKLVLLSALVLLALQVEAEPTPKTDEGTKTD precursor (RD- norvegicus EQPGKEDQWSVSIEGQGDPAFQDAVLRDL 5) (Enteric KCFCRRKSCNWGEGIMGICKKRYGSPILCCR defensin Defensin A Aedes 98 MQSLTVICFLALCTGAITSAYPQEPVLADEAR aegypti PFANSLFDELPEETYQAAVENFRLKRATCDLL SGFGVGDSACAAHCIARGNRGGYCNSKKVC VCRN Defensin A Mytilus edulis 37 GFGCPNDYPCHRHCKSIPGRXGGYCGGXHR LRCTCYR Defensin A Ornithodoros 73 MNKLFIVALVVALAVATMAQEVHNDVEEQSV moubata PRVRRGYGCPFNQYQCHSHCSGIRGYKGGY CKGTFKQTCKCY Defensin A Rhodnius 94 MKCILSLVTLFLVAVLVHSHPAEWNTHQQLD prolixus DALWEPAGEVTEEHVARLKRATCDLFSFRSK WVTPNHAACAAHCLLRGNRGGRCKGTICHC RK defensin A Aedes 37 MKSLTVICFLALCTGAITSAYPQEPVLADEAR isoform 2; aegypti PFANS AaDefA2 defensin A Aedes 37 MQSLTVICFLALCTGAITSAYPQEPVLADEAR isoform 3; aegypti PFANS AaDefA3 defensin A Aedes 37 MQPLTVICFLALCTGAITSAYPQEPVLADEAR isoform 4; aegypti PFANS AaDefA4 Defensin A Aedes 98 MKSITVICFLALCTVAITSAYPQEPVLADEARP precursor aegypti FANSLFDELPEETYQAAVENFRLKRATCDLLS (AADEF) GFGVGDSACAAHCIARGNRGGYCNSKKVCV CRN defensin A Aedes 98 MQSITVICFLALCTGAITSAYPQEPVLADEARP protein isoform aegypti FANSLFDELPEETYQAAVENFRLKRATCDLLS 5 GFGVGDSACAAHCIARGNRGGYCNSKKVCV CRN defensin alpha- Macaca 30 ACYCRIPACLAGERRYGTCFYLGRVWAFCC 1 mulatta defensin alpha- Macaca 30 ACYCRIPACLAGERRYGTCFYRRRVWAFCC 3 mulatta defensin alpha- Macaca 33 RRTCRCRFGRCFRRESYSGSCNINGRIFSLC 4 mulatta CR defensin alpha- Macaca 32 RTCRCRFGRCFRRESYSGSCNINGRIFSLCC 5 mulatta R defensin alpha- Macaca 33 RRTCRCRFGRCFRRESYSGSCNINGRISSLC 6 mulatta CR defensin alpha- Macaca 32 RTCRCRFGRCFRRESYSGSCNINGRISSLCC 7 mulatta R Defensin B Aedes 40 ATCDLLSGFGVGDSACAAHCIARGNRGGYC aegypti NSQKVCVCRN Defensin B Ornithodoros 73 MNKLFIVALVVALAVATMAQEVHDDVEEQSV moubata PRVRRGYGCPFNQYQCHSHCRGIRGYKGG YCTGRFKQTCKCY Defensin B Rhodnius 94 MKCILSLVTLFLVAVLVHSHPAEWNTQQELD prolixus DALWEPAGEVTEEHVARLKRATCDLLSFSSK WVTPNHAGCAAHCLLRGNRGGHCKGTICHC RK Defensin B Mytilus edulis 35 GFGCPNDYPCHRHCKSIPGRYGGYCGGXHR (Fragment) LRCTC defensin beta Mus 67 MRLHYLLFVFLILFLVPAPGDAFLPKTLRKFFC 14; beta musculus RIRGGRCAVLNCLGKEEQIGRCSNSGRKCC defensin 14 RKKK defensin beta Mus 81 MKTFLFLFAVLFFWSQPRMHFFFFDEKCSRI 34; beta musculus NGRCTASCLKNEELVALCWKNLKCCVTVQS defensin 34 CGRSKGNQSDEGSGHMGTRG defensin beta Mus 62 MKFSYFLLLLLSLSNFQNNPVAMLDTIACIENK 37; beta musculus DTCRLKNCPRLHNVVGTCYEGKGKCCHKN defensin 37 defensin beta Mus 63 MKISCFLLLILSLYFFQINQAIGPDTKKCVQRK 38; beta musculus NACHYFECPWLYYSVGTCYKGKGKCCQKRY defensin 38 defensin beta Mus 73 MKISCFLLMIFFLSCFQINPVAVLDTIKCLQGN 40; beta musculus NNCHIQKCPWFLLQVSTCYKGKGRCCQKRR defensin 40 WFARNHVYHV Defensin beta Mus 64 MRIHYLLFAFLLVLLCPLASDFSKTINNPVSCC 5 musculus MIGGICRYLCKGNILQNGNCGVTSLNCCKRK Defensin C Rhodnius 94 MKCILSLFTLFLVATLVYSYPAEWNSQHQLDD prolixus AQWEPAGELTEEHLSRMKRATCDLLSLTSK WFTPNHAGCAAHCIFLGNRGGRCVGTVCHC RK defensin C Zophobas 43 FTCDVLGFEIAGTKLNSAACGAHCLALGRTG atratus GYCNSKSVCVCR Defensin C Aedes 99 MRTLIWCFVALCLSAIFTTGSALPGELADDV precursor aegypti RPYANSLFDELPEESYQAAVENFRLKRATCD LLSGFGVGDSACAAHCIARRNRGGYCNAKK VCVCRN Defensin D Aedes 96 VPTVICFLAMCLVAITGAYPQEPVLADEAQSV precursor albopictus ANSLFDELPEESYQAAVENLRLKRATCDLLS (AALDEFD) GFGVGDSACAAHCIARGNRGGYCNSKKVCV (Fragment) CPI Defensin Heliothis 44 DKLIGSCVWGAVNYTSDCNGECKRRGYKGG heliomicin virescens HCGSFANVNCWCET Defensin Heliothis 44 DKLIGSCVWGAVNYTSDCNGECLLRGYKGG Heliomicin virescens HCGSFANVNCWCET defensin Aedes 98 MKSITVICFLALCTGSITSAYPQDPVLADEARP isoform A1 aegypti FANSLFDELPEETYQAAVENFRLKRATCDLLS GFGVGDSACAAHCIARGNRGGYCNSKKVCV CRN defensin Aedes 98 MKSITVICFLALCTVAITSAYPQEPVLADEARP isoform B1 aegypti FANSLFDELPEETYQAAVENFRLKRATCDLLS GFGVGDSACAAHCIARGNRGGYCNSQKVCV CRN defensin Aedes 98 MKSITVICFLALCTGSITSAYPQEPVLADEARP isoform B2 aegypti FANSLFDELPEETYQAAVENFRLKRATCDLLS GFGVGDSACAAHCIARGNRGGYCNSQKVCV CRN defensin Aedes 99 MRTLIVVCFVALCLSAIFTTGSALPEELADDVR isoform C1 aegypti SYANSLFDELPEESYQAAVENFRLKRATCDL LSGFGVGDSACAAHCIARRNRGGYCNAKKV CVCRN Defensin Mgd- Mytilus 39 GFGCPNNYQCHRHCKSIPGRCGGYCGGWH 1 galloprovincialis RLRCTCYRCG Defensin MGD- Mytilus 38 GFGCPNNYQCHRHCKSIPGRCGGYCGGXH 1 galloprovincialis RLRCTCYRC Defensin MGD- Mytilus 81 MKAAFVLLWGLCIMTDVATAGFGCPNNYAC 2 precursor galloprovincialis HQHCKSIRGYCGGYCAGWFRLRCTCYRCG GRRDDVEDIFDIYDNVAVERF defensin NP-1 Rattus 32 VTCYCRRTRCGFRERLSGACGYRGRIYRLC norvegicus CR defensin NP-4 Rattus 31 ACYCRIGACVSGERLTGACGLNGRIYRLCCR norvegicus Defensin Anopheles 102 MKCATIVCTIAVVLAATLLNGSVQAAPQEEAA precursor gambiae LSGGANLNTLLDELPEETHHAALENYRAKRA TCDLASGFGVGSSLCAAHCIARRYRGGYCN SKAVCVCRN Defensin Drosophila 92 MKFFVLVAIAFALLACVAQAQPVSDVDPIPED precursor melanogaster HVLVHEDAHQEVLQHSRQKRATCDLLSKWN WNHTACAGHCIAKGFKGGYCNDKAVCVCRN Defensin Oryctes 79 MSRFIVFAFIVAMCIAHSLAAPAPEALEASVIR precursor rhinoceros QKRLTCDLLSFEAKGFAANHSLCAAHCLAIG RKGGACQNGVCVCRR defensin Spodoptera 102 MGVKVINVFLLIAVSACLIHAVAGKPNPRDSS precursor frugiperda VVEEQSLGPIHNEDLEVKVKPETTTTPEPRIP GRVSCDFEEANEDAVCQEHCLPKGYTYGICV SHTCSCI Defensin Culex pipiens 40 ATCDLLSGFGVNDSACAAHCILRGNRGGYC precursor NGKKVCVCRN (Fragment) defensin R-2 Rattus 31 VTCSCRTSSCRFGERLSGACRLNGRIYRLCC norvegicus defensin R-5 Rattus 32 VTCYCRSTRCGFRERLSGACGYRGRIYRLC norvegicus CR defensin Mus 92 MKKLVLLSAFVLLAFQVQADSIQNTDEEIKTE related musculus EQPGEENQAVSISFGDPEGYALQDAAAIRRA cryptdin, RRCPPCPSCLSCPWCPRCLRCPMCKCNPK related sequence 12 defensin Mus 92 MKKLVLLFALVLLAFQVQADSIQNTDEETKTE related musculus EQQGEEDQAVSVSFGDPQGSGLQDAAALG cryptdin, WGRRCPRCPPCPRCSWCPRCPTCPRCNCN related PK sequence 7 Defensin Mus 60 MRIHYLLFTFLLVLLSPLAAFSQKINDPVTYIR related peptide musculus NGGICQYRCIGLRHKIGTCGSPFKCCK Defensin, Zophobas 43 FTCDVLGFEIAGTKLNSAACGAHCLALGRRG isoforms B and atratus GYCNSKSVCVCR C defensin-3 Macaca 96 MRTLVILAAILLVALQAQAEPLQARTDEATAA mulatta QEQIPTDNPEVVVSLAWDESLAPKDSVPGLR KNMACYCRIPACLAGERRYGTCFYRRRVWA FCC defensin-8 Macaca 96 MRTLVILAAILLVALQAQAEPLQARTDEATAA mulatta QEQIPTDNPEVWSLAWDESLAPKDSVPGLR KNMACYCRIPACLAGERRYGTCFYLRRVWA FCC defensin-like Mus 5 ICSPK gene 1C-1 musculus Defensin-like Ornithorhynchus 42 FVQHRPRDCESINGVCRHKDTVNCREIFLAD peptide 1 anatinus CYNDGQKCCRK (DLP-1) Defensin-like Ornithorhynchus 42 IMFFEMQACWSHSGVCRDKSERNCKPMAW peptide 2/4 anatinus TYCENRNQKCCEY (DLP-2/DLP-4) Defensin-like Ornithorhynchus 38 FEMQYCWSHSGVCRDKSERNNKPMAWTYC peptide 3 anatinus ENRQKKCEF (DLP-3) Defensin-like Mesobuthus 61 MTYAILIIVSLLPISDGISNVVDKYCSENPLDCN protein TXKS2 martensii EHCLKTKNQIGICHGANGNEKCSCMES Demidefensin 2 Macaca 76 MRTFALLTAMLLLVALHAQAEARQARADEAA mulatta AQQQPGADDQGMAHSFTWPENAALPLSESA KGLRCICTRGFCRLL Demidefensin 3 Macaca 76 MRTLALHTAMLLLVALHAQAEARQARADEAA mulatta AQQQPGADDQGMAHSFTWPENAALPLSESE RGLRCICVLGICRLL Dermaseptin 1 Phyllomedusa 34 ALWKTMLKKLGTMALHAGKAALGAAADTISQ (DS I) sauvagei GTQ Dermaseptin BI Phyllomedusa 78 MDILKKSLFLVLFLGLVSLSICEEEKRENEDEE precursor bicolor KQDDEQSEMKRAMWKDVLKKIGTVALHAGK (Dermaseptin AALGAVADTISQGEQ B1) Dermaseptin Phyllomedusa 77 MAFLKKSLFLVLFLGLVSLSVCEEEKRENEDE DRG3 bicolor EEQEDDEQSEEKRALWKTIIKGAGKMIGSLA precursor KNLLGSQAQPESEQ (Dermaseptin 3) Dermatoxin Phyllomedusa 77 MAFLKKSLFLVLFLGLVPLSLCESEKREGENE precursor bicolor EEQEDDQSEEKRSLGSFLKGVGTTLASVGKV VSDQFGKLLQAGQG Diptericin A Protophormia 82 DEKPKLILPTPAPPNLPQLVGGGGGNRKDGF terraenovae GVSVDAHQKVWTSDNGGHSIGVSPGYSQHL PGPYGNSRPDYRIGAGYSYNF diptericin B Protophormia 41 DEKPKLVLPSXAPPNLPQLVGGGGGNNKXG terraenovae XXVSINAAQKV diptericin C Protophormia 39 DEKPKLIXPXXAPXNLXQLVGGGGGNNKKXX terraenovae GVXVXXAQ Diptericin D Protophormia 101 MKLFYLLVICALSLAVMADEKPKLILPTPAPPN precursor terraenovae LPQLVGGGGGNRKDGFGVSVDAHQKVWTS DNGRHSIGVTPGYSQHLGGPYGNSRPDYRI GAGYSYNFG Dolabellanin Dolabella 33 SHQDCYEALHKCMASHSKPFSCSMKFHMCL B2 auricularia QQQ Drosocin Drosophila 64 MKFTIVFLLLACVFAMAVATPGKPRPYSPRPT melanogaster SHPRPIRVRREALAIEDHLTQAAIRPPPILPA Drosocin Drosophila 64 MKFTIVFLLLACVFAMAVATPGKPRPYSPRPT melanogaster SHPRPIRVRREALAIEDHLTQAAIRPPPILPV Drosocin Drosophila 64 MKFTIVFLLLACVFAMGVATPGKPRPYSPRPT CG10816-PA melanogaster SHPRPIRVRREALAIEDHLTQAAIRPPPILPA Drosocin Drosophila 64 MKFTIVFLLLACVFAMAVATPGKPRPYSPRPT precursor melanogaster SHPRPIRVRREALAIEDHLAQAAIRPPPILPA Drosomycin Drosophila 44 DCLSGRYKGPCAVWDNETCRRVCKEEGRS melanogaster SGHCSPSLKCWCEGC Drosomycin Drosophila 70 MMQIKYLFALFAVLMLVVLGANEADADCLSG precursor melanogaster RYKGPCAVWDNETCRRVCKEEGRSSGHCS (Cysteine-rich PSLKCWCEGC peptide) enbocin Bombyx mori 59 MNFTRIIFFLGVVVFATASGKPWNIFKEIERAV ARTRDAVISAGPAVATVAAATSVASG Enhancer of Sus scrofa 32 RADTQTYQPYNKDWIKEKIYVLLRRQAQQAG rudimentary K homolog [Contains: Antibacterial peptide 3910] (Fragment) entenic beta Bubalus 64 MRLHHLLLALLFLVLSAGSGFTQGVRNPQSC defensin bubalis HRNKGICVPIRCPGNMRQIGTCLGPPVKCCR preproprotein RK Enteric beta- Bos taurus 64 MRLHHLLLTLLFLVLSAGSGFTQGISNPLSCR defensin LNRGICVPIRCPGNLRQIGTCFTPSVKCCRW precursor R Eosinophil Cavia 233 MKLLLLLALLLGAVSTRHLKVDTSSLQSLRGE granule major porcellus ESLAQDGETAEGATREATAGALMPLPEEEE basic protein 1 MEGASGSEDDPEEEEEEEEEVEFSSELDVS precursor PEDIQCPKEEDTVKFFSRPGYKTRGYVMVGS (MBP-1) ARTFNEAQWVCQRCYRGNLASIHSFAFNYQ VQCTSAGLNVAQVWIGGQLRGKGRCRRFV WVDRTVWNFAYWARGQPWGGRQRGRCVT LCARGGHWRRSHCGKRRPFVCTY EP2e (ANTI- Mus 69 MKVLLLFAVFFCFVQGNSGDIPPGIRNTVCLM microbial-like musculus QQGHCRLFMCRSGERKGDICSDPWNRCCV protein BIN-1B PYSVKDRR homolog) Esculentin-1 Rana 46 GIFSKLGRKKIKNLLISGLKNVGKEVGMDVVR esculenta TGIDIAGCKIKGEC Esculentin-1A Rana 46 GIFSKLAGKKIKNLLISGLKNVGKEVGMDVVR esculenta TGIDIAGCKIKGEC Esculentin-1B Rana 84 MFTLKKPLLLIVLLGMISLSLCEQERNADEEE precursor esculenta GSEIKRGIFSKLAGKKLKNLLISGLKNVGKEV GMDVVRTGIDIAGCKIKGEC Esculentin-2A Rana 37 GILSLVKGVAKLAGKGLAKEGGKFGLELIACKI esculenta AKQC Esculentin-2B Rana 37 GLFSILRGAAKFASKGLGKDLTKLGVDLVACK berlandieri ISKQC Esculentin-2B Rana 37 GIFSLVKGAAKLAGKGLAKEGGKFGLELIACKI esculenta AKQC Esculentin-2L Rana 37 GILSLFTGGIKALGKTLFKMAGKAGAEHLACK luteiventris ATNQC Esculentin-2P Rana pipiens 37 GFSSIFRGVAKFASKGLGKDLARLGVNLVAC KISKQC Formaecin 1 Myrmecia 16 GRPNPVNNKPTPHPRL gulosa Formaecin 2 Myrmecia 16 GRPNPVNTKPTPYPRL gulosa Gaegurin-1 Rana rugosa 33 SLESLIKAGAKFLGKNLLKQGACYAACKASKQ C Gaegurin-2 Rana rugosa 33 GIMSIVKDVAKNAAKEAAKGALSTLSCKLAKT C Gaegurin-3 Rana rugosa 33 GIMSIVKDVAKTAAKEAAKGALSTLSCKLAKT C Gaegurin-4 Rana rugosa 80 MFTMKKSLLFLFFLGTISLSLCEEERSADEDD precursor GGEMTEEEVKRGILDTLKQFAKGVGKDLVKG AAQGVLSTVSCKLAKTC Gaegurin-5 Rana rugosa 65 MFTLKKSLLLLFFLGTISLSLCEEERNADEEEK precursor RDVEVEKRFLGALFKVASKVLPSVFCAITKKC Gaegurin-6 Rana rugosa 24 FLPLLAGLAANFLPTIICKISYKC Gal-1 alpha Gallus gallus 65 MRIVYLLLPFILLLAQGAAGSSQALGRKSDCF RKNGFCAFLKCPYLTLISGKCSRFHLCCKRIW G gallinacin Gallus gallus 39 GRKSDCFRKSGFCAFLKCPSLTLISGKCSRF YLCCKRIW gallinacin Gallus gallus 36 LFCKGGSCHFGGCPSHLIKVGSCFGFRSCCK WPWNA Gallinacin 1 Gallus gallus 39 GRKSDCFRKNGFCAFLKCPYLTLISGKCSRF alpha HLCCKRIW Gallinacin 1 Gallus gallus 65 MRIVYLLLPFILLLAQGAAGSSQALGRKSDCF precursor RKSGFCAFLKCPSLTLISGKCSRFYLCCKRIW G Gallinacin 2 Gallus gallus 64 MRILYLLFSLLFLALQVSPGLSSPRRDMLFCK precursor GGSCHFGGCPSHLIKVGSCFGFRSCCKWPW NA Gastric Sus scrofa 42 YAEGTFISDYSIAMDKIRQQDFVNWLLAQKG inhibitory KKSDWKHNITQ polypeptide (GIP) (Glucose- dependent insulinotropic polypeptide) Gloverin Hyalophora 130 DVTWDKNIGNGKVFGTLGQNDDGLFGKAGF cecropia KQQFFNDDRGKFEGQAYGTRVLGPAGGTTN FGGRLDWSDKNANAALDISKQIGGRPNLSAS GAGVWDFDKNTRLSAGGSLSTMGRGKPDV GVHAQFQHDF Gomesin Acanthoscurria 18 QCRRLCYKQRCVTYCRGR gomesiana GP- Cavia 31 RRCICTTRTCRFPYRRLGTCLFQNRVYTFCC CS2 = CORTIC OSTATIC peptide (Fragment) Hadrurin Hadrurus 41 GILDTIKSIASKVWNSKTVQDLKRKGINWVAN aztecus KLGVSPQAA Hemiptericin Pyrrhocoris 133 DVELKGKGGENEGFVGLKAQRNLYEDDRTS apterus LSGTVKGQSQWKDPYPAQHAGMARLDGTR TLIENDRTKVTGSGFAQREVATGMRPHDSFG VGVEATHNIYKGKNGEVDVFGGVQRQWNTP DRHQARGGIRWRF Hepcidin Mus 83 MALSTRTQAACLLLLLLASLSSTTYLQQQMR antimicrobial musculus QTTELQPLHGEESRADIAIPMQKRRKRDINFP peptide 2 ICRFCCQCCNKPSCGICCEE hepcidin Danio rerio 91 MKLSNVFLAAVVILTCVCVFQITAVPFIQQVQ antimicrobial DEHHVESEELQENQHLTEAEHRLTDPLVLFR peptide TKRQSHLSLCRFCCKCCRNKGCGYCCKF precursor Hepcidin Morone 85 MKTFSVAVAVAVVLAFICLQESSAVPVTEVQE precursor chrysops x LEEPMSNEYQEMPVESWKMPYNNRHKRHS Morone SPGGCRFCCNCCPNMSGCGVCCRF saxatilis Hepcidin Mus 83 MALSTRTQAACLLLLLLASLSSTTYLHQQMR precursor musculus QTTELQPLHGEESRADIAIPMQKRRKRDTNF PICIFCCKCCNNSQCGICCKT Hepcidin Rattus 84 MALSTRIQAACLLLLLLASLSSGAYLRQQTRQ precursor norvegicus TTALQPWHGAESKTDDSALLMLKRRKRDTN FPICLFCCKCCKNSSCGLCCIT Hepcidin Oncorhynchus 61 LQVLTEEVGSIDSPVGEHQQPGGESMRLPE precursor mykiss HFRFKRXSHLSLCRWCCNCCHNKGXGFCCK (Fragment) F Histone H2A Bufo 39 AGRGKQGGKVRAKAKTRSSRAGLQFPVGRV [Contains: gargarizans HRLLRKGNY Buforin I; Buforin II] (Fragment) Histone H2A Hippoglossus 51 SGRGKTGGKARAKAKTRSSRAGLQFPVGRV [Contains: hippoglossus HRLLRKGNYAHRVGAGAPVYL Hipposin] (Fragment) Histone H2B-1 Ictalurus 20 PDPAKTAPKKGSKKAVTKXA (Antibacterial punctatus histone-like protein 1) (HLP-1) (Fragment) Histone H2B-3 Ictalurus 17 PDPAKTAPKKKSKKAVT (Antibacterial punctatus histone-like protein 3) (HLP-3) (Fragment) holotricin 1 Holotrichia 43 VTCDLLSLQIKGIAINDSACAAHCLAMRRKGG diomphalia SCKQGVCVCRN Holotricin 2 Holotrichia 127 MMKLVIALCLIGISAAYVVPVYYEIYPEDATFD precursor diomphalia EADIEPQLSPAELHHGSIRERRSLQPGAPSFP MPGSQLPTSVSGNVEKQGRNTIATIDAQHKT DRYDVRGTWTKVVDGPGRSKPNFRIGGSYR W holotricin 2 Holotrichia 127 MMKLVIALCLIGISAAYVVPVYYEIYPEDATFD precursor diomphalia EADIEPQLSPAELHHGSIRERRSLQPGAPSLS QLPTSVSGNVEKQGRPMPGNTIATIDAQHKT DRYDVRGTVDGPGRSKPNFRIGGSWTKVYR W Holotricin 3 Holotrichia 104 MNKLIILGLACIIAVASAMPYGPGDGHGGGHG precursor diomphalia GGHGGGHGNGQGGGHGHGPGGGFGGGH GGGHGGGGRGGGGSGGGGSPGHGAGGG YPGGHGGGHHGGYQTHGY Hymenoptaecin Apis mellifera 129 MKFIVLVLFCAVAYVSAQAELEPEDTMDYIPT precursor RFRRQERGSIVIQGTKEGKSRPSLDIDYKQR VYDKNGMTGDAYGGLNIRPGQPSRQHAGFE FGKEYKNGFIKGQSEVQRGPGGRLSPYFGIN GGFRF Indolicidin Bos taurus 14 ILPWKWPWWPWRRX Indolicidin Bos taurus 144 MQTQRASLSLGRWSLWLLLLGLVVPSASAQ precursor ALSYREAVLRAVDQLNELSSEANLYRLLELDP PPKDNEDLGTRKPVSFTVKETVCPRTIQQPA EQCDFKEKGRVKQCVGTVTLDPSNDQFDLN CNELQSVILPWKWPWWPWRRG Insect Defensin Protophormia 40 ATCDLLSGTGINHSACAAHCLLRGNRGGYCN A (NMR, 10 terraenovae GKGVCVCRN Structures) - Chai Interferon- Mus sp. 15 SETAPAETPAPAKAE activated antimicrobial protein (Fragment) Japonicin-1 Rana 14 FFPIGVFCKIFKTC japonica Japonicin-2 Rana 21 FGLPMLSILPKALCILLKRKC japonica Lactoferricin Bos taurus 25 FKCRRWQWRMKKLGAPSITCVRRAF lactoferrin Sus scrofa 703 MKLFIPALLFLGTLGLCLAAPKKGVRWCVIST precursor AEYSKCRQWQSKIRRTNPMFCIRRASPTDCI RAIAAKRADAVTLDGGLVFEADQYKLRPVAA EIYGTEENPQTYYYAVAWKKGFNFQNQLQG RKSCHTGLGRSAGWNIPIGLLRRFLDWAGPP EPLQKAVAKFFSQSCVPCADGNAYPNLCQL CIGKGKDKCACSSQEPYFGYSGAFNCLHKGI GDVAFVKESTVFENLPQKADRDKYELLCPDN TRKPVEAFRECHLARVPSHAWARSVNGKE NSIWELLYQSQKKFGKSNPQEFQLFGSPGQ QKDLLFRDATIGFLKIPSKIDSKLYLGLPYLTAI QGLRETAAEVEARQAKVVWCAVGPEELRKC RQWSSQSSQNLNCSLASTTEDCIVQVLKGEA DAMSLDGGFIYTAGKCGLVPVLAENQKSRQS SSSDCVHRPTQGYFAVAWRKANGGITWNS VRGTKSCHTAVDRTAGWNIPMGLLVNQTGS CKFDEFFSQSCAPGSQPGSNLCALCVGNDQ GVDKCVPNSNERYYGYTGAFRCLAENAGDV AFVKDVTVLDNTNGQNTEEWARELRSDDFE LLCLDGTRKPVTEAQNCHLAVAPSHAWSRK EKAAQVEQVLLTEQAQFGRYGKDCPDKFCL FRSETKNLLFNDNTECLAQLQGKTTYEKYLG SEYVTAIANLKQCSVSPLLEACAFMMR Lactotransferrin Bos taurus 708 MKLFVPALLSLGALGLCLAAPRKNVRWCTIS precursor QPEWFKCRRWQWRMKKLGAPSITCVRRAF (Lactoferrin) ALECIRAIAEKKADAVTLDGGMVFEAGRDPY [Contains: KLRPVAAEIYGTKESPQTHYYAVAVVKKGSN Lactoferricin B FQLDQLQGRKSCHTGLGRSAGWIIPMGILRP (LFCIN B)] YLSWTESLEPLQGAVAKFFSASCVPCIDRQA YPNLCQLCKGEGENQCACSSREPYFGYSGA FKCLQDGAGDVAFVKETTVFENLPEKADRDQ YELLCLNNSRAPVDAFKECHLAQVPSHAWA RSVDGKEDLIWKLLSKAQEKFGKNKSRSFQL FGSPPGQRDLLFKDSALGFLRIPSKVDSALYL GSRYLTTLKNLRETAEEVKARYTRVVWCAVG PEEQKKCQQWSQQSGQNVTCATASTTDDCI VLVLKGEADALNLDGGYIYTAGKCGLVPVLAE NRKSSKHSSLDCVLRPTEGYLAVAWKKANE GLTWNSLKDKKSCHTAVDRTAGWNIPMGLIV NQTGSCAFDEFFSQSCAPGADPKSRLCALC AGDDQGLDKCVPNSKEKYYGYTGAFRCLAE DVGDVAFVKNDTVWENTNGESTADWAKNLN REDFRLLCLDGTRKPVTEAQSCHLAVAPNHA VVSRSDRAAHVKQVLLHQQALFGKNGKNCP DKFCLFKSETKNLLFNDNTECLAKLGGRPTY EEYLGTEYVTAIANLKKCSTSPLLEACAFLTR Lebocin 1/2 Bombyx mori 179 MYKFLVFSSVLVLFFAQASCQRFIQPTFRPPP precursor TQRPIIRTARQAGQEPLWLYQGDNVPRAPST ADHPILPSKIDDVQLDPNRRYVRSVTNPENN EASIEHSHHTVDTGLDQPIESHRNTRDLRFLY PRGKLPVPTPPPFNPKPIYIDMGNRYRRHAS DDQEELRQYNEHFLIPRDIFQE Lebocin 3 Bombyx mori 179 MYKFLVFSSVLVLFFAQASCQRFIQPTFRPPP precursor (LEB TQRPITRTVRQAGQEPLWLYQGDNVPRAPS 3) TADHPILPSKIDDVQLDPNRRYVRSVTNPENN EASIEHSHHTVDIGLDQPIESHRNTRDLRFLY PRGKLPVPTLPPFNPKPIYIDMGNRYRRHAS EDQEELRQYNEHFLIPRDIFQE lectin-L6 Limulus 221 VQWHQIPGKLMHITATPHFLWGVNSNQQIYL polyphemus CRQPCYDGQWTQISGSLKQVDADDHEVWG VNRNDDIYKRPVDGSGSVVVRVSGKLKHVSA SGYGYIWGVNSNDQIYKCPKPCNGAWTQVN GRLKQIDGGQSMVYGVNSANAIYRRPVDGS GSWQQISGSLKHITGSGLSEVFGVNSNDQIY RCTKPCSGQWSLIDGRLKQCDATGNTIVGVN SVDNIYRSG Limulus factor Tachypleus 394 MKVLLLVAFLLGTTLAYPQDDDGPVWGGSS D tridentatus NDNDDGGISSRVGNPQSGFGNCECVPYYLC KDNNIIIDGSGLLDPRKKPVASKEPKLSARLG PEGPSGCGPFHVCCIAPETSTVKPYTHQCGF RNVNGINKRILSPNGKDLSEFGEWPWQGAVL KVEGKVNIFQCGAVLIDSYHLLTVAHCVYKFT LENAFPLKVRLGEWDTQNTNEFLKHEDYEVE KIYIHPKYDDERKNLWDDIAILKLKAEVSFGPH IDTICLPNNQEHFAGVQCVVTGWGKNAYKNG SYSNVLREVHVPVITNDRCQELLRKTRLSEW YVLYENFICAGGESNADSCKGDGGGPLTCW RKDGTYGLAGLVSWGINCGSPNVPGVYVRV SNYLDWITKITGRPISDYWPRS Lingual Bos taurus 64 MRLHHLLLALLFLVLSAGSGFTQGVRNSQSC antimicrobial RRNKGICVPIRCPGSMRQIGTCLGAQVKCCR peptide RK precursor Liver- Bos taurus 77 MWHLKLFAVLMICLLLLAQVDGSPIPQQSSAK expressed RRPRRMTPFWRAVSLRPIGASCRDDSECITR antimicrobial LCRKRRCSLSVAQE peptide 2 precursor (LEAP-2) Liver- Macaca 77 MWHLKLCAVLMIFLLLLGQTDGSPIPEVSSAK expressed mulatta RRPRRMTPFWRGVSLRPIGASCRDDSECITR antimicrobial LCRKRRCSLSVAQE peptide 2 precursor (LEAP-2) Liver- Mus 76 MLQLKLFAVLLTCLLLLGQVNSSPVPEVSSAK expressed musculus RSRRMTPFWRGVSLRPIGASCRDDSECITRL antimicrobial CRKRRCSLSVAQE peptide 2 precursor (LEAP-2) Liver- Sus scrofa 77 MWHLKLFAVLVICLLLAVQVHGSPIPELSSAK expressed RRPRRMTPFWRAVSLRPIGASCRDDSECLT antimicrobial RLCRKRRCSLSVAQE peptide 2 precursor (LEAP-2) Liver- Cavia 71 SVVLLICLLLLGQVDGSPVPEKSSVKKRLRRM expressed porcellus TPFWRGVSLRPIGASCRDDSECITRLCKKRR antimicrobial CSLSVAQE peptide 2 precursor (LEAP-2) (Fragment) Liver- Sus scrofa 77 MWHLKLFAVLVICLLLAVQVHGSPIPELSSAK expressed RRPRRITPFWRAVSLRPIGASCRDDSECLTR antimicrobial LCRKRRCSLSVAQE protein 2 Lysozyme Heliothis 141 MQKLTLFVVALAAVVLHCEAKQFSRCGLVQE virescens LRRQGFPEDKLGDWVCLVENESARKTDKVG TVNKNGSRDYGLYQINDKYWCSNTSTPGKD CNVTCAEMLLDDITKASTCAKKIYKRHKFEAW YGWKNHCKGKTLPDISNC lysozyme (EC Alopochen 129 KVYGRCELAAAMKRLGLDNYRGYSLGNWVC 3.2.1.17) aegyptiacus AAKYESGFNTQATNRNTDGSTDYGILQINSR WWCNDGKTPRAKNVCGIPCSVLLRSDITEAV KCAKRIVSDGNGMNAWVAWRNRCKGTDVS QWIRGCRL lysozyme (EC Chrysolophus 129 KVYGRCELAAAMKRLGLDNYRGYSLGNWVC 3.2.1.17) pictus AAKFESNFNTHATNRNTDGSTDYGILQINSR WWCNDGRTPGSRNLCHIPCSALLSSDITASV NCAKKIVSDGNGMNAWVAWRNRCKGTDVN AWTRGCRL lysozyme (EC Lophophorus 129 KVYGRCELAAAMKRLGLDNYRGYSLGNWVC 3.2.1.17) impejanus AAKFESNFNTHATNRNTDGSTDYGILQINSR WWCNDGRTPGSRNLCNIPCSALLSSDITASV NCAKKIVSDGNGMNAVWAWRNRCKGTDVH AWIRGCRL lysozyme (EC Manduca 120 KHFSRCELVHELRRQGFPENLMRDWVCLVE 3.2.1.17) sexta NESSRYTDKVGRVNKNGSRDYGLFQINDKY WCSNGSTPGKDCNVKCSDLLIDDITKASTCA KKIYKRHKFQAWYGWRNHCQGSLPDISSC lysozyme (EC Ovis aries 129 KVFERCELARTLKELGLDGYKGVSLANWLCL 3.2.1.17) 1 TKWESSYNTKATNYNPGSESTDYGIFQINSK WWCNDGKTPNAVDGCHVSCSELMENNIAKA VACAKHIVSEQGITAWVAWKSHCRDHDVSS YVEGCSL lysozyme (EC Rattus 148 MKALLVLGFLLLSASVQAKIYERCEFARTLKR 3.2.1.17) 1 norvegicus NGMSGYYGVSLADWVCLAQHESNYNTQAR precursor NYNPGDQSTDYGIFQINSRYWCNDGKTPRA KNACGIPCSALLQDDITQAIQCAKRVVRDPQ GIRAWVAWQRHCKNRDLSGYIRNCGV lysozyme (EC Bos taurus 129 KTFKRCELARTLKNLGLAGYKGVSLANWMCL 3.2.1.17) 14d, AKGESNYNTQAKNYNPGSKSTDYGIFQINSK tracheal WWCNDGKTPKAVNGCGVSCSALLKDDITQA VACAKKIVSQQGITAWVAWKNKCRNRDLTSY VKGCGV lysozyme (EC Cervus axis 129 KVFERCELARTLKELGLDGYKGVSLANWLCL 3.2.1.17) 2 TKWESSYNTKATNYNPGSESTDYGIFQINSK WWCNDGKTPNAVDGCHVACSELMENDIAKA VACAKQIVREQGITAWVAWKSHCRDHDVSS YVEGCTL lysozyme (EC Ovis aries 129 KVFERCELARTLKELGLDGYKGVSLANWLCL 3.2.1.17) 2 TKWESSYNTKATNYNPGSESTDYGIEQINSK WWCNDGKTPNAVDGCHVSCSALMENDIEKA VACAKHIVSEQGITAWVAWKSHCRDHDVSS YVEGCTL lysozyme (EC Ovis aries 129 KVFERCELARTLKKLGLDDYKGVSLANWLCL 3.2.1.17) 3 TKWESGYNTKATNYNPGSESTDYGIEQINSK WWCNDGKTPNAVDGCHVSCSALMENDIEKA VACAKHIVSEQGITAWVAWKSHCRDHDVSS YVEGCTL lysozyme (EC Bos taurus 130 KVFERCELARSLKRFGMDNFRGISLANWMCL 3.2.1.17) 5a, ARWESNYNTQATNYNAGDQSTDYGIEQINSH tracheal WWCNDGKTPGAVNACHLPCGALLQDDITQA VACAKRWSDPQGIRAWVAWRSHCQNQDLT SYIQGCGV lysozyme (EC Drosophila 140 MKAFIVLVALASGAPALGRTMDRCSLAREMS 3.2.1 .17) B melanogaster NLGVPRDQLARWACIAEHESSYRTGVVGPE precursor NYNGSNDYGIFQINDYYWCAPPSGRFSYNE CGLSCNALLTDDITHSVRCAQKVLSQQGWSA WSTWHYCSGWLPSIDDCF lysozyme (EC Papio sp. 130 KIFERCELARTLKRLGLDGYRGISLANWVCLA 3.2.1.17) c KWESDYNTQATNYNPGDQSTDYGIEQINSHY WCNDGKTPGAVNACHISCNALLQDNITDAVA CAKRVVSDPQGIRAWVAWRNHCQNRDVSQ YVQGCGV lysozyme (EC Numida 129 KVFGRCELAAAMKRHGLDNYRGYSLGNWVC 3.2.1.17) c meleagris AAKFESNFNSQATNRNTDGSTDYGVLQINSR [validated] WWCNDGRTPGSRNLCNIPCSALQSSDITATA NCAKKIVSDGDGMNAWVAWRKHCKGTDVR VWIKGCRL lysozyme (EC Coturnix 129 KVYGRCELAAAMKRHGLDKYQGYSLGNWV 3.2.1.17) C japonica CAAKFESNFNTQATNRNTDGSTDYGILQINS precursor RWWCNDGRTPGSRNLCNIPCSALLSSDITAS VNCAKKIVSDVHGMNAWVAWRNRCKGTDV NVWIRGCRL lysozyme (EC Hyalophora 132 CRSWQFALHCDAKRFTRCGLVQELRRRGFD 3.2.1.17) c cecropia ETLMSNWVCLVENESGRFTDKIGKVNKNGS precursor RDYGLFQINDKYWCSKGSTPGKDCNVTCNQ LLTDDISVAATCAKKIYKRHKFDAWYGWKNH CQHGLPDISDC lysozyme (EC Phasianus 147 MRSLLILVLCFLPLAAPGKVYGRCELAAAMKR 3.2.1.17) c colchicus MGLDNYRGYSLGNVWCAAKFESNFNTGATN precursor RNTDGSTDYGILQINSRWWCNDGRTPGSKN [validated] LCHIPCSALLSSDITASVNCAKKIVSDGDGMN AWVAWRKHCKGTDVNVWIRGCRL lysozyme (EC Drosophila 140 MKAFIVLVALALAAPALGRTLDRCSLAREMSN 3.2.1.17) E melanogaster LGVPRDQLARWACIAEHESSYRTGWGPEN precursor YNGSNDYGIFQINDYYWCAPPSGRFSYNEC GLSCNALLTDDITHSVRCAQKVLSQQGWSA WSTWHYCSGWLPSIDDCF lysozyme (EC Rhea 185 RTNCYGDVSRIDTTGASCKTAKPEKLNYCGV 3.2.1.17) g americana AASRKIAERDLRSMDRYKTLIKKVGQKLCVEP AVIAGIISRESHAGKALKNGWGDNGNGFGLM QVDRRSHKPVGEWNGERHLIQGTEILISMIKA MQRKFPRWTKEQQLKGGISAYNAGPGNVRT YERMDIGTTHDDYANDVVARAQYYKQHGY lysozyme (EC Casuarius 185 QTGCYGWNRIDTTGASCETAKPEKLNYCGV 3.2.1.17) g casuarius AASRKIAEGDLQSMDRYKTLIKKVGQKLCVD [validated] PAVIAGIISRESHAGKALKDGWGDNGNGFGL MQVDKRSHTPVGKWNGERHLTQGTEILISMI KKIQKKFPRWTKEQQLKGGISAYNAGSGNVR TYERMDIGTTHNDYANDVVARAQYYKQHGY lysozyme (EC Drosophila 140 MKAFIVLVALACAAPAFGRTMDRCSLAREMS 3.2.1.17) melanogaster NLGVPRDQLNKWACIAEHESSYRTGVVGPE precursor NYNGSNDYGIFQINDYYWCAPPSGRFSYNE CGLSCNALLTDDITHSVRCAQKVLSQQGWSA WSTWHYCSGWLPSIDDCF lysozyme (EC Opisthocomus 145 MLFFGFLLAFLSAVPGTEGEIISRCELVKILRE 3.2.1.17) hoazin HGFEGFEGTTIADWICLVQHESDYNTEAYNN precursor, NGPSRDYGIFQINSKYWCNDGKTSGAVDGC stomach HISCSELMTNDLEDDIKCAKKIARDAHGLTPW YGWKNHCEGRDLSSYVKGC lysozyme (EC Drosophila 139 MKAFFALVLLPLPLCLAGRTLDRCSLAREMA 3.2.1.17) S melanogaster DLGVPRDQLDKWTCIAQHESDYRTWVVGPA precursor NSDGSNDYGIFQINDLYWCQADGRFSYNEC GLSCNALLTDDITNSVRCAQKVLSQQGWSA WAVWHYCSGWLPSIDECF lysozyme (EC Drosophila 81 PNTDGSNDYGIFQINDLYWCQPSSGKFSHN 3.2.1.17) X melanogaster GCDVSCNALLTDDIKSSVRCALKVLGQQGW SAWSTWHYCSGYLPPIDDCFV Lysozyme Drosophila 140 MKAFIVLVALACAAPAFGRTMDRCSLAREMS A/C/D melanogaster NLGVPRDQLARWACIAEHESSYRTGVVGPE precursor (EC NYNGSNDYGIFQINDYYWCAPPSGRFSYNE 3.2.1.17) (1,4- CGLSCNALLTDDITHSVRCAQKVLSQQGWSA beta-N- WSTWHYCSGWLPSIDDCF acetylmurami- dase A/C) Lysozyme C Callipepla 129 KVFGRCELAAAMKRHGLDNYRGYSLGNWVC (EC 3.2.1.17) californica AAKFESNFNSQATNRNTDGSTDYGVLQINSR (1,4-beta-N- WWCNDGRTPGSRNLCNIPCSALLSSDITATV acetylmurami- NCAKKIVSDGNGMNAWVAWRNRCKGTDVH dase C) AWIRGCRL Lysozyme C Colinus 130 MKVFGRCELAAAMKRHGLDNYRGYSLGNW (EC 3.2.1.17) virginianus VCAAKFESNFNSQATNRNTDGSTDYGVLQIN (1,4-beta-N- SRWWCNDGKTPGSRNLCNIPCSALLSSDITA acetylmurami- TVNCAKKIVSDGNGMNAWVAWRNRCKGTD dase C) VQAWIRGCRL Lysozyme C Columba livia 127 KDIPRCELVKILRRHGFEGFVGKTVANWVCL (EC 3.2.1.17) VKHESGYRTTAFNNNGPNSRDYGIFQINSKY (1,4-beta-N- WCNDGKTRGSKNACNINCSKLRDDNIADDIQ acetylmurami- CAKKIAREARGLTPWVAWKKYCQGKDLSSY dase C) VRGC Lysozyme C Equus asinus 129 KVFSKCELAHKLKAQEMDGFGGYSLANWVC (EC 3.2.1.17) MAEYESNFNTRAFNGKNANGSYDYGLFQLN (1,4-beta-N- SKWWCKDNKRSSSNACNIMCSKLLDDNIDD acetylmurami- DISCAKRVVRDPKGMSAWKAWVKHCKDKDL dase C) SEYLASCNL Lysozyme C Ortalis vetula 129 KIYKRCELAAAMKRYGLDNYRGYSLGNWVC (EC 3.2.1.17) AARYESNYNTQATNRNSNGSTDYGILQINSR (1,4-beta-N- WWCNDGRTPGTKNLCHISCSALMGADIAPS acetylmurami- VRCAKRIVSDGDGMNAWVAWRKHCKGTDV dase C) STWIKDCKL Lysozyme C Oryctolagus 130 KIYERCELARTLKKLGLDGYKGVSLANWMCL (EC 3.2.1.17) cuniculus AKWESSYNTRATNYNPGDKSTDYGIFQINSR (1,4-beta-N- YWCNDGKTPRAVNACHIPCSDLLKDDITQAV acetylmurami- ACAKRWSDPQGIRAWVAWRNHCQNQDLTP dase C) YIRGCGV Lysozyme C Syrmaticus 129 KVYGRCELAAAMKRLGLDNFRGYSLGNWVC (EC 3.2.1.17) soemmerringii AAKFESNFNTHATNRNTDGSTDYGILQINSR (1,4-beta-N- WWCNDGRTPGSRNLCNIPCSALLSSDTIASV acetylmurami- NCAKKIVSDGNGMNAWVAWRKRCKGTDVN dase C) (CPL) AWTRGCRL Lysozyme C Felis catus 20 KIFTKCELARKLRAEGMDGF (EC 3.2.1.17) (1,4-beta-N- acetylmurami- dase C) (Fragment) Lysozyme C Pseudocheirus 49 SKMKKCEFAKIAKEQHMDGYHGVSLADWVC (EC 3.2.1.17) peregrinus LVNNESDFNTKAINRNKGI (1,4-beta-N- acetylmurami- dase C) (Fragment) Lysozyme C Lophura 129 KVYGRCELAAAMKRLGLDNYRGYSLGNWVNC (EC 3.2.1.17) leucomelanos AAKYESNFNTHATNRNTDGSTDYGILQINSR (1,4-beta-N- WWCNDGKTPGSRNLCHIPCSALLSSDITASV acetylmurami- NCAKKIVSDGNGMNAWVAWRNRCKGTDVS dase) VWTRGCRL Lysozyme C Pavo 129 KVYGRCELAAAMKRLGLDNYRGYSLGNWVC (EC 3.2.1.17) cristatus AAKFESNFNTHATNRNTDGSTDYGILQINSR (1,4-beta-N- WWCNDGRTPGSRNLCNIPCSALLSSDITASV acetylmurami- NCAKKIVSDRNGMNAWVAWRNRCKGTDVH dase) AWIRGCRL Lysozyme C Phasianus 130 GKVYGRCELAAAMKRMGLDNYRGYSLGNW (EC 3.2.1.17) versicolor VCAAKFESNFNTGATNRNTDGSTDYGILQIN (1,4-beta-N- SRWWCNDGRTPGSKNLCHIPCSALLSSDITA acetylmurami- SVNCAKKIVSDGDGMNAWVAWRKHCKGTD dase) VNVWIRGCRL Lysozyme C Syrmaticus 129 KVYGRCELAAAMKRLGLDNYRGYSLGNWVC (EC 3.2.1.17) reevesi AAKFESNFNTHATNRNTDGSTDYGILQINSR (1,4-beta-N- WWCNDGRTPGSRNLCHISCSALLSSDITASV acetylmurami- NCAKKIVSDRNGMNAWVAWRNRCKGTDVN dase) AWIRGCRL Lysozyme C 1 Cervus axis 129 KVFERCELARTLKELGLDGYKGVSLANWLCL and 2 (EC TKWESSYNTKATNYNPGSESTDYGIFQINSK 3.2.1.17) (1,4- WWCDDGKTPNAVDGCHVACSELMENNIDKA beta-N- VTCAKQIVREQGITAWVAWKSHCRGHDVSS acetylmurami- YVEGCTL dase C) Lysozyme C 1 Bos taurus 147 MKALIILGFLFLSVAVQGKVFERCELARTLKKL precursor (EC GLDGYKGVSLANWLCLTKWESSYNTKATNY 3.2.1.17) (1,4- NPGSESTDYGIFQINSKWWCNDGKTPNAVD beta-N- GCHVSCSELMENDIAKAVACAKQIVSEQGITA acetylmurami- WVAWKSHCRDHDVSSYVEGCTL dase C) Lysozyme C 2 Bos taurus 147 MKALVILGFLFLSVAVQGKVFERCELARTLKK precursor (EC LGLDGYKGVSLANWLCLTKWESSYNTKATN 3.2.1.17) (1,4- YNPSSESTDYGIFQINSKWWCNDGKTPNAV beta-N- DGCHVSCSELMENDIAKAVACAKHIVSEQGIT acetylmurami- AWVAWKSHCRDHDVSSYVEGCTL dase C) Lysozyme C 3 Bos taurus 147 MKALIILGFLFLSVAVQGKVFERCELARTLKKL precursor (EC GLDGYKGVSLANWLCLTKWESSYNTKATNY 3.2.1.17) (1,4- NPSSESTDYGIFQINSKWWCNDGKTPNAVD beta-N- GCHVSCSELMENDIAKAVACAKHIVSEQGITA acetylmurami- WVAWKSHCRDHDVSSYVQGCTL dase C) Lysozyme C I Tachyglossus 125 KILKKQELCKNLVAQGMNGYQHITLPNWVCT (EC 3.2.1.17) aculeatus AFHESSYNTRATNHNTDGSTDYGILQINSRY (1,4-beta-N- WCHDGKTPGSKNACNISCSKLLDDDITDDLK acetylmurami- CAKKIAGEAKGLTPWVAWKSKCRGHDLSKF dase C) KC Lysozyme C II Oncorhynchus 144 MRAVVVLLLVAVASAKVYDRCELARALKASG precursor (EC mykiss MDGYAGNSLPNWVCLSKWESSYNTQATNR 3.2.1.17) (1,4- NTDGSTDYGIFQINSRYWCDDGRTPGAKNV beta-N- CGIRCSQLLTADLTVAIRCAKRWLDPNGIGA acetylmurami- WVAWRLHCQNQDLRSYVAGCGV dase C) Lysozyme C Coturnix 147 MRSLLVLVLCFLPLAALGKVYGRCELAAAMK precursor (EC japonica RHGLDKYQGYSLGNWVCAAKFESNFNTQAT 3.2.1.17) (1,4- NRNTDGSTDYGILQINSRWWCNDGRTPGSR beta-N- NLCNIPCSALLSSDITASVNCAKKIVSDVHGM acetylmurami- NAWVAWRNRCKGTDVNAWIRGCRL dase C) Lysozyme C Meleagris 147 MRSLLILVLCFLPLAALGKVYGRCELAAAMKR precursor (EC gallopavo LGLDNYRGYSLGNWVCAAKFESNFNTHATN 3.2.1.17) (1,4- RNTDGSTDYGILQINSRWWCNDGRTPGSKN beta-N- LCNIPCSALLSSDITASVNCAKKIASGGNGMN acetylmurami- AWVAWRNRCKGTDVHAWIRGCRL dase C) Lysozyme C Presbytis 148 MKALTILGLVLLSVTVQGKIFERCELARTLKKL precursor (EC entellus GLDGYKGVSLANWVCLAKWESGYNTEATNY 3.2.1.17) (1,4- NPGDESTDYGIFQINSRYWCNNGKTPGAVD beta-N- ACHISCSALLQNNIADAVACAKRVVSDPQGIR acetylmurami- AWVAWRNHCQNKDVSQYVKGCGV dase C) Lysozyme C Gallus gallus 147 MRSLLILVLCFLPLAALGKVFGRCELAAAMKR precursor (EC HGLDNYRGYSLGNWVCAAKFESNFNTQATN 3.2.1.17) (1,4- RNTDGSTDYGILQINSRWWCNDGRTPGSRN beta-N- LCNIPCSALLSSDITASVNCAKKIVSDGNGMN acetylmurami- AWVAWRNRCKGTDVQAWIRGCRL dase C) (Allergen Gal d 4) Gal d IV) Lysozyme C, Rattus 148 MKALLVLGFLLLSASVQAKVFKHCELARILRS type 2 norvegicus SALAGYRGVSLENWMCMAQHESNFDTEAIN precursor (EC YNSTDQSTDYGIFQINSRYWCNDGKTPRAVN 3.2.1.17) (1,4- AGGIPCSALLQDDITQAIQCAKRVVRDPQGIR beta-N- AWVAWQRHCQNRDLSGYIRNCGV acetylmurami- dase C) Lysozyme C, Mus 148 MKTLLTLGLLLLSVTAQAKVYERCEFARTLKR type M musculus NGMAGYYGVSLADWVCLAQHESNYNTRATN precursor (EC YNRGDQSTDYGIFQINSRYWCNDGKTPRAV 3.2.1.17) (1,4- NACGINCSALLQDDITAAIQCAKRWRDPQGI beta-N- RAWVAWRAHCQNRDLSQYIRNCGV acetylmurami- dase C) Lysozyme C, Mus 148 MKALLTLGLLLLSVTAQAKVYNRCELARILKR type P musculus NGMDGYRGVKLADWVCLAQHESNYNTRAT precursor (EC NYNRGDRSTDYGIFQINSRYWCNDGKTPRS 3.2.1.17) (1,4- KNACGINCSALLQDDITAAIQCAKRVVRDPQG beta-N- IRAWVAWRTQCQNRDLSQYIRNCGV acetylmurami- dase C) Lysozyme C-1 Anas 147 MKALLTLVFCLLPLAAQGKVYSRCELAAAMK precursor (EC platyrhynchos RLGLDNYRGYSLGNWVCAANYESGFNTQAT 3.2.1.17) (1,4- NRNTDGSTDYGILQINSRWWCDNGKTPRSK beta-N- NACGIPCSVLLRSDITEAVRCAKRIVSDGDGM acetylmurami- NAWVAWRNRCRGTDVSKWIRGCRL dase C) Lysozyme C-3 Anas 129 KVYERCELAAAMKRLGLDNYRGYSLGNWVC (EC 3.2.1.17) platyrhynchos AANYESSFNTQATNRNTDGSTDYGILEINSR (1,4-beta-N- WWCDNGKTPRAKNACGIPCSVLLRSDITEAV acetylmurami- KCAKRIVSDGDGMNAWVAWRNRCKGTDVS dase) RWIRGCRL Lysozyme G Anser anser 185 RTDCYGNVNRIDTTGASCKTAKPEGLSYCGV (EC 3.2.1.17) SASKKIAERDLQAMDRYKTIIKKVGEKLCVEP (1,4-beta-N- AVIAGIISRESHAGKVLKNGWGDRGNGFGLM acetylmurami- QVDKRSHKPQGTWNGEVHITQGTTILINFIKTI dase) (Goose- QKKFPSWTKDQQLKGGISAYNAGAGNVRSY type lysozyme) ARMDIGTTHDDYANDVVARAQYYKQHGY Lysozyme G Cygnus 185 RTDCYGNVNRIDTTGASCKTAKPEGLSYCGV (EC 3.2.1.17) atratus PASKTIAERDLKAMDRYKTIIKKVGEKLCVEP (1,4-beta-N- AVIAGIISRESHAGKVLKNGWGDRGNGFGLM acetylmurami- QVDKRSHKPQGTWNGEVHITQGTTILTDFIK dase) (Goose- RIQKKFPSWTKDQQLKGGISAYNAGAGNVRS type lysozyme) YARMDIGTTHDDYANDVVARAQYYKQHGY Lysozyme G Struthio 185 RTGCYGDVNRVDTTGASCKSAKPEKLNYCG (EC 3.2.1.17) camelus VAASRKIAERDLQSMDRYKALIKKVGQKLCV (1,4-beta-N- DPAVIAGIISRESHAGKALRNGWGDNGNGFG acetylmurami- LMQVDRRSHKPVGEWNGERHLMQGTEILIS dase) (Goose- MIKAIQKKFPRWTKEQQLKGGISAYNAGPGN type lysozyme) VRSYERMDIGTTHDDYANDVVARAQYYKQH GY Lysozyme G Gallus gallus 211 MLGKNDPMCLVLVLLGLTALLGICQGGTGCY precursor (EC GSVSRIDTTGASCRTAKPEGLSYCGVRASRT 3.2.1.17) (1,4- IAERDLGSMNKYKVLIKRVGEALCIEPAVIAGII beta-N- SRESHAGKILKNGWGDRGNGFGLMQVDKRY acetylmurami- HKIEGTWNGEAHIRQGTRILIDMVKKIQRKFP dase) (Goose- RWTRDQQLKGGISAYNAGVGNVRSYERMDI type lysozyme) GTLHDDYSNDVVARAQYFKQHGY Lysozyme P Drosophila 141 MKAFLVICALTLTAVATQARTMDRCSLAREM precursor (EC melanogaster SKLGVPRDQLAKWTCIAQHESSFRTGVVGPA 3.2.1.17) (1,4- NSNGSNDYGIFQINNKYWCKPADGRFSYNE beta-N- CGLSCNALLTDDITNSVKCARKIQRQQGWTA acetylmurami- WSTWKYCSGSLPSINSCF dase P) Lysozyme Chlamys 137 MMYFVLLCLLATGTTYGAHNFATGIVPQSCL precursor islandica ECICKTESGCRAIGCKFDVYSDSCGYFQLKQ AYWEDCGRPGGSLTSCADDIHCSSQCVQHY MSRYIGHTSCSRTCESYARLHNGGPHGCEH GSTLGYWGHVQGHGC Lysozyme Bombyx mori 137 MQKLIIFALWLCVGSEAKTFTRCGLVHELRK precursor (EC HGFEENLMRNWVCLVEHESSRDTSKTNTNR 3.2.1.17) (1,4- NGSKDYGLFQINDRYWCSKGASPGKDCNVK beta-N- CSDLLTDDITKAAKCAKKIYKRHRFDAWYGW acetylmurami- KNHCQGSLPDISSC dase) Lysozyme Hyalophora 139 MTKYVILLAVLAFALHCDAKRFTRCGLVQELR precursor (EC cecropia RLGFDETLMSNWVCLVENESGRFTDKIGKVN 3.2.1.17) (1,4- KNGSRDYGLFQINDKYWCSKGTTPGKDCNV beta-N- TCNQLLTDDISVAATCAKKIYKRHKFDAWYG acetylmurami- WKNHCQHGLPDISDC dase) Maculatin 1.1 Litoria 21 GLFGVLAKVAAHVVPAIAEHF [Contains: genimaculata Maculatin 1.1.1] Maculatin 1.2 Litoria 23 GLFGVLAKVASHVVPAIAEHFQA genimaculata Maculatin 2.1 Litoria 18 GFVDFLKKVAGTIANVVT genimaculata Maculatin 3.1 Litoria 26 GLLQTIKEKLESLESLAKGIVSGIQA genimaculata Magainins Xenopus 303 MFKGLFICSLIAVICANALPQPEASADEDMDE precursor laevis REVRGIGKFLHSAGKFGKAFVGEIMKSKRDA EAVGPEAFADEDLDEREVRGIGKFLHSAKKF GKAFVGEIMNSKRDAEAVGPEAFADEDLDER EVRGIGKFLHSAKKFGKAFVGEIMNSKRDAE AVGPEAFADEDLDEREVRGIGKFLHSAKKFG KAFVGEIMNSKRDAEAVGPEAFADEDFDERE VRGIGKFLHSAKKFGKAFVGEIMNSKRDAEA VGPEAFADEDLDEREVRGIGKFLHSAKKFGK AFVGEIMNSKRDAEAVDDRRWVE Melittin-like Rana 22 FIGSALKVLAGVLPSIVSWVKQ peptide (MLP) temporaria Metchnikowin Drosophila 52 MQLNLGAIFLALLGVMATTTSVLAEPHRRQG melanogaster PIFDTRPSPFNPNQPRPGPIY Metchnikowin Drosophila 52 MQLNLGAIFLALLGVMATATSVLAEPHRHQG precursor melanogaster PIFDTRPSPFNPNQPRPGPIY MGD1 Mytilus 57 CPNNYQCHRHCKSIPGRCGGYCGGWHRLR antimicrobial galloprovincialis CTCYRCGGRREDVEDIEDIFDNEAADRF peptide (Fragment) Misgurin Misgurnus 21 RQRVEELSKFSKKGAAARRRK anguillicaudatus Moricin 1 Bombyx mori 66 MNILKFFFVFIVAMSLVSCSTAAPAKIPIKAIKT precursor VGKAVGKGLRAINIASTANDVENFLKPKKRKH Moricin 2 Bombyx mori 66 MNILKLFFVFIVAMSLVSCSTAAPAKIPIKAIKT precursor VGKAVGKGLRAINIASTANDVENFLKPKKRKH myeloid Ovis aries 160 METQRASLSLGRRSLWLLLLGLVLASARAQA antimicrobial LSYREAVLRAVDQLNEKSSEANLYRLLELDP peptide 29 PPKQDDENSNIPKPVSFRVKETVCPRTSQQP precursor AEQCDFKENGLLKECVGTVTLDQVGNNFDIT CAEPQSVRGLRRLGRKIAHGVKKYGPTVLRII RIAG Myeloid Ovis aries 165 METQRAGLSLGRWSLRLLLLGLVLPSASTRS antimicrobial FSYREAVLRAVDQFNERSAEANLYRLLELDP peptide PPEQDAEDRGARKPVSFKVKETVCPRTSQQ precursor PVEQCDFRKNGLVKQCVGTVTRYWIRGDFDI TCKDIQNVGLFGRLRDSLQRGGQKILEKAERI GDRIKDIFRG Myticin A Mytilus 96 MKATILLAVLVAVFVAGTEAHSHACTSYWCG precursor galloprovincialis KFCGTASCTHYLCRVLHPGKMCACVHCSRV NNPFRVNQVAKSINDLDYTPIMKSMENLDNG MDML Myticin B Mytilus 96 MKATMLLAVVVAVFVAGTEAHPHVCTSYYCS precursor galloprovincialis KFCGTAGCTRYGCRNLHRGKLCFCLHCSRV KFPFGATQDAKSMNELEYTPIMKSMENLDNG MDML Mytilin A Mytilus edulis 34 GCASRCKAKCAGRRCKGWASASFRGRCYC KCFRC Mytilin B Mytilus edulis 34 SCASRCKGHCRARRCGYYVSVLYRGRCYCK CLRC Mytilin B Mytilus 103 MKAAVILAIALVAILAVHEAEASCASRCKGHC antimicrobial galloprovincialis RARRCGYYVSVLYRGRCYCKCLRCSSEHSM peptide KFPENEGSSPSDMMPQMNENENTEFGQDM precursor PTGETEQGETGI Mytimycin Mytilus edulis 33 DCCRKPFRKHCWDCTAGTPYYGYSTRNIFG (Fragment) CTC Neutrophil Rattus 94 MRTLTLLTALLLLALHTQAKSPQGTAEEAPDQ antibiotic norvegicus EQLVMEDQDISISFGGDKGTALQDADVKAGV peptide NP-1 TCYCRRTRCGFRERLSGACGYRGRIYRLCC precursor R (Neutrophil defensin 1) (RatNP-1) Neutrophil Rattus 94 MRTLTLLTALLLLALHTQAKSPQGTAEEAPDQ antibiotic norvegicus EQLVMEDQDISISFGGDKGTALQDADVKAGV peptide NP-2 TCYCRSTRCGFRERLSGACGYRGRIYRLCC precursor R (Neutrophil defensin 2) (RatNP-2) Neutrophil Rattus 87 MRTLTLLTTLLLLALHTQAESPQGSTKEAPDE antibiotic norvegicus EQDISVFFGGDKGTALQDAAVKAGVTCSCRT peptide NP-3 SSCRFGERLSGACRLNGRIYRLCC precursor (Neutrophil defensin 3) (RatNP-3a) Neutrophil Rattus 87 MRTLILLTTLLLLALHTQAESPQGSTKEAPDE antibiotic norvegicus EQDISVFFGGDKGTALQDAAVKAGVTCSCRT peptide NP-3 SSCRFGERLSGACRLNGRIYRLCC precursor (Neutrophil defensin 3) (RatNP-3b) Neutrophil Oryctolagus 95 MRTLALLAAILLVTLQAQAELHSGMADDGVD antibiotic cuniculus QQQPRAQDLDVAVYIKQDETSPLEVLGAKAG peptide NP-4 VSCTCRRFSCGFGERASGSCTVNGVRHTLC precursor CRR (Microbicidal peptide NP-4) Neutrophil Rattus 93 MRTLTLLITLLLLALHTQAESPQERAKAAPDQ antibiotic norvegicus DMVMEDQDIFISFGGYKGTVLQDAVVKAGQA peptide NP-4 CYCRIGACVSGERLTGACGLNGRIYRLCCR precursor (Neutrophil defensin 4) (RatNP-4) Neutrophil Oryctolagus 95 MRTLALLAAILLVTLQAQAELHSGMADDGVD antibiotic cuniculus QQQPRAQDLDVAVYIKQDETSPLEVLGAKAG peptide NP-5 VFCTCRGFLCGSGERASGSCTINGVRHTLCC precursor RR (Microbicidal peptide NP-5) neutrophil beta- Bos taurus 60 MRLHHLLLALLFLVLSAASGISGPLSCGRNGG defensin 12 VCIPIRCPVPMRQIGTCFGRPVKCCRSW neutrophil beta- Bos taurus 54 MRLHHLLLVLLFLVLSAGSGFTQWRNPQSC defensin 5 RWNMGVCIPISCPGNMRQIGTCS Neutrophil Cavia 178 MGTPRDAASGGPRLLLPLLLLLLLTPATAWVL cationic porcellus SYQQAVQRAVDGINKNLADNENLFRLLSLDT antibacterial QPPGDNDPYSPKPVSFTIKETVCTKMLQRPL polypeptide of EQCDFKENGLVQRCTGTVTLDSAFNVSSLSC 11 kDa LGGRRFRRMVGLRKKFRKTRKRIQKLGRKIG KTGRKVWKAWREYGQIPYPCRI Neutrophil Cavia 93 MRTVPLFAACLLLTLMAQAEPLPRAADHSDT cationic peptide porcellus KMKGDREDHVAVISFWEEESTSLEDAGAGA 1 precursor GRRCICTTRTCRFPYRRLGTCIFQNRVYTFC (Neutrophil C defensin) (GPNP) (Corticostatic peptide GP- CS1) (CP-1) Neutrophil Cavia 93 MRTVPLFAACLLLTLMAQAEPLPRAADHSDT cationic peptide porcellus KMKGDREDHVAVISFWEEESTSLQDAGAGA 1B precursor GRRCICTTRTCRFPYRRLGTCIFQNRVYTFC (Neutrophil C defensin) (CP- 1B) (GNCP) Neutrophil Cavia 93 MRTVPLFAACLLLTLMAQAEPLPRAADHSDT cationic peptide porcellus KMKGDREDHVAVISFWEEESTSLQDAGAGA 2 precursor GRRCICTTRTCRFPYRRLGTCLFQNRVYTFC (CP-2) (GNCP) C (GNCP-2) Neutrophil Mesocricetus 33 VTCFCRRRGCASRERHIGYCRFGNTIYRLCC defensin 1 auratus RR (HANP-1) Neutrophil Mesocricetus 31 CFCKRPVCDSGETQIGYCRLGNTFYRLCCR defensin 2 auratus Q (HANP-2) Neutrophil Macaca 30 ACYCRIPACLAGERRYGTCFYMGRVWAFCC defensin 2 mulatta (RMAD-2) Neutrophil Mesocricetus 33 VTCFCRRRGCASRERLIGYCRFGNTIYGLCC defensin 3 auratus RR (HANP-3) Neutrophil Mesocricetus 33 VTCFCKRPVCDSGETQIGYCRLGNTFYRLCC defensin 4 auratus RQ (HANP-4) Neutrophil Macaca 96 MRTLVILAAILLVALQAQAEPLQARTDEATAA defensins 1, 3 mulatta QEQIPTDNPEVVVSLAWDESLAPKDSVPGLR and 8 KNMACYCRIPACLAGERRYGTCFYLGRVWA precursor FCC (RMAD) Neutrophil Macaca 94 MRTIAILAAILLFALLAQAKSLQETADDAATQE defensins 4 mulatta QPGEDDQDLAVSFEENGLSTLRASGSQARR and 5 TCRCRFGRCFRRESYSGSCNINGRIFSLCCR precursor (RMAD) Neutrophil Macaca 94 MRTIAILAAILLFALLAQAKSLQETADEAATQE defensins 6 mulatta QPGEDDQDLAVSFEENGLSTLRASGSQARR and 7 TCRCRFGRCFRRESYSGSCNINGRISSLCCR precursor NK-lysin Sus scrofa 129 PGLAFSGLTPEHSALARAHPCDGEQFCQNLA precursor PEDPQGDQLLQREELGLICESCRKIIQKLEDM (NKL) VGPQPNEDTVTQAASRVCDKMKILRGVCKKI (Fragment) MRTFLRRISKDILTGKKPQAICVDIKICKEKTG LI Nonhistone Oncorhynchus 69 PKRKSATKGDEPARRSARLSARPVPKPAAKP chromosomal mykiss KKAAAPKKAVKGKKAAENGDAKAEAKVQAA protein H6 GDGAGNAK (Histone T) [Contains: Oncorhyncin III] Oligosacchar- Bos taurus 190 MSRRYTPLAWVLLALLGLGAAQDCGSIVSRG ide-binding KWGALASKCSQRLRQPVRYVVVSHTAGSVC protein NTPASCQRQAQNVQYYHVRERGWCDVGYN FLIGEDGLVYEGRGWNTLGAHSGPTWNPIAI GISFMGNYMHRVPPASALRAAQSLLACGAAR GYLTPNYEVKGHRDVQQTLSPGDELYKIIQQ WPHYRRV Opistoporin 1 Opistophthalmus 44 GKVWDWIKSTAKKLWNSEPVKELKNTALNAA carinatus KNLVAEKIGATPS Opistoporin 2 Opistophthalmus 44 GKVWDWIKSTAKKLWNSEPVKELKNTALNAA carinatus KNFVAEKIGATPS Pandinin 1 Pandinus 44 GKVWDWIKSAAKKIWSSEPVSQLKGQVLNA imperator AKNYVAEKIGATPT Pandinin 2 Pandinus 24 FWGALAKGALKLIPSLFSSFSKKD imperator Parabutoporin Parabuthus 45 FKLGSFLKKAWKSKLAKKLRAKGKEMLKDYA schlechteri KGLLEGGSEEVPGQ Penaeidin-1 Litopenaeus 50 YRGGYTGPIPRPPPIGRPPLRLVVCACYRLSV (Pen-1) (P1) vannamei SDARNCCIKFGSCCHLVK Penaeidin-2a Litopenaeus 72 MRLVVCLVFLASFALVCQGEAYRGGYTGPIP precursor (Pen- vannamei RPPPIGRPPFRPVCNACYRLSVSDARNCCIK 2a) (Pen-2) FGSCCHLVKG (P2) Penaeidin-2b Litopenaeus 72 MRLVVCLVFLASFALVCQGEAYRGGYTGPIP precursor (Pen- vannamei RPPPIGRPPLRPVCNACYRLSVSDARNCCIK 2b) FGSCCHLVKG Penaeidin-2d Litopenaeus 72 MRLVVCLVFLASFALVCQGGAQRGGFTGPIP precursor (Pen- setiferus RPPPHGRPPLGPICNACYRLSFSDVRICCNFL 2d) GKCCHLVKG Penaeidin-3a Litopenaeus 82 MRLVVCLVFLASFALVCQGQVYKGGYTRPIP precursor (Pen- vannamei RPPPFVRPLPGGPIGPYNGCPVSCRGISFSQ 3a) (P3-a) ARSCCSRLGRCCHVGKGYSG Penaeidin-3b Litopenaeus 82 MRLVVCLVFLASFALVCQGQVYKGGYTRPVP precursor (Pen- vannamei RPPPFVRPLPGGPIGPYNGCPVSCRGISFSQ 3b) (P3-b) ARSCCSRLGRCCHVGKGYSG Penaeidin-3c Litopenaeus 81 MRLVVCLVFLASFALVCQGQVYKGGYTRPIP precursor (Pen- vannamei RPPFVRPVPGGPIGPYNGCPVSCRGiSFSQA 3c) (P3-c) RSCCSRLGRCCHVGKGYSG Penaeidin-3d Litopenaeus 82 MRLVVCLVFLASFALVCQGQVYKGGYTRPIP precursor (Pen- vannamei RPPPFVRPLPGGPIGPYNGCPISCRGISFSQA 3d) RSCCSRLGRCCHVGKGYSG Penaeidin-3e Litopenaeus 82 MRLVVCLVFLAPFALVCHGQVYKGGYTRPIP precursor (Pen- vannamei RPPPFVRPLPGGPIGPYNGCPVSCRGISFSQ 3e) ARSCCSRLGRCCHVGKGYSG Penaeidin-3f Litopenaeus 82 MRLVACLVFLASFALVCQGQVYKGGYTRPIP precursor (Pen- vannamei RPPPFVRPLPGGPIGPYNGCPISCRGISFSQA 3f) RSCCSRLGRCCHVGKGYSG Penaeidin-3g Litopenaeus 82 MRLVVCLVFLASFALVCQGQVYKGGYTRPIP precursor (Pen- vannamei RPPPFVRPLPGGPISPYNGCPVSCRGISFSQ 3g) ARSCCSRLGRCCHVGKGYSG Penaeidin-3h Litopenaeus 82 MRLVVCLVFLASFALVCQGQVYKGGYTRPIP precursor (Pen- vannamei RPPPFVRPLPGGPIGPYNGCPISCRGISFSQA 3h) RSYCSRLGRCCHVGKGYSG Penaeidin-3i Litopenaeus 82 MRLVVCLVFLASFALVCQGQVYKGGYTRPIP precursor (Pen- vannamei RPPPFVRPLPGGPIGPYNGRPVSCRGISFSQ 3i) ARSCCSRLGRCCHVGKGYSG Penaeidin-3j Litopenaeus 81 MRLVVCLVFLASFALVCQGQVYKGGYTRPVP precursor (Pen- vannamei RPPFVRPLPGGPIGPYNGCPVSCRGISFSQA 3j) RSCCSRLGRCCHVGKGYSG Penaeidin-3k Litopenaeus 75 MRLVVCLVFLASFALVCQGQGYKGPYTRPIL precursor (Pen- setiferus RPYVRPVVSYNACTLSCRGITTTQARSCCTR 3k) LGRCCHVAKGYSG Penaeidin-3l Litopenaeus 75 MRLVVCLVFLASFALVCQGQGYKGPYTRPIL precursor (Pen- setiferus RPYVRPVVSYNVCTLSCRGITTTQARSCCTR 3l) LGRCCHVAKGYSG Penaeidin-3m Litopenaeus 75 MRLVVCLVFLASFALVCQGQGCKGPYTRPIL precursor (Pen- setiferus RPYVRPVVSYNACTLSCRGITTTQARSCCTR 3m) LGRCCHVAKGYSG Penaeidin-3n Litopenaeus 75 MRLVVCLVFLASFALVCQGQGYKGPYTRPIL precursor (Pen- setiferus RPYVRPVVSYNACTLSCRGITTTQARSCSTR 3n) LGRCCHVAKGYSG Penaeidin-4a Litopenaeus 67 MRLVVCLVFLASFALVCQGHSSGYTRPLPKP precursor (Pen- vannamei SRPIFIRPIGCDVCYGIPSSTARLCCFRYGDC 4a) CHRG Penaeidin-4c Litopenaeus 67 MRLVVCLVFLASFALVCQGYSSGYTRPLPKP precursor (Pen- vannamei SRPIFIRPIGCDVCYGIPSSTARLCCFRYGDC 4c) CHRG Penaeidin-4d Litopenaeus 67 MRLLVCLVFLASFAMVCQGHSSGYTRPLRKP precursor (Pen- setiferus SRPIFIRPIGCDVCYGIPSSTARLCCFRYGDC 4d) CHLG Phormicin Protophormia 94 MKFFMVFVVTFCLAVCFVSQSLAIPADAAND precursor terraenovae AHFVDGVQALKEIEPELHGRYKRATCDLLSG (Insect TGINHSACAAHCLLRGNRGGYCNGKGVCVC defensins A RN and B) Phylloxin Phyllomedusa 64 MVFLKKSLLLVLFVGLVSLSICEENKREEHEEI precursor bicolor EENKEKAEEKRGWMSKIASGIGTFLSGMQQ G Pleurocidin Pseudopleur- 25 GWGSFFKKAAHVGKHVGKAALHTYL onectes americanus Pleurocidin 2 Pseudopleur- 68 MKFTATFLMMAIFVLMVEPGECGWGSFFKKA precursor onectes AHVGKHVGKAALTHYLGDKQELNKRAVDED americanus PNVIVFE Pleurocidin Pseudopleur- 68 MKFTATFLMIAIFVLMVEPGECGWGSFFKKA prepropoly- onectes AHVGKHVGKAALTHYLGDKQELNKRAVDED peptide americanus PNVIVFE Pleurocidin Pseudopleur- 68 MKFTATFLMMFIFVLMVEPGECGWGSIFKHG prepropoly- onectes RHAAKHIGHAAVNHYLGEQQDLDKRAVDED peptide americanus PNVIVFE Pleurocidin Pseudopleur- 60 MKFTATFLMIAIFVLMVEPGECGWGSFFKKA prepropoly- onectes AHVGKHVGKAALTHYLGDKQELNKRAVDE peptide americanus (Fragment) Pleurocidin Pseudopleur- 60 MKFTATFLMMFIFVLMVEPGECGWGSIFKHG prepropoly- onectes RHAAKHIGHAAVNHYLGEQQDLDKRAVDE peptide americanus (Fragment) Pleurocidin-like Pseudopleur- 89 MKFTATFLLLFIFVLMVDLGEGRRKKKGSKRK prepropoly- onectes GSKGKGSKGKGRWLERIGKAGGIIIGGALDH peptide americanus LGQGQVQGPDYDYQEGEELNKRAVDE (Fragment) Pleurocidin-like Pseudopleur- 72 MKFTATFLLLFIFVLMVDLGEGRRKRKWLRRI prepropoly- onectes GKGVKIIGGAALDHLGQGQVQGQDYDYQEG peptide americanus QELNKRAVDE (Fragment) Pleurocidin-like Pseudopleur- 61 MKFTATFLVLSLVVLMAEPGECFLGALIKGAI prepropoly- onectes HGGRFIHGMIQNHHGYDEQQELNKRAVDE peptide americanus (Fragment) Polyphemusin I Limulus 18 RRWCFRVCYRGFCYRKCR polyphemus Polyphemusin Limulus 18 RRWCFRVCYKGFCYRKCR II polyphemus Ponericin G1 Pachycondyla 30 GWKDWAKKAGGWLKKKGPGMAKAALKAAM goeldii Q Ponericin G2 Pachycondyla 30 GWKDWLKKGKEWLKAKGPGIVKAALQAATQ goeldii Ponericin G3 Pachycondyla 30 GWKDWLNKGKEWLKKKGPGIMKAALKAATQ goeldii Ponericin G4 Pachycondyla 29 DFKDWMKTAGEWLKKKGPGILKAAMAAAT goeldii Ponericin G5 Pachycondyla 30 GLKDWVKIAGGWLKKKGPGILKAAMAAATQ goeldii Ponericin G6 Pachycondyla 18 GLVDVLGKVGGLIKKLLP goeldii Ponericin G7 Pachycondyla 19 GLVDVLGKVGGLIKKLLPG goeldii Ponericin L1 Pachycondyla 24 LLKELWTKMKGAGKAVLGKIKGLL goeldii Ponericin L2 Pachycondyla 24 LLKELWTKIKGAGKAVLGKIKGLL goeldii Ponericin W1 Pachycondyla 25 WLGSALKIGAKLLPSWGLFKKKKQ goeldii Ponericin W2 Pachycondyla 25 WLGSALKIGAKLLPSWGLFQKKKK goeldii Ponericin W3 Pachycondyla 26 GIWGTLAKIGIKAVPRVISMLKKKKQ goeldii Ponericin W4 Pachycondyla 26 GIWGTALKWGVKLLPKLVGMAQTKKQ goeldii Ponericin W5 Pachycondyla 24 FWGALIKGAAKLIPSWGLFKKKQ goeldii Ponericin W6 Pachycondyla 20 FIGTALGIASAIPAIVKLFK goeldii Preprodefensin Boophilus 74 MRGIYICLXFVLXCGLVSGLADVPAESEMAHL microplus RVRRGFGCPFNQGACHRHCRSIRRRGGYCA GLIKQTCTCYRN preprodefensin Ixodes 76 MKVLAVSLAFLLIAGLISTSLAQNEEGGEKELV ricinus RVRRGGYYCPFFQDKCHRHCRSFGRKAGY CGGFLKKTCICVMK Probable Riptortus 678 MRSPRVIHLACVIAYIVAVEAGDKPVYLPRPT antibacterial clavatus PPRPIHPRLAREVGWELEGQGLSPLSEAELL peptide PEVRERRSPVDKGGYLPRPTPPRPVYRSRR polyprotein DASLESELSPLSVAEVLPEVRERRSPVDKGG precursor YLPRPTPPRPVYRSRRDASLESELSPLSEAE VLPEVRERRSPVDKGGYLPRPTPPRPVYRS RRVASLESELSPLSEAEVLPEVRERRSPVDK GGYLPRPTPPRPVYRSRRDASLESELSPLSE EEVLPEVRERGSPVDKGGYLPRPTPPRPVY RSRRDASLESELSPLSVAEDLPEVRERRSPV DKGGYLPRPTPPRPVYRSRRDASLESELSPL SEAEVLPEVRERRSPVDKGGYLPRPTPPRPV YRSRRDASLESELSPLSEAEVLPEVRERRSP VDKGGYLPRPTPPRPVYRSRRDASLESELSP LSEAEVLPEVRERRSPVDKGGYLPRPTPPRP VYRSRRDASLESELSPLSEAEVLPEVRERRS PVDKGGYLPRPTPPRPVYRSRRDATLESELS PSSEAEVLPEVRERRSPVDKGGYLPRPTPPR PVYRSRRDASLESELSPLSEAEVLPEVRERR SPVDKGGYLPRPTPPRPVYRSRRDASLESEL SPLSEAEGLPEVRERRSPGGQGGYLPRPTP RTPLCRSRRDANLDAEQSPVSEGWLPEVR Probable Riptortus 150 MHIARFCLLSSMAVLALSAGYVSGAVIEIPDEI antibacterial clavatus LDSARFISLYSDGLRQKRQLNLSGPGSEHAG peptide TIRLDGQRNIFDNGRTRVDGTGSYQLDYARG precursor MKPIHGAGLGAEVNHNIWRGRGGQSLDLYG GATRQFNFGNRPNEWGAHGGIRYNF Proenkephalin Bos taurus 263 MARFLGLCTWLLALGPGLLATVRAECSQDCA A precursor TCSYRLARPTDLNPLACTLECEGKLPSLKTW [Contains: ETCKELLQLTKLELPPDATSALSKQEESHLLA Synenkephalin KKYGGFMKRYGGFMKKMDELYPLEVEEEAN Met-enkephalin GGEVLGKRYGGFMKKDAEEDDGLGNSSNLL (Opioid growth KELLGAGDQREGSLHQEGSDAEDVSKRYGG factor) (OGF); FMRGLKRSPHLEDETKELQKRYGGFMRRVG Met- RPEWWMDYQKRYGGFLKRFAEPLPSEEEG enkephalin- ESYSKEVPEMEKRYGGFMRF Arg-Gly-Leu; Leu- enkephalin; Enkelytin; Met- enkephalin- Arg-Phe] Prophenin-1 Sus scrofa 212 LLLLALVVPSASAQALSYREAVLRAVDRLNEQ precursor (PF- SSEANLYRLLELDQPPKADEDPGTPKPVSFT 1) (C6) VKETVCPRPTRQPPELCDFKENGRVKQCVG (Fragment) TVTLDQIKDPLDITCNEGVRRFPWWWPFLRR PRLRRQAFPPPNVPGPRFPPPNFPGPRFPP PNFPGPRFPPPNFPGPRFPPPNFPGPPFPPP IFPGPWFPPPPPFRPPPFGPPRFPGRR Prophenin-2 Sus scrofa 228 METQRASLCLGRWSLWLLLLALVVPSASAQA precursor (PF- LSYREAVLRAVDRLNEQSSEANLYRLLELDQ 2) (PR-2) (C12) PPKADEDPGTPKPVSFTVKETVCPRPTRRPP (Prophenin-1 ELCDFKENGRVKQCVGTVTLDQIKDPLDITCN like) EGVRRFPWWWPFLRRPRLRRQAFPPPNVP GPRFPPPNVPGPRFPPPNFPGPRFPPPNFP GPRFPPPNFPGPPFPPPIFPGPWFPPPPPFR PPPFGPPRFPGRR Protegrin 1 Sus scrofa 149 METQRASLCLGRWSLWLLLLALVVPSASAQA precursor (PG- LSYREAVLRAVDRLNEQSSEANLYRLLELDQ 1) (Neutrophil PPKADEDPGTPKPVSFTVKETVCPRPTRQPP peptide 1) ELCDFKENGRVKQCVGTVTLDQIKDPLDITCN EVQGVRGGRLCYCRRRFCVCVGRG Protegrin 2 Sus scrofa 147 METQRASLCLGRWSLWLLLLALVVPSASAQA precursor (PG- LSYREAVLRAVDRLNEQSSEANLYRLLELDQ 2) PPKADEDPGTPKPVSFTVKETVCPRPTRQPP ELCDFKENGRVKQCVGTVTLDQIKDPLDITCN EVQGVRGGRLCYCRRRFCICVG Protegrin 3 Sus scrofa 149 METQRASLCLGRWSLWLLLLALVVPSASAQA precursor (PG- LSYREAVLRAVDRLNEQSSEANLYRLLELDQ 3) PPKADEDPGTPKPVSFTVKETVCPRPTRQPP ELCDFKENGRVKQCVGTVTLDQIKDPLDITCN EVQGVRGGGLCYCRRRFCVCVGRG Protegrin 4 Sus scrofa 149 METQRASLCLGRWSLWLLLLALVVPSASAQA precursor (PG- LSYREAVLRAVDRLNEQSSEANLYRLLELDQ 4) PPKADEDPGTPKPVSFTVKETVCPRPTRQPP ELCDFKENGRVKQCVGTVTLDQIKDPLDITCN EVQGVRGGRLCYCRGWCFCVGRG Protegrin 5 Sus scrofa 149 METQRASLCLGRWSLWLLLLGLVVPSASAQ precursor (PG- ALSYREAVLRAVDRLNEQSSEANLYRLLELD 5) QPPKADEDPGTPKPVSFTVKETVCPRPTRQP PELCDFKENGRVKQCVGTVTLDQIKDPLDITC NEVQGVRGGRLCYCRPRFCVCVGRG Protegrin-1 Sus scrofa 19 RGGRLCYCRRRFCVCVGRX Pseudin 1 Pseudis 24 GLNTLKKVFQGLHEAIKLINNHVQ paradoxa Pseudin 2 Pseudis 24 GLNALKKVFQGIHEAIKLINNHVQ paradoxa Pseudin 3 Pseudis 23 GINTLKKVIQGLHEVIKLVSNHE paradoxa Pseudin 4 Pseudis 23 GINTLKKVIQGLHEVIKLVSNHA paradoxa Putative Litopenaeus 188 MKGIKAVILCGLFTAVLAGKYRGFGQPLGGL antimicrobial setiferus GVPGGGVGVGVGGGLGGGLGGGLGGGLG peptide GGLGGGLGGLGGGLGGLGGGLGGGLGGGL GGGLGGGLGGSHGTSDCRYWCKTPEGQAY CCESAHEPETPVGTKPLDCPQVRPTCPRFH GPPTTCSNDYKCAGLDKCCFDRCLGEHVCK PPSFFGQQIFG Putative Litopenaeus 123 MKGLGVILCCVLAVVPAHAGPGGFPGGVPG antimicrobial setiferus RFPSATAPPATCRRWCKTPENQAYCCETIFE peptide PEAPVGTKPLDCPQVRPTCPRFHGPPVTCS SDYKCGGVDKCCFDRCLGEHVCKPPSFYSQ FP Putative Litopenaeus 141 MKGLGVILCCVLAVVPAHAGPGGFSGGVPG antimicrobial setiferus GFPGGRPGGFPGGVPGGFPSATAPPATCRR peptide WCKTPENQAYCCETIFEPEAPVGTKPLDCPQ VRPTCPPTRFGGRPVTCSSDYKCGGLDKCC FDRCLGEHVCKPPSFYSQFR Putative Litopenaeus 163 MKGIKAVILCGLFTAVLAGKFRGFGQPFGGL antimicrobial vannamei GGPGGGVGVGGGFPGGGLGVGGGLGVGG peptide GLGVGGGLGVGGGLGTGTSDCRYWCKTPE GQAYCCESAHEPETPVGTKILDCPQVRPTCP RFHGPPTTCSNDYKCAGLDKCCFDRCLGEH VCKPPSFFGSQVFG Putative Litopenaeus 163 MKGIKAVILCGLFTAVLAGKFRGFGQPFGGL antimicrobial vannamei GGPGGGVGVGGGFPGGGLGVGGGLGVGG peptide GLGVGGGLGVGGGLGTGTSDCRYWCKTPE GQAYCCESAHEPETPVGTKPLDCPQVRPTC PRFHGPPTTCSNDYKCAGLDKCCFDRCLGE HVCKPPSFFGSQVFG Putative Litopenaeus 169 MKGIKAVILCGLFTAVLAGKFRGFGQPFGGL antimicrobial vannamei GGPGGGVGVGGGFPGGGLGVGGGLGVGG peptide GLGVGGGLGVGGGLGVGGGLGTGTSDCRY WCKTPEGQAYCCESAHEPETPVGTKILDCP QVRPTCPRFHGPPTTCSNDYKCAGLDKCCF DRCLGEHVCKPPSFFGSQVFG Putative Litopenaeus 163 MKGIKAVILCGLFTAVLAGKFRGFGQPFGGL antimicrobial vannamei GGPGGSVGVGGGFPGGGLGVGGGLGVGG peptide GLGVGGGLGVGGGLGTGTSDCRYWCKTPE GQAYCCESAHEPETPVGTKPLDCPQVRPTC PRFHGPPTTCSNDYKCAGLDKCCFDRCLGE HVCKPPSFFGSQVFG Putative Litopenaeus 151 MKGIKAVILCGLFTAVLAGKFRGFGRPFGGL antimicrobial vannamei GGPGGGVGVGGGFPGGGLGVGGGLGVGG peptide GLGTGTSDCRYWCKTPEGQAYCCESAHEPE TPVGTKPLDCPQVRPTCPRFHGPPTTCSND YKCAGLDKCCFDRCLGEHVCKPPSFFGSQV FG Putative Litopenaeus 163 MKGIKAVILCGLFTAVLAGKFRGFGRPFGGL antimicrobial vannamei GGPGGGVGVGGGFPGGGLGVGGGLGVGG peptide GLGVGGGLGVGGGLGTGTSDYRYWCKTPE GQAYCCESAHEPETPVGTKPLDCPQVRPTC PRFHGPPTTCSNDYKCAGLDKCCFDRCLGE HVCKPPSFFGSQVFG Putative beta Mus 79 MKTFLFLFAVLFFLDPAKNAFFDEKCSRVNG defensin musculus RCTASCLKNEELVALCQKNLKCCVTVQPCGK SKSNQSDEGSGHMGTWG Putative beta Mus 63 MPQTFFVFCFLFFVFLQLFPGTGEIAVCETCR defensin musculus LGRGKCRRACIESEKIVGWCKLNFFCCRERI Putative beta Mus 64 MRIFSLIVAGLVLLIQLYPAWGTLYRRFLCKK defensin musculus MNGQCEAECFTFEQKIGTCQANFLCCRKRK EH Putative beta Mus 67 MRTLCSLLLICCLLFSYTTPAANSIIGVSEMER defensin musculus CHKKGGYCYFYCFSSHKKIGSCFPEWPRCC KNIK Putative beta Mus 77 MRTLCSLLLICCLLFSYTTPAVGDLKHLILKAQ defensin musculus LARCYKFGGFCYNSMCPPHTKFIGNCHPDHL HCCINMKELEGST Putative beta Mus 73 MRTLCSLLLICCLLFSYTTPAVGDLKHLILKAQ defensin musculus LTRCYKFGGFCHYNICPGNSRFMSNCHPENL RCGKNIKQF Putative Mesobuthus 61 MTYAILIIVSLLLISDRISNVVDKYGSENPLDCN potassium martensii EHCLKTKNQIGICHGANGNEKCSCMES channel blocker TXKs2 PYLa/PGLa Xenopus 64 MYKQIFLCLIIAALCATIMAEASAFADADEDDD precursor laevis KRYVRGMASKAGAIAGKIAKVALKALGRRDS Pyrrhocoricin Pyrrhocoris 20 VDKGSYLPRPTPPRPIYNRN apterus Ranalexin Rana 66 MFTLKKSLLLLFFLGTINLSLCEEERNAEEER precursor catesbeiana RDNPDERDVEVEKRFLGGLIKIVPAMICAVTK KC Ranalexin-1CA Rana 20 FLGGLMKAFPALICAVTKKC clamitans Ranalexin-1CB Rana 20 FLGGLMKAFPAIICAVTKKC clamitans Ranatuerin-1C Rana 25 SMLSVLKNLGKVGLGLVACKINKQG clamitans RANATUERIN- Rana 28 GLLDTIKGVAKTVAASMLDKLKCKISGC 2B berlandieri Ranatuerin- Rana 31 GLFLDTLKGAAKDVAGKLLEGLKCKIAGGKP 2CA clamitans Ranatuerin- Rana 27 GLFLDTLKGLAGKLLQGLKGIKAGCKP 2CB clamitans RANATUERIN- Rana 32 GILSSIKGVAKGVAKNVAAQLLDTLKCKITGC 2LB luteiventris RANATUERIN- Rana pipiens 27 LMDTVKNVAKNLAGHMLDKLKCKITGC 2P RANATUREIN- Rana 32 GILDSFKGVAKGVAKDLAGKLLDKLKGKITGC 2LA luteiventris Rhinocerosin Oryctes 142 MMKLYIVFGFIAFSAAYVVPEGYYEPEYYPAD precursor rhinoceros GYESERVARASPAELIFDEDLADEPEVEEPQ YYIRTRRSLQPGAPNFPMPGSQLPTSITSNIE KQGPNTAATINAQHKTDRYDVGATWSKVIRG PGRSKPNWSIGGTYRW Royalism Apis mellifera 95 MKIYFIVGLLFMAMVAIMAAPVEDEFEPLEHF precursor ENEERADRHRRVTGDLLSFKGQVNDSAGAA (Defensin) NGLSLGKAGGHGEKVGGIGRKTSFKDLWDK RFG Rugosin A Rana rugosa 33 GLLNTFKDWAISIAKGAGKGVLTTLSGKLDKS C Rugosin B Rana rugosa 33 SLFSLIKAGAKFLGKNLLKQGAQYAACKVSKE C Rugosin C Rana rugosa 37 GILDSFKQFAKGVGKDLIKGAAQGVLSTMSC KLAKTC Sapecin B Sarcophaga 88 MKFLTSLLLLFVVVMVSAVNLSMAKESANQL precursor peregrina TERLQELDGAAIQEPAELNRHKRLTCEIDRSL CLLHCRLKGYLRAYCSQQKVCRCVQ Sapecin C Sarcophaga 40 ATCDLLSGIGVQHSACALHCVFRGNRGGYCT peregrina GKGICVCRN Sapecin Sarcophaga 94 MKSFIVLAVTLCLAAFFMGQSVASPAAAAEES precursor peregrina KFVDGLHALKTIEPELHGRYKRATCDLLSGTG INHSACAAHCLLRGNRGGYCNGKAVCVCRN Sarcotoxin IA Sarcophaga 63 MNFQNIFIFVALILAVFAGQSQAGWLKKIGKKI precursor peregrina ERVGQHTRDATIQGLGIAQQAANVAATARG Sarcotoxin IB Sarcophaga 63 MNENKVFIEVALILAVFAGQSQAGWLKKIGKKI precursor peregrina ERVGQHTRDATIQVIGVAQQAANVAATARG Sarcotoxin IC Sarcophaga 39 GWLRKIGKKIERVGQHTRDATIQVLGIAQQAA peregrina NVAATAR Sarcotoxin ID Sarcophaga 40 GWIRDFGKRIERVGQHTRDATIQTIAVAQQAA peregrina NVAATLKG Sarcotoxin II-1 Sarcophaga 265 MKSFVLFAACMAIIALGSLAHAYPQKLPVPIPP precursor peregrina PSNPPVAVLQNSVATNSKGGQDVSVKLSAT NLGNNHVQPIAEVFAEGNTKGGNVLRGATV GVQGHGLGASVTKTQTDTKIKGLDFQPQLSS STLALQGDRLGASISRDVNRGVSDTFTKSVS ANVFRNDNHNLDATVFRSDVRQNNGFNFQK TGGMLDYSHANGHGLNAGLTHFSGIGNQAN VGGSSTLFKSNDGSLSLKANAGGSQWLSGP FSNQRDYNVGLSLTHHGCGG Sarcotoxin II-2 Sarcophaga 294 MKSFVFFAACFAIVALNSLAHAYPQKLPVPIP precursor peregrina PPTNPPVAAFHNSVATNSKGGQDVSVKLAAT NLGNKHVQPIAEVFAKGNTQGGNVLRGATV GVQGHGLGASVTKTQDGIAESFRKQAEANL RLGDSASLIGKVSQTDTKIKGIDFKPQLSSSSL ALQGDRLGASISRDVNRGVSDTLTKSISANVF RNDNHNLDASVFRSDVRQNNGFNFQKTGG MLDYSHANGHGLNAGLTRFSGIGNQANVGG YSTLFRSNDGLTSLKANAGGSQWLSGPFAN QRDYSFGLGLSHNAWRG Sarcotoxin II-3 Sarcophaga 294 MKSFVLFAACMAIVALSSLAHAYPQKLPVPIP precursor peregrina PPTNPPVAAFHNSVATNSKGGQDVSVKLXAT NLGNKHVQPIAEVFAEGNTKGGNVIRGATVG VQGHGLGASVTKSGNGIAESFRKQAEANLRL GDSASLIGKVSQTDTKIKGIDFKPQLSSSSLAL QGDRLGASISRDVNRGVSDTLTKSISANVFR NDNHNLDASVFRSDVRQNNGFNFQKTGGML DYSHANGHGLNAGLTRFSGIGNQANVGGYS TLFRSNDGLTSLKANAGGSQWLSGPFANQR DYSFGLGLSHNAWRG Sarcotoxin IIA Sarcophaga 294 MKSFVFFAACMAIIALSSLVQAYPQKLPVPIPP precursor peregrina PTNPPVAAFHNSVATNSKGGQDVSVKLAATN LGNKHVQPIAEVFAEGNTKGGNVLRGATVGV QGHGLGASVTKSQDGIAESFRKQAEANLRLG DSASLIGKVSQTDTKIKGIDFKPQLSSSSLALQ GDRLGASISRDVNRGVSDTLTKSVSANLFRN DNHNLDASVFRSDVRQNNGFNFQKTGGMLD YSHANGHGLNAGLTRFSGIGNQATVGGYSTL FRSNDGLTSLKANAGGSQWLSGPFANQRDY SFGLGLSHNAWRG Scorpine Pandinus 94 MNSKLTALIFLGLIAIAYCGWINEEKIQKKIDER precursor imperator MGNTVLGGMAKAIVHKMAKNEFQCMANMD MLGNCEKHCQTSGEKGYCHGTKCKCGTPLS Y Secretogranin I Bos taurus 646 MQPAALLGLLGATVVAAVSSMPVDIRNHNEE precursor (Sgl) VVTHCIIEVLSNALLKSSAPPITPECRQVLKKN (Chromogranin GKELKNEEKSENENTRFEVRLLRDPADTSEA B) (CgB) PGLSSREDSGEGDAQVPTVADTESGGHSRE [Contains: RAGEPPGSQVAKEAKTRYSKSEGQNREEEM GAWK peptide; VKYQKRERGEVGSEERLSEGPGKAQTAFLN Secretolytin] QRNQTPAKKEELVSRYDTQSARGLEKSHSR ERSSQESGEETKSQENWPQELQRHPEGQE APGESEEDASPEVDKRHSRPRHHHGRSRPD RSSQEGNPPLEEESHVGTGNSDEEKARHPA HFRALEEGAEYGEEVRRHSAAQAPGDLQGA RFGGRGRGEHQALRRPSEESLEQENKRHGL SPDLNMAQGYSEESEEERGPAPGPSYRARG GEAAAYSTLGQTDEKRFLGETHHRVQESQR DKARRRLPGELRNYLDYGEEKGEEAARGKW QPQGDPRDADENREEARLRGKQYAPHHITE KRLGELLNPFYDPSQWKSSRFERKDPMDDS FLEGEEENGLTLNEKNFFPEYNYDWWEKKP FEEDVNWGYEKRNPVPKLDLKRQYDRVAEL DQLLHYRKKSAEFPDFYDSEEQMSPQHTAE NEEEKAGQGVLTEEEEKELENLAAMDLELQK IAEKFSGTRRG Similar to Mus 93 MKKLVLLSALVLLAYQVQTDPIQNTDEETNTE cryptdin-4 musculus EQPGEEDQAVSVSFGGQEGSALHEKLSRDLI CLCRKRRCNRGELFYGTCAGPFLRCCRRRR Similar to Mus 93 MKTLVLLSALILLAYQVQTDPIQNTDEETNTEE cryptdin-4 musculus QPGEDDQAVSVSFGGQEGSALHEKLSRDLIC LCRNRRCNRGELFYGTCAGPFLRCCRRRR Similar to Mus 95 MKTLVLLSALVLLAFQVQADPIQNTDEETNTE cryptdin-4 musculus EQAGEEDQAVSVSFGDPEGSALHEKSSRDLI CYCRKGGCNRGEQVYGTCSGRLLFCCRRR HRH Similar to Mus 95 MKTLVLLSALVLLAFQVQADPIQNTDEETNTE cryptdin-4 musculus EQAGEEDQAVSVSFGDPEGSALHEKSSRDLI CYCRKGGCNRGEQVYGTCSGRLLLCCRRR HRH Similar to Mus 95 MKTLVLLSALVLLAFQVQADPIQNTDEETNTE cryptdin-4 musculus EQPGEEDQAVSVSFGDPEGSALHEKSSRDLI CYCRKGGCNRGEQVYGTCSGRLLFCCRRR HRH Single WAP Mus 80 MKLLGLSLLAVTILLCCNMARPEIKKKNVFSK motif protein 1 musculus PGYCPEYRVPCPFVLIPKCRRDKGCKDALKC precursor CFFYCQMRCVDPWESPE (Elafin-like protein I) Single WAP Mus 85 MWPNSILVLMTLLISSTLVTGGGVKGEEKRV motif protein 2 musculus CPPDYVRCIRQDDPQCYSDNDCGDQEICCF precursor WQCGFKCVLPVKDNSEEQIPQSKV (Elafin-like protein II) Spingerin Pseudacan- 25 HVDKKVADKVLLLKQLRIMRLLTRL thotermes spiniger Styelin A Styela clava 20 GXFGKAFXSVSNFAKKHKTA (Fragment) Styelin B Styela clava 20 GXFGPAFHSVSNFAKKHKTA (Fragment) Styelin C Styela clava 80 MQMKATILIVLVALFMIQQSEAGWFGKAFRSV precursor SNFYKKHKTYIHAGLSAATLLGDMTDEEFQE FMQDIEQAREEELLSRQ Styelin D Styela clava 81 MQMKATILIVLVALFMIQQSEAGWLRKAAKSV precursor GKFYYKHKYYIKAAWQIGKHALGDMTDEEFQ DFMKEVEQAREEELQSRQ Styelin E Styela clava 81 MQMKATILIVLVALFMIQQSEAGWLRKAAKSV precursor GKFYYKHKYYIKAAWKIGRHALGDMTDEEFQ DFMKEVEQAREEELQSRQ T22H6.7 Caenorhabditis 195 MFRKLIIATFVLSLCDLANSVTICSSSSLLSTFT protein (ABF-6) elegans DPLCTSWCKVRFCSSGSCRSVMSGSDPTCE CESCGFGSWFGSSSDSNSNQPVSGQYYAG GSGGEMATPNYGNNNGYNNGYNNGNNMRY NDNNGYNTNNGYRGQPTPGYGNSNSNFNS NQQYSYQQYYNNRNNQYGNSGYGNAGQAG QTGYPSGYQNLKKKR tachycitin Tachypleus 98 MASSFMFAVVVLFISLAANVESYLAFRCGRY precursor tridentatus SPCLDDGPNVNLYSCCSFYNCHKCLARLEN CPKGLHYNAYLKVCDWPSKAGCTSVNKECH LWKTGRK Tachyplesin I Tachypleus 77 MKKLVIALCLMMVLAVMVEEAEAKWCFRVCY precursor tridentatus RGICYRRCRGKRNEVRQYRDRGYDVRAIPE ETFFTRQDEDEDDDEE Tachyplesin II Tachypleus 77 MKKLVIALCLMMVLAVMVEEAEARWCFRVCY precursor tridentatus RGICYRKCRGKRNEVRQYRDRGYDVRAIPD ETFFTRQDEDEDDDEE Tachystatin A2 Tachypleus 67 MKLQNTLILIGCLFLMGAMIGDAYSRCQLQGF precursor tridentatus NCVVRSYGLPTIPCCRGLTCRSYFPGSTYGR CQRY Temporin A Rana 13 FLPLIGRVLSGIL temporaria Temporin B Rana 61 MFTLKKSLLLLFFLGTINLSLCEEERNAEEER precursor temporaria RDEPDERDVQVEKRLLPIVGNLLKSLLGK Temporin C Rana 13 LLPILGNLLNGLL temporaria Temporin D Rana 13 LLPIVGNLLNSLL temporaria Temporin E Rana 13 VLPIIGNLLNSLL temporaria Temporin F Rana 13 FLPLIGKVLSGIL temporaria Temporin G Rana 61 MFTLKKSLLLLFFLGTINLSLCEEERDADEER precursor temporaria RDDLEERDVEVEKRFFPVIGRILNGILGK Temporin H Rana 58 MFTLKKSLLLLFFLGTINLSLCEEERNAEEER precursor temporaria RDEPDERDVQVEKRLSPNLLKSLLGK Temporin K Rana 10 LLPNLLKSLL temporaria Temporin L Rana 13 FVQWFSKFLGRIL temporaria Temporin-1CA Rana 13 ELPELAKILTGVL clamitans Temporin-1CB Rana 13 FLPLFASLIGKLL clamitans Temporin-1CC Rana 13 FLPFLASLLTKVL clamitans Temporin-1CD Rana 13 FLPFLASLLSKVL clamitans Temporin-1CE Rana 13 FLPFLATLLSKVL clamitans Temporin-1Ja Rana 13 ILPLVGNLLNDLL japonica Temporin-1LA Rana 13 VLPLISMALGKLL luteiventris Temporin-1LB Rana 14 NFLGTLINLAKKIM luteiventris Temporin-1LC Rana 14 FLPILINLIHKGLL luteiventris Temporin-1P Rana pipiens 13 FLPIVGKLLSGLL Tenecin 1 Tenebrio 84 MKLTIFALVACFFILQIAAFPLEEAATAEEIEQG precursor molitor EHIRVKRVTCDILSVEAKGVKLNDAACAAHCL FRGRSGGYCNGKRVCVCR Tenecin 3 Tenebrio 96 MKTFVICLILVVAVSAAPDHHDGHLGGHQTG precursor molitor HQGGQQGGHLGGQQGGHLGGHQGGQPGG HLGGHQGGIGGTGGQQHGQHGPGTGAGHQ GGYKTHGH Termicin Pseudacan- 36 ACNFQSCWATCQAQHSIYFRRAFCDRSQCK thotermes CVFVRG spiniger Testis defensin Mus 41 MKTLVLLSALFLLAFQVQADPIQNTDEETNTE (Fragment) musculus VQPQEEDQA Testis defensin Mus 40 MKTLVLLSPSSCWPSRSRLILSKTQMKRLKL (Fragment) musculus RSSQRKRTR Testis-specific Mus 83 MRLALLLLAILVATELVVSGKNPILQCMGNRG beta-defensin- musculus FCRSSCKKSEQAYFYCRTFQMCCLQSYVRIS like protein LTGVDDNTNWSYEKHWPRIP Thanatin Podisus 21 GSKKPVPIIYCNRRTGKCQRM maculiventris Theta Defensin Macaca 18 GFCRCLCRRGVCRCICTR 1 mulatta theta defensin Macaca 76 MRTFALLTAMLLLVALHAQAEARQARADEAA 1a precursor mulatta AQQQPGTDDQGMAHSFTWPENAALPLSESA KGLRCICTRGFCRLL theta defensin Macaca 76 MRTFALLTAMLLLVALHAQAEARQARADEAA 1b precursor mulatta AQQQPGADDQGMAHSFTRPENAALPLSESA RGLRCLCRRGVCQLL theta defensin- Macaca 18 RCICTRGFCRCLCRRGVC 1 mulatta Tigerinin-1 Hoplobatrachus 11 FCTMIPIPRCY tigerinus Tigerinin-2 Hoplobatrachus 12 RVCFAIPLPICH tigerinus Tigerinin-3 Hoplobatrachus 12 RVCYAIPLPICY tigerinus Tigerinin-4 Hoplobatrachus 11 RVCYAIPLPIC tigerinus tracheal Bos taurus 64 MRLHHLLLALLFLVLSASSGFTQGVGNPVSC antimicrobial VRNKGICVPIRCPGNMKQIGTCVGRAVKCCR peptide KK Tracheal Bos taurus 64 MRLHHLLLALLFLVLSAWSGFTQGVGNPVSC antimicrobial VRNKGICVPIRCPGSMKQIGTCVGRAVKCCR peptide KK precursor (TAP) Xenopsin Xenopus 81 MYKGIFLCVLLAVICANSLATPSSDADEDNDE precursor laevis VERYVRGWASKIGQTLGKIAKVGLKELIQPKR [Contains: EAMLRSAEAQGKRPWIL Xenopsin precursor fragment (XPF); Xenopsin]

Plant Antimicrobial Peptides Protein Name Organism Name Length Sequence 22K Zea mays 206 AVFTVVNQCPFTVWAASVPVGGGR antifungal QLNRGESWRITAPAGTTAARIWAR protein TGCQFDASGRGSCRTGDCGGVVQC TGYGRAPNTLAEYALKQFNNLDFF DISLIDGFNVPMSFLPDGGSGCSR GPRCAVDVNARCPAELRQDGVCNN ACPVFKKDEYCCVGSAANNCHPTN YSRYFKGQCPDAYSYPKDDATSTF TCPAGTNYKVVFCP AC- Amaranthus 29 VGECVRGRCPSGMCCSQFGYCGKG AMP1 = caudatus PKYCG ANTIMICROBIAL peptide Alpha- Zea mays 206 AVFTVVNQCPFTVWAASVPVGGGR amylase/ QLNRGESWRITAPAGTTAARIWAR trypsin TGCQFDASGRGSCRTGDCGGVVQC inhibitor TGYGRAPNTLAEYALKQFNNLDFF (Antifungal DISILDGFNVPYSFLPDGGSGCSR protein) GPRCAVDVNARCPAELRQDGVCNN ACPVFKKDEYCCVGSAANNCHPTN YSRYFKGQCPDAYSYPKDDATSTF TCPAGTNYKVVFCP Alpha- Basella alba 20 GADFQECMKEHSQKQHQHQG basrubrin (Fragment) antifungal Linum 37 ARFDIQNKCPYTVWAASVPVGGGR 25K protein usitatissimum QLNSGQTWXIDAP antifungal Diospyros 30 ATFDIQNKXTYTVWAAAWAPSYPG 27K protein texana GXKQLD antifungal 2S Raphanus 20 PQGPQQRPPLLQQCCNNLLQ storage sativus albumin large chain antifungal 2S Raphanus 30 PAGPFRIPRCRREFQQAQHLRACQ storage sativus QWLHRQ albumin small chain Antifungal Phytolacca 38 AGCIKNGGRCNASAGPPYCCSSYC Peptide americana FQIAGQSYGVCKNR Antifungal Eucommia 41 QTCASRCPRPCNAGLCCSIYGYCG peptide 1 ulmoides SGNAYCGAGNCRCQCRG (EAFP1) Antifungal Eucommia 41 QTCASRCPRPCNAGLCCSIYGYCG peptide 2 ulmoides SGAAYCGAGNCRCQCRG (EAFP2) Antifungal Gastrodia 171 MAASASTAVILFFAVTTMMSLSAI protein elata PAFASDRLNSDHQLDTGGSLAQGG YLFIIQNDCNLVLYDNNRAVWASG TNGKASNCFLKMQNDGNLVIYSGS RAIWASNTNRQKGNYYLILQRDRN VVIYDNSNNAIWATHTNVGNAEIT VIPHSNGTAAASGAAQNKVNELYI SMY Antifungal Gastrodia 169 MASPASSAVIFLFAVAALMSLLAM protein elata PALAASQLNAGQTLGTGQSLAQGP DQFVIQNDCNLVLYDSNRVVWASG TNGKASGCVLRMQRDGNLVIYSGS RVIWASNTNRRDDNYYLLLQRDRN VVIYDSSNNAIWATGTNVGNAAIT VIPHSNGTAAASGAAQNKVNEYLR P Antifungal Ipomoea nil 92 MKFCTMFLVVLALASLLLTPSTIM protein AQQCGSQARGRLCGNGLCCSQWGY CGSTAAYCGAGCQSQCKSTAASAT DTTTTANQSTAKSDPAGGAN Antifungal Capsicum 85 MKFQVVILVLFALLLTRTSAQNCG protein annuum RQAGRRVCANRLCCSQFGFCGTTR EYCGAGCQSNCRRYATDTTGEGEN VNNDEHKNNGGPN Antifungal Ipomoea nil 91 MKYCTMFIVLLGLGSLLLTPTTIM protein AQQCGRQASGRLCGNGLCCSQWGY CGSTAAYCGAGCQSQCKSTAASST TTTTANQSTAKSDPAGGAN antifungal Sinapis alba 25 QKLCERPSGTWSGVCGNNNACKNQ protein 1 C antifungal Brassica 30 QKLCERPSGTWSGVCGNNNACKNQ protein 1 napus CINLEK antifungal Arabidopsis 27 QKLCERPSGTWSGVCGNSNACKNQ protein 1 thaliana CIN Antifungal Raphanus 51 XKLCERPSGTWSGVCGNNNACKNQ Protein 1 sativus CINLEKARHGSCNYVFPAHKCICY FPC Antifungal Malva 15 VAGPFRIPPLRREFQ protein 1 parviflora large subunit (CW-1) (Fragment) Anti-fungal Phytolacca 65 MAKVSSAYLKFALVMILLLSVISA protein 1 americana VMSAGCIKNGGRCNASAGPPYCCS precursor SYCFQIAGQSYGVCKNR (PAFP-S) Antifungal Malva 16 PAGPFRIPPRXRXEFQ protein 1 parviflora small subunit (CW-1) (Fragment) antifungal Sinapis alba 26 QKLCQRPSGTWSGVCGNNNACRNQ protein 2 CI Antifungal Malva 20 PEDPQRRYQEXQREXRXQQE protein 2 parviflora large subunit (CW-2) (Fragment) Antifungal Malva 15 PEDPQRRYQEEQRRE protein 3 parviflora (CW-3) (Fragment) Antifungal Malva 37 DRQIDMEEQQLEKLNKQDRXPGLR protein 4 parviflora YAAKQQMXTXRMG (CW-4) (Fragment) Antifungal Malva 38 ITCGQVTSQVAGCLSYLQRGGAPA protein 5 parviflora PXXXXGIRNLXXMA (CW-5) (Fragment) Antifungal Beta vulgaris 46 AICKKPSKFFKGACGRDADCEKAC protein AX1 DQENWPGGVCVPFLRCECQRSC Antifungal Beta vulgaris 46 ATCRKPSMYFSGACFSDTNCQKAC protein AX2 NREDWPNGKCLVGFKCECQRPC Antifungal Gastrodia 129 SDRLNSGHQLDTGGSLAEGGYLFI protein elata IQNDCNLVLYDNNRAVWASGTNGK GAFP-1 ASGCVLKMQNDGNLVIYSGSRAIW (Fragment) ASNTNRQNGNYYLILQRDRNVVIY DNSNNAIWATHTNVGNAEITVIPH SNGTAAASG Antifungal Medicago 72 MEKKSLAGLCFLFLVLFVAQEIVV protein sativa TEARTCENLADKYRGPCFSGCDTH precursor CTTKENAVSGRCRDDFRCWCTKRC Antifungal Gastrodia 178 MLEWGDGVFCGGCVGYLRGDSVEC protein elata GNCSDRLNSGHQLDTGGSLAQGGY precursor LFIIQNDCNLVLYDNNRAVWASGT NGKASGCVLKMQNDGNLVIYSGSR AIWASNTNRQNGNYYLILQRDRNV VIYDNSNNAIWATHTNVGNAEITA IPHSNGTAAASGAAQNKVNELYIS MYSRSKRIAG Antifungal Hordeum 44 ATITWNRCSYTVWPGALPGGGVRL protein R vulgare DPGQRWALNMPAGTAGAAV (Fragment) Antifungal Hordeum 37 ATFTVINKCQYTVWAAAVPAGGGQ protein S vulgare KLDAGQTWSIXXP (Fragment) Antifungal Arabidopsis 80 MAKSATIITFLFAALVLFAAFEAP protein-like thaliana TMVEAQKLCEKPSGTWSGVCGNSN ACKNQCINLEGAKHGSCNYVFPAH KCICYVPC Antimicrobial Pisum 60 ALSFLFLFLFVAQEIVVTEANTCE detensin sativum HLADTYRGVCFTDASCDDHCKNKA peptide HLISGTCHNFKC DRR230-c (Fragment) Antimicrobial Macadamia 76 SAFTVWSGPGCNNRAERYSKCGCS Peptide 1 integrifolia AIHQKGGYDFSYTGQTAALYNQAG CSGVAHTRFGSSARACNPFGWKSI FIQC Antimicrobial Mesembryan 64 MAKVSSSLLKFAIVLILVLSMSAI peptide 1 themum ISAKCIKNGKGCREDQGPPFCCSG precursor crystallinum FCYRQVGWARGYCKNR Antimicrobial Macadamia 102 MASTKLFFSVITVMMLIAMASEMV peptide 1 integrifolia NGSAFTVWSGPGCNNRAERYSKCG precursor CSAIHQKGGYDFSYTGQTAALYNQ (AMP1) AGCSGVAHTRFGSSARACNPFGWK SIFIQC Antimicrobial Mirabilis 61 LPVAFLKFAIVLILFIAMSAMIEA peptide 1 jalapa QCIGNGGRCNENVGPPYCCSGFCL precursor RQPGQGYGYCKNR (AMP1) (MJ-AMP1) (Fragment) Antimicrobial Amaranthus 30 VGECVRGRCPSGMCCSQFGYCGKG Peptide 2 caudatus PKYCGR Antimicrobial Mirabilis 63 MAKVPIAFLKFVIVLILFIAMSGM peptide 2 jalapa IEACIGNGGRCNENVGPPYCCSGF precursor CLRQPNQGYGVCRNR (AMP2) (MJ-AMP2) Antimicrobial Spinacia 22 XTCESPSHKFKGPCATNRNCES peptide D1 oleracea (So-D1) (Defensin D1) (Fragment) Antimicrobial Spinacia 52 GIFSSRKCKTPSKTFKGICTRDSN peptide D2 oleracea CDTSCRYEGYPAGDCKGIRRRCMC (So-D2) SKPC (Defensin D2) (Fragment) Antimicrobial Spinacia 25 GIFSSRKCKTVSKTFRGICTRNAN peptide D3 oleracea C (So-D3) (Defensin D3) (Fragment) Antimicrobial Spinacia 23 MFFSSKKCKTVSKTFRGPCVRNA peptide D4 oleracea (So-D4) (Defensin D4) (Fragment) Antimicrobial Spinacia 24 MFFSSKKCKTVXKTFRGPCVRNAN peptide D5 oleracea (So-D5) (Defensin D5) (Fragment) Antimicrobial Spinacia 24 GIFSNMYXRTPAGYFRGPXGYXXN peptide D6 oleracea (So-D6) (Defensin D6) (Fragment) Antimicrobial Spinacia 38 GIFSSRKCKTPSKTFKGYCTRDSN peptide D7 oleracea CDTSCRYEGYPAGD (So-D7) (Defensin D7) (Fragment) Antimicrobial Zea mays 33 RSGRGECRRQCLRRHEGQPWETQE peptide MBP-1 CMRRCRRRG Antimicrobial Capsella 120 MASKTLILLGLFAILLVVSEVSAA peptide shep- bursa- RESGMVKPESEETVQPEGYGGHGG GRP pastoris HGGHGGHGGHGGHGHGGGGHGLDG YHGGHGGHGGGYNGGGGHGGHGGG YNGGGHHGGGGHGLNEPVQTQPGV Antimicrobial Impatiens 333 MVQKGWFGVLLILFICSTLTSADS peptides balsamina KPNPTKEEEPAKKPDEVSVKSGGP precursor EVSEDQYRHRCCAWGPGRKYCKRW (IB-AMP) CANAEEAAAAIPEASEELAQEEAP [Contains: VYSEDQWGRRCCGWGPGRRYCVRW Basic peptide CQNAEEAAAAIPEATEKAQEAPVY AMP3 (IB- SEDQWGRRCCGWGPGRRYCVRWCQ AMP3); Basic NAEEAAAAVAIPEASEKAQEGPVY peptide AMP1- SEDQWGRRCCGWGPGRRYCVRWCS 1 (IB-AMP1- NAADEVATPEDVEPGQYGRRCCNW 1); Basic GPGRRYCKRWCHNAAEEATLKAFE peptide AMP1- EEAAREQPVYSEDQWGRRCCGWGP 2 (IB-AMP1- GRRYCRRWCQSAEEAAAFQAGEVT 2); Basic ASLMLIMFKACPCMGPVPSV peptide AMP1- 3 (IB-AMP1- 3); Basic peptide A Antimicrobial Allium cepa 132 MVRVVSLLAASTFILLIMIISSPY protein Ace- ANSQNICPRVNRIVTPCVAYGLGR AMP1 APIAPCCRALNDLRFVNTRNLRRA precursor ACRCLVGVVNRNPGLRRNPRFQNI PRDCRNTFVRPFWWRPRIQCGRIN LTDKLIYLDAEE Antimicrobial Ipomoea nil 41 QQCGRQASGRLCGNRLCCSQWGYC protein PN- GSTASYCGAGCQSQCRS AMP (PN- AMP1/PN- AMP2) antimicrobial Amaranthus 86 MVNMKCVALIVIVMMAFMMVDPSM protein hypochondriacus GVGECVRGRCPSGMCCSQFGYCGK precursor GPKYCGRASTTVDHQADVAATKTA KNPTDAKLAGAGSP Antimicrobial Phytolacca 37 ACIKNGGRCVASGGPPYCCSNYCL seed protein americana QIAGQSYGVCKKH (Fragment) avematin Avena sativa 26 TTITVVNKCSYTVWPGALPGGGVV LD Basal layer Zea mays 93 MAKFFNYTIIQGLLMLSMVLLASC antifungal AIHAHIISGETEEVSNTGSPTVMV peptide TMGANRKIIEDNKNLLCYLRALEY precursor CCARTRQCYDDIKKCLEHCRG Basal layer Zea mays 96 MVKILDHISIRGFFLLFMVLVASF antifungal VGHAQIIRGETKEDNDTKSMTMTT peptide MRPGSYVTSMDEKSSLCFEDIKTL precursor WYICRTTYHLYRTLKDCLSHCNSM Basal layer Zea mays 95 MVKSLDHITIRGLFLLFMFLVASF antifungal VGHAQIIRGETKENKDTNSMTMTT peptide RPGSYVISMDEKSSLCFLDPRTLW precursor YICKITYRLFRTLKDCLEFCHSI Basal layer Zea mays 73 MVLLASCVIHAHIISGEIEDVSNT antifungal RSPTMMGANRKIIGDNKNLLCYLK peptide ALEYCCERTKQCYDDIKKCLEHCH precursor S Beta-basrubin Basella alba 16 KIMAKPSKFYEQLRGR (Fragment) CBP20 Nicotiana 208 GKLSTLLLVLILYFIAAGANAQQC (Fragment) tabacum GRQRGGALCSGNLCCSQFGWCGST PEYCSPSQGCQSQCSGGGGGGGGG GGGGAQNVRATYHIYNPQNVGWDL YAVSAYCSTWDGNKPLAWRRKYGW TAFCGPVGPRGRDSCGKCLRVTNT GTGAQTTVRIVDQCSNGGLDLDVN VFRQLDTDGRGNQRGHLIVNYEFV NCGDNMNVLLSPVDKE CBP20 Nicotiana 211 MGKLSTLLFALVLYVIAAGANAQQ preproprotein tabacum CGRQRGGALCSGNLCCIQFGWCGS TQEYCSPSQGCQSQCSGGGGGGGG GGGGGGAAQNVRATYHIYNPQNVG WDLYAVSAYCSTWDGNKPLAWRRK YGWTAFCGPVGPRGRDSCGKCLRV TNTGTGAQTTVRIVDQCSNGGLDL DVNVFRQLDTDGRGNQRGHLIVNY EFVNCGDNMNVLVSPVDKE chitinase (EC Nicotiana 378 MANSVTLFSIIFSCFLLRQLVCTN 3.2.1.14)/ tabacum SQNVIKGGYWFKNSGLALNNIDST lysozyme (EC LFTHLFCAFADLNPQSNQLIISPE 3.2.1.17) PZ NQDSFSQFTSTVQRKNPSVKTFLS precursor, IAGGRADTTAYGIMARQPNSRKSF pathogenesis- IDSSIRLARQFGFHGLDLDWEYPL related SATDMTNLGILLNEWRTAINMEAR NSGRAALLLTAAVSYSPRVNGLNY PVESVARNLNWINLMAYDFYGPNW SPSQTNSHAQLFDPVNHISGSDGI NAWIQAGVPTKKLVLGIPFYGYAW RLVNPNIHDLRAPAAGKSNVGAVD DGSMTYNRIRDYIVQSRATTVYNA TIVGDYCYSGSNWISYDDTQSVRN KVNYVKGRGLLGYFAWHVAGDQNW GLSRTASQTWGVSSQEMK chitinase (EC Zea mays 280 MANAPRILALGLLALLCAAAGPAA 3.2.1.14) A AQNCGCQPNFCCSKFGYCGTTDAY CGDGCQSGPCRSGGGGGGGGGGGG GGSGGANVANVVTDAFFNGIKNQA GSGCEGKNFYTRSAFLSAVNAYPG FAHGGTEVEGKREIAAFFAHVTHE TGHFCYISEINKSNAYCDASNRQW PCAAGQKYYGRGPLQISWNYNYGP AGRDIGFNGLADPNRVAQDAVIAF KTALWFWMNNVHRVMPQGFGATIR AINGALECNGNNPAQMNARVGYYK QYCQQLRVDPGPNLIC chitinase (EC Zea mays 268 QLVALGLALLCAVAGPAAAQNCGC 3.2.1.14) QPNVCCSKFGYCGTTDEYCGDGCQ precursor SGPCRSGRGGGGSGGGGANVASVV TSSFFNGIKNQAGSGCEGKNFYTR SAFLSAVKGYPGFAHGGSQVQGKR EIAAFFAHATHETGHFCYISEINK SNAYCDPTKRQWPCAAGQKYYGRG PLQISWNYNYGPAGRAIGFDGLGD PGRVARDAVVAFKAALWFWMNSVH GVVPQGFGATTRAMQRALECGGNN PAQMNARVGYYRQYCRQLGVDPGP NLTC Chitinase, Nicotiana 377 MANSVTLFAIIFSCFLLQQLVCTN class V tabacum SQNVKGGYWFKDSGLALNNIDSTL ETHLFCAFADLNPQLNQLIISPEN QDSFRQFTSTVQRKNPSVKTFLSI AGGRANSTAYGIMARQPNSRKSFI DSSIRLARQLGFHGLDLDWEYPLS AADMTNLGTLLNEWRTAINTEARN SGRAALLLTAAVSNSPRVNGLNYP VESLARNLDWINLMAYDFYGPNWS PSQTNSHAQLFDPVNHVSGSDGIN AWIQAGVPTKKLVLGIPFYGYAWR LVNANIHGLRAPAAGKSNVGAVDD GSMTYNRIRDYIVESRATTVYNAT IVGDYCYSGSNWISYDDTQTVRNK VNYVKGRGLLGYFAWHVAGDQNWG LSRTASQTWGVSFQEMK Chitin- Hydrangea 15 NSMERVEELRKKLQD binding macrophylla protein HM30 (Fragment) Chitin-binding Hordeum 52 ATYHYYRPAQNNWDLGAPAVSAYC protein N, CBP vulgare ATWDASKYGWTAFIVDQCANGGLD N (Fragments) LDWN Circulin A Chassalia 30 GIPCGESCVWIPCISAALGCSCKN (CIRA) parviflora KVCYRN Circulin B Chassalia 31 GVIPCGESCVFIPCISTLLGCSCK (CIRB) parviflora NKVCYRN Cyclo- Psychotria 31 SIPCGESCVFIPCTVTALLGCSCK psychotride A longipes SKVCYKN (CPT) Cysteine-rich Brassica 27 QKLCERPSGTWSGVCGNNNACKNQ antifungal rapa CIN protein 1 (AFP1) (Fragment) Cysteine-rich Sinapis alba 51 QKLCERPSGTWSGVCGNNNACKNQ antifungal CINLEKARHGSCNYVFPAHKCICY protein 1 FPC (AFP1) (M1) Cysteine-rich Raphanus 80 MAKFASIIALLFAALVLFAAFEAP antifungal sativus TMVEAQKLCERPSGTWSGVCGNNN protein 1 ACKNQCINLEKARHGSCNYVFPAH precursor KCICYFPC (AFP1) Cysteine-rich Arabidopsis 80 MAKSATIVTLFFAALVFFAALEAP antifungal thaliana MVVEAQKLCERPSGTWSGVCGNSN protein 1 ACKNQCINLEKARHGSCNYVFPAH precursor KCICYFPC (AFP1) (Anther- specific protein S18 homolog) Cysteine-rich Brassica 23 QKLCERPSGTWSGVCGNNNACKN antifungal napus protein 2 (AFP2) (Fragment) Cysteine-rich Brassica 27 QKLCERPSGTXSGVCGNNNACKNQ antifungal rapa CIR protein 2 (AFP2) (Fragment) Cysteine-rich Raphanus 80 MAKFASIIVLLFVALVVFAAFEEP antifungal sativus TMVEAQKLCQRPSGTWSGVCGNNN protein 2 ACKNQCIRLEKARHGSCNYVFPAH precursor KCICYFPC (AFP2) Cysteine-rich Sinapis alba 51 QKLCQRPSGTWSGVCGNNNACRNQ antifungal CINLEKARHGSCNYVFPAHKCICY protein 2A FPC (AFP2A) (M2A) Cysteine-rich Sinapis alba 52 QKLCARPSGTWNSSGNCRNNNACR antifungal NFCIKLEKSRHGSCNIPFPSNKCI protein 2B CYFPC (AFP2B) (M2B) Cysteine-rich Brassica 79 MAKFASIITLLFAALVVFAAFEAP antifungal napus TMVEAKLCERSSGTWSGVCGNNNA protein 3 CKNQCIRLEGAQHGSCNYVFPAHK precursor CICYFPC (AFP3) Cysteine-rich Raphanus 79 MAKFASIVALLFAALVVFAAFEAP antifungal sativus TVVEAKLCERSSGTWSGVCGNNNA protein 3 CKNQCIRLEGAQHGSCNYVFPAHK precursor CICYFPC (AFP3) Cysteine-rich Raphanus 80 MAKFVSIITLLFVALVLFAAFEAP antifungal sativus TMVEAQKLCERSSGTWSGVCGNNN protein 4 ACKNQCINLEGARHGSCNYIFPYH precursor RCICYFPC (AFP4) Defense- Pisum 46 KTCEHLADTYRGVCFTNASCDDHC related sativum KNKAHLISGTCHNWKCFCTQNC peptide 1 (Defensin 1) (Antifungal protein Psd1) Defense- Pisum 47 KTCENLSGTFKGPCIPDGNCNKHC related sativum RNNEHLLSGRCRDDFRCWCTNRC peptide 2 (Defensin 2) (Antifungal protein Psd2) defensin Capsicum 75 MAGFSKVIATIFLMMMLVFATDMM annuum AEAKICEALSGNFKGLCLSSRDCG NVCRREGFTSGVCRGFPLKCFCRK PGA Defensin Brassica 80 MAKFVSIITLFFAALVLFAAFEAP rapa TMVKAQKLCERSSGTWSGVCGNNN ACKNQCINLEGARHGSCNYVFPYH RCICYFPC Defensin Helianthus 108 MAKISVAFNAFLLLLFVLAISEIG annuus SVKGELCEKASQTWSGTCGKTKHC DDQCKSWEGAAHGACHVRDGKHMC FCYFNCSKAQKLAQDKLRAEELAK EKIEPEKATAKP Defensin Helianthus 41 SHRFQGTCLSDTNCANVCHSERFS (Fragment) annuus GGKCRGFRRRCFCTTHC defensin 1 Triticum 82 MASTRRMAAAPAVLLLLLLLVATE precursor aestivum MGTMKTAEARTCLSQSHKFKGTCL SNSNCAAVCRTENFPDGECNTHLV ERKCYCKRTC defensin AFP1 Heuchera 54 DGVKLCDVPSGTWSGHCGSSSKCS sanguinea QQCKDREHFAYGGACHYQFPSVKC FCKRQC defensin AMP1 Dahlia 50 ELCEKASKTWSGNCGNTGHCDNQC merckii KSWEGAAHGACHVRNGKHMCFCYF NC defensin AMP1 Aesculus 50 LCNERPSQTWSGNCGNTAHCDKQC hippocastanum QDWEKASHGACHKRENHWKCFCYF NC defensin AMP1 Clitoria 49 NLCERASLTWTGNCGNTGHCDTQC ternatea RNWESAKHGACHKRGNWKCFCYFN C defensin AMP2 Dahlia 20 EVCEKASKTWSGNCGNTGHC merckii Defensin CUA1 Helianthus 42 LSHSFKGTCLSDTNCANVCHSERF (Fragment) annuus SGGKCRGFRRRCFCTTHC Defensin Elaeis 77 MEHSRRMLPAILLLLFLLMPSEMG EGAD1 guineensis TKVAEARTCESQSHKFQGTCLRES NCANVCQTEGFQGGVCRGVRRRCF CTRLC Defensin J1-1 Capsicum 75 MAGFSKVVATIFLMMLLVFATDMM precursor annuum AEAKICEASGNFKGLCLSSRDCGN VCRREGFTDGSCIGFRLQCFCTKP CA Defensin J1-2 Capsicum 74 MAGFSKVIATIFLMMMLVFATGMV precursor annuum AEARTCESQSHRFKGLCFSKSNCG SVCHTEGFNGGHCRGFRRRCFCTR HC Defensin Brassica 80 MAKVASIVALLFPALVIFAAFEAP precursor oleracea TMVEAQKLCERPSGWNSGVCGNN NACKNQCIRLEKARHGSCNYVFPA HKCICYFPC Defensin Prunus 79 MERSMRLFSTAFVFFLLLAAAGMM protein 1 persica MGPMVAEARTCESQSNRFKGTCVS TSNCASVCQTEGFPGGHCRGFRRR CFCTKHC Endochitinase Zea mays 280 MANAPRILALGLLALLCAAAGPAA A precursor AQNCGCQPNFCCSKFGYCGTTDAY (EC 3.2.1.14) CGDGCQSGPCRSGGGGGGGGGGGG (Seed GGSGGANVANVVTDAFFNGIKNQA chitinase A) GSGCEGKNFYTRSAFLSAVNAYPG FAHGGTEVEGKREIAAFFAHVTHE TGHFCYISEINKSNAYCDASNRQW PCAAGQKYYGRGPLQISWNYNYGP AGRDIGFNGLADPNRVAQDAVIAF KTALWFWMNNVHGVMPQGFGATIR AINGALECNGNNPAQMNARVGYYK QYCQQLRVDPGPNLIC Endochitinase Zea mays 269 PQLVALGLALLCAVAGPAAAQNCG B precursor CQPNVCCSKFGYCGTTDEYCGDGC (EC 3.2.1.14) QSGPCRSGRGGGGSGGGGANVASV (Seed VTSSFFNGIKNQAGSGCEGKNFYT chitinase B) RSAFLSAVKGYPGFAHGGSQVQGK (Fragment) REIAAFFAHATHETGHFCYISEIN KSNAYCDPTKRQWPCAAGQKYYGR GPLQISWNYNYGPAGRAIGFDGLG DPGRVARDAVVAFKAALWFWMNSV HGVVPQGFGATTRAMQRALECGGN NPAQMNARVGYYRQYCRQLGVDPG PNLTC Fabatin-1 Vicia faba 47 LLGRCKVKSNRFHGPCLTDTHCST VCRGEGYKGGDCHGLRRRCMCLC Fabatin-2 Vicia faba 47 LLGRCKVKSNRFNGPCLTDTHCST VCRGEGYKGGDCHGLRRRCMCLC Floral Petunia x 103 MARSICFFAVAILALMLFAAYDAE defensin-like hybrida AATCKAECPTWDSVCINKKPCVAC protein 1 CKKAKFSDGHCSKILRRCLCTKEC VFEKTEATQTETFTKDVNTLAEAL LEADMMV Floral Petunia x 101 MARSICFFAVAILALMLFAAYETE defensin-like hybrida AGTCKAECPTWEGICINKAPCVKC protein 2 CKAQPEKFTDGHCSKILRRCLCTK PCATEEATATLANEVKTMAEALVE EDMME Flower- Helianthus 78 MKSSMKMFAALLLVVMCLLANEMG specific annuus GPLVVEARTCESQSHKFKGTCLSD gamma-thionin TNCANVCHSERFSGGKCRGFRRRC precursor FCTTHC (Defensin SD2) Gamma-thionin Arabidopsis 77 MKLSMRLISAVLIMFMIFVATGMG homolog thaliana PVTVEARTCESQSHRFKGTCVSAS At2g02100 NCANVCHNEGFVGGNCRGFRRRCF precursor CTRHC Gamma-thionin Arabidopsis 77 MKFSMRLISAVLFLVMIFVATGMG homolog thaliana PVTVEARTCASQSQRFKGKCVSDT At2g02120 NCENVCHNEGFPGGDCRGFRRRCF precursor CTRNC Gamma-thionin Arabidopsis 77 MKLSVRFISAALLLFMVFIATGMG homolog thaliana PVTVEARTCESKSHRFKGPCVSTH At2g02130 NCANVCHNEGFGGGKCRGFRRRCY precursor CTRHC Gamma-thionin Arabidopsis 73 MKLSLRLISALLMSVMLLFATGMG homolog thaliana PVEARTCESPSNKFQGVCLNSQSC At2g02140 AKACPSEGFSGGRCSSLRCYCSKA precursor C Gamma- Eutrema 80 MAKFASIIALLFAALVLFSAFEAP thionin 1 wasabi SMVEAQKLCEKSSGTWSGVCGNNN precursor ACKNQCINLEGARHGSCNYIFPYH RCICYFPC gamma- Lycopersicon 105 MARSIFFMAFLVLAMMLFVTYEVE thionin-like esculentum AQQICKAPSQTFPGLCFMDSSCRK protein YCIKEKFTGGHCSKLQRKCLCTKP precursor CVFDKISSEVKATLGEEAKTLSEW LEEEIMME Gastrodianin- Gastrodia 171 MAASASTAVILFFAVTTMMSLSAI MGM protein elata PAFASDRLNSGHQLDTGGSLAQGG YLFIIQNDCNLVLYDNNRAVWASG TNGKASGCMLKMQNDGNLVIYSGS RAIWASNTNRQNGNYYLILQRDRN VVIYDNSNNAIWATHTNVGNAEIT VIPHSNGTAAASGAAQNKVNELYI SMY Gastrodianin- Gastrodia 171 MAASASTAVILFFAVTTMMSLSAI MNF protein elata PAFASDRLNSGHQLDTGGSLAQGG YLFIIQNDCNLVLYDNNRAVWASG TNGKASNCFLKMQNDGNLVIYSGS RAIWASNTNRQNGNYYLILQRDRN VVIYDNSNNAIWATHTNVGNAEIT VIPHSNGTAAASGAAQNKVNELYI SMY Gastrodianin- Gastrodia 171 MAASASTAVILFFAVTTVMSLSAI VGM protein elata PAFASDRLNSGHQLDTGGSLAQGG YLFIIQNDCNLVLYDNNRAVWASG TNGKASGCMLKMQNDGNLVIYSGS RAIWASNTNRQNGNYYLILQRDRN VVIYDNSNNAIWATHTNVGNAEIT VIPHSNGTAAASGAAQNKVNELYI SMY Gastrodianin- Gastrodia 171 MAASASTAVILFFAVTTVMSLSAI VNF protein elata PAFASDRLNSGHQLDTGGSLAQGG YLFIIQNDCNLVLYDNNRAVWASG TNGKASNCFLKMQNDGNLVIYSGS RAIWASNTNRQNGNYYLILQRDRN VVIYDNSNNAIWATHTNVGNAEIT VIPHSNGTAAASGAAQNKVNELYI SMY Genomic DNA, Arabidopsis 73 MENKFFAAFFLLLVLFSSQEIIGG chromosome 5, thaliana EGRTCQSKSHHFKYMCTSNHNCAI P1 clone:MBK5 VCRNEGFSGGRCHGFHRRCYCTRL C Ginkbilobin Ginkgo 40 ANTAFVSSAHNTQKIPAGAPFNRN (GNL) biloba LRAMLADLRQNAAFAG (Fragment) Hevein Hevea 204 MNIFIVVLLCLTGVAIAEQCGRQA precursor brasiliensis GGKLCPNNLCCSQWGWCGSTDEYC (Major SPDHNCQSNCKDSGEGVGGGSASN hevein) VLATYHLYNSQDHGWDLNAASAYC [Contains: STWDANKPYSWRSKYGWTAFCGPV Hevein GAHGQSSCGKCLSVTNTGTGAKTT (Allergen Hev VRIVDQCSNGGLDLDVNVFRQLDT b 6); Win- DGKGYERGHITVNYQFVDCGDSFN like protein] PLFSVMKSSVIN hevein-like Euonymus 320 MKYLWVFIVFSIAVLSHACSAQQC antimicrobial europaeus GRQAGNRRCANNLCCSQYGYCGRT peptide NEYCCTSQGCQSQCRRCGVRTVGE IVVGDIGGIISKGMFNNILKHRDD DACEGKGFYTYEAFVAAARSFPAF GSTGDDATRKREIAAFLAQTSHET SAGWPSAPDGPYAWGYCFVRERNP PSKYCDTTTPCPKSYYGRGPIQLT WNYNYEQAGRAIGADLLNNPDLVA TDAVISFKTAIWFWMTAQSSKPSC HDVITGSWRPSASDNSVCHVPDYA VVTNIISGEIEYGKSRNPQVEDRI EFFKRYCQILGVSPGKCYEERTFV SGLMMETI hevein-like Euonymus 305 MKYLWVFIVFSIAVLSLACSAQQC antimicrobial europaeus GRQAGNRRCPNNLCCSQFGYCGRT peptide NEYCCTGFGCQSNCRRCGVRTVGE DVVGDIGGIISKGMFNNILKHRDD DACEGKGFYTYEAFVAAARSFPAF GSTGDDTTRKREIAAFLAQTSHET SGGRPSAPDGPYAWGYCFVKERNP PSKYCDTITPCPKSYYGRGPLQLT WNYNYAQAGRAIGVDLLNNPDLVA TDAVTSFKTAIWFWMTAHSSKPSC HDVITGSWRPSASDNSVRHVPDYA VVTNIINGEIEYGKSRNPQVEDRI EFFKRYCQILGVSPGKF Leaf-specific Hordeum 137 MAPSKSIKSVVICVLILGLVLEQV thionin vulgare QVEGKSCCKDTLARNCYNTCHFAG precursor GSRPVCAGACRCKIISGPKCPSDY (Clone DB4) PKLNLLPESGEPDVTQYCTIGCRN SVCDNMDNVFRGQEMKFDMGLCSN ACARFCNDGAVIQSVEA Lectin-like Gastrodia 111 QSSPGILLNQPASMASPASSAVIF protein elata FFAVAALMSLLAMPALAASQLNAG (Fragment) QTLGTGQSLAQGPNQFIIQNDCNL VLYASNKAVWATGTNGKASGCVLR MQRDGNLVIYSGSKV Nicotiana Nicotiana 47 RECKTESNTFPGICITKPPCRKAC Alata Plant tabacum ISEKFTDGHCSKILRRCLCTKPC Defensin 1 (Nad1) osmotin Nicotiana 250 MSNNMGNLRSSFVFFLLALVTYTY precursor tabacum AATIEVRNNCPYTVWAASTPIGGG RRLDRGQTWVINAPRGTKMARVWG RTNCNFNAAGRGTCQTGDCGGVLQ CTGWGKPPNTLAEYALDQFSGLDF WDISLVDGFNIPMTFAPTNPSGGK CHAIHCTANINGECPRELRVPGGC NNPCTTFGGQQYCCTQGPCGPTFF SKFFKQRCPDAYSYPQDDPTSTFT CPGGSTNYRVIFCPNGQAHPNFPL EMPGSDEVAK Osmotin-like Nicotiana 251 MSHLTTFLVFFLLAFVTYTYASGV protein tabacum FEVHNNCPYTVWAAATPVGGGRRL precursor ERGQSWWFWAPPGTKMARIWGRTN (Patho- CNFDGAGRGWCQTGDCGGVLECKG genesis- WGKPPNTLAEYALNQFSNLDFWDI related SVIDGFNIPMSFGPTKPGPGKCHG protein PR- IQCTANINGECPGSLRVPGGCNNP 5D) CTTFGGQQYCCTQGPCGPTELSRW FKQRCPDAYSYPQDDPTSTFTCTS WTTDYKVMFCPYGSAHNETTNFPL EMPTSTHEVAK Osmotin-like Lycopersicon 238 FFFLLAFVTYTYAATFEVRNNCPY protein TPM-1 esculentum TVWAASTPIGGGRRLDRGQTWVIN precursor (PR APRGTKMARIWGRTNCNFDGDGRG P23) SCQTGDCGGVLQCTGWGKPPNTLA (Fragment) EYALDQFSNLDFWDISLVDGFNIP MTFAPTNPSGGKCHAIHCTANING ECPGSLRVPGGCNNPCTTFGGQQY CCTQGPCGPTDLSRFFKQRCPDAY SYPQDDPTSTFTCPSGSTNYRVVF CPNGVTSPNFPLEMPSSDEEAK pathogenesis- Lycopersicon 233 AFVTYTYAATFEVRNNCPYTVWAA related esculentum STPIGGGRRLDRGQTWVINAPRGT protein P23 KMARIWGRTNCNFDGAGRGSCQTG precursor DCGGVLQCTGWGKPPNTLAEYALD QFSNLDFWDISLVDGFNIPMTFAP TNPSGGKCHAIHCTANINGECPGS LRVPGGCNNPCTTFGGQQYCCTQG PCGPTDLSRFFKQRCPDAYSYPQD DPTSTFTCPSGSTNYRVVFCPNGV TSPNFPLEMPSSDEEAK plant Arabidopsis 76 MKVSPRLNSALLLLFMILATVMGL defensin thaliana VTVEARTCETSSNLFNGPCLSSSN protein, CANVCHNEGFSDGDCRGFRRRCLC putative TRPC (PDF2.4) plant Arabidopsis 122 MERIPSLASLVSLLIIFATVVNQT defensin- thaliana RASICNDRLGLCDGCDQRCKAKHG fusion PSCESKCDGPVGMLLCTCTYECGP protein, TKLCNGGLGNCGESCNEQCCDRNC putative AQRYNGGHGYCNTLDDFSLCLCKY PC Plant Pyrus 81 LVSTAFVLVLLLATIEMGPMGVEA defensin-like pyrifolia RTESSKAVEGKICEVPSTLFKGLC protein FSSNNCKHTCRKEQFTRGHCSVLT (Fragment) RACVCTKKC probable Arabidopsis 80 MAKFCTTITLILVALVLFADFEAP antifungal thaliana TIVKAELCKRESETWSGRCVNDYQ protein CRDHCINNDRGNDGYCAGGYPWYR [imported] SCFCFFSC Probable Arabidopsis 80 MAKSAAIITFLFAALVLFAAFEAP cysteine-rich thaliana IMVEAQKLCEKPSGTWSGVCGNSN antifungal ACKNQCINLEGAKHGSCNYVFPAH protein KCICYFPC At2g26010 precursor (AFP) Probable Arabidopsis 80 MAKFASIITFIYAALVLFAAFEVP cysteine-rich thaliana TMVEAQKLCEKPSGTWSGVCGNSN antifungal ACKNQCINLEGAKHGSCNYVFPAH protein KCICYVPC At2g26020 precursor (AFP) Probable Arabidopsis 80 MAKFASIITLIFAALVLFAAFDAP cysteine-rich thaliana AMVEAQKLCEKPSGTWSGVCGNSN antifungal ACKNQCINLEGAKHGSCNYVFPAH protein LCR77 KCICYVPC precursor (AFP) Protease Pyrus 87 MEPSMRLISAAFVLILLLATTEMG inhibitor- pyrifolia PMGVEAKSKSSKEVEKRTCEAASG like protein KFKGMCFSSNNCANTCAREKFDGG KCKGFRRRCMCTKKC Protease Pyrus 87 MERSMRLVSAAFVLVLLLAATEMG inhibitor- pyrifolia PMGVEARTESSKAVEGKICEVPST like protein LFKGLCFSSNNCKHTCRKEQFTRG HCSVLTRACVCTKKC Proteinase Capsicum 78 MAHSMRFFAIVLLLAMLVMATEMG inhibitor annuum PMRIVEARTCESQSHRFKGVCASE precursor TNCASVCQTEGFSGGDCRGFRRRC FCTRPC Putative Arabidopsis 78 MASSYTLMLFLCLSIFLIASTEMM defensin AMP1 thaliana AVEGRICERRSKTWTGFCGNTRGC protein DSQCKRWERASHGACHAQFPGFAC FCYFNC Putative Picea abies 83 MADKGVGSRLSALFLLVLLVISIG plant MMQLEPAEGRTCKTPSGKFKGVCA defensin SRNNCKNVCQTEGFPSGSCDFHVA SPI1B NRKCYCSKPCP sormatin Sorghum 22 AVFTVVNRCPYTVWAASVPVGG bicolor TOM P14A Lycopersicon 41 AVHNDARAQVGVGPMSXDANLASR protein esculentum AQNYANSRAXDXNLIXS (Fragment) TOM P14B Lycopersicon 35 DXLAVHNDARAQVGAGPMDANLAS pathogenesis- esculentum RAQNXANSRAG related PR-1 protein (Fragments) TOM P14C Lycopersicon 97 DYLNAHNAARRQVGVGPMTXDNRL pathogenesis- esculentum AAFAQNYANQRADXRMQHSGGPYG related PR-1 ENLAAAFPQLNCQAGKVCGHYTQV protein VWRNSVRLGCARVRCNNGWYFITC (Fragments) N trimatin Triticum 23 ATITVVNRCSYTVWPGALPGGGA aestivum Vicilin Macadamia 666 MAINTSNLCSLLFLLSLFLLSTTV integrifolia SLAESEFDRQEYEECKRQCMQLET SGQMRRCVSQCDKRFEEDIDWSKY DNQDDPQTDCQQCQRRCRQQESGP RQQQYCQRRCKEICEEEEEYNRQR DPQQQYEQCQERCQRHETEPRHMQ TCQQRCERRYEKEKRKQQKRYEEQ QREDEEKYEERMKEEDNKRDPQQR EYEDCRRRCEQQEPRQQYQCQRRC REQQRQHGRGGDLINPQRGGSGRY EEGEEKQSDNPYYFDERSLSTRFR TEEGHISVLENFYGRSKLLRALKN YRLVLLEANPNAFVLPTHLDADAI LLVTGGRGALKMIHRDNRESYNLE CGDVIRIPAGTTFYLINRDNNERL HIAKFLQTISTPGQYKEFFPAGGQ NPEPYLSTFSKEILEAALNTQAER LRGVLGQQREGVIISASQEQIREL TRDDSESRRWHIRRGGESSRGPYN LFNKRPLYSNKYGQAYEVKPEDYR QLQDMDVSVFIANITQGSMMGPFF NTRSTKVVVVASGEADVEMACPHL SGRHGGRRGGKRHEEEEDVHYEQV KARLSKREAIVVPVGHPVVFVSSG NENLLLFAFGINAQNNHENFLAGR ERNVLQQIEPQAMELAFAAPRKEV EELFNSQDESIFFPGPRQHQQQSS RSTKQQQPLVSILDFVGF Vicilin Macadamia 666 MAINTSNLCSLLFLLSLFLLSTTV integrifolia SLAESEFDRQEYEECKRQCMQLET SGQMRRCVSQCDKRFEEDIDWSKY DNQEDPQTECQQCQRRCRQQESGP RQQQYCQRRCKEICEEEEEYNRQR DPQQQYEQCQKHCQRRETEPRHMQ TCQQRCERRYEKEKRKQQKRYEEQ QREDEEKYEERMKEEDNKRDPQQR EYEDCRRRCEQQEPRQQHQCQLRC REQQRQHGRGGDMMNPQRGGSGRY EEGEEEQSDNPYYFDERSLSTRFR TEEGHISVLENFYGRSKLLRALKN YRLVLLEANPNAFVLPTHLDADAI LLVIGGRGALKMIHHDNRESYNLE CGDVIRIPAGTTFYLINRDNNERL HIAKFLQTISTPGQYKEFFPAGGQ NPEPYLSTFSKEILEAALNTQTEK LRGVFGQQREGVIIRASQEQIREL TRDDSESRHWHIRRGGESSRGPYN LFNKRPLYSNKYGQAYEVKPEDYR QLQDMDLSVFIANVTQGSMMGPFF NTRSTKVVVVASGEADVEMACPHL SGRHGGRGGGKRHEEEEDVHYEQV RARLSKREAIVVLAGHPVVFVSSG NENLLLFAFGINAQNNHENFLAGR ERNVLQQIEPQAMELAFAAPRKEV EESFNSQDQSIFFPGPRQHQQQSP RSTKQQQPLVSILDFVGF Vicilin Macadamia 625 QCMQLETSGQMRRCVSQCDKRFEE (Fragment) integrifolia DIDWSKYDNQEDPQTECQQCQRRC RQQESDPRQQQYCQRRCKEICEEE EEYNRQRDPQQQYEQCQKRCQRRE TEPRHMQICQQRCERRYEKEKRKQ QKRYEEQQREDEEKYEERMKEGDN KRDPQQREYEDCRRHCEQQEPRLQ YQCQRRCQEQQRQHGRGGDLMNPQ RGGSGRYEEGEEKQSDNPYYFDER SLSTRFRTEEGHISVLENFYGRSK LLRALKNYRLVLLEANPNAFVLPT HLDADAILLVIGGRGALKMIHRDN RESYNLECGDVIRIPAGTTFYLIN RDNNERLHIAKFLQTISTPGQYKE FFPAGGQNPEPYLSTFSKEILEAA LNTQTERLRGVLGQQREGVIIRAS QEQIRELTRDDSESRRWHIRRGGE SSRGPYNLFNKRPLYSNKYGQAYE VKPEDYRQLQDMDVSVFIANITQG SMMGPFFNTRSTKVVVVASGEADV EMACPHLSGRHGGRGGGKRHEEEE EVHYEQVRARLSKREAIVVLAGHP VVFVSSGNENLLLFAFGINAQNNH ENFLAGRERNVLQQIEPQAMELAF AASRKEVEELFNSQDESIFFPGPR QHQQQSPRSTKQQQPLVSILDFVG F Wheatwin1 Triticum 146 MAARPMLVVALLCAAAAAATAQQA precursor aestivum TNVRATYHYYRPAQNNWDLGAPAV (Patho- SAYCATWDASKPLSWRSKYGWTAF genesis- CGPAGAHGQASCGKCLQVTNPATG related AQITARIVDQCANGGLDLDWDTVF protein 4a) TKIDTNGIGYQQGHLNVNYQFVDC (Protein RD 0.14) Wheatwin2 Triticum 148 MTMAARLMLVAALLCAAAAAATAQ precursor aestivum QATNVRATYHYYRPAQNNWDLGAP (Patho- AVSAYCATWDASKPLSWRSKYGWT genesis- AFCGPAGAHGQAACGKCLRVTNPA related TGAQITARIVDQCANGGLDLDWDT protein 4b) VFTKIDTNGIGYQQGHLNVNYQFV DCRD Zeamatin Zea mays 206 AVFTVVNQCPFTVWAASVPVGGGR QLNRGESWRITAPAGTTAARIWAR TGCKFDASGRGSCRTGDCGGVLQC TGYGRAPNTLAEYALKQFNNLDFF DISLIDGFNVPMSFLPDGGSGCSR GPRCAVDVNARCPAELRQDGVCNN ACPVFKKDEYCCVGSAANDCHPTN YSRYFKGQCPDAYSYPKDDATSTF TCPAGTNYKVVFCP Zeamatin Zea mays 227 MAGSVAIVGIFVALLAVAGEAAVF precursor TVVNQCPFTVWAASVPVGGGRQLN RGESWRITAPAGTTAARIWARTGC KFDASGRGSCRTGDCGGVLQCTGY GRAPNTLAEYALKQFNNLDFFDIS LIDGFNVPMSFLPDGGSGCSRGPR CAVDVNARCPAELRQDGVCNNACP VFKKDEYCCVGSAANDCHPTNYSR YFKGQCPDAYSYPKDDATSTFTCP AGTNYKVVFCP

TABLE 2 {PRIVATE} Defensins Name Organism Sequence HNP-1 Human ACYCRIPACIAGERRYGTCIYQGRLWAFCC HNP-2 Human CYCRIPACIAGERRYGTCIYQGRLWAFCC HNP-3 Human DCYCRIPACIAGERRYGTCIYQGRLWAFCC HNP-4 Human VCSCRLVFCRRTELRVGNCLIGGVSFTYCCTRV NP-1 Rabbit VVCACRRALCLPRERRAGFCRIRGRIHPLCCRR NP-2 Rabbit VVCACRRALCLPLERRAGFCRIRGRIHPLCCRR NP-3A Rabbit GICACRRRFCPNSERFSGYCRVNGARYVRCCSRR NP-3B Rabbit GRCVCRKQLLCSYRERRIGDCKIRGVRFPFCCPR NP-4 Rabbit VSCTCRRFSCGFGERASGSCTVNGVRHTLCCRR NP-5 Rabbit VFCTCRGFLCGSGERASGSCTINGVRHTLCCRR RatNP-1 Rat VTCYCRRTRCGFRERLSGACGYRGRIYRLCCR Rat-NP-3 Rat CSCRYSSCRFGERLLSGACRLNGRIYRLCC Rat-NP-4 Rat ACTCRIGACVSGERLTGACGLNGRIYRLCCR GPNP Guinea pig RRCICTTRTCRFPYRRLGTCIFQNRVYTFCC

B. Growth Factors

In some embodiments of the present invention, trophic factor combinations for treating injured nervous systems comprise one or more growth factors. Growth factors useful in the present invention include, but are not limited to, the following broad classes of cytoactive compounds: Insulin, Insulin like growth factors such as IGF-I, IGF-IB, IGF-II, and IGF-BP; Heparin-binding growth factors such as Pleiotrophin (NEGF1) and Midkine (NEGF2); PC-cell derived growth factors (PCDGF); Epidermal Growth Factors such as α-EGF and β-EGF; EGF-like molecules such as Keratinocyte-derived growth factor (which is identical to KAF, KDGF, and amphiregulin) and vaccinia virus growth factor (VVGF); Fibroblast Growth Factors such as FGF-1 (Basic FGF Protein), FGF-2 (Acidic FGF Protein), FGF-3 (Int-2), FGF-4 (Hst-1), FGF-5, FGF-6, and FGF-7 (identical to KGF); FGF-Related Growth Factors such as Endothelial Cell Growth Factors (e.g., ECGF-α and ECGF-β); FGF- and ECGF-Related Growth Factors such as Endothelial cell stimulating angiogenesis factor and Tumor angiogenesis factor, Retina-Derived Growth Factor (RDGF), Vascular endothelium growth factors (VEGF, VEGF-B, VEGF-C, and VEGF-D), Brain-Derived Growth Factor (BDGF A- and -B), Astroglial Growth Factors (AGF 1 and 2), Omentum-derived factor (ODF), Fibroblast-Stimulating factor (FSF), and Embryonal Carcinoma-Derived Growth Factor; Neurotrophic Growth Factors such as α-NGF, β-NGF, γ-NGF, Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3, Neurotrophin-4, and Ciliary Nuerotrophic Factor (CNTF); Glial Growth Factors such as GGF-I, GGF-II, GGF-III, Glia Maturation Factor (GMF), and Glial-Derived Nuerotrophic Factor (GDNF); Organ-Specific Growth Factors such as Liver Growth Factors (e.g., Hepatopoietin A, Hepatopoietin B, and Hepatocyte Growth Factors (HCGF or HGF), Prostate Growth Factors (e.g., Prostate-Derived Growth Factors [PGF] and Bone Marrow-Derived Prostate Growth Factor), Mammary Growth Factors (e.g., Mammary-Derived Growth Factor 1 [MDGF-1] and Mammary Tumor-Derived Factor [MTGF]), and Heart Growth Factors (e.g., Nonmyocyte-Derived Growth Factor [NMDGF]); Cell-Specific Growth Factors such as Melanocyte Growth Factors (e.g., Melanocyte-Stimulating Hormone [α-, β-, and γ-MSH] and Melanoma Growth-Stimulating Activity [MGSA]), Angiogenic Factors (e.g., Angiogenin, Angiotropin, Platelet-Derived ECGF, VEGF, and Pleiotrophin), Transforming Growth Factors (e.g., TGF-α, TGF-β, and TGF-like Growth Factors such as TGF-β2, TGF-β3, TGF-e, GDF-1, GDF-9, CDGF and Tumor-Derived TGF-β-like Factors), ND-TGF, and Human epithelial transforming factor [h-TGFe]); Regulatory Peptides with Growth Factor-like Properties such as Bombesin and Bombesin-like peptides (e.g., Ranatensin, and Litorin], Angiotensin, Endothelin, Atrial Natriuretic Factor, Vasoactive Intestinal Peptide, and Bradykinin; Cytokines such as connective tissue growth factor (CTGF), the interleukins IL-1 (e.g., Osteoclast-activating factor (OAF), Lymphocyte-activating factor (LAF), Hepatocyte-stimulating factor (HSF), Fibroblast-activating factor (FAF), B-cell-activating factor (BAF), Tumor inhibitory factor 2 (TIF-2), Keratinocyte-derived T-cell growth factor (KD-TCGF)), IL-2 (T-cell growth factor (TCGF), T-cell mitogenic factor (TCMF)), IL-3 (e.g., Hematopoietin, Multipotential colony-stimulating factor (multi-CSF), Multilineage colony-stimulating activity (multi-CSA), Mast cell growth factor (MCGF), Erythroid burst-promoting activity (BPA-E), IL-4 (e.g., B-cell growth factor I (BCGF-I), B-cell stimulatory factor I (BSF-1)), IL-5 (e.g., B-cell growth factor II (BCGF-II), Eosinophil colony-stimulating factor (Eo-CSF), Immunoglobulin A-enhancing factor (IgA-EF), T-cell replacing factor (TCRF)), IL-6 (B-cell stimulatory factor 2 (BSF-2), B-cell hybridoma growth factor (BCHGF), Interferon β2 (IFN-B), T-cell activating factor (TAF), IL-7 (e.g., Lymphopoietin 1 (LP-1), Pre-B-cell growth factor (pre-BCGF)), IL-8 (Monocyte-derived neutrophil chemotacetic factor (MDNCF), Granulocyte chemotatic factor (GCF), Neutrophil-activating peptide 1 (NAP-1), Leukocyte adhesion inhibitor (LAI), T-lymphocyte chemotacetic factor (TLCF)), IL-9 (e.g., T-cell growth factor III (TCGF-III), Factor P40, MegaKaryoblast growth factor (MKBGF), Mast cell growth enhancing activity (MEA or MCGEA)), IL-10 (e.g., Cytokine synthesis inhibitory factor (CSIF)), IL-11 (e.g., Stromal cell-derived cytokine (SCDC)), IL-12 (e.g., Natural killer cell stimulating factor (NKCSF or NKSF), Cytotoxic lymphocyte maturation factor (CLMF)), TNF-α (Cachectin), TNF-β (Lymphotoxin), LIF (Differentiation-inducing factor (DIF), Differentiation-inducing activity (DIA), D factor, Human interleukin for DA cells (HILDA), Hepatocyte stimulating factor III (HSF-III), Cholinergic neuronal differentiation factor (CNDF), CSF-1 (Macrophage colony-stimulating factor (M-CSF)), CSF-2 (Granulocyte-macrophage colony-stimulating factor (GM-CSF)), CSF-3 (Granulocyte colony-stimulating factor (G-CSF)), and erythropoietin; Platelet-derived growth factors (e.g., Placental growth factor (PlGF), PDGF-A, PDGF-B, PDGF-AB, p28-sis, and p26-cis), and Bone Morphogenetic proteins (e.g., BMP and BMP-15), neuropeptides (e.g., Substance P, calcitonin gene-regulated peptide, and neuropeptide Y), and neurotransmitters (e.g., norepinephrine and acetylcholine).

Suitable growth factors may be obtained from commercial sources, purified from natural sources, or be produced by recombinant methods. Recombinant growth factors can be produced from wild-type coding sequences or from variant sequences that encode functional growth factors. Suitable growth factors also include analogs that may be smaller peptides or other molecules having similar binding and biological activity as the natural growth factors. Methods for producing growth factors are described in U.S. Pat. Nos. 5,183,805; 5,218,093; 5,130,298; 5,639,664; 5,457,034; 5,210,185; 5,470,828; 5,650,496; 5,998,376; and 5,410,019; all of which are incorporated herein by reference.

C. Neurotrophins

The trophic factor combinations provided herein also can include one or more neurotrophic growth factors such as Brain-Derived Neurotrophic Factor (BDNF), Neurotrophin-3, Neurotrophin-4, and Ciliary Nuerotrophic Factor (CNTF).

Nerve growth factor s, such as α-NGF, β-NGF, γ-NGF, and the like, are neurotrophins. In an embodiment, the trophic factor combination does not include a nerve growth factor, which results in lessened pain.

D. Neuropeptides

The trophic factor combinations provided herein also can include one or more neuropeptides, e.g., PBAN-type neuropeptides (e.g., Diapause hormone homolog (DH); Alpha-SG neuropeptide (MAB-alpha-NP); Beta-SG neuropeptide (MAB-beta-NP)); Pheromone biosynthesis activating neuropeptide (M); PBAN-type neuropeptides (e.g., Diapause hormone (DH); Alpha-SG neuropeptide (Alpha-SGNP); Beta-SG neuropeptide (Beta-SGNP); Pheromone biosynthesis activating neuropeptide I (PBAN-I) (BoM)); Neuropeptides B/W receptor type 2 (G protein-coupled receptor 8); Neuropeptides B/W receptor type 1 (G protein-coupled receptor 7); Neuropeptides B/W receptor type 1 (G protein-coupled receptor 7) (Fragment); neuropeptides [similarity]; Glucagon-family neuropeptides (e.g., Growth hormone-releasing factor (GRF) (Growth hormone-releasing hormone) (GHRH); Pituitary adenylate cyclase activating polypeptide (PACAP)); Pol-RFamide neuropeptides; Antho-RFamide neuropeptides type 1; LWamide neuropeptides (e.g., LWamide I; Metamorphosin A (LWamide II) (MMA); LWamide III; LWamide IV; LWamide V; LWamide VI; LWamide VII; LWamide VIII; LWamide IX); Antho-RFamide neuropeptides type 2; Glucagon-family neuropeptides (e.g., Growth hormone-releasing factor (GRF) (Growth hormone-releasing hormone) (GHRH); Pituitary adenylate cyclase activating polypeptide-27 (PACAP-27) (P)); Glucagon-family neuropeptides (e.g., Growth hormone-releasing factor (GRF) (Growth hormone-releasing hormone) (GHRH); Pituitary adenylate cyclase activating polypeptide-27 (PACAP-27) (P)); LWamide neuropeptides (e.g., LWamide I; LWamide II; LWS); Glucagon-family neuropeptides (e.g., Growth hormone-releasing factor (GRF) (Growth hormone-releasing hormone) (GHRH); Pituitary adenylate cyclase activating polypeptide (PACAP)]; FMRFamide-like neuropeptides); PBAN-type neuropeptides (e.g., Diapause hormone homolog (DH); Alpha-SG neuropeptide; Beta-SG neuropeptide); Pheromone biosynthesis activating neuropeptide (AgI-PBAN); Gamma-SG neuropeptide; FMRFamide-related neuropeptides; Myomodulin neuropeptides (e.g., GLQMLRL-amide; QIPMLRL-amide; SMSMLRL-amide; SLSMLRL-amide; Myomodulin A (PMSMLRL-amide)); FMRFamide neuropeptides; neuropeptides (e.g., Substance P, calcitonin gene-regulated peptide, and neuropeptide Y); LWamide neuropeptides (e.g., LWamide I; LWamide II; LWamide III; LWamide IV; LWamide V; LWamide VI; Metamorphosin A (MMA); Mwamide) (Fragment); PBAN-type neuropeptides (e.g., Diapause hormone homolog (DH); Alpha-SG neuropeptide; Beta-SG neuropeptide); Pheromone biosynthesis activating neuropeptide (HeA-PBAN); Gamma-SG neuropeptide; Antho-RFamide neuropeptides; Neuropeptides capa receptor (Cap2b receptor); Neuropeptides B/W receptor type 2 (G protein-coupled receptor 8); Neuropeptides B/W receptor type 1 (G protein-coupled receptor 7); FMRFamide-like neuropeptides [e.g., Neuropeptide AF 10 (GFGDEMSMPGVLRF-amide); Neuropeptide AF20 (GMPGVLRF-amide); Neuropeptide AF3 (AVPGVLRF-amide); Neuropeptide AF4 (GDVPGVLRF-amide); N PBAN-type neuropeptides [e.g., Diapause hormone homolog (DH); Alpha-SG neuropeptide; Beta-SG neuropeptide; Pheromone biosynthesis activating neuropeptide (HeZ-PBAN); Gamma-SG neuropeptide; FMRFamide neuropeptides type FMRF-1 (Fragment); Abdominal ganglion neuropeptides L5-67 (e.g., Luqin; Luqin-B; Luqin-C; Proline-rich mature peptide (PRMP)); FMRFamide neuropeptides type FMRF-2; FMRFamide neuropeptides type FMRF-4 (Fragment); Myomodulin neuropeptides (e.g., Myomodulin A (MM-A) (PMSMLRL-amide) (Neuron B16 peptide); Myomodulin B (MM-B) (GSYRMMRL-amide); Myomodulin D (MM-D) (GLSMLRL-amide); Myomodulin F (MM-F); LWamide neuropeptides (e.g., LWamide I; LWamide II; Metamorphosin A (MMA); Iwamide) (Fragment) (Substance P, calcitonin gene-regulated peptide, and neuropeptide Y.)

E. Other Components

The trophic factor combinations can be used with various delivery systems. In some embodiments, the trophic factor combination is mixed with a viscous substance to increase the viscosity of the combination. The increased viscosity retains the trophic factor combination at the site of the injury longer than it would be retained in the absence of the viscous substance. The viscous substance can be, for example, a polysaccharide, such as hyaluranic acid.

In another embodiment, the trophic factor combination is delivered in a slow release formula, such as in a matrix, for example, a woundhealing matrix, either with or without a viscous substance. In an embodiment, the matrix is a hydrogel, such as a hydrogel disclosed in U.S. Patent Application No. US 20030083389A1, which describes hydrogels wherein a polymer matrix is modified to contain a bifunctional poly(alkylene glycol) molecule covalently bonded to the polymer matrix. The hydrogels can be cross-linked using, for example, glutaraldehyde. The hydrogels can also be crosslinked via an interpenetrating network of a photopolymerizable acrylates. In one embodiment of the invention, the components of the trophic factor combination are incorporated into the hydrogel, for example, through covalent bonds to poly(alkylene glycol) molecules of the hydrogel or through entrainment within the hydrogel. In other embodiments, the matrix is a collagen gel matrix, which can be impregnated with a trophic factor combination. Other matrices can also be used.

The trophic factor combination can also be delivered in a base solution, such as UW solution (DuPont Critical Care, Waukegan, Ill.), or other base solutions.

The neurochemical combinations can be used in conjunction with cell therapy, where transfected cells are produced to release the ingredients and obtain continual delivery of a trophic factor combination. For example, embryonic or adult stem cells can be modified to express trophic factors, antimicrobial peptides, and other relevant neurochemicals, to deliver the trophic factor combination endogenously to the injured spinal cord. In the case of genetically modified cell transplants, the transfected cells can be tagged with cell surface antigens so that the cells can be controlled. For example, antibodies targeting the specific antigen could be used to kill the implanted cells after therapeutic results have been achieved.

Delivery of the neurochemical combinations can also be achieved by media with spaced supports, such as sponges, gels, or biopolymers.

F. Exemplary Formulations

A trophic factor combination includes one or more antimicrobial peptide and/or one or more substance having an antimicrobial peptide effect, alone or with one or more of the following trophic factors: growth factors, neuropeptides, and neurotrophins. Another trophic factor combination includes a viscous substance, such as hyaluronic acid, among others. Another trophic factor combination includes other cytoactive compounds, such as one or more cytokine and/or one or more chemokine. Non-limiting examples of these trophic factor combinations are provided in Tables 3a-3h below. It will be recognized that the trophic factor combinations can comprise one or more antimicrobial polypeptides (e.g., a defensin such as BNP-1). The trophic factor combinations described below can also comprise one or more trophic factors above. Accordingly, in some preferred embodiments, the trophic factor combination is supplemented with one or more of the following trophic factors: trehalose (Sigma, St. Louis Mo.; e.g., about 15 mM), substance P (Sigma; e.g., about 10 μg/ml), IGF-1 (Collaborative Biologicals; e.g., about 10 ng/ml), EGF (Sigma; e.g., about 10 ng/ml), and BDNF (2 μg/ml). In some preferred embodiments, the trophic factor combination is also supplemented with insulin (1-200 units, preferably 40 units) prior to use. In some embodiments, an antimicrobial polypeptide is not included in the trophic factor combination.

In some exemplary embodiments, EGF and/or IGF-1 are included in the trophic factor combination at a concentration of about 1 ng/ml to about 100 ng/ml, most preferably about 10 ng/ml. In other exemplary embodiments, substance P is included at a concentration of about 0.1 μg/ml to about 100 μg/ml, most preferably about 2.5 μg/ml.

It will be recognized that the Tables below provide formulations that are exemplary and non-limiting. For example, alterations in the specific substances used and the number of those substances are all within the scope of the invention. In some embodiments, the antimicrobial polypeptide and/or substance having an antimicrobial peptide effect and/or one or more trophic factor, are provided in stable form that can be reconstituted. Methods for stabilization include, for example, lyophilization. In embodiments where the antimicrobial polypeptide and/or one or more growth factors are provided in lyophilized form, they can conveniently reconstituted prior to use, for example, in sterile water or in an aliquot of a base medium (e.g., UW solution), prior to addition to a base medium (e.g., hyaluronic acid, UW solution).

Alternatively, the at least one microbial polypeptide and/or one or more trophic factor can be provided as a separate composition (i.e., a “bullet”) that is added to a base medium. In preferred embodiments, the bullet contains an antimicrobial peptide and/or a substance having an antimicrobial peptide effect and/or one or more trophic factor as described above. In some embodiments, the bullet contains an antimicrobial peptide and/or a substance having an antimicrobial peptide effect and/or one or more of the trophic factor as described above in concentrations that provide the appropriate concentration when added to a specific volume of the base medium, where used.

TABLE 3a Component Type Substance Antimicrobial peptide BNP-1

TABLE 3b Component Type Substance Antimicrobial peptide BNP-1 Growth factor IGF-1

TABLE 3c Component Type Substance Antimicrobial peptide BNP-1 Neuropeptide Substance P

TABLE 3d Component Type Substance Antimicrobial peptide BNP-1 Neurotrophin BDNF

TABLE 3e Component Type Substance Antimicrobial peptide BNP-1 Growth factor IGF-1 Neuropeptide Substance P

TABLE 3f Component Type Substance Antimicrobial peptide BNP-1 Growth factor IGF-1 Neurotrophin BDNF

TABLE 3g Component Type Substance Antimicrobial peptide BNP-1 Neuropeptide Substance P Neurotrophin BDNF

TABLE 3h Component Type Substance Antimicrobial peptide BNP-1 Growth factor IGF-1 Neuropeptide Substance P Neurotrophin BDNF

It is contemplated that the trophic factor combination can be provided in a pre-formulated form, such as in a kit format. The kit can include (1) at least one of an antimicrobial peptide and a substance having an antimicrobial peptide effect and (2) a neurotrophin. The kit can also include a viscous substance. At least one of a growth factor and a neuropeptide can also be included.

II. Uses of Trophic Factor Combinations and Their Individual Components

It is contemplated that the trophic factor combinations and their individual components described above may be utilized in a variety of procedures related to injury to the nervous system and other medical procedures. It is contemplated that the trophic factor combinations and their individual components can be used for the treatment of any part of the nervous system, including the central nervous system and the peripheral nervous system.

In one embodiment, the trophic factor combinations or one or more of their individual components are used during surgery of the disc and/or other portions of the nervous system. In an embodiment, a trophic factor combination or one or more of their individual components applied to surgical hardware and/or other implants, such as surgical screws, plates, pins, clamps, wires, pins, rods, nails, probes, spinal fixation devices, and the like. In another embodiment, a trophic factor combination or one or more of their individual components is applied directly during surgery, such as to a surgical opening, for example, an incision, a section, or any other opening. In one embodiment, a trophic factor combination or one or more of their individual components is applied to one or more tissue, nerve, organ, or cavity. A trophic factor combination or one or more of their individual components can also be applied to a surgical instrument such that when the instrument is used, the trophic factor combination or one or more of their individual components is delivered to injury and/or surrounding tissue, fluid, organ, and the like.

In use, an injury to the nervous system is identified. At least one component of the trophic factor combination is applied to the injury to the nervous system.

In some embodiments, the trophic factor combinations can be utilized to reduce body weight loss post injury in injured animals treated with the combination when compared to injured animals not treated with the trophic factor combination. Preferably, the decrease in loss of body weight is improved by at least 25% and more preferably by at least 50% as compared to animals not receiving the trophic factor combination. In some embodiments, the trophic factor combinations are used to strengthen motor recovery in injured animals treated with the trophic factor combination when compared to injured animals not treated with the trophic factor combination. In some embodiments, the trophic factor combinations are used to increase evoked potential amplitudes in injured animals treated with the trophic factor combination when compared to injured animals not treated with the trophic factor combination. In some embodiments, the trophic factor combinations are used to lower the current required to evoke a response (threshold current) in injured animals treated with the trophic factor combination when compared to injured animals not treated with the trophic factor combination. Application of the trophic factor combination according to the invention can also have at least one of the following additional effects: reduced pain in the animal, a neuroprotective effect, triggered neuronal plasticity, reduced inflammation, and growth of new cells.

EXAMPLES

The following examples serve to illustrate certain preferred embodiments and aspects of the present invention and are not to be construed as limiting the scope thereof.

Example 1

Materials and Methods

Experiments were performed on 3-5 month old male Sprague-Dawley (SD) and Lewis rats that were housed individually with free access to food and water. Rats were placed into four groups: 1) spinally injured SD rats without a trophic factor combination administered (n=8), 2) spinally injured SD rats with a trophic factor combination (n=2); 3) spinally injured Lewis rats without a trophic factor combination administered (n=5), and 4) spinally injured Lewis rats with a trophic factor combination administered (n=2).

Spinal cord injury. Rats were anesthetized with medetomidine (75 μg/kg i.m.) and isoflurane in oxygen. After oro-tracheal intubation, anesthesia was maintained with isoflurane in oxygen and rats were mechanically ventilated. A laminectomy was made at the second cervical vertebral level to allow the second cervical spinal segment and the cranial segment of the third cervical spinal segment to be exposed. A 1-mm-long left-sided hemisection was made in the cranial segment of C2 and the section aspirated with a fine tipped glass pipette. The surgical wound was closed using standard techniques. All animals were allowed to recover and received atipamezole (0.1 mg/kg i.v.) to antagonize the anesthetic effects of medetomidine. Buprenorphine (50 μg/kg i.v.) and carprofen (5 mg/kg i.v.) were administered for postsurgical pain control. Analgesics were repeated as required over the next 2 days.

Trophic Factor Combination. The trophic factor combination (also referred to as the trophic factor combination) was made by adding 10 ug of BNP-1 (bactenecin), 100 ng of insulin-like growth factor (IGF-1), and 25 mg of Substance P to 200 ul of distilled water.

Trophic factor combination administration. Prior to closure of the surgical wound, hyaluronic acid (Hylartin V, sodium hyalurate) (10%) was added to the neurotrophin mixture to thicken the solution and improve retention at the site of spinal injury. Two ug of BDNF was added to 0.4-0.45 ml of the mixture. The mixture (0.4-0.45 ml) was then administered using a syringe and 22-gauge needle into the hemisection cavity. The wound was closed immediately after injection.

Experimental preparation. Two weeks after surgical spinal injury, respiratory motor output was measured from both phrenic nerves using two distinct experimental techniques. First, spontaneous (brain-stem driven) phrenic motor activity was measured in anesthetized rats during standardized conditions. Second, spontaneous activity was removed by hyperventilating the rats and evoke potentials were elicited by spinal stimulation to evaluate the strength of the spinal pathways contributing to motor recovery.

Isoflurane anesthesia was induced in a closed chamber and maintained (2.5-3.5%) via nose cone while rats were tracheotomized. Rats were mechanically ventilated following tracheal cannulation. Following femoral venous catheterization rats were converted to urethane anesthesia (1.6 g/kg) then bilaterally vagotomized and paralyzed with pancuronium bromide (2.5 mg/kg, i.v.). Blood pressure was monitored via a femoral arterial catheter and pressure transducer (Gould P231D, Valley View, Ohio). End-tidal CO2 was monitored with a rapidly responding analyzer (Novametrix, Wallingford, Conn.). Arterial partial pressures of O2 (PaO2) and CO2 (PaCO2) as well as pH were determined from 0.2 ml blood samples (ABL-500, Radiometer, Copenhagen, Denmark); unused blood was returned to the animal. Rectal temperature was maintained (37-39° C.) with a heated table. Phrenic nerves were isolated with a dorsal approach, cut distally, desheathed, bathed in mineral oil and placed on bipolar silver electrodes. Nerve activity was amplified (1000-10,000×) and filtered (100-10,000 Hz bandpass; model 1800, A-M Systems, Carlsborg, Wash.).

Spontaneous phrenic motor output. In all rats, the CO2 apneic threshold for inspiratory activity in the phrenic nerve contralateral to hemisection was determined after waiting a minimum of one hour following conversion to urethane anesthesia. This delay allowed blood pressure and respiratory motor output to stabilize. The procedure to establish the apneic threshold began by increasing the ventilator frequency until inspiratory activity ceased. Ventilator rate was then decreased slowly until inspiratory activity re-appeared. The end-tidal CO2 partial pressure (PETCO2) corresponding to the onset of inspiratory bursting was defined as the CO2 apneic threshold. PETCO2 was maintained 3 mmHg above the apneic threshold by adjusting the ventilator pump rate and inspired CO2 content. After the CO2 apneic threshold and baseline PaCO2 levels were established, 30-45 minutes were allowed to attain stable baseline conditions.

Evoked phrenic potentials. Rats were hyperventilated (PaCO2<30 mmHg) to prevent spontaneous inspiratory efforts. A monopolar tungsten electrode (5 MΩ, A-M Systems) was inserted contralateral to the spinal hemisection and adjacent to the C2 dorsal roots. The electrode tip was placed in or in close proximity to the ventrolateral funiculus (1.8-2.3 mm below the dorsal root entry zone). Electrode position was selected by maximizing the amplitude of a short latency (<1.0 ms) evoked potential in the phrenic nerve contralateral to SCI. Stimulus-response relationships were obtained by applying current pulses (20-1000 μA, 0.2 ms duration) with a stimulator (model S88, Grass Instruments, Quincy, Mass.) and stimulus isolation unit (model PSIU6E, Grass Instruments). Phrenic potentials were digitized and analyzed with P-CLAMP software (Axon Instruments, Foster City, Calif.).

Results:

Body Weight. Body weight decreased by 2 weeks post-injury in rats that had received a spinal hemisection (FIG. 1). Decreased body mass may represent disuse atrophy of skeletal muscles or inadequate caloric intake. Reduced food consumption may occur secondary to spinal cord injury because of motor paresis, reduced locomotor coordination, and/or decreased appetite. Spinally injured rats that received the trophic factor combination had significantly less reduction in body weight compared to the control group (FIG. 1).

Spontaneous Phrenic Nerve Activity. Spontaneous recovery of phrenic motor function on the injured side was evident as inspiratory bursts that were in synchrony with phrenic motor activity on the uninjured side. Phrenic motor recovery was present in all spinally injured rats regardless of treatment. However, the magnitude of this recovery differed between groups (FIG. 2). Administration of the trophic factor combination at the time of injury strengthened motor recovery at 2 weeks post-injury as evident by the significantly larger peak inspiratory voltage during baseline recording conditions (FIG. 2). Phrenic peak inspiratory voltage is correlated to tidal volume. Although tidal volume was not measured in these rats, it is reasonable to assume that the increased peak inspiratory voltage would translate to larger tidal volumes in these animals compared to spinally injured rats that did not receive the trophic factor combination.

Evoked Phrenic Nerve Potentials. Evoked potentials were recorded from the phrenic nerve on the side of injury (FIG. 3). Consistent with the effects of treatment on spontaneous phrenic nerve activity data, administration of trophic factor combination at the time of injury significantly increased evoked potential amplitudes compared to rats that only received a spinal injury.

In addition, a strong trend existed for the current required to evoke a response (threshold current) to be lower after trophic factor combination administration compared to the control group (FIG. 4). Collectively, these data suggest that the trophic factor combination strengthens motor recovery via a spinal mechanism that strengthens existing synaptic pathways onto phrenic motoneurons.

Example 2

This study was performed to determine whether application of a trophic factor combination can improve motor function after spinal cord injury (SCI). In this study, the trophic factor combination of Example 1 was applied and included insulin-like growth factor (IGF-1), brain-derived neurotrophic factor (BDNF), bactenesin (BNP-1), and substance P. The trophic factor combination was applied to test whether this combination would augment spontaneous respiratory motor recovery in a well-defined model of high cervical incomplete spinal cord injury (C2 hemisection). The trophic factor combination was applied to the injured spinal cord at the time of surgical injury. At 2 weeks post-injury, respiratory motor output was recorded bilaterally from phrenic nerves in urethane anesthetized, vagotomized, and mechanically ventilated spinally injured Lewis male rats (SCI-only: n=6; SCI+ trophic factor combination; n=6, with some of these rats being the same as the rats in Example 1). Body weight decreased in all rats after injury. However, the change in body weight was significantly less after trophic factor combination treatment (see FIG. 5; p<0.05). Spontaneous recovery of phrenic motor output on the side of injury was present in all rats and represents activation of a latent population of bulbospinal premotor synaptic pathways to ipsilateral phrenic motoneurons that cross the spinal midline caudal to injury. The trophic factor combination increased the amplitude of phrenic inspiratory bursts on the injured side when measured as rectified and moving-averaged voltages and indexed to the maximal amplitude during hypercapnia (see FIG. 5; p<0.05). In contrast, the trophic factor combination did not alter phrenic motor output on the side opposite injury. Thus, combined treatment with the trophic factor combination improves phrenic motor recovery after C2 hemisection by selectively augmenting crossed spinal synaptic pathways.

Example 3

Subtractive studies. Experiments can be performed on rats in accordance with the methods described in Example 2 except that fewer than all four components, i.e., insulin-like growth factor (IGF-1), brain-derived neurotrophic factor (BDNF), bactenesin (BNP-1), and substance P, of the trophic factor combination can be used (except for one or more controls using all four components). Different components can also be used. For example, a different growth factor (and/or neurotrophin and/or neuropeptide and/or antimicrobial peptide) can be used than the one listed above. Studies can also be run using only one component, i.e., either IGF-1, BDNF, BNP-1, or substance P or any other trophic factor to determine the effects of the individual components. Studies can also be performed using combinations of two of the components and using combinations of three of the components to determine whether all four components are needed to achieve the desired results.

Example 4

Experiments can be performed on dogs having herniated discs. Traditionally, many dogs undergo surgical treatment of disc herniation, but no trophic factor combination has been administered during such surgery. Four naïve dogs can be first treated to test for unanticipated common severe negative effects of the trophic factor combination. Once this is done, 50 dogs presenting to the Veterinary Medical Teaching Hospital (VTMH) at the University of Wisconsin with severe spinal cord dysfunction can be tested.

Trophic factor combination. The trophic factor combination can be formulated of insulin like growth factor-1 (IGF-1) (10 ng/ml), substance P (2.5 μg/ml), bactenecin (1 μg/ml) and brain derived neurotrophic factor (BDNF) (2 μg/ml). The factors can be dissolved in a 1% hyaluronic acid solution. The hyaluronic acid is used in order to increase the contact time of the factors with the tissues.

Dogs that are clinical patients. Surgery can be performed under general anesthesia. A hemilaminectomy can be done at the site of the disc herniation. A 22-gauge catheter can be placed through the dura mater and arachnoid membrane and inserted in the subarachnoid space just caudal to the disc herniation. One ml of the trophic factor combination can be injected in the subarachnoid space. The surgery site can be closed routinely.

After recovery from anesthesia, intravenous lactated Ringer's solution and analgesics can be continued until the dog is able to drink on its own and does not appear painful. Neurologic examinations can be done twice a day. The dogs can be discharged to the owner when they are considered not to need pain medication, can urinate on their own, and are eating and drinking. Follow up examinations can be scheduled as appropriate clinically.

Pain or discomfort during surgery can be alleviated by maintenance of a surgical plane of anesthesia and constant rate infusion (CRI) of fentanyl 10 μg/kg/hr. The fentanyl CRI can be continued up to 12 hours post operatively at a dose of 2-5 μg/kg/hr. A Fentanyl Patch (50 mcg/hr, 5 mcg/kg/hr for total of 72 hours) can be administered as a routine postoperative treatment. Butorphanol can be further administered if the dogs demonstrate discomfort and can be given as long as clinical signs of pain, as indicated by abnormal posturing, vocalization, or discomfort upon palpation of the surgical wound site are present.

Immediately after surgery, the dogs can be monitored continuously until the animals are able to drink water on their own sufficient to maintain their hydration. After this recovery period, the animals can be checked a minimum of 3 times daily to determine if they are experiencing pain or discomfort. The dogs can be evaluated by physical exam, neurological exam, and direct palpation of the surgical wound. The dogs can receive routine recumbent care.

Dogs can be monitored post-surgically for cardiovascular stability by physical exam, pulse character, capillary refill time, heart rate, respiratory rate, and packed cell volume, if needed. Fluids can be administered if needed to maintain hydration. Postoperative discomfort can be alleviated by administration of fentanyl CRI (10 μg/kg/hr) during surgery and fentanyl CRI (2-5 μg/kg/hr) after surgery or butorphanol (0.2-0.4 mg/kg/IV or SQ) every 4-6 hours thereafter and a Fentanyl Patch (50 mcg/hr, 5 mcg/kg/hr for total of 72 hours).

Example 5

Safety trial of trophic factor combination on dogs. The toxicity of the trophic factor combination described in Example 4 was tested on dogs. Four beagle dogs were studied over a three-day period. While the dogs were anesthetized, the trophic factor combination described in Example 4 in hyaluronic acid was injected into 1) the lumbar cerebrospinal fluid (2 dogs) and 2) the cisterna magna cerebrospinal fluid (2 dogs). In all four cases, the dogs recovered easily and showed no signs of toxic reactions. There was no evidence for chronic pain on neurological exam. All dogs were euthanized on the third day of the study. In summary, no adverse reactions were observed in any animal.

It is understood that the various preferred embodiments are shown and described above to illustrate different possible features of the invention and the varying ways in which these features may be combined. Apart from combining the different features of the above embodiments in varying ways, other modifications are also considered to be within the scope of the invention.

The invention is not intended to be limited to the preferred embodiments described above, but rather is intended to be limited only by the claims set out below. Thus, the invention encompasses all alternate embodiments that fall literally or equivalently within the scope of these claims.

Claims

1. A composition comprising:

A. an effective amount of at least one of an antimicrobial peptide and a substance having an antimicrobial peptide effect; and
B. an effective amount of a neurotrophin.

2. The composition of claim 1, further comprising an effective amount of at least one of a growth factor and a neuropeptide.

3. The composition of claim 1, further comprising an effective amount of a growth factor.

4. The composition of claim 3, wherein the antimicrobial peptide is BNP-1, the neurotrophin is BDNF, and the growth factor is IGF-1.

5. The composition of claim 1, further comprising an effective amount of a neuropeptide.

6. The composition of claim 5, wherein the antimicrobial peptide is BNP-1, the neurotrophin is BDNF, and the neuropeptide is Substance P.

7. The composition of claim 1, further comprising an effective amount of a growth factor and an effective amount of a neuropeptide.

8. The composition of claim 7, wherein the antimicrobial peptide is BNP-1, the neurotrophin is BDNF, the growth factor is IGF-1, and the neuropeptide is Substance P.

9. The composition of claim 1, wherein the antimicrobial peptide is BNP-1 and the neurotrophin is BDNF.

10. The composition of claim 9, further comprising an effective amount of IGF-1 and an effective amount of Substance P.

11. The composition of claim 1, further comprising a viscous substance.

12. The composition of claim 1, further comprising a matrix.

13. The composition of claim 10, wherein the matrix comprises a hydrogel.

14. A method of treating an injury to a nervous system of an animal, the method comprising:

A. identifying the injury to the nervous system; and
B. applying to the injury an effective amount of at least one of antimicrobial peptide and a substance having an antimicrobial peptide effect.

15. The method of claim 14, wherein the at least one of an antimicrobial peptide and a substance having an antimicrobial peptide effect is combined with an effective amount of one or more trophic factors selected from the group consisting of a growth factor, a neurotrophin, and a neuropeptide.

16. The method of claim 14, wherein the injury to the nervous system comprises a spinal cord injury.

17. The method of claim 14, wherein the applying step produces an effect on the animal, the effect selected from the group consisting of reduced pain, neuronal plasticity, a neuroprotective effect, reduced body weight loss, increased motor recovery, increased evoked potential amplitudes, and lowered threshold current.

18. A kit comprising:

A. at least one of an antimicrobial peptide and a substance having an antimicrobial peptide effect; and
B. a neurotrophin.

19. The kit of claim 18, further comprising a viscous substance.

20. The kit of claim 18, further comprising at least one of a growth factor and a neuropeptide.

Patent History
Publication number: 20070207209
Type: Application
Filed: Aug 29, 2005
Publication Date: Sep 6, 2007
Inventors: Christopher Murphy (Madison, WI), Jonathan McAnulty (Oregon, WI), Gordon Mitchell (Madison, WI), Francis Golder (Stoughton, WI)
Application Number: 11/214,372
Classifications
Current U.S. Class: 424/484.000; 514/12.000
International Classification: A61K 38/18 (20060101); A61K 38/17 (20060101); A61K 9/14 (20060101);