Dual depth shallow trench isolation and methods to form same
Trench isolation structures and methods to form same for use in the manufacture of semiconductor devices are described. The trench isolation structures are formed using several processing schemes that utilize disclosed dry etching processes to form a significant depth A between an array trench depth and a periphery trench depth. One etching method creates a trench delta depth utilizing a single dry etch step, while two other etching methods create a trench A depth by utilizing three dry etch steps.
Latest Patents:
This invention relates to semiconductor fabrication processing and, more particularly, to fabrication methods for forming dual depth trench isolation in semiconductor devices, such as semiconductor flash memory devices.
BACKGROUND OF THE INVENTIONSemiconductor devices, such as memory devices, use field effect transistors (FETs) to create the integrated circuits required during the fabrication of complimentary metal oxide semiconductor (CMOS) devices on a semiconductor wafer or other substrate. The fabrication of CMOS devices require advanced isolation techniques to create isolation between neighboring FETs.
One conventional isolation technique known as shallow trench isolation (STI) is used where a trench is etched into a silicon substrate and the trench is filled with an oxide insulator material and planarized. The STI then functions as isolation between subsequently formed FETs and provides many desirable circuit device properties.
However, the current STI techniques also possess some disadvantages. For example,
Accordingly, STI formation techniques are needed that will improve the electrical property of CMOS devices and also reduce production costs.
BRIEF DESCRIPTION OF THE DRAWINGS
In the following description, the terms “wafer” and “substrate” are to be understood as a semiconductor-based material including silicon, silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) technology, doped and undoped semiconductors, epitaxial layers of silicon supported by a base semiconductor foundation, and other semiconductor structures. Furthermore, when reference is made to a “wafer” or “substrate” in the following description, previous process steps may have been utilized to form regions or junctions in or over the base semiconductor structure or foundation. In addition, the semiconductor need not be silicon-based, but may be based on silicon-germanium, silicon-on-insulator, silicon-on-sapphire, germanium, or gallium arsenide, among others.
Exemplary implementations of the present invention directed to processes for forming trench isolation between active devices in a semiconductor assembly, such as a flash memory device, are depicted in
A first exemplary implementation of the present invention is depicted in
Next, a dry etch step of the present invention is performed to create the desired trench depth in array section 21 and periphery section 22 which also results in a desirable trench A depth 30 (the difference between depths of array trenches 23 and periphery trenches 24). As an example, in the first exemplary implementation of the present invention, the designed dry etch process was operated at 5-90 mTorr, 300-900 W top RF power plasma etcher (to create plasma), 100-500 W bottom RF power (to create a bias voltage to direct ions to the substrate), using an etch chemistry of HBr/Cl2/CH2F2, having a flow ratio of approximately 12:2:(3-5), applied in an RF plasma etcher, such as a Transformer Coupled Plasma (TCP) etcher chamber.
A preferred exemplary implementation of forming the v-shaped trench the etch process comprised utilizing an RF plasma etcher operated at 30 mTorr+/−10 mTorr, 800 W+/−200 W top RF power, 300 W+/−100 W bottom RF power, using an etch chemistry of HBr/Cl2/CH2F2 having a flow of HBr: 120 sccm+/−20 sccm, Cl2: 25 sccm+/−10 sccm, CH2F2: 30 sccm+/−10 sccm. The preferred etch to form the v-shaped trench allows for various combinations of the etching parameters to achieve the desired result of a v-shaped trench, that becomes self-limiting as the base of the trench basically causes this etch to stop at the tip of the v-shaped trench (defined as the vortex of the v-shaped trench).
In the above example, trench Δ depth 30 of approximately 2120 Å is obtained with an etching time of approximately 35-52 seconds. A main advantage provided by the designed etch is the fact that the trench Δ depth between the periphery and the array is controllable.
A major significance of obtaining a substantial trench Δ depth (2120 Å in this example, but again the Δ depth is controllable) will improve the electrical property in a neighboring periphery and array active device, as in the periphery the active device, having a thicker gate oxide (approximately 350 Å, compared to approximately 75 Å gate oxide thickness for the array active device), is activated by a high voltage of approximately 20V and thus requires better isolation, which is provided by the trench depth in the periphery as developed by the present invention.
Finally, as further depicted in
This exemplary implementation of the present invention takes advantage of the pad oxide thickness difference by first using a dry etch step to form array trenches 45 and periphery trenches 46 into polysilicon material 44. The etch stops in the array section before clearing the polysilicon material at the base of the array trenches 45, but clears the polysilicon material at the base of the periphery trench 46 and stops on pad oxide layer 43 in the periphery section. This etch is a conventional dry etch know to one skilled in the art, such as a general dry etch process operated at 5-50 mTorr, 300-900 W top RF power, 50-500 W bottom RF power, using an etch chemistry of CF4/He/CH2F2 with a flow ratio of 2:4:(0-1) that is applied in an RF plasma etcher.
Referring now to
As an example, in the second exemplary implementation of the present invention the dry etch process was operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of O2/He/CH2F2 having a flow ratio of approximately 3:7:60, applied in an RF plasma etcher.
A following etch step with a plasma chemistry of high selectivity between silicon to oxide, which would stop on oxide layer 43 or etch very slowly through the oxide layer 43 in array section while etching into the silicon substrate much faster in trench 46 at periphery section. This selective etch step would clear polymer 50 deposited earlier at the bottoms of both the array and periphery trenches. For example, in the array section, at array trench 45, the etch would clear polymer 50 from the bottom and then etch into polysilicon, but would stop or etch through the oxide layer 43 much slower then it etches the silicon substrate in the periphery section at periphery trench 46 (due to the chemistry etching silicon at a much higher rate than oxide). The side wall polymer 50 at both array and periphery would be consumed slowly since the dry etch process has a relatively lower etch rate in lateral direction than in vertical direction.
Referring now to
Referring now to
As an example, in the third exemplary implementation of the present invention the designed dry etch process was operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/Cl2/CH2F2, having a flow ratio of approximately 12:2:(3-5), applied in an RF plasma etcher. In this example, trench Δ depth bias between the array and the periphery becomes controllable without the need of another mask step as the array trenches 83 will become pinched off with polymer 90 while the periphery trench 84 will continue to be etched deeper into silicon substrate 80.
In each exemplary implementation of the present invention, the approximation of the flow ratio of each etching chemistry may vary by 20 to 50%. Finally, in each exemplary implementation of the present invention, the semiconductor device is completed using conventional fabrication processes know to one skilled in the art.
The flash memory device 122 reads data in the memory array 123 by sensing voltage or current changes in the memory array columns using sense/latch circuitry 128. Data input and output buffer circuitry 129 is included for bi-directional data communication over a plurality of data connections 130 with processor 121. Write circuitry 131 is provided to write data to memory array 123. Command control circuitry 132 decodes signals provided on control connections 133 from processor 121. These signals are used to control the operations of the flash memory device 122, including data read, data write and erase operations. The flash memory device illustrated has been simplified to facilitate a basis understanding thereof. A more detailed understanding of the internal circuitry and functions of flash memory devices are known to those skilled in the art.
It is to be understood that although the present invention has been described with reference to several preferred embodiments, various modifications, known to those skilled in the art, may be made to the process steps presented herein without departing from the invention as recited in the several claims appended hereto.
Claims
1. A fabrication process for forming dual depth trenches in a semiconductor memory device, the fabrication process comprising:
- forming array trenches and periphery trenches into a semiconductor substrate by performing an etch process having a single dry etch step and which sets a side wall slope at the base of the array trenches to obtain a desired array trench depth and a desired the periphery trench depth so that the array trenches will close off at the base of the array trenches and the periphery trenches continue to be etched so that a trench Δ depth between the array trench depth and the periphery trench depth is obtained during the single dry etch step.
2. The fabrication process as recited in claim 1, wherein the etch process comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/Cl2/CH2F2 having a flow ratio of 12:2:(3-5).
3. The fabrication process as recited in claim 1, wherein the etch process comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/Cl2/CH2F2 having a flow ratio of approximately 12:2:(3-5), the flow ratio varying by 20%.
4. The fabrication process as recited in claim 1, wherein the etch process comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/Cl2/CH2F2 having a flow ratio of approximately 12:2:(3-5), the flow ratio varying by 50%.
5. The fabrication process as recited in claim 1, wherein the etch process comprises utilizing an RF plasma etcher operated at 30 mTorr+/−10 mTorr, 800 W+/−200 W top RF power, 300 W+/−100 W bottom RF power, using an etch chemistry of HBr/Cl2/CH2F2 having a flow of HBr: 120 sccm+/−20 sccm, Cl2: 25 sccm+/−10 sccm, CH2F2: 30 sccm+/−10 sccm.
6. A fabrication process for forming dual depth trench isolation in a semiconductor memory device, the fabrication process comprising:
- forming array trenches and periphery trenches into a semiconductor substrate by performing an etch process comprising a single dry etch step which sets the side wall slope at the base of the array trenches to obtain a desired array trench depth and a desired the periphery trench depth so that the array trenches will close off at the base of the array trenches and the periphery trenches continue to be etched so that a trench Δ depth between the array trench depth and the periphery trench depth is obtained during the single dry etch step; and
- filling the array trenches and the periphery trenches with an isolation material.
7. The fabrication process as recited in claim 6, wherein the etch process comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/Cl2/CH2F2 having a flow ratio of 12:2:(3-5).
8. The fabrication process as recited in claim 6, wherein the etch process comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/Cl2/CH2F2 having a flow ratio of approximately 12:2:(3-5), the flow ratio varying by 20%.
9. The fabrication process as recited in claim 6, wherein the etch process comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/Cl2/CH2F2 having a flow ratio of approximately 12:2:(3-5), the flow ratio varying by 50%.
10. The fabrication process as recited in claim 6, wherein the etch process comprises utilizing an RF plasma etcher operated at 30 mTorr+/−10 mTorr, 800 W+/−200 W top RF power, 300 W+/−100 W bottom RF power, using an etch chemistry of HBr/CL2/CH2F2 having a flow of HBr: 120 sccm+/−20 sccm, Cl2: 25 sccm+/−10 sccm, CH2F2: 30 sccm+/−10 sccm.
11. A fabrication process for forming dual depth trenches in a semiconductor memory device, the fabrication process comprising:
- performing a first dry etch step to form array trenches and periphery trenches into a semiconductor substrate having a pad oxide formed thereon, the pad oxide being thicker in a periphery section than in an array section, the first dry etch step stopping in the array section before clearing a silicon material at the base of the array trenches, and clearing a silicon material at the base of the periphery trench and stopping on the pad oxide in the periphery section;
- performing a second dry etch to selectively etch the pad oxide at the bottom of periphery trench while in turn depositing a polymer on the sidewalls of silicon surfaces of the periphery trenches while depositing a polymer on the sidewalls and on the bottom of array trenches; and
- performing a third dry etch to remove the polymer from the sidewalls of array trenches and periphery trenches while etching into the semiconductor substrate in the array section and the periphery section to achieve a desired trench depth in the array section and a desired trench depth the periphery section, thus creating a desired trench Δ depth between the array trench depth and the periphery trench depth.
12. The fabrication process as recited in claim 11, wherein the second dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of O2/He/CH2F2 having a flow ratio of 3:7:60.
13. The fabrication process as recited in claim 11, wherein the second dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of O2/He/CH2F2 having a flow ratio of approximately 3:7:60, the flow ratio varying by 20%.
14. The fabrication process as recited in claim 11, wherein the second dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of O2/He/CH2F2 having a flow ratio of approximately 3:7:60, the flow ratio varying by 50%.
15. The fabrication process as recited in claim 11, wherein the third dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/O2/He having a flow rate of approximately 20:(0-3):5.
16. A fabrication process for forming dual depth trench isolation in a semiconductor memory device, the fabrication process comprising:
- performing a first dry etch step to form array trenches and periphery trenches into a semiconductor substrate having a pad oxide formed thereon, the pad oxide being thicker in a periphery section than in an array section, the first dry etch step stopping in the array section before clearing a silicon material at the base of the array trenches, and clearing a silicon material at the base of the periphery trench and stopping on the pad oxide in the periphery section;
- performing a second dry etch to selectively etch the pad oxide at the bottom of periphery trench while in turn depositing a polymer on the sidewalls of silicon surfaces of the periphery trenches while depositing a polymer on the sidewalls and on the bottom of array trenches;
- performing a third dry etch to remove the polymer from the sidewalls of array trenches and periphery trenches while etching into semiconductor substrate in the array section and the periphery section to achieve a desired trench depth in the array section and a desired trench depth the periphery section, thus creating a desired trench Δ depth between the array trench depth and the periphery trench depth; and
- filling the array trenches and the periphery trenches with an isolation material.
17. The fabrication process as recited in claim 16, wherein the second dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of O2/He/CH2F2 having a flow ratio of 3:7:60.
18. The fabrication process as recited in claim 16, wherein the second dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of O2/He/CH2F2 having a flow ratio of approximately 3:7:60, the flow ratio varying by 20%.
19. The fabrication process as recited in claim 16, wherein the second dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of O2/He/CH2F2 having a flow ratio of approximately 3:7:60, the flow ratio varying by 50%.
20. The fabrication process as recited in claim 16, wherein the third dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/O2/He having a flow rate of approximately 20:(0-3):5.
21. A fabrication process for forming dual depth trenches in a semiconductor memory device, the fabrication process comprising the steps of:
- performing a first dry etch step to etch array trenches and a periphery trench into a silicon substrate to a desired depth;
- performing a second dry etch is performed to increase the depth of the array trenches and the periphery trench while depositing a polymer on the sidewalls of the array trenches and the sidewalls of the periphery trench and covering the bottom of the array trenches but not the bottom of periphery trench to create a desired trench Δ depth between the array trench depth and the periphery trench depth; and
- performing a third etch step to remove any remaining polymer deposited in the bottom of the array trenches and to remove any induced kinks from the sidewall of the periphery trenches.
22. The fabrication process as recited in claim 21, wherein the second dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/CL2/CH2F2 having a flow ratio of 12:2:(3-5).
23. The fabrication process as recited in claim 21, wherein the second dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/CL2/CH2F2 having a flow ratio of approximately 12:2:(3-5), the flow ratio varying by 20%.
24. The fabrication process as recited in claim 21, wherein the second dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/CL2/CH2F2 having a flow ratio of approximately 12:2:(3-5), the flow ratio varying by 50%.
25. The fabrication process as recited in claim 21, wherein the third dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of CF4/He/NF3 having a flow ratio of approximately 10:12:(1-2).
26. The fabrication process as recited in claim 21, wherein the third dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of CF4/He/NF3 having a flow ratio of 10:12:(1-2).
27. The fabrication process as recited in claim 21, wherein the third dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of CF4/He/NF3 having a flow ratio of 10:12:(1-2), the flow ratio varying by 20%.
28. The fabrication process as recited in claim 21, wherein the third dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of CF4/He/NF3 having a flow ratio of 10:12:(1-2), the flow ratio varying by 50%.
29. A fabrication process for forming dual depth trenches in a semiconductor memory device, the fabrication process comprising the steps of:
- performing a first dry etch step to etch array trenches and a periphery trench into a silicon substrate to a desired depth;
- performing a second dry etch is performed to increase the depth of the array trenches and the periphery trench while depositing a polymer on the sidewalls of the array trenches and the sidewalls of the periphery trench and covering the bottom of the array trenches but not the bottom of the periphery trench to create a desired trench Δ depth between the array trench depth and the periphery trench depth;
- performing a third etch step to remove any remaining polymer deposited in the bottom of the array trenches and to remove any induced kinks from the sidewall of the periphery trench; and
- filling the array trenches and the periphery trenches with an isolation material.
30. The fabrication process as recited in claim 29, wherein the second dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/Cl2/CH2F2 having a flow ratio of 12:2:(3-5).
31. The fabrication process as recited in claim 29, wherein the second dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/Cl2/CH2F2 having a flow ratio of approximately 12:2:(3-5), the flow ratio varying by 20%.
32. The fabrication process as recited in claim 29, wherein the second dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of HBr/Cl2/CH2F2 having a flow ratio of approximately 12:2:(3-5), the flow ratio varying by 50%.
33. The fabrication process as recited in claim 29, wherein the third dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of CF4/He/NF3 having a flow ratio of 10:12:(1-2).
34. The fabrication process as recited in claim 29, wherein the third dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of CF4/He/NF3 having a flow ratio of 10:12:(1-2), the flow ratio varying by 20%.
35. The fabrication process as recited in claim 29, wherein the third dry etch step comprises utilizing an RF plasma etcher operated at 5-90 mTorr, 300-900 W top RF power, 100-500 W bottom RF power, using an etch chemistry of CF4/He/NF3 having a flow ratio of 10:12:(1-2), the flow ratio varying by 50%.
36. Dual depth trenches in a semiconductor memory device comprising:
- array trenches and periphery trenches in a semiconductor substrate, the array trenches having sloped sidewalls that terminate at a v-shaped vortex; and
- the periphery trenches having a depth greater than the array trenches.
37. Dual depth isolation structures in a semiconductor memory device comprising:
- array isolation structures and periphery isolation structures in a semiconductor substrate, the array isolation structures having sloped sidewalls that terminate at a v-shaped vortex; and
- the periphery isolation structures having a depth greater than the array isolation structures.
Type: Application
Filed: Apr 20, 2006
Publication Date: Oct 25, 2007
Applicant:
Inventors: Xiaolong Fang (Boise, ID), Ramakanth Alapati (Boise, ID), Tuman Allen (Kuna, ID)
Application Number: 11/409,356
International Classification: H01L 29/00 (20060101); H01L 21/762 (20060101);