High Resolution Analytical Probe Station
A method and system for probing with electrical test signals on an integrated circuit specimen using a high resolution microscope positioned for observing a surface of the specimen exposing electrically conductive terminals thereon. A housing is provided with a carrier therein for supporting the specimen in relation to the microscope and a probe assembly is positionable on the surface of the specimen for conveying and acquiring electrical test signals to and from the specimen. A drive system is provided for shifting at least one of the probe and the carrier to a predetermined test position. In one form the system has a heat shield for protecting one of the probe assembly and the carrier from heat energy generated upon operation of the drive system, and in another form, the system has an environmental control for maintaining a desired temperature within the housing so that accurate measurements may be taken from the specimen.
Latest THE MICROMANIPULATOR COMPANY, INC. Patents:
This application is a divisional of prior application Ser. No. 10/816,114, filed Apr. 1, 2004, now U.S. Pat. No. 7,180,317, which is a divisional of prior application Ser. No. 10/119,346, filed Apr. 8, 2002, now U.S. Pat. No. 6,744,268, which is a continuation-in-part of prior application Ser. No. 09/774,249, filed Jan. 30, 2001, now U.S. Pat. No. 6,621,282, which is a continuation of prior application Ser. No. 09/527,874, filed Mar. 17, 2000, now U.S. Pat. No. 6,191,598, which is a continuation of prior application Ser. No. 09/140,910, filed Aug. 28, 1998, now U.S. Pat. No. 6,198,299, which are hereby incorporated herein by reference in their entirety.
BACKGROUND OF THE INVENTIONThe invention relates in general to the use of high resolution microscopy probe stations, and particularly to methods and system for probing with electrical test signals on integrated circuit (IC) specimens using a scanning electron microscope (SEM) positioned for observing the surface indicia of the specimen identifying the electrically conductive terminals for the positioning of the probes.
Presently, probe stations typically employ optical microscopes. Although the diameters of wafers are getting larger, the structures constructed on and in those wafers are getting smaller. In the past several decades, the industry has driven the size of these structures from large sizes on the order of hundredths of an inch to small fractions of micrometers today. Until recently, most structures could be observed by normal high magnification light microscopes and probed. However, modern structures have now achieved a size that no longer allows viewing with standard light microscopes. With the industry integrated circuit design rules driving towards 0.18 micron features and smaller, most advanced optical light microscopes cannot be relied upon to accurately identify the electrically conductive terminals from the conductive path indicia of the surface of the integrated circuit specimens under test. Additionally, when viewing very small features on a specimen, the optical microscope lens often must be positioned so close to the specimen that it may interfere with the test probes.
Another approach is necessary in addition to optical microscopy if the industry is to continue to probe these structures, which is surely needed. It would be desirable therefore to provide a probe station which can visualize and probe features not typically visible under even the most advanced light microscope, that can be used in conjunction with electron optics while maintaining the features typically found on optical microscope probe stations.
SUMMARY OF THE INVENTIONBriefly summarized, the present invention relates to a method and system for probing with electrical test signals a specimen using high resolution microscopy, such as a scanning electron microscope (SEM) or a Focus Ion Beam (FIB) system, positioned for observing a surface of the specimen to identify locations of electrically conductive terminals on the specimen. In a preferred form, a carrier is provided for supporting the specimen in relation to the scanning electron microscope while a controller, such as a computer, acquires an image identifying conductive path indicia of the surface of the specimen from the scanning electron microscope. The carrier may be anyone of a number of items known to one of ordinary skill in the art, such as a chuck (e.g., ambient, thermal, triaxial, etc.), a probe card adapter and probe card, a socket stage adapter, etc.
Motorized manipulators can be automatically controlled by the computer, or manually by the operator using a joystick or the like, to precisely position associated probes on or near the surface of the specimen for acquiring and conveying electrical test signals inside a vacuum chamber inner enclosure which houses at least a portion of the scanning electron microscope, the carrier, the motorized manipulators and probes for analyzing the specimen in a vacuum. A feedthrough or electrical connector mounted to the vacuum chamber allows for the computer to be electrically interconnected to the motorized manipulators and their associated probes in the sealed enclosure and can provide access to the internal vacuum chamber for additional wiring and conduits. The computer communicates with the motorized manipulators for positioning the probes thereof, and for acquiring and applying electrical test signals from and/or to the terminals on the specimen using the image acquired by the computer to identify the electrically conductive terminals from the conductive path indicia of the surface of the specimen observed with the scanning electron microscope.
The computer includes a display which shows a viewer an enlarged view of the surface of the specimen being probed. A cursor indicates the selected location or test site on the specimen at which test signals are transferred to and from the probe. In this manner, an operator can change selected test locations via on-screen manipulation of the cursor, as by a mouse or other computer interface control. Moving the cursor causes the relative position between the probe and the specimen surface to shift under software control so that the probe is oriented at the selected test site. To this end, the software is programmed to operate actuators of the probe assemblies and/or the carrier on which the specimen is affixed for precision shifting thereof to position the probe at the selected test site. Accordingly, with a mouse, an operator can click on the cursor, and drag it across the screen to the desired conductive path indicia location or terminal they desire to test.
To improve low current testing accuracy, the preferred probing system is highly flexible in allowing for different guarding and/or shielding schemes to be employed throughout substantially every level of its operating components. For example, the probe station housing can be separated into two electrically isolated outer and inner portions each having conductive walls so that the inner portion can be driven to the same potential as the signal applied to the specimen to assist in isolating the testing area from noise and other environmental interference and the outer portion can be grounded to reduce the risk of electrical shock to probe station users. The probes and chuck can be wired in a similar configuration to further isolate the testing area from noise and interference. Further, locations of the electrical interconnects can be selected to minimize lengths of wiring runs from the chamber walls to the operating components, e.g., probe and chuck and their actuators or motors.
To compensate for the sources of heat and radiation of heat within the vacuum chamber, the drive mechanisms of the system are constructed of heat insulating materials having low coefficients of thermal expansion to insulate components of the drive mechanisms from heat and unwanted movement or drift caused by thermal expansion, and have radiation shields for deflecting heat or energy from the motors of the drive systems toward the housing walls which are better equipped to handle the buildup of heat due to their proximity to the outer atmosphere.
In other aspects, the probes can include extended cladding to minimize the amount of unwanted insulator charging. A touchdown sensing mechanism can be utilized to reduce the risk of damage to the specimen caused by excessive force applied thereto by probe engagement. The duty cycle of the high resolution microscope is preferably reduced as by a shuttering system. In this way, damage done to the DUT via the beam of the microscope is minimized.
BRIEF DESCRIPTION OF THE DRAWINGS
Referring to the drawings and especially to
As shown in
A vacuum chamber 26 shown in perspective views in
The chamber size of the inner enclosure 27 is dependent upon the type of probing required. A relatively small chamber is needed for small sample probing. Small samples are likely packaged parts or wafer fragments. For wafer level probing, the chamber size has to be much larger to accommodate wafer stage translations up to 300 mm and larger. The chamber is approximately 23″ inner diameter×10″ deep. This allows for a 6″ wafer chuck having less than an inch of travel in the X and Y directions. It also allows for up to six (6) programmable manipulators having at least 50 nm resolution and 0.5 inches of travel in all axis. The footprint of the system is approximately 3′×3′×5′ which includes all of the electronics and pumping facilities required.
The system 10 is built upon a vibration isolation table provided by Kinetics Systems, which may be supplied by a variety of manufacturers. The design of this table system is customized to accommodate the vacuum chamber, which resides above and below the tabletop surface. This arrangement is made to allow easy access to the prober without having to work much above normal tabletop height. In the embodiment shown, a lift mechanism 29, which is either pneumatically or hydraulically driven, is employed to raise and lower the chamber top 28. Further, all of the hardware services needed for the system to function are integrated into the table leg area.
The chamber wall 27 has feedthroughs welded to it which provide flanged access for the needed cabling to both operate the programmable functions of the system as well as provide for signal paths to the surface of chuck 14, individual probe contacts 24, and probe card signals (not shown). A thermal chuck 14 may be employed within the system chamber. The chamber floor 13 also has feedthroughs welded to it with flanged access to attach a means for pulling a vacuum in the chamber as well as additional feedthrough ports for interconnection requirements, discussed below. Thus, the system 10 is well suited for low noise and low current testing when fitted with the described interconnection hardware and instrumentation.
A Model 900VM manipulator, manufactured by The Micromanipulator Company, Inc., Carson City, Nev., is designed to meet the needs of “hands-off” operation and programmable probe applications. The manipulators 18-23 are motorized in the X, Y and Z axes. The Z axis positioning is aided by manual, coarse positioning allowing compensation for various probe holders and probe station systems, which may be operated in a fully programmable or motorized-only (e.g., joystick control) mode depending upon the choice of control system. The Model 900VM manipulator accepts all standard probe holders in disposable tip or integrated tip models.
At 0.05 microns, the Model 900VM manipulators offer very high manipulator resolution. This resolution is attainable with either motorized (e.g., joystick) or programmable control. The 900VM also features a wide range of probe holder “Z” positioning settings, an indexed rotational nosepiece, fast manual “Z” lift for fast probe tip changes and a stable vacuum base with quick release. The model 900VM may be used with joystick only control (REM version) or with external computer control using pcProbe™ software discussed below.
A feedthrough is provided on the vacuum chamber 26 for coupling electrical signals, (e.g., via a computer bus 28), from the computer system 16 to the motorized manipulators 18-23, stage 14, and the plurality of probes 24. The feedthroughs used are provided by PAVE Technology Co., Inc. and others that include signal, positioner, and probe card connection interconnects which fall into either of two categories. The first category includes those interconnects provided for device under test (DUT) 50 test signal handling capabilities. These can be, but are not limited to single pin jack, coax, triax, SMA, and UMC connections. Further, with fixed position probe card usage, all mentioned feedthroughs may be used together plus many others meant to handle large quantities of leads. The second category are those interconnects which are dedicated to providing control signals to all of the prober functions needed. A typical axis of control may require seven leads for motor step and direction as well as limits controls with respect to travel.
Further, additional leads may be used where position feedback is employed. For example, Kelvin probes and probe holder configurations can be adapted to this application. These would require double the number of signal leads. The computer system 16 communicates with the motorized manipulators 18-23 for positioning the plurality of probes 24 for applying the electrical test signals to the terminals on the specimen 50 using the image acquired by the computer system 16 to identify the electrically conductive terminals from the conductive path indicia of the surface of the specimen 50 observed with the scanning electron microscope 12.
As described, the probe station system 10 positions the scanning electron microscope 12 for observing a surface of the specimen 12 for positioning the probes 24. The system 10 provides means for supporting the specimen 50 which include the carrier/motion control 14 and a chuck for supporting the specimen 50. The fully configured prober with chuck, probe card adapter, six or more programmable manipulators, stage and platen translation and measurement signal paths could require one hundred and twenty-six (126) or more feedthrough connections for the system requirements. At least five signal paths are used for stage surface and probes, and as many as are needed are used for probe card based connections. Kelvin probes and probe holder configurations may double the number of interconnections.
With reference to
With the SEM embodiment of system 10 described above, hot cathode electron emitter techniques may be used, however an alternate embodiment of the system 10 may use field emission, as discussed above. Field emission provides improved image quality with much less potential for damaging the specimen 50.
Within the chamber 26, there is a motorized X-Y prober platform 46 which will support all of the normal prober functions as described below. The purpose of this platform 46 besides being a support structure is that of translating all of the prober functions in unison to simulate the typical microscope translation found on most probing stations today. The X/Y translation provided by the platform 46 facilitates large area DUT 50 viewing without disturbing the probes 24. Since the microscope column 12 cannot move easily independent of the stage, platen 25, and manipulators 18-23, moving the platform allows the user to scan the DUT 50 for sites to probe or to check the position of each probe or all of the probes provided by a probe card, which is an approach unique to this function.
Below the platform 46 and between the platform and the bottom of the chamber 26 is a mechanism used for tilting the platform in the “Z” direction vertically with the motorized tilt axis 15. This mechanism allows the platform 46 to be tipped or tilted along either the “X” or “Y” axis to allow the user to observe the probe 24 making contact with the DUT 50 from an angle other than vertical. The motorized tip and tilt functions improve the probe-viewing angle. This aids the user in “seeing” touchdown of the probes 24 on the DUT 50 on very small DUT structures. Thus, the tip/tilt functions provided by the motorized tilt axis 15 with the platen 25 allows vertical movement for alternate views of the probes 24 and probe positioning on the specimen 50.
Attached to the platform is an X-Y stage 17 with Theta adjust provided for the stage 17 for the chuck 14. Also attached to the platform 46 is the “Z” platen 25 which supports both fixed probe cards and manipulators. The platen is motor driven in the “Z” axis such that either fixed position probe cards and/or single probes may be raised and lowered simultaneously. This controlled motion provides for probe and probe card “Z” positioning. The platen 25 may be used to simultaneously raise the manipulators and move a fixed position probe card which may be used.
The method of DUT 50 attachment to the wafer chuck 14 is by mechanical means because vacuum, as a method of hold down, will not work in a vacuum chamber. Thus a spring clip arrangement which secures the wafer to the chuck is used. The wafer 50 sets into a slight depression with alignment pins for registration with the notches or flats typically found on most wafers today.
The multiple motorized/programmable micromanipulators 18-23 sit on top of the platen 25. The supplied drawings indicate six of these devices. While six is likely a practical limit, any number may be used to direct probes into contact with the DUT as required.
The scanning electron microscope 12 is coupled to the computer system 16 with a scanning electron microscope interface 30, which may be used with CAD navigation software. The computer system 16 thus communicates via the bus 28 to the scanning electron microscope 12 through a SEM interface 30 which includes means for acquiring the image.
The computer system 16 may include a first computer 32, such as a general purpose personal computer (PC) configured as a digital image processor for acquiring the images from the scanning electron microscope 12. The computer system 16 may also include a second computer 34 for remotely controlling the plurality of probes 24 via the motorized manipulators 18-23 which are remotely controlled by the computer 34. Alternatively, the computer system 16 may be a single PC or server which performs control operations for both the prober functions and the microscope functions. The computer system 16 may also include two computers and three monitors. In a prototype version, all of this could be accomplished with a single computer and monitor. It was found however that having two monitors, one for high-resolution viewing and one for all of the system control and navigation functions was advantageous in the described embodiment.
Separate video display units (VDUs) 36 and 38, which may be provided as conventional PC computer monitors, are used for displaying high resolution microscope images and computer graphics relating to the SEM 12 and probes 24, respectively. The VDUs 36 and 38 are used to visually assist a user in remotely controlling the plurality of probes 24 for placement on the specimen 50 by acquiring the images which convey information to the user relating to particular integrated circuit surface indicia corresponding to the exposed electrically conductive terminals of the specimen 50.
The Micromanipulator Company, Inc. pcProbeII™ software (PCPII) is used with a Windows™ based personal computer and provides functions such as auto planarity compensation, auto alignment and setup which automatically guide the occasional user through the process of getting ready to probe. Manual controls 40 (e.g., mouse and/or joystick), are also used by the user to control the plurality of probes 24 being placed on the specimen 50. An electrical test signal probe interface 42 is coupled to the probes 24 for applying the electrical test signals to the specimen 50. Alternatively, the plurality of probes 24 may be provided as a fixed position probe card for applying the electrical test signals to the specimen 50.
The PCPII probe software used with the computer system 16 provides a probe positioning system having control capabilities in the form of a simplified intuitive icon-based tool kit. The PCPII probe software is designed in a modular format allowing for wafer mapping, die and in-die stepping, multiple device navigation options and probe touchdown sensing. The PCPII probe features include on-screen video with an active navigation control, advanced alignment and scaling functions and programming through wafer map, interactive learning and matrix mode. The PCPII probe navigation software supports Windows, DDE, RS-232 and GPIB interfaces. The PCPII probe navigator module provides interactive device management for controlling four or more manipulators 18-23, the platen 25, and the microscope 12.
While analyzing the specimen 50 using the probes, the navigator display shows the position and control information for the active specimen device. The navigator module also provides system operation data and probe touch-down parameters. The wafer mapping module provides a continuous visual indication of the die selected, and displays the exact coordinates of the die specimen. The PCPII probe software also includes a video module for imaging of the specimen 50 with the personal computer. Each PCPII module uses a separate application window, which allows the user to tailor the viewing screen by defining the placement of each module and minimizing or maximizing each window individually.
Environmental controls 44 (
An additional layer of insulator with a metalized surface may be employed for shielding the chuck surface 14 and provides a low noise environment. Additionally, the use of isolated coax connections will allow for triaxial measurements when the chamber is connected to ground. Next, because the probing function occurs in a vacuum, frost formation during low temperature probing applications may be nonexistent. Since little air is present, probes will not oxidize during ambient and elevated temperature applications. Finally, a thermal chuck employed with system 10 provides that the DUT may be tested at temperatures above and below ambient.
A bench style table was used for supporting the VDU monitors, keyboards, mouse and joystick. The chamber for a 200 mm system is on the order of about 2′×2′×1′+/− and approximately 3′×5′×1′ for a 300 mm system. The pumping elements for the larger chambers may require additional space.
Turning now to
Another form of the high resolution analytical probe station or system is shown in
More particularly, the probe station 100 minimizes the handling of the microscope by having the high resolution microscope mounted to the cover 194 of the probe station 100 and using a lift mechanism 196 (
The probe station 100 also provides a highly integrated approach to isolating the testing area from outside influences. Guarding and/or shielding configurations are readily provided depending on what is necessary for obtaining accurate results given the low level current and voltage measurements that may need to take place, such as those having sensitivities in the high attoampere (10-18) and the low femtoampere (10-15) range. For example the housing 102, microscope 104 and probe assembly 106 of the probe station 100 can all be wired in a coaxial or triaxial configuration in order to reduce noise and thereby allow the accurate taking of such sensitive measurements, as will be discussed in further detail below.
The probe station 100 generally includes a probe station housing 102, high resolution microscope 104, and several probe assemblies 106, such as the four assemblies shown in
More specifically, the housing outer portion 108 has a base wall 112 and an outer side wall 114 upstanding therefrom. At the upper end of the side wall 114, a top cover wall 110 is attached to complete the structure of the outer housing portion 108.
In many low current/low voltage probing applications, the DUT 118 has an increased sensitivity to noise, such as light, electrical interference, air contaminants and vibration. For example, some of the wafers manufactured today for integrated circuits are so small and sensitive that simple exposure to light can induce a current in the circuitry of the wafer 118. Such noise can distort low level test readings or probe readings taken from the wafer unless the light/noise is substantially removed. Thus, the outer housing portion 108 of housing 102 serves as a first barrier for noise reduction by reducing, if not eliminating, many of the traditional elements of noise such as the amount of light that is allowed into the internal space 190 of the housing 102.
Inside the outer housing portion 108, walls of the inner housing portion 182 corresponding to the walls 110-114 of the outer housing portion 108 are provided. As mentioned, alternatively these can be metallic layers applied to the inside surfaces of the walls 110-114 and insulated therefrom. The walled inner housing portion 182 includes a bottom wall 186 adjacent the base 112, top wall 184 adjacent the cover 110, and side wall 188 adjacent side wall 114 and extending between the top and bottom walls 184 and 186 with the corresponding walls separated by gap 191, as previously mentioned. Either the outer housing walls 110-114 or the inner housing walls 184-188, or both, cooperate to form the vacuum chamber 190 of the housing 102 and thus either set of the walls 110-114 and 184-188 where formed as separate members may have a vacuum-type seal therebetween such as between the top wall 184 and the upper end of the side wall 188, as described further herein. The provision of the vacuum enclosure 190 in which the test area is disposed is desirable due to the preferred high resolution or electron microscope 104 employed herein. In this manner, an environment substantially free of gas particles or molecules that could affect the path of electron beams from the electron microscope to and from the target DUT is provided.
The housing 102 has through openings 142 to allow vacuum pump 115 to be connected thereto for drawing down the pressure in the chamber 190 to vacuum conditions. In
In order to reduce if not elements the amount of noise such as vibration experienced in chamber 190 due to the operation of vacuum pumps 115 and 116, the vacuum pumps are mounted to the housing a vibration coupler which absorbs noise generated by the pumps 115 and 116 and allows the pumps to move freely so that they may vibrate as needed. Additional steps for reducing the amount of vibration noise experienced within chamber 190 instruct the use of the vibration isolation table shown in
Through openings are formed in sidewall 114 and aligned with corresponding inner sidewall through openings to provide access openings or feedthroughs 119, 121, 122, 123, 124, 125 and 127 in the housing 102 from the housing exterior to the vacuum chamber 190. These through openings can be used for running leads 120 from an external controller 576, such as a computer, into the housing 102. In this way, the probe assemblies 106, actuators for the carrier 250, and other system utilities (e.g., environmental controls, motor drives, etc.) can be remotely controlled externally from outside the vacuum chamber 190 in which these components are operable. The leads 120 can be in the form of electrical cable (e.g., coaxial, triaxial, ribbon, etc.), wiring or conduit for wiring, hydraulic fluid lines, or the like.
The feedthroughs can include flanged connector mounts 126 and 128 schematically shown in
The end caps 134 and 136 form a vacuum-tight seal with the flange portions 130 and 132 as by a sealing ring or rubber grommet compressed therebetween for substantially preventing leakage from the ports 126 and 128. The flanged end portions 130 and 132 may be fastened to the end caps 134 and 136 via fasteners such as nuts and bolts which, when tightened, draw the end caps and flanged ends tightly against the rubber grommet and into compression to create a vacuum-tight seal between these components of the housing 102.
As will be appreciated specific configurations of the connectors 138 and 140 can vary significantly. In the preferred form, BNC/coaxial, triaxial, conduit and piping connectors are used as feedthrough connectors 138 and 140.
For example, in
The triaxial shank 147 has bayonet-type detent couplings 158 with annular grooves 158a and biased balls 158b seated therein provided at either lug end 147a and 147b thereof for being releasably connected to mating triaxial male connectors (not shown provided on external and internal leads 120a and 120b, respectively). To this end, the shank 147 has an outer shield conductor portion 152 and an intermediate guard conductor portion 159 spaced radially from shield portion 152 and insulated therefrom for being electrically coupled to corresponding shield and guard portions of lead connectors. A signal conductor portion 160 of the triaxial shank 147 extends centrally and axially within the shield and guard portions 152 and 159 and has a tubular construction for forming a female socket into which a corresponding male signal conductor of the lead connector is press fit. Once coupled, the shield, guard and signal conductors of the mating leads are electrically connected to form a triaxial connection therebetween.
The flanged ports 126 and 128 and attached end caps 134 and 136 are preferably conductive like the outer sleeve 149 of the connector 146. Further, the ports 126 and 128 are mounted to the double-walled housing 102 so as to be electrically connected to the housing outer portion 108. In this manner, the probe station 100 can be grounded via any of the electrically connected outer housing 108, ports 126 and 128, or the shield portions 152 of the electrical connectors 138 and 140. Similarly, the guard portion 159 of the connector 146 can be electrically coupled to the inner housing 182 so that the guard portion 159 and inner housing 182 can be driven to substantially the same potential as the signal line 160 to further isolate the signal from noise and dissipation as well as the vacuum chamber 190 from noise, thereby keeping the test area substantially free from electrical interference for accurate measurements at the low testing levels employed by the probe station 100 herein. As is apparent, common grounding and shielding can be employed for the housing 102 and the connectors 146. In the housing 102 shown in
In
When mounted to the probe station housing 102, the threaded sleeve 172 is passed through the end cap opening 134a or 136a and the jam nut 180 is threaded onto the sleeve 172 on the opposite side of the end cap 134 or 136. The jam nut 180 is advanced axially along the sleeve 172 toward the flange portion 174 with appropriate turning of the nut 180 until a tight sealing engagement is made between the connector 164 and one of the end caps 134 or 136. As the sleeve 172 and nut 180 are tightened together, the sealing ring 178 is pressed between the flange 174 and the cap 134 or 136 thereby making a vacuum-tight seal therebetween.
Other forms of connectors may be used for feedthroughs 138 and 140 so long as they are capable of providing a vacuum tight seal capable of allowing chamber 108 to be pulled into a vacuum state. For instance, flat cable such as ribbon cable 120 shown in
The probe station 100 may be set up so that a bank of feedthrough connectors can be connected to openings 122 and 124, as shown in
Other types of connectors are shown connected to the system 100 in
As mentioned, in order for the housing inner portion 182 to be driven as guard while the outer portion 108 is driven as shield, the housing portions 108 and 182 must be electrically isolated from one another. This electrical isolation can be achieved by using nonconductive material to space the housing portions 108 and 182 apart from one another. In a preferred form, nonconductive rod-shaped standoffs 192 are employed which maintain the housing portions 108 and 182 spaced apart from each other by gap 191. However in alternate forms of probe station 100, the nonconductive material can be sandwiched between the housing portions 108 and 182 throughout the probe station 100, or the housing portions 108 and 182 can consist of conductive coatings on a wall of insulation such as in the single walled construction discussed above.
Top wall portions 110 and 184 include aligned through openings within which the high resolution microscope 104 is mounted for observing and assisting in various probe applications. With respect to top portion 110 of housing portion 108, a vacuum-tight seal is made between it and the microscope 104, so that a vacuum can be pulled in the vacuum chamber 190. In a preferred form of probe station 100, an electrically insulative material, such as rubber, is used to form an O-ring 195 (
Like the top wall 110, top wall 184 of the inner housing portion 182 also has an opening within which the scanning electron microscope 104 can be mounted so that the bottom portion 226 of the microscope 104 extends into the vacuum chamber 190 of the housing 102. An electrically insulative material is preferably used to isolate the metallic casing of the high resolution microscope 104 from the top wall 184. This material may also be used to perfect a vacuum-tight seal between the microscope 104 and top 184, if desired, or may simply be used to provide an additional or back up means for blocking out noise such as light. With such a configuration, the lower portion of the microscope 104 and the top 184 can be driven the same (e.g., both as guard or both as shield) to offer additional noise/interference protection. If both the microscope 104 and the top 184 are always to be driven to the same potential, it is not necessary to electrically isolate these items; however, a benefit to isolating the microscope 104 and the top 184 is that such a configuration allows maximum flexibility as to how the entire probe station 100 can be set up. For example, the probe station 100 may be set up so that neither the housing portions 108 and 182 nor the microscope 104 is driven as guard or shield. Alternatively, the probe station 100 may be set up so that each of the housing portions 108 and 182 and microscope 104 are used differently, such as doing nothing with the outer housing portion 108, connecting the inner housing portion 182 as shield, and driving the microscope 104 as guard. It also is not necessary to make a vacuum-tight seal between the high resolution microscope 104 and top 184. This is because the seal between microscope 104 and top 110 is sufficient to draw down the pressure in the interior of housing 102, (the vacuum chamber 190), to vacuum conditions. It may, however, be desirable to make the seal between top 184 and microscope 104 vacuum-tight to allow for additional housing configurations.
In a preferred form, the outer housing portion 108 is connected to ground in order to reduce the chance of electrical shock to a probe station user, and the inner housing portion 182 and the lower portion 226 of microscope 104 (located within chamber 190) are connected to a guard signal to minimize the amount of parasitic capacitance and EMI by minimizing the number of available conductors surrounding the DUT 118 and probe assembly 106 that can be charged via leakage current and electromagnetic fields. Thus, with this configuration the entire probe station 100 can be set up in a triaxial configuration with the DUT completely surrounded by guard and then shield which minimizes the amount and effect of noise or interference as described above. In another form, the system 100 is configured so that the outer housing 108 and microscope 104 are shielded, and the inner housing 182 is guarded. This setup avoids any problems that may be encountered when connecting the microscope 104 to guard, (e.g., problems with the electron beam encountered when applying a potential to the outer surface of the microscope 104).
As described, the top wall portions 110 and 184 of the outer and inner housing portions 108 and 182, respectively, collectively form a cover 194 for the probe station 100 which carries the high resolution microscope 104 therewith. As discussed previously, the cover 194 may be raised via a lift mechanism 196 so that the top portions 110 and 184 and microscope 104 can be lifted and retracted away from the remainder of inner chambers 108 and 182 and/or the remainder of housing 102. This shifting of the microscope 104 gives a probe station user access to the internal operating components including the probe assemblies 106 located within the chamber 190, and the various leads passing through the housing 102. The lift mechanism 196 may be powered by pneumatics or hydraulics to provide the necessary power to lift and retract the heavy combined weight of the cover 194 and high resolution microscope 104 that it carries.
In the preferred and illustrated form (
The track 199a can be configured with a short vertical section at the beginning of the track so that the cover 194 travels in a straight up and down (or vertical) direction for a predetermined amount of time right after it starts opening (or just before it finishes closing). Thus, the cover 194 will travel vertically for a period of time prior to traveling in an angular direction upon opening, or for a period of time after traveling in an angular direction upon closing, to ensure that an adequate clearance is provided between the microscope 104 and the remainder of the probe station 100 and particularly the components located within chamber 190 (e.g., probe assemblies 106). A manual override mechanism may also be provided so that the cover 194 can be removed in cases of emergency or in power loss. In a preferred form such an override would consist of a removable crank handle which when inserted and turned, moves the cover 194 to its open position.
In alternate forms of system 100, the track 199a may be configured so that a period of vertical travel is provided for at the other end of the track 199a as well. Furthermore, the angular movement allows for the cover 194 to be opened/closed in a minimal amount of time. In alternate forms, the track 199a of system 100 may be set up as an angled track, an L-shaped track, or in other configurations providing various paths for the cover 194 to follow during its opening/closing.
As shown in
Problems during the last portion of travel in which the cover perfects the vacuum seal between cover 194 and housing 102 via O-ring 195b could also result in making the vacuum pumps 115 and 116 work harder than they need to thereby wasting energy and/or prevent the vacuum chamber 190 from ever reaching its desired state or pressure. Thus, by providing locating members 192, the system 100 further ensures that the proper vacuum tight seal will be made when the cover 194 compresses the O-ring 195b against its lower surface and the upper surface of housing 102.
The above-described automated shifting of the microscope 104 between its viewing and non-viewing positions, as well as the position orienting features, are desired because high resolution microscopes are typically very costly, heavy, and inconvenient to move about. In
Ideally, the probe station user would simply shut off the microscope during probing or testing of the DUT 118 in order to avoid any interference generated by the microscope. Unfortunately, however, high resolution microscopes such as microscope 104 can take several minutes to power back up for operation and reacquire (or focus on) the desired image. To improve cycle times and minimize electrical interference that may be generated by a constant “on” operation of the microscope 104 it is preferred that the system include an apparatus for reducing the duty cycle of the microscope 104, (e.g., reducing the ratio of operating time for the microscope 104 to the total elapsed time for the testing of the DUT). This apparatus provides a way in which unwanted irradiation of the DUT 118 can be reduced without having to turn the microscope 104 off. In a preferred embodiment this apparatus may consist of an optional shutter 218 which can block (or blank) the beam 206 of microscope 104 during testing thereby limiting the DUT's exposure while allowing the microscope 104 to continue to scan the DUT 118. In this way, the electron beam 206 is not continuously focused on the testing area during image acquisition procedures. The shutter 218 may be positioned within the microscope 104 or external to the microscope 104, may take any shape or size, and may be made of any material so long as it is capable of blocking at least a portion of the electron beam 206 from damaging the specimen or DUT 118. For example, the shutter may be a disc located within the microscope that is capable of covering the entire lens 216 of microscope 104 so that none of the beam 206 reaches the DUT 118. Alternatively, the shutter 218 may be a revolving disc, located below microscope 104, with holes or slits located about the disc that block varying portions of the beam 206 as the disc revolves.
The shutter 218 may also be manual, semi-automatic or fully automatic. For example, the probe station 100 may be configured such that the probe station user must manually open the shutter 218 to receive a high resolution image of the DUT 118, or may require the user to manually close the shutter 218 in order to block the beam 206 to prevent damage to the DUT 118. However, due to the frequency with which the shutter must be open and shut in a manual shutter is not as desirable as a semi-automatic or fully automatic shutter. Alternatively the probe station 100 may be configured with a semi-automatic shutter 218 wherein the user has to activate a switch (not shown) indicating that the high resolution image is no longer needed, which in turn activates the shutter 218 to block at least a portion of the beam 206.
The probe station 100 may also be configured with a fully automatic shutter 218 which allows the DUT 118 to be exposed to the beam 206 for a predetermined amount of time and then activates the shutter 218 thereby blocking at least a portion of the beam 206. Since the probe station user only needs to see the microscope image while setting-up/positioning the probes, and does not need the microscope to be imaging (or emitting beam 206) onto the DUT during testing, a preferred form of probe station 100 uses the shutter to blank the beam 206 during testing to reduce the risk of damaging DUT 118 and/or reduce the chance of the microscope 104 affecting the testing/probing results. Thus it is clear that an actual method of operating the probe station 100 in such a way as to limit DUT exposure to beam 206 may be used to further improve the operation of the probe station 100. If desired, the probe station 100 may be set up to caption the last image of the DUT 118 prior to the shutter 218 being activated and/or set up to display the captured image during the time the shutter 218 is activated.
As seen best in
The microscope 104 is positioned so that at least part of the lower portion 226 extends below the tops 108 and 184 and into the chambers 108 and 182. A power supply 227 is located atop the cover 194 near the microscope 104 for supplying power to the same during high resolution probing with system 100.
An electron collector 220 extends through the cover 194 near the microscope 104 and is positioned at an oblique angle to the plane of the cover 194 in order to collect the electrons from the beam 206 deflected off of the DUT 118 to provide a high resolution image of the target area. As shown in
The portions 220, 222, and 224 of microscope 104 may also be electrically isolated from one another so that the probe station 100 can be configured in a variety of ways, (e.g., with some portions connected to ground, others connected to guard, etc.), as discussed above. For example, in one form the lower portion 226 is electrically isolated from the upper and intermediate portions 222 and 224 so that the lower portion 226 can be connected to a guard signal to further reduce noise/interference such as parasitic capacitance and EMI as discussed above, and the upper and intermediate portions 222 and 224 can be connected to ground to reduce the risk of electrical shock to a probe station user. Again, such a configuration allows the probe station to be connected in a triaxial arrangement having the DUT 118 surrounded by a guard layer formed by top 184, bottom 186, sidewall 188, and lower scope portion 226, and further surrounded by a shield layer formed by top 110, bottom 112, sidewall 114 and upper and intermediate scope portions 222 and 224. In a preferred form, however, the microscope 104 and outer housing 108 are shielded and the inner housing 182 and shutter 218 are connected to guard. Thus the DUT 118 will be surrounded by a guard layer and a shield layer in order to reduce noise and allow for optimal probing/measurement conditions.
Inside the housing 102 are the operating components of the probe station 100 for probing of the specimen including a carrier 250, (e.g., a chuck, fixed probe card, socket stage adapter and its respective socket cards, etc.), and a plurality of manipulators 252a, b, c, and d, each including conductive portions in the form of probes 256 for testing DUTs such as electronic components or specimens 118. In general, the carrier 250 is used to support the specimen 118 in a rigid and fixed position during testing. Preferably, the carrier 250 is capable of moving the specimen in the X, Y and Z directions. The manipulators 252a-d are mounted on a support or platen 258 which is located within the vacuum chamber 190 and includes a central opening which provides access for the probes 256 to the carrier 250 located beneath the platen 258. Although four programmable manipulators are shown, the system can be set up to handle additional manipulators. For example, in one form the system 100 may be set up using six manipulators having at least 10 nm resolution and 0.5 inches of travel in all axes.
In a preferred form, the platen 258 has an access panel which can be opened and/or removed in order to give the system operator access through opening 258a to support portions of the carrier 250, motor drive systems, and additional components located within chamber 190. In the embodiments shown in
The manipulators 252a-d operate to position their associated probes 256 about various conductive path indicia, or test points, located on the surface of the specimen 118. Prior to discussing further operation of the probe assembly 106, however, each component of the probe assembly 106 will be discussed in further detail below.
The carrier shown in
In
In a preferred form, the first conductive element 261 and insulator 263 are combined into a ceramic puck having a platinum sputtered conductive outer layer with the ceramic portion serving as insulator 263 and the outer conductive layer serving as the first conductive element 261. Alternatively, the insulating plate 263 may be made of a non-conducting material such as TEFLON. The second conductive element 262 is made from a conductive metal such as cast aluminum, and the third conductive element 264 is made from a conductive metal such as stainless steel. The insulators 265 are made from a non-conducting material such as sapphire and can take any shape, such as a rod or a simple dielectric disc shape stacked between the second and third conductive elements 262 and 264.
As mentioned above, the multilayered chuck configuration assists the probe station 100 in conducting low noise probing by allowing the chuck 260 to be connected in a variety of configurations including those mentioned with respect to housing 102. For example, the chuck 260 can be connected in a triaxial configuration similar to the probe's connection to triaxial cable 275, wherein the first conductive element 261 of chuck 260 is connected to the center conductor or signal line, the second conductive element 262 is connected to guard, and the third conductive element 266 is connected to shield. Alternatively, the chuck 260 can be connected in a coaxial configuration wherein the first conductive element 261 is connected to the center conductor or signal and the second conductive element 262 and/or third conductive element 264 are connected to the outer shield line. Yet another configuration may have the second conductor 262 connected to shield and the third conductor 264 connected to guard. As should be apparent to one of ordinary skill in the art, the electrically isolated configuration of probe station 100, carrier 250 and probes 256 allows for a number of different wiring schemes to be implemented. This flexibility allows the system 100 to be configured in a fashion that best suits the type of testing to be done.
In addition to the variety of chuck configurations that can be used for carrier 250, the probe station 100 may also use chucks having any number of chuck features such as thermal capabilities. For example, the chuck 260 may be a thermal chuck which is capable of raising and/or lowering the temperature of the chuck 260, thereby allowing the DUT 118 to be tested at temperature. The ability to test at temperature allows the DUT 118 to be tested in simulated application conditions thereby allowing testing to more accurately reflect use conditions of the DUT 118. As can be seen in
In order to heat the chuck using the heating elements shown in
The temperature of the thermal chuck shown in
The thermal chuck may be configured so that the heating and cooling elements 276 and 280 are cast into the second conductive element 262 or into a combination of both the first conductor 261 and the insulator 263. For example, the heating and cooling elements 276 and 280 may be cast into a cast aluminum disc serving as the second conductor 262. Alternatively, the heating and cooling elements 276 and 280 may be cast into a ceramic puck having a platinum sputtered conductive layer as discussed above. In this configuration the ceramic serves as the insulator 263 and the platinum conductive layer serves as the conductor 261.
With the many alternatives and options discussed above regarding chucks, it should be clear that the type of chuck used with probe station 100 depends on what type of testing or probing is to be completed and what type of information is to be gathered (e.g., is probing being done at ambient conditions or at temperature, is a triaxial chuck necessary or not, etc.). In alternate forms, the probe station 100 may be set up using any one of the chucks manufactured and sold by The Micromanipulator Company, Inc. More particularly, the probe station 100 may be set up using one of the chucks described in Micromanipulator's co-pending U.S. patent application Ser. No. 09/815,952 filed on Mar. 23, 2001, (the '952 application), which is hereby incorporated herein by reference in its entirety. For example, in a preferred form, the chuck 260 may be Micromanipulator's CHK 8000-A thermal triaxial chuck, which is one of the chucks disclosed in the '952 application. The CHK 8000-A can be configured for either coaxial or triaxial configurations, ambient or thermal applications, and offers a high level of performance for low noise probing.
As can be seen in
In a preferred form, the uppermost surfaces of conductors 268 and 269 share the same plane and a portion of the insulator 270 fills the space between the conductive elements 268 and 269 to further isolate each element. The coatings of metal deposited on conductive elements 268 and 269 may be as thin as one micron, or thicker, without significant change in overall performance and in order to accommodate thermal expansion associated with the thermal chuck apparatus for operation over a temperature range of, e.g., −65 to +400° C., or beyond.
The insulator element 270 itself is supported on an intermediate conductive element 271, which consists of a disk-shaped aluminum alloy with cast-in heating and cooling elements and temperature sensors (not shown). As mentioned above, the heating elements are provided as electric resistive heaters, and the cooling elements comprise metal tubes connected to a source of liquid or vapor coolant. The temperature sensors are thermal couples which are connected to a temperature controller. The temperature controller monitors and controls the temperature of chuck 260 and/or probe station 100 by turning on and off the heating and cooling elements. If the controller is located outside of housing 102, the leads connecting the controller and the heating/cooling elements and thermal couples may pass through the feedthroughs 119, 121, 122, 123, 124, 125 and/or 126 as discussed above in order to maintain the vacuum state in the interior of housing 102.
In the thermal chuck 260 shown in
In chuck 260 of
Accordingly, the chuck apparatus 260 of
The chuck 260 further includes a lower conductive element 272 which has a bottom portion 273 that extends laterally below the intermediate conductive element 271, and has an annular side wall 274 which extends opposite the outer periphery of the intermediate conductive element 271. The lower conductive element 272 is located below intermediate conductive element 271 and has a portion extending vertically around the side periphery of the intermediate conductive element 271. The lower conductive element 272 is connected to a hub of probe station 100 via hub adapter 279 which itself is connected to the lower conductive element 272 by non-conductive standoffs 281. The hub and hub adapter will be discussed in greater detail below.
As shown in
The larger diameter of insulator 270 provides for proper isolation between the center conductive element 268 and the outer conductive element 269. The outer conductive element 269 facilitates additional guarding around the side periphery of the test area made up of central conductive element 268 and/or DUT 118, and provides an electrical barrier between the test area and conductive components of the probe assembly located off to the side of the test area. The vertical sidewall 274 of lower conductive element 272 may extend further upward than shown in
The lower element 272 is provided with insulative supports 277 for supporting the intermediate conductive element 271 above the laterally extending bottom portion 273 of lower element 272. In a preferred form of probe station 100, the supports 277 consist of sapphire rods 277 which extend into corresponding bores in the conductive elements 271 and 272, as shown. The bores in element 271 preferably extend to within 0.020-0.060 inches from the top surface of element 271. These measurements have been found to minimize the amount of vertical expansion associated with temperature variations of conductive element 271. Alternatively, or in addition to the sapphire rods 277, a plate of dielectric material may be provided in the space between conductive elements 271 and 272 in order to electrically isolate the elements.
As stated above, the test area (or test surface) of chuck 260 is located on the centrally located conductive element 268 and the DUT 118, when present. The diameter of the test surface is typically dictated by the size of the specimen to be tested. Typical specimens may include wafers that are approximately eight inches in diameter, although the chuck may be sized to accommodate any other wafer size, such as 25 mm-300 mm wafers or larger, and semiconductor integrated circuits or packaged parts. Also, while the invention is described with reference to a chuck, and chuck layers having circular peripheral configurations, chucks and chuck layers of other geometries, e.g., square, rectangular, oval, etc., may be constructed in accordance with the invention.
The chuck 260 of
As should be apparent, the conductive elements 268 and 269 are fixed relative to each other such that the desired concentric registration between these elements may be maintained. Proper spacing of the conductive element 268 and the conductive element 269 is likewise maintained by the solid insulator 270 and portions thereof which separate elements 268 and 269. Accordingly, the desired isolation, capacitance and thermal characteristics designed into the chuck apparatus by selection of materials and dimensions are maintained throughout the life of the chuck.
Although the Model CHK 8000-A chuck is identified as a preferred embodiment, the probe station 100 may use any number of different chucks, including conventional ambient chucks, thermal chucks, low noise chucks, and the like.
In other testing configurations, carrier 250 may be in the form of a socket stage adapter and socket card instead of chuck 260 as shown in
The socket stage adapter 320 has a hub adapter similar to hub adapter 279 shown in
The socket card 330 is typically made up of a printed circuit board (PCB) having an integrated circuit (IC) socket 329 electrically attached to the circuit located on the PCB. The leads of the packaged component 327 are inserted into the corresponding sockets of IC socket 329 and a securing bar 329a is adjusted to lock the packaged part 327 into the socket 329. An edge connector 325 is connected to the end of the socket card having a plurality of electrical contacts (or terminals) 330a from which an electrical connecting can be made with the circuit of the PCB. The edge connector 325 has a plurality of mating contacts or terminals 326 which the system operator can use to connect the packaged component 327 (once inserted into the socket 329) to various types of test equipment, indicated in
Once the socket stage and card have been connected to probe station 100, the integrated circuit dye package 327 can be tested and run as if it was installed in its actual end product. For example, if the component is typically operated in a high temperature environment, the environment of chamber 190 can be raised to that temperature and then probed to ensure that it is operating correctly and/or to determine why it is not operating as it should. Typically the upper portion of packaging 327 is removed via a process known as de-lidding in order to expose the conductive path indicia of the integrated circuit 327 so that additional testing/probing can be performed. More particularly, the upper portion of package 327 may be removed by acid so that probes 256 can be positioned about the conductive path indicia located within package 327 and the device can be probed.
In order to probe this device, the socket card adapter 320, hub 310, and theta drive 311, are moved about via X, Y and Z stages 312, 314 and 316 so that probes 256 can test (e.g., acquire and/or apply test signals) to desired portions of the IC 327. As will be discussed in further detail below, the probes 256 can be positioned onto the conductive path indicia by lowering the platen 258 via Z stage 316 and/or lowering the probes via manipulators 252a, b, c and d. If the system 100 is equipped with a theta drive 311, the adapter 320 and card 330 can be rotated via the theta drive 311 in order to assist the system operator in positioning the part 327 exactly where he or she wants it. Once the desired theta rotation has been reached, the system operator can lock the theta position via the theta lock knob 311d. The system 100 (or DUT 118) may also be tipped or tilted as needed via tilt mechanisms which will also be discussed further below in order to view the conductive path indicia better via microscope 104 or 105.
The probe assemblies 106 of
Slidingly coupled to the mounting bases 350 are the manipulator block body assemblies 352 which include the control or adjustment mechanisms that are used to position the probes 256. The manipulators 252a-d utilize screw drive adjustment mechanisms having threaded shafts driven by motors capable of precisely positioning probes 256, such as by a stepping motor, servomotor or the like. The position adjustments for manipulators 252a-d may be made automatically via a controller, such as a computer, which operates X, Y and Z position adjusting mechanisms 354, 356 and 358 in order to adjust the probes 256 in the X, Y and Z directions, respectively. More particularly, the motors of position adjusting mechanisms 354, 356 and 358 may be operated to rotate their associated screws thereby causing blocks 354a, 356a and 358a to slide back and forth in the X, Y and Z direction respectively. The block portions 354a, 356a and 358a of the block body assembly 352 have slide bearing surfaces and guides which allow for relative sliding movement of the block portions upon actuation of the mechanisms 354, 356 and 358.
In
In
Once the manipulators have positioned the probes 256 in the desired locations, the probes 256 will be placed into contact with the DUT 118 and testing/probing will begin. The actual placement of the probes on the DUT 118 may involve the use of a variety of motion control mechanisms and sensors, and will be discussed further below with respect to the operation of probe station 100.
The manipulators 252a-d, shown in
The arm assembly 364 of manipulator 371 is similar to that described earlier in that in contains two members 366 and 368 that project out from the manipulator. The probe 256 is also connected to the lower member 368 in a similar fashion (e.g., probe retention mechanism 369). Just as in
In addition to using a variety of manipulators, the system 100 may also use a variety of probes 256. For example, the manipulators 252a-d may use one of the triaxial probes depicted in
The connector 388 is connected itself to the main body 396 of probe 256 at base 398. The main body 396 of the probe includes an outer conductor 400, intermediate conductor 402 and inner conductor 404, which correspond, and are electrically connected to, the conductive portions 390, 392 and 394, respectively. Thus, when the triaxial lead 375 is connected to connector 388, the outer conductor 400 is connected to the shield line 382, the intermediate conductor 402 is connected to the guard line 384, and the inner conductor 404 is connected to the signal line 386.
As can be seen in
The intermediate conductor 402 and second insulator 408 further include concentric apertures 410 which define a passageway within which probe tip 412 may be substantially rigidly inserted. The probe tip 412 is a needle-like conductor which, when inserted into the aperture 410, makes electrical contact with inner conductor 404 thereby electrically connecting the tip 412 to signal line 386. In order to electrically isolate the probe tip 412 from the intermediate conductor 402, the concentric aperture of the intermediate conductor 402 is made larger in diameter than the aperture in the second insulator 408, which results in separating the probe tip conductor 412 from the intermediate conductor 402. In a preferred form, inner insulator 408 has a threaded bore located in its end. The bore intersects with the passageway defined by aperture 410 of insulator 408 so that a set screw can be threaded into the bore and tightened against the probe tip 412. This configuration allows the probe tip 412 to be fastened to the probe, but also offers the ability to release and replace the probe tip 412, when desired, without having to replace the entire probe 256. In alternate systems, the probe tip 412 may be press fit or friction fit into the passageway defined by aperture 410, and may be equipped with a preloaded spring feature to assist in the removal of the tip 412 when desired.
The apertures 410 may be angled in a variety of ways in order to give the probe tip 412 the desired angle with respect to the DUT 118, (or angle of attack). This configuration allows the probe tip 412 to be angled so that it can be placed one right next to the other without interfering with other probes and structures. This configuration also allows for various hard to reach portions of the specimen 118 to be probed. For example, the probe tips may be angled at varying angles so that more probes can be positioned near one another on the DUT.
In alternate forms of system 100, the probes 256 may be wired or configured coaxially as shown in
A stop may be provided so that the user can more easily determine when the probe 256 is fully inserted into the recess 428. For example a lip may be provided on the bottom of recess 426 which will prevent the dove-tailed flange portion 424 from sliding completely through the mating recess 428 from top to bottom. In another form, a detent mechanism such as a spring loaded ball and socket may be used to assist the user in determining when the probe 256 has been fully attached to the arm 364. In the form shown, a lug 425 is provided on the surface of the recess 426 which is guided into rear channel 427 on the probe and prevents the probe from being inserted further once the lug 425 engages lip 429.
In
Another form of probe, as shown in
With the configuration shown in
Another advantage to this configuration is that the triaxial configuration of the probe, (e.g., inner conductor surrounded by intermediate conductor, surrounded by outer conductor), is allowed to remain present very near the DUT contact end 612a of the tip 612 of probe 590. This not only assists with minimizing the effects of noise on probe readings for the reasons discussed above with respect to the chuck 260 and housing 102, but also serves to prevent the unwanted charging of insulators 606 and 608 by the beam 206 emitted from the high resolution microscope 104. For example, the probe from
More particularly, the emitted beam 106 of the high resolution microscope 104 has the tendency to induce a charge on all of the surfaces the electrons scatter over. When insulators or dielectrics such as insulators 606 and 608 are exposed to the beam 106, they too may develop a charge which can distort the readings taken from the DUT. The extended cladding of outer conductor 600 serves to reduce charge buildup on the insulators 604 and 606, and thereby improves the system's measurement capabilities. For example, if charge is allowed to buildup on the insulators 606 and 608, the readings taken from the signal line 386 or signals applied to lines 386 could be affected by the added charge from the insulators thereby distorting the test results taken during probing. As such, the additional cladding can be used to block or shield the insulators 604 and 606 and/or drain the built up charge away from the signal line 386 via grounded outer conductor 600. Thus the measurement capabilities are improved, and noise and other interferences are reduced, by allowing a triaxial connection scheme to remain present very near the tip of the probe.
In view of the probe tip replacement capabilities discussed above, and in order to reduce the time necessary for replacement and to increase the accuracy of the probes 256 and 590 once a new tip 412 or 612 has been inserted, a probe presetting station may also be used. In such cases, the probe 256 or 590 may be placed on a fixed link similar to the manipulator arm 364, so that the replacement probe tip 412 or 612 can be adjusted to ensure that it is in the same relative position as the previous probe tip and to ensure that it is the same relative length of the previous probe tip, (a process referred to as probe tip refresh). Once the probe tip refresh is complete, the probe 256 or 590 may be re-inserted onto the manipulator 252a-d so that testing can commence. Since the probe tip 412 or 612 is now very near the same position with respect to the probe 256 or 590 as the previous probe tip, the probe station user will spend significantly less time getting the probe station 100 ready to test/probe.
Like the chuck 260 and housing 102, the probes 256 and/or 590 can be set up and wired in a variety of ways, preferably with either a triaxial configuration or a coaxial configuration. In the typical triaxial configuration, shown in
In the coaxial configuration shown in FIGS. 5J, 12B-12C, 13B-13C, 18, and 19, a coaxial lead (or cable) 423 is connected to the probe lead connector 421 so that the outer conductor 423a of the lead 423 is connected to the outermost portion (or housing) 400 of probe 256 and the innermost conductor 423b of the lead 423 is connected to the innermost line 404 of probe 256. More particularly, the outermost conductor and line 400 and 423a are coupled to ground (or are grounded), and the innermost conductor and line 404 and 423b are coupled to the center line signal. In alternate coaxial wiring schemes, where a triaxial probe is used, both the outer conductor and the intermediate conductors 400 and 402 may be connected to ground. In yet other schemes, as shown in
As mentioned previously, any number of wiring schemes could be used for each of the components of probe station 100. For example, the innermost conductor and line 404 and 386 could be coupled to the signal line and the outermost conductor and line 400 and 382 could be coupled to the guard line. In a preferred form of probe station 100, the system and all of its components are set up in a triaxial configuration due to the added protection such configurations offer with respect to shielding and preventing interference such as noise and parasitic capacitance. In addition, those conductors used for shielding, e.g., outer probe station housing 108, third chuck conductor 264 and outer probe housing portion 400, and those used for guarding, e.g., inner housing 182, second chuck conductor 262, and intermediate probe conductor 402, can be electrically connected together to provide an integrated approach to the shielding/guarding configurations of the probe station 100.
In other forms of probe station 100, other types of probes may be used. For example, the probe station 100 may use a triaxial probe similar to the one disclosed in U.S. patent application Ser. No. 09/815,952, filed on Mar. 23, 2001, which is hereby incorporated herein by reference in its entirety.
The probe tip 456 has a bent configuration so that the projecting portion 458 may have a predetermined angle of attack toward a specimen or DUT 118. The probe 430 has a main horizontal section 432 that extends along longitudinal axis 432a of the probe 430 for positioning of the projecting portion 458 adjacent the DUT 118 remote from the manipulator the probe 430 is attached to. The projecting portion 458 can define an attack angle A of approximately 45° with the axis 432a. The user may wish to change the attack angle to accommodate the physical space limitations of the probe station and spacial orientation of integrated circuits present in a given test application. The detachable connection with which probe tip 456 is connected to probe 430 permits probe tips of different attack angles to be quickly and conveniently interchanged by the user when a different attack angle is desired. Probe tips having attack angles from 45° to 70° have been found to be suitable for many test applications, although attack angles can be tailored to angles outside this range as may be necessary in certain test setups.
The probe station 100 may also be equipped with a probe touchdown sensing mechanism 460 so that the probes 256 do not damage the DUT and/or conductive path indicia during testing. This is particularly true when it comes to testing/probing expensive DUTs such as 300 mm wafers. In order to prevent such damage from occurring, the probe station 100 may use touchdown sensing mechanisms that are capable of sensing when the probes 256 have made sufficient contact with the conductive path indicia to conduct the necessary testing or probing. This type of touchdown sensing can be achieved by mechanical means or by electronic means. One type of mechanical touchdown sensing mechanism that may be used is disclosed in U.S. Pat. No. 4,956,923, issued to Pettingell on Sep. 18, 1990, which is hereby incorporated herein by reference in its entirety. According to this touchdown sensing mechanism, when the probe tip is lowered into engagement with the target circuitry 118, a contact block is moved out of engagement with a lower terminal or screw causing the normally closed set of contacts to open, and eventually moving the contact block into engagement with another contact causing the normally open set of contacts to be closed. This touchdown sensing mechanism also serves as a force control which allows the force with which the probe point touches the DUT 118 to be adjusted to either require less force for sensing or require more force for sensing depending on what type of sensitivity is desired for a particular application.
In another form, the touchdown sensing mechanism 460 of probe station 100 may use an electrical signal sensing mechanism. In a preferred form, this is accomplished by connecting the touchdown sensing mechanism between the probes 256a-d and the test/measurement equipment 464. The sensing mechanism 460 applies a carrier signal to the specimen 118, and begins moving the probes 256 into contact with the specimen 118 until they make electrical contact with the specimen 118 and begin sensing or detecting the carrier signal applied to the specimen 118. To move the probes 256a-d and DUT 118 into contact, the system 100 may raise the carrier 250, or lower the probes 256 via the platen 258 and/or the z-stage 316. Once the touchdown sensing mechanism 460 senses the carrier signal through one of the probes, it stops sensing for the carrier signal with that probe because sufficient contact (or touchdown) has been made between that probe and the conductive path indicia (or target) of the DUT 118. In a preferred embodiment, as shown in
In a preferred form of contact sense module 460, the system operator will “reset” the module 460 causing it to reconnect/output the carrier signal to the probes 256a-d in order to confirm that touchdown has been made. If the carrier signal is sensed on all of the probes again, the oscillator output signal will be disconnected and probing may begin. If the module 460 does not sense contact on any, or all, of the probes 256a-d, an inspection of the probes 256a-d should be conducted to determine if the probes 256a-d are no longer capable of maintaining good contact with the DUT 118, (in which case tip replacement should be performed), and/or to determine what, if any, other problems may exist. Once sufficient contact or touchdown has been detected, the contact sensing module 460 relinquishes control/monitoring of the probe inputs to the test/measurement equipment 464 so the system operator can begin probing the DUT 118.
The contact sensing module 460 may also include an optional sensitivity control which allows the system operator to adjust the module 460 from less sensitive settings to more sensitive settings when desired. When adjusted to a less sensitive setting, the module 460 will take longer to detect probe touchdown. When adjusted to a more sensitive setting, the module 460 will react quicker to probe touchdown to ensure that only the lightest contact is made between the probe and the DUT 118. Thus, a less sensitive setting is appropriate when testing a more durable specimen, whereas a more sensitive setting should be used when testing a fragile specimen. When the module 460 is set for maximum sensitivity, however, it is more susceptible to noise and may erroneously signal touchdown prior to good contact being made with the DUT 118.
The contact sensing module 460 may be configured such that it is a stand-alone device, or may be integrated into the control systems of system 100. In addition, the contact sensing module 460 may be set up so that touchdown is achieved via a fully automated process, a fully manual process, or a combination of the two.
The form of electrical touchdown sensing described above is a combination of automated processes and manual processes in that it allows the module 460 to automatically detect the initial touchdown of the probes 256a-d, and thus relies on the system operator to manually initiate a reset procedure in which the module confirms proper touchdown. In alternate forms of sensing, the manual confirmation step may be done automatically. In yet other forms, the system operator may lower the probes 256a-d manually until touchdown is detected by receipt of the carrier signal.
Depending on the type of testing needed to be done, the probe station 100 may be set up using a very basic probe consisting of a single conductor with which test signals can be applied or acquired, while in other applications, the probe may consist of a more complex probe, such as the low current/low voltage triaxial probes discussed above, or high frequency probes capable of applying and acquiring high frequency test signals. In other instances the probe station 100 may be set up using probe cards and their respective probe card holders or adapters. For example, the probe station 100 may be set up to use a fixed probe card and a fixed probe card adapter to conduct a final wafer test on an integrated circuit prior to the circuit being packaged. Typically, the fixed probe card includes a card made of ceramic or fiberglass, which defines an opening (usually in the center of the card), and has a plurality of probes positioned around, and extending into, the opening so that the probes will make contact with bonding pads located about the perimeter of each integrated circuit die located on the wafer. The fixed probe card is placed in an adapter or holder which positions the probe card over the DUT. Typically the probe card adapter features easy load and unload controls, planarization adjustment controls, and theta adjustment controls, for making setup and use as easy as possible. Once positioned, the plurality of probes extending from the probe card are used to acquire and apply various test signals to the bonding pads located on the wafer or DUT so that the device can be checked prior to being broken out and packaged. Typically, the testing of the DUT will involve a full diagnostic check to make sure the circuit will operate as it is suppose to once it is packaged.
An example of a fixed probe card and a fixed probe card adapter assembly is illustrated in
Once the card 472 has been inserted into the guides 474, a plurality of card retainers such as thumb screws 475 may be used to secure the card fixed into the adapter 471. The adapter 471 is itself secured to the platen 258 via additional securing mechanisms or fasteners such as screws 476, and includes planarity adjustment or screw mechanisms 477 which may be used to tilt, tip or level the adapter 471 with respect to the DUT 118 and/or surface of chuck 260. In a preferred form, the planarity adjustment mechanisms 477 are used to make course adjustments to planarity.
The adapter 471 may also be configured such that rotation or adjustment of the card 472 can be made while the card is secured by the adapter, as shown in
When installed on system 100, the assembly 470 may be connected to various test equipment in a similar fashion to that of the socket stage adapter and socket card discussed above. More particularly, leads from the various test equipment, and/or an edge connector, can be connected to the plurality of terminals or contacts 472a located on the edge of the card 472. Each contact 472a is connected to at least one of the plurality of probes 256 and can allow the system operator to apply the desired signals, (e.g., current, voltage or data) and/or receive resultant information to/from the DUT 118. In this way, a variety of different testing or probing can be accomplished with system 100.
The components of the system 100 may be moved about and operated in a variety of fashions. In a preferred form, the system 100 includes motion control mechanisms 540 (FIGS. 5H, 24A-24C, 25A-25B, 26A-26B, and 27) which may include X, Y and Z drives, as well as tilt/tip mechanisms 542. The control mechanisms 540 and 542 shown in FIGS. 5H, 24A-24C, 25A-25B, 26A-26B, and 27, allow the DUT 118 to be moved about below the platen 258 so that the probes 256 can reach, and the microscope 204 can view, the various conductive path indicia of the DUT. Similar to the motor control mechanisms discussed above with respect to probe assemblies 106, mechanisms 540 include motor driven screw drives which are used to move the platform 544 and/or the carrier 250 about below the microscopes 104 and/or 105 thereby simulating microscope movement 104 over the DUT 118.
The platform 544 is generally rectangular in shape and is operably connected to the carrier 250 via the Theta, X and Y drive stages 311, 312 and 314, and to the platen 258 via Z drive members 316 which extend upward from the platform 544 to the platen 258. More particularly, the platform 544 is designed as a base or stage to which the X, Y and Z drives 312, 314 and 316, the theta drive 311, the carrier 250, platen 258 and probe assemblies 106 are supported or connected.
As shown in
In
In the present high resolution probing station 100, the vacuum chamber 190 is desired for the preferred scanning electron microscope 104 to minimize interference with the electron beam it generates for obtaining high resolution images of the DUT 118. With the low vacuum pressures, however, thermal expansion of the materials of the components employed in the chamber 190 is exacerbated due to the substantial absence of a heat conducting medium, e.g. atmospheric air, for dissipating any heat that may be generated therein. In particular, the aforedescribed drives for the platform stages situated in the vacuum chamber generate heat upon operation of their motors. This heat is conducted to the connected screw drives, which can create imprecision in the movements to be controlled thereby. Further, heat generated by motor operation can radiate to metallic components in the chamber increasing their temperature. Because of the often very small movements that are usually desired in the chamber, any derivation such as due to thermal expansion of the screws, nuts or brackets is to be avoided. Thus, the preferred high resolution probing station 100 has stage drive systems that are well-suited for use in the present vacuum chamber 190 to provide high precision movements of these stages therein.
Preferably the motion control mechanisms and drives of system 100 are constructed of materials having low coefficients of thermal expansion such as ceramic in order to insulate the mechanisms/drives from the heat generated by operation of the motors in the vacuum chamber 190 and particularly to minimize the amount of material growth that is experienced by the positioning equipment due to this heat. In the Y axis stage 704 shown in
In the form illustrated, the lead screw 708 is also constructed of heat insulating material such as jewels like single crystal sapphires or rubies, or ceramics having very low coefficients of thermal expansion. This composition further keeps the heat of the motor from causing thermal expansion in the lead screw 708 and growth thereof and attendant unwanted platform movement due to such thermal expansion. Additional components of the drive mechanism, such as motor mounts, bearings and bearing mounts, nuts, brackets, and the like, can be constructed of similar heat insulating materials in order to further insulate the stage and drive mechanism from heat and unwanted movement.
The drive mechanism of
As shown in
The lower guide member 700a of bed 700 is further connected to the tip/tilt control mechanism 542, as best shown in
The tilt/tip motion control mechanisms 542 includes three separate bearing pivots 722, 724 and 726 spaced about the bottom of the housing 102 below the platform 544. In a preferred form, the pivots 722 and 724 have motor driven support bars 722b and 724b for raising or lowering their respective lower guide member portions independent of one another. The third pivot, pivot 726, is a fixed pivot or gimble which is not capable of raising and/or lowering its respective lower guide member portion. Since pivots 722 and 724 are motorized, pivot 726 does not need to be motorized in order to tilt/tip the platform 544 and its connected components in the desired manner. For example, if a system operator desires to tilt the platform 544 shown in
In order to provide the maximum amount of tilting, the support bars of pivots 722 and 724 are preferably at mid travel when the platform 544 is parallel to the floor or base walls 112 and 186 of housing 102. With such a configuration, the platform 544 can be tilted up or down in equal amounts by pivots 722 and 724. The support bars preferably have rounded end portions for connecting to the lower guide member 700a in a ball and socket type fashion for smooth pivoting engagement therebetween.
The pivots 722, 724 and 726 are mounted to a lower support plate 730 which in turn is mounted to the floor of housing 102. Given the lower support plate's proximity to the floor of the housing 102, and the vacuum pump openings 142 located therein, a preferred form of the lower support plate 730 includes openings 732 which correspond to pump openings 142 and assist air flow in chamber 190 and minimize the amount of time it takes for vacuum 115 to pump air out of chamber 190. The lower support plate 730 is preferably of such a height to provide clearance for the pivot motors 722a and 724a from the floor of the housing 102.
In alternate forms of system 100, the lower guide member 700a may be connected to an upper support plate for the tilt/tip mechanism 542 in order to provide additional clearance for motors and/or in order to provide a more compartmentalized system 100. For example, an alternate form of system 100 is shown in
Positioned atop the platform 544 is the X drive (or stage) 312, which may be used to move the carrier 250 along its X axis. Movement of this stage 312 also results in movement of the Y stage 314 and the theta drive 311 carried thereby. As shown in
In order to reduce or minimize the effect heat has on the X drive 312, the drive has been constructed similar to the platform drives 702 and 704 discussed above. More particularly, radiator shield 752 is connected to motor 744 in order to block or hinder the amount of heat or infrared energy generated by motor 744 from radiating to other portions of the drive mechanism 742 and system 100. In a preferred form, the shield is angled at its radially outer positions back toward the housing side wall 188. In this way, radiation is directed generated by heating of the motor 744 operating in the vacuum chamber 190 to the side wall 188. The side wall 188 has a great mass of metal material relative to other system components in the housing 102 to better absorb and conduct heat throughout its entire extent. Further, heat from the side wall 188 can be conducted to outer side wall 114 which can dissipate external heat to the atmosphere.
To further assist in reducing or minimizing the effects of heat on system 100, and particularly on drive mechanism 742, the lead screw 746 is connected to the motor output shaft 744a via a ceramic coupling 748. This removes the metal-to-metal contact between screw 746 and shaft 744a and hinders the heat transfer from the motor 744 to the screw 746. To further reduce heat transfer and its effects on the motion control mechanism 312, the screw 746 may be made from an insulating material such as a jewel like ruby or sapphire, or a ceramic or other insulative material.
The bearing 754 used with screw 746 may also be made of an insulative material in order to minimize the effect heat has on drive 742. Likewise, bearing mount 756 and motor mount standoff 758 may also be constructed of such insulative materials. The use of such materials for drive assembly 742 minimizes unwanted shifting of the drive components affecting their precision movements of the carrier 250. The low coefficient of thermal expansion of ceramic ensures minimum of thermal expansion of these drive components. Although ceramic motor mount standoff 758, bearing mount 756 and bearing 754 were not mentioned above with respect to the platform drive systems, such features can also be utilized in these drive assemblies to achieve a similar beneficial result.
Coupled to the X-stage 312 is Y-stage 314, which rests atop the X-stage and allows the carrier 250 to be translated back and forth in the Y direction or axis. Movement of this stage also results in the movement of theta drive 311. As can best be seen in
In order to make system 100 more effective for probing large specimen such as 300 mm wafers, the X and Y stages 312 and 314 may be designed with enlarged beds or stages or support structures in order to minimize the amount of Y-stage 312 overhang from the X-stage 312. This prevents deflection that can occur if too large of an overhang is created which results in shifting of the carrier 250 and specimen falling out of focus. For example, if system 100 is being used to view/probe a large specimen and the Y-stage 314 is translated to an extreme end in the Y direction, the combined weight of the carrier 250, theta drive 311 and specimen 118 may be enough to cause the Y-stage to deflect down at the end furthest from the X-stage 312 creating enough movement in the testing surface to place the specimen out of focus with the microscope 104 or 105. In order to avoid this, the width of the X-stage 312 is preferably increased to accommodate the full extent of y-axis movement thereby avoiding overhang, and/or additional support structures may be added off to the side of the X-stage 312 in order to provide support to the Y-stage 314. An example of the latter would be to configure the nut and nut mounting bracket shown in
Before discussing the Z-stage 316, it should be noted that the concepts of the motion control mechanisms discussed thus far are generally applicable to any of the motion control mechanisms of system 100, such as those used in conjunction with the manipulators 252a-d. For example, an adjustment mechanism for any of the X, Y and Z stages of manipulators 252a-d is shown in
The manipulator adjustment mechanism 500 may also utilize the thermal protection concepts discussed above with respect to other motion control mechanisms. For example, in
Turning now to
The sprockets of the column members 316a-d are connected to one another via a driven member such as a belt or chain 778 (
A Z-shape guide and slide 781 is positioned near the back of the chamber 190 and is attached to the platform 544. This guide/slide 781 is similar in construction to the guide and slides discussed with respect to X and Y drives 312 and 314 and operates to guide the Z drive mechanisms 316a-d in a straight up and down (or vertical) manner to ensure that no lateral movements are made which might affect the positioning of the DUT 188.
The motion control mechanisms of system 100 may be operated and configured in a variety of ways in order to provide any number of desired movements. For example, the platform 544 may be used for coarse adjustments of the carrier 250 and DUT 118, while more precise (or fine) adjustments may be made via the X, Y, and Z stages 312, 314 and 316 of the carrier 250. The motion control mechanisms 540 of platform 544 may be used to generally position the desired portion of the DUT 118 and carrier 250 under the microscope 104 or 105, (e.g., general X and Y positioning), while the X, Y and Z stages 312, 314 and 316 of carrier 250 may be used to actually position the probes 256 on the desired conductive path indicia of the DUT 118, (e.g., fine X, Y and Z positioning).
The fine positioning of the DUT and carrier typically involves using the X and Y stages 312 and 314 of chuck 260 to position the DUT 118 in the appropriate X and Y positions and then using the Z stage 316 to raise the DUT 118 into contact with the probes 256 and/or lower the probes 256 into contact with DUT 118 via the Z position adjustment mechanism 358 or 374 of manipulators 252a-d.
In alternate forms of probe station 100, the probes 256 may be capable of positioning themselves, (e.g., probes with internal motor driven joints), however, such a configuration is less desirable than the configurations discussed above because it introduces additional noise making components, which are very near to the probes 256, thereby increasing the risk of noise or other interference affecting the acquired and applied test signals. As with the X, Y and Z stages 312, 314 and 316, the screw drive motion control mechanisms 540 may use a variety of types of motors, such as linear motors, stepper motors, servo-motors, or the like, as long as they are capable of providing the desired translation of the platform 544 (including platen 258, carrier 250, manipulators 252a-d, probes 256).
As mentioned above, the tilt/tip mechanisms 542 also position the DUT 118 under the probes 256 and microscope 104. For example, these mechanisms 542 may be used to position probes 256 on the DUT in a desired fashion, to assist the user in “seeing” probe-touchdown on the DUT, or simply to allow the user to observe the probes 256 making contact with the DUT 118 from an angle other than vertical.
The probe station 100 may also be set up with environmental controls 550 which operate to control the temperature and atmosphere within the housing 102. Such controls 550 may be used to conduct “at temperature” testing or to obtain specified atmospheric conditions in order to more accurately test how a DUT 118 will operate in its actual application environment. The environmental controls 550 may also be used to minimize the deleterious effect any of the components within housing 102 may have on the probing/testing of the DUT 118. For example, a temperature control system 552 is shown in
In a preferred form of probe station 100, the tubes 554 carry a coolant, such as cold water, throughout the inner chambers 108 and 182 in order to cool down the probe station 100. The tubes 554 rely on heat transfer principals to remove unwanted or excessive heat generated by the motion control mechanisms 540, stages 312, 314, 316, manipulators 252a-d, and carrier 250. Such a system 552 is particularly desired in vacuum environments because vacuum environments are excellent thermal insulators in that there is nowhere for the heat generated by the system to go. This built-up heat can have deleterious effects on the probe station and/or its components. For example, the probe station 100 may be set up using a thermal chuck 260 which is used to test a wafer 118 at temperatures slightly above ambient temperatures. While testing the wafer 118 at temperature, the motors used to move the chuck 260, the manipulators 252a-d, the platform 544 may begin to generate heat due to their use. Without a temperature control 552, this motor-generated heat may raise the temperature inside housing 102 to a level above that which the wafer 118 was to be tested at and may cause inaccurate readings to be taken when conducting the probing of the specimen 118. However, by providing a temperature control system 552, the motor-generated heat may be accounted for and removed from the probe station 100 so that the wafer 118 can be tested at the appropriate temperature. Another negative effect of component-generated heat is that it can affect the operation of the probe station equipment. For example, excessive temperature within housing 102 has been shown to cause the probes 256 to vibrate or wobble. Such motion in the probes 256 not only makes it more difficult to operate the probe station 100 because of difficulties in placing the probes 256, but also may prevent the probe station 100 from being used to probe various specimens 118 such as very small wafers having minute conductive path indicia because any type of vibration may make it impossible to position and maintain the probes 256 on the desired indicia.
The temperature control system 552 also allows the probe station 100 to maintain a desired temperature within housing 102 by accounting for the fact that components, other than those specifically meant to supply heat such as a thermal chuck 260, may end up generating heat over time themselves. Although the network of fluid carrying tubes (or lines) 554 shown in
Given the various types of testing that may be performed and various types of carriers 250, manipulators 252a-d, and probes 256 that may be used by probe station 100, it is foreseeable that these components may be swapped in and out of the probe station 100 quite frequently. As such, the probe station 100 may equip the components and/or the leads connecting the components in such a way that they can be quickly and easily removed and re-installed. For example, in
While the above description of probe station 100 discussed the basic structure of the probe station, including its housing 102, high resolution microscope 104 and probe assembly 106, the following will discuss the setup and operation of the probe station 100 and provide additional details regarding the software used to operate the probe station. The probe station 100 is a high resolution analytical probe station that is capable of conducting low voltage/low current testing in a low noise environment. More particularly, the probe station 100 is connected to a controller, such as a processor or network of processors, which operate, monitor, and collect data from the probe station 100. Preferably the controller consists of a personal computer, as mentioned above, having a monitor 572 and video imaging capabilities. The controller is connected to the various components of the probe station 100, (e.g., theta drive 311, X, Y and Z drives 312, 314 and 316, carrier 250, probe assemblies 106, etc.), via leads (or lines) 120 passing through feedthroughs 138 and 140. Feedthroughs 138 and 140 allow vacuum tight seals to be made with the housing so that the housing portions 108 and 182 can be pulled into a vacuum state. As discussed above, the leads/lines may consist of triaxial cables 275, coaxial cables 423, thermocouples, and piping or conduit for such things as wire, vacuum lines, air lines, and/or environmental controls 550 such as fluid carrying tubes 554.
Additional leads 120 may be connected from the controller or other supporting equipment, such as air tanks, vacuum pumps, temperature controllers, etc., directly to other portions of the probe station 100. For example, microscope operating leads may be connected directly from the controller and the mains power supply to the microscope 104. In addition, vacuum lines may be connected directly from a vacuum pump to pump passages 142 and 144 of housing 102.
The probe station 100 tests the specimen 118 by positioning probes 256, via the controller, over various conductive path indicia located on the surface of the specimen 118 and uses the probes 256 to either apply or acquire a variety of test signals to or from the DUT 118. More particularly, the controller operates motion control mechanisms 540 and tilt mechanisms 542 to position the platform 544 and the associated carrier 250 so that probes 256 are generally above the desired conductive path indicia to be probed (or target area). The controller further operates X and Y position adjustment mechanisms of manipulators 252a-d, and X and Y stages 312 and 314 of probe assemblies 106, to position the probes 256 above the target area. Then the controller raises the carrier 250 via Z stage 312 of probe assembly 106, and/or lowers probes 256 via Z position adjustment mechanism 358 of manipulators 252a-d, until the probes 256 have made sufficient contact with DUT 118 to conduct the desired testing. In a preferred form, the controller is connected to a contact sense module 460 and stops the motion control mechanisms when sufficient probe touchdown has occurred. This prevents the DUT 118 from being inadvertently damaged by probes touching down with excessive force.
The environmental control system 550 monitors and/or controls the environment, including the temperature, humidity, vacuum state, etc., within housing 102 so that it is set at, and remains at, the desired setting for testing the DUT 118. The various parts of the probe station, such as the environmental control system 550, may be controlled by the controller and/or may be controlled at least in part by additional controllers.
Once the probes 256 are positioned and the environment is set, testing is ready to begin. At this point, the probe station 100 begins using the probes 256 to either apply or acquire test signals. Typically, one probe will be used to apply a test signal at a desired point in the circuit of specimen 118, and another probe will be used to acquire the signal resulting from the application of the test signal at another point on the circuit of specimen 118. The probe station 100 may then be used to analyze the acquired signal to determine if it is generally equal to the signal that should have been acquired at that particular point in the circuit of specimen 118. If it is equivalent, that portion of the circuit is presumed to be operating correctly. If the acquired signal is not equivalent to the signal that should have been received at that particular point in the circuit, then the specimen 118 may be further analyzed to determine what is wrong, or may simply be marked as a defective component.
After this target area has been probed, the probe station 100 may locate and begin testing another target area on DUT 118. Depending on the location of the next target area, the probe station 100 may simply need to raise and re-position the probes 256 via manipulators 252a-d to position the probes 256 above the new target area, or the probe station may need to use additional motion control components including manipulators 252a-d, X, Y and Z stages 312, 314 and 316, and motion control mechanisms 540 and tilt mechanisms 542 in order to position the probes 256 above the new target area. For example, if the new target area is very close to the area that was just probed, fewer motion control mechanisms may be needed in order to position the probes over the new target area. However, if the new target area is farther away from the area that was just probed, more or even all of the motion control mechanisms may be needed in order to position the probes over the new target area (e.g., if the manipulators 252a-d cannot move the probes 256 far enough to reach the new target area, the carrier X, Y and Z stages 312, 314 and 316 may be needed; similarly, if the X, Y and Z stages cannot move the probes 256 far enough, the motion control mechanisms 540 may be needed).
Once the probes have been positioned over the new target area of the DUT 118, the controller (or other actuator control) will raise the carrier 250 via Z stage 312 and/or lower the probes 256 via manipulators 252a-d to move the probes 256 into sufficient contact with DUT 118 to conduct the desired testing. As discussed above, a probe touchdown sensing mechanism 450 may be used to determine when sufficient probe touchdown has been made. Once testing is ready to begin, the controller begins acquiring and/or applying test signals about the target area via the probes and analyzes the test results to determine if the DUT is operating correctly. The probe station 100 may also be set up using a socket stage adapter 320 and socket card 330, fixed probe card, and/or a test head with which various types of DUTs can be tested. Although the connections and setup for these devices may differ, the general operation of probe station 100 is similar to that discussed above, (e.g., applying probes to target areas, probing and analyzing data, etc.).
The actual control and operation of probe station 100 may be made via traditional input devices associated with the controllers, such as a keyboard, mouse, joystick, touch sensitive screen, or the like. The probe station 100 may also be programmed so that the probe station 100 is capable of performing repetitive testing with minimal user input. Additional controls may be provided on the exterior of housing 102 and/or may be provided in a pendant control which is commonly used in the industry and with the products sold by The Micromanipulator Company, Inc.
In order to assist the user in probing the DUT 118 and moving the DUT about so that multiple target areas can be probed, the probe station 100 may be set up with the PCPII software discussed above. Screen views of the PCPII software as they may appear on a monitor 572 of a controller external from probe station housing 102, such as computer system 16 mentioned above, can be seen in
The manipulators 252a-d, and probes 256 can be controlled via control panel 584. For example, speed and direction of travel in the X and Y directions can be adjusted via XY settings 590. Similarly the speed and direction of travel in the Z direction can be adjusted via Z settings 592. The control panel 584 also displays the current position data below the XY settings 590 and Z settings 592, and allows the probe station user to select what units measurements and/or movements are made in.
The PCPII software interface 580 also allows the probe station user to set up and view a wafer profile via control panel 594. For example, when the DUT 118 consists of a wafer, the probe station user can type in the diameter of the wafer and a grid of dies present on the wafer can be generated, (e.g., columns and rows). The probe station user can enter particular features pertaining to the die via the die program tools 596 and can pick which die is to be viewed by the microscope 104 by simply selecting the die with cursor 598.
More particularly, cursor 598 can be used to indicate the respective selected location or test site on the specimen being probed, (e.g., the sites at which test signals are transferred to and from the probe). In this manner, an operator can change selected test locations via on-screen manipulation of the cursor, as by a mouse or other computer interface control. Moving the cursor 598 causes the relative position between the probe 256 and the specimen surface to shift under software control so that the probe 256 is oriented at the selected test site. To this end, the software is programmed to operate actuators of the probe assemblies 106 and/or the carrier 250, (e.g., X, Y and Z stages 312-316 and/or the motion control mechanisms 450), on which the specimen is affixed for precision shifting thereof to position the probe 256 at the selected test site. More particularly, the software is used to interpret the cursor movement and determine the precise distance with which the DUT needs to be moved. This analysis may not only require the application of a scaling factor to calculate the horizontal distance that must be traveled, but also may involve determining which actuators are to be used (e.g., probe assembly actuators, carrier actuators, etc.) in order to accomplish the desired travel in the most efficient manner.
Accordingly, with a mouse, an operator can click and drag the cursor 258 across the screen to the desired conductive path indicia location or terminal they desire to test. This cursor movement can result in a variety of different movements for the probe station 100. For example, the user may click and drag the cursor from one die to another, causing the probes 256 to move from one die to another so that the new die may be probed or analyzed. Alternatively, the user may click and drag the cursor from one probe location to another, causing the selected probe to move from one location on a particular die to another location on that same die. In a preferred form, the operator or user is capable of selecting what type of movement he or she wants via the software prior to making the move. For example, if the user would like to move a single probe from one location to another, he or she would position the cursor 258 over the probe he or she wishes to move, and then would click and hold the mouse input button down and drag the mouse until the cursor 258 is at the desired new test location for that probe. Once the mouse input is released, the software would cause the selected probe to move to its new location. Alternatively, the user could indicate that he or she wishes to switch dies and he or she would position the cursor 258 over the current die, and then click and drag the cursor to the desired die to be probed. Once the mouse input is released, the software would cause the desired die to be placed under the high resolution microscope 104 for probing.
Although a click and drag type input process has been described, alternate input processes may be used so long as the desired movement is achieved. For example, movement from one die to another could be achieved by simply positioning the cursor 258 over the desired die to be tested and clicking or double-clicking the mouse input causing the selected die to be positioned under the high resolution microscope 104. Similarly, probe movement from one location to another on the same die could be achieved by clicking on the desired probe to move, or selecting via a menu which probe is to be moved, moving the cursor 258 over the desired new location for that probe, and then clicking or double-clicking the mouse input at that cursor location causing the selected probe to move to the desired new location.
The wafer profiles and settings entered into the probe station 100 can be saved so that similar DUTs can be probed by simply calling up the stored settings. For example, a wafer ID can be assigned to certain types of wafers and the probe settings and testing procedures for these types of wafers can be recalled by simply entering the assigned wafer ID into the wafer ID field 593. This allows the probe station user to test similar wafers more rapidly and provides a way in which routine probing can be programmed into the probe station 100 so that it can be accurately repeated in the future.
Video images of the probes 256 and DUT 118 may be viewed and/or adjusted via control panel 595. The video images 597 are provided to help the probe station user identify where on the DUT 118 they are at, as well as to assist the user in positioning the probes 256 and in probing the DUT 118. One of the notable features of this control panel 595 is the ability to print images of the DUT 118 via the print icons located in the tool bar of the control panel 595.
The screen view shown in
According to this interface 600, the system operator moves the desired probe 256 by selecting which probe assembly 106 he or she wants from the icons identified by reference numeral 640. Once selected an icon 640a identifying which assembly has been selected appears in the top left corner of the active image viewing field 626. In the illustration shown in
Below the manipulator selection icons 640, are stage selection, tilt selection, theta selection, live image selection and freeze image selection icons which allow the system user to perform the stated task and/or select from a variety of available tasks for the stated feature. For example, the system operator could select the stage select icon and then select from any of the stage mechanisms discussed above including the theta drive 311, X, Y and Z stage 312, 314 and 316, or microscope stage (or platform stage) coupled to platform 544. An auto start feature may be provided for the software interfaces which will provide the system user with quick and easy images from which to start.
A pcRouter Dynamic Data Exchange interface was created to allow the 16 bit probe station application (probe station navigation and video) to work in conjunction with the 32 bit SEM control application. Since both applications are competing for system resources, a preferred form of system 100 turns the SEM imaging application off when navigation is desired, and turns the navigation application off when SEM imaging is desired. Thus, when the system user is done viewing a target with the SEM 104 and desires to move to a new target on DUT 118, the SEM imaging application is shut off and the pcNav application is operated. In this way the user can move from conductive path indicia on one die to other conductive path indicia on the same die or on other dies located on the DUT 118. Conversely, when SEM imaging is again desired, the pcNav application can be shut off and the SEM imaging turned back on so that SEM 104 can begin scanning the target specimen and system 100 can display a high resolution image. This configuration ensures that all motion control functions will be initiated from the ActiveX navigator in the SEM 104.
The optional joystick or pendant control discussed above with respect to the operation of the system 100 can be used in conjunction with the PCPII software interface and is implemented by using an application such as pcLaunch to take over the operating system of the controller, (e.g., to take over WINDOWS). More particularly, when a movement in the joystick or input device is made, pcLaunch is activated thereby taking control of the operating system. Once this event occurs, the SEM imaging application is shut off so that the desired navigation function can be performed. Once navigation is complete, the navigation application (including the joystick navigation controls) is shut off and the SEM imaging application is turned back on.
Thus, PCPII provides an interface for allowing the system user to both control the SEM 104 and the probe station including its many components (e.g., the carrier 250, probe assemblies 106, drives and stages 311, 312, 314, 316, 702 and 704, etc.). With the interfaces described a system user can position individual probes, as well as multiple probes, wafer (or carrier) stages 311, 312, 314, 316, 702 and 704, platen 258, and probe assemblies 106 including the various stages of manipulators 252a-d. More particularly, the probe assembly controls and high resolution microscope controls can be integrated together with auto scaling to the SEM image in on the screen (the active image), which allows for the click-n-drag navigation to be used. Furthermore, the positioning controls of system 100 are kept from being effected by the image update time of microscope 104. For example, the click-n-drag navigation of the software interfaces described above allows for precise placement of probes without concern for the amount of time microscope 104 takes for image updating.
The system 100, as described above, is a fully functional probe station incorporating high resolution microscopy in order to allow a system user to probe 0.1 μm. It is low current ready and can pump down in less than five minutes. The system is further capable of dual duty as a high resolution probe station on one hand, and as a light microscope probe station on the other hand. Such a dual capacity may be desired for a variety of reasons beyond the obvious fact that two separate pieces of equipment can now be replaced by one. For example, the light microscope 105 may be used to set up the DUT for testing and for laser cutting. The light microscope 105 may also be operated by the software interface and can be adjusted manually or by motorized drives. The high resolution SEM microscope 104 offers sufficient resolution to probe 100 nm features and offers a magnification range of 15× to 25kx. By offering probing capabilities, the system 100 can also offer the ability to both inject signals and measure actual signal amplitudes.
The drive mechanisms of system 100 provide heat radiators for probe drift caused by thermal expansion as discussed above and offer high precision lead screw drives which offer high resolutions with large ranges of motion. In a preferred form, the platform stage may be moved up to one inch (25 mm) and allow for X and Y travels approximately equal to 0.25 inches. The manipulators utilized offer the ability to stay on submicron devices for extended periods of time without damaging the DUT or sliding off the target. The preferred manipulators offer X, Y and Z travel of approximately 12.5 mm with a position resolution of 50 nm. The X and Y stages 312 and 314 have the ability to travel approximately 200 mm in the X and Y direction with a resolution of 0.1 μm and an accuracy or repeatability of ±1.5 μm. In addition, the preferred theta drive offers 100° of travel with 0.7 μm of resolution and the ability to be controlled by the joystick/pendant or software interface.
The probes are designed with probe link arms that are capable of further dampening vibration and can give strong support to the probes. The probes 256 can all be placed within one square micron or less and four probes can be placed within one square μm area. A variety of different probe tips may be used with the probes of system 100, including concave, convex and nipple tipped configurations. For example, concave tips which are very sharp but not very durable, can be used in applications where a low Z forces are desired to be applied to the DUT. Convex tips which are durable but have no point, can be used in applications where it is desired to penetrate (or punch through) oxides or in applications where probes that exert a large amount of force are desired. Nipple tips are both durable and sharp and find uses in a variety of applications.
The system can further image at low beam voltages and can blank the beam to prevent damage to DUTs and allow for low current measurements (e.g., sub-femto ampere measurements) to be taken. The beam voltage can be varied from a preferred range of 1.5 kV to 20 kV.
The software of system 100 also allows for the system user to interface with CAD navigation systems and equipment, and gives the system operator the ability to combine control and microscope images on one screen.
While there has been illustrated and described a preferred embodiment of the present invention, it will be appreciated that modifications may occur to those skilled in the art, and it is intended in the appended claims to cover all those changes and modifications which fall within the true spirit and scope of the present invention.
Claims
1. (canceled)
2. (canceled)
3. (canceled)
4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. A probe station for high resolution, low current probing of a DUT, the probe station comprising:
- a vacuum housing having an interior space in which a DUT is disposed with the interior space under vacuum conditions during testing operations;
- a high resolution microscope extending into the interior space for acquiring images of the DUT;
- a probe assembly in the housing interior space for taking low current measurements from the DUT;
- a carrier in the housing space for supporting the DUT during testing operations;
- a drive system for shifting at least one of the probe assembly and the carrier to a predetermined test position; and
- means for causing precision movements of the at least one of the probe assembly and the carrier via operation of the drive system in the vacuum housing despite generation of heat energy upon drive system operation.
9. The probe station of claim 8 wherein the means for causing precision movements comprises a heat insulating or heat shielding device connected to the drive system to allow for precision shifting of the at least one of the probe assembly and the carrier by the drive system in the vacuum housing.
10. The probe station of claim 8 wherein the drive system includes a motor and the means for causing precision movements comprises an output shaft assembly of the motor of a predetermined heat insulating material.
11. The probe station of claim 10 wherein the output shaft assembly includes a lead screw that is of the predetermined heat insulating material which comprises at least one of a ceramic material, sapphire material and ruby material having a low coefficient of thermal expansion.
12. The probe station of claim 8 wherein the drive system includes a motor and a motor output shaft assembly and the means for causing precision movements comprises a coupling made of a predetermined heat insulating material which insulates portions of the output shaft assembly from each other in order to minimize heat transfer from one portion to another portion.
13. The probe station of claim 8 wherein the drive system includes a motor and a drive shaft that is rotated upon operation of the motor for shifting the one of the probe and the carrier by the drive system in the vacuum housing; and
- the means for causing precision movements comprises a shield disposed between the motor and the drive shaft to deflect heat or energy from the operating motor away from the drive shaft in the vacuum housing.
14. The probe station of claim 13 wherein the shield forms an annular ring about the motor and extends out from the motor at an angle sufficient to deflect radiated heat or energy from the operating motor away from the drive shaft in the vacuum housing.
15. The probe station of claim 8 further comprising an environmental control system associated with the housing and including a heat transfer fluid that substantially maintains a desired temperature within the vacuum housing so that accurate measurements may be taken from the DUT.
16. The probe station of claim 15 wherein the environmental control system further includes a conduit disposed within the vacuum housing for carrying the heat transfer fluid therein.
17. The probe station of claim 15 wherein the environmental control system conduit comprises a group of lines positioned about the at least one of the probe assembly, carrier and drive system, the lines carrying the heat transfer fluid for transferring heat to maintain a desired temperature within the vacuum housing.
Type: Application
Filed: Feb 16, 2007
Publication Date: Dec 20, 2007
Applicant: THE MICROMANIPULATOR COMPANY, INC. (Carson City, NV)
Inventor: Kenneth Hollman (Carson City, NV)
Application Number: 11/676,142
International Classification: G01R 31/02 (20060101);