VOLTAGE SWITCHABLE DIELECTRIC MATERIAL HAVING CONDUCTIVE OR SEMI-CONDUCTIVE ORGANIC MATERIAL
One or more embodiments provide for a composition that includes (i) organic material that is conductive or semi-conductive, and (ii) conductor and/or semiconductor particles other than the organic material. The organic material and the conductor and/or semiconductor particles are combined to provide the composition with a characteristic of being (i) dielectric in absence of a voltage that exceeds a characteristic voltage level, and (ii) conductive with application of the voltage exceeding the characteristic voltage level.
This applications claims benefit of priority to provisional U.S. Patent Application No. 60/820,786, filed Jul. 29, 2006, entitled “Voltage Switchable Dielectric Material With Reduced Metal Loading,” the aforementioned application being hereby incorporated by reference in its entirety.
This applications also claims benefit of priority to provisional U.S. Patent Application No. 60/826,746, filed Sep. 24, 2006, entitled “Voltage Switchable Device and Dielectric Material With High Current Carrying Capacity and a Process for Electroplating the Same,” the aforementioned application being hereby incorporated by reference in its entirety.
This application also claims benefit of priority to provisional U.S. Patent Application No. 60/949,179, filed Jul. 11, 2007, entitled “Binders for Voltage Switchable Dielectric Materials,” the aforementioned application being hereby incorporated by reference in its entirety.
TECHNICAL FIELDThe disclosed embodiments relate generally to the field of voltage switchable dielectric (VSD) materials. More specifically, embodiments described herein include VSD material that includes organic or semi-conductive organic filler.
BACKGROUNDVoltage switchable dielectric (VSD) material has an increasing number of applications. These include its use on, for example, printed circuit boards and device packages, for purpose of handling transient voltages and electrostatic discharge events (ESD).
Various kinds of conventional VSDM exist. Examples of voltage switchable dielectric materials are provided in references such as U.S. Pat. No. 4,977,357, U.S. Pat. No. 5,068,634, U.S. Pat. No. 5,099,380, U.S. Pat. No. 5,142,263, U.S. Pat. No. 5,189,387, U.S. Pat. No. 5,248,517, U.S. Pat. No. 5,807,509, WO 96/02924, and WO 97/26665. VSD material can be “SURGX” material manufactured by the SURGX CORPORATION (which is owned by Littlefuse, Inc.).
While VSD material has many uses and applications, conventional compositions of the material have had many shortcomings. Typical conventional VSD materials are brittle, prone to scratching or other surface damage, lack adhesive strength, and have a high degree of thermal expansion.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments described herein provide for a composition of VSD material that includes conductive or semi-conductive organic material. As described herein, the use of conductive or semi-conductive organic material enables the formulation of VSD material that has several improved or desired characteristics that are not provided by more conventional VSD formulations. Among numerous other benefits, the use of conductive or semi-conductive organic material as part of a VSD composition enables the reduction of metal loading as compared to more conventional VSD material. As such, electrical characteristics, such as trigger and clamp voltages, may be improved while at the same time enhancing the physical properties of the material.
Accordingly, one or more embodiments provide for formulating VSD material that has benefits that includes, for example, one or more of the following: (i) has improved mechanical properties, including having inherent properties of high compression strength, scratch resistance and non-brittleness; (ii) improved thermal properties, (iii) has high adhesive strength; (iv) has good ability to adhere to copper; or (v) lower degree of thermal expansion, as compared to more conventional VSD materials.
One or more embodiments provide for a composition that includes (i) organic material that is conductive or semi-conductive, and (ii) conductor and/or semiconductor particles other than the organic material. The conductive/semi-conductive organic material may be solvent soluble, or dispersed at nanoscale within the composition of VSD material. The organic material and the conductor and/or semiconductor particles are combined to provide the composition with electrical characteristics of VSD material, including that of being (i) dielectric in absence of a voltage that exceeds a characteristic voltage level (alternatively referred to as ‘trigger voltage’), and (ii) conductive with application of the voltage exceeding the characteristic voltage level.
According to embodiments described herein, the organic conductive/semi-conductive material may be uniformly mixed into a binder of the VSD mixture. In one embodiment, the mixture is dispersed at nanoscale, meaning the particles that comprise the organic conductive/semi-conductive material are nano-scale in at least one dimension (e.g. cross-section) and a substantial number of the particles that comprise the overall dispersed quantity in the volume are individually separated (so as to not be agglomerated or compacted together).
Still further, one or more embodiments include VSD material having carbon nanotubes. In one embodiment, a binder of the VSD material includes carbon nanotubes that are substantially uniformly mixed, so as to be distributed at nanoscale.
In another embodiment, a method is provided for creating a voltage switchable dielectric material. A mixture is created containing (i) a binder that is dielectric, (ii) metallic and/or inorganic conductor or semi-conductor particles, and (iii) conductive or semi-conductive organic material. In creating the mixture, a quantity of each of the binder, the metallic and/or inorganic conductor or semi-conductor particles, and the organic material, is used. The mixture, when cured, is (i) dielectric in absence of a voltage that exceeds a characteristic voltage, and (ii) conductive in presence of the voltage that exceeds the characteristic voltage. The mixture may then be cured to form the VSD material.
With an embodiment such as described, the characteristic voltage may range in values that exceed the operational voltage levels of the circuit or device several times over. Such voltage levels may be of the order of transient conditions, such as produced by electrostatic discharge, although embodiments may include use of planned electrical events. Furthermore, one or more embodiments provide that in the absence of the voltage exceeding the characteristic voltage, the material behaves similar to the binder.
Still further, an embodiment provides for VSD material formed from the stated process or method.
Still further, an electronic device may be provided with VSD material in accordance with any of the embodiments described herein. Such electrical devices may include substrate devices, such as printed circuit boards, semiconductor packages, discrete devices, Light Emitting Diodes (LEDs), and radio-frequency (RF) components.
In an embodiment, the organic material is a fullerene. According to one embodiment, the organic material is a single or multi-walled carbon nanotube.
As used herein, “voltage switchable material” or “VSD material” is any composition, or combination of compositions, that has a characteristic of being dielectric or non-conductive, unless a voltage is applied to the material that exceeds a characteristic voltage level of the material, in which case the material becomes conductive. Thus, VSD material is a dielectric unless voltage exceeding the characteristic level (e.g. such as provided by ESD events) is applied to the material, in which case the VSD material is conductive. VSD material can further be characterized as any material that can be characterized as a nonlinear resistance material.
VSD material may also be characterized as being non-layered and uniform in its composition, while exhibiting electrical characteristics as stated.
Still further, an embodiment provides that VSD material may be characterized as material comprising a binder mixed in part with conductor or semi-conductor particles. In the absence of voltage exceeding a characteristic voltage level, the material as a whole adapts the dielectric characteristic of the binder. With application of voltage exceeding the characteristic level, the material as a whole adapts conductive characteristics.
Generally, the characteristic voltage of VSD material is measured at volts/length (e.g. per 5 mil). One or more embodiments provide that VSD material has a characteristic voltage level that exceeds that of an operating circuit.
In one embodiment, the binder 130 is a binder that retains the conductive/semi-conductive organic material 110 and the conductor/semi-conductor particles 120. In one embodiment, the organic material 110 is dispersed as nanoscale particles. As dispersed nanoscale particles, the organic material 110 includes particles that are nanoscaled and individually separated from one another, rather than attached or agglomerated. The formulation process 150 may uniformly disperse the particles within the binder of the binder 130.
In an embodiment of
As an alternative or variation, another embodiment provides for conductive or semi-conductive organic material in the form of pure carbon compounds (other than those depicted in
According to one or more embodiments, other ingredients or components for use in the formation process 150 include solvents and catalysts. Solvents may be added to the binder of the binder 130 to separate particles. A mixing process may be used to uniformly space separated particles. In one embodiment, the result of the mixing process is that the composition is uniformly mixed to disperse the particles at the nanoscale. Thus, particles such as carbon nanotubes may be separated out individually and distributed relatively evenly in the material. In order to achieve nanoscale dispersion, one or more embodiments provide for use of sonic agitators and sophisticated mixing equipment (e.g. rotor-stator mixers, ball mills, mini-mills and other high shear mixing technologies), over a duration that last several hours or longer. Once mixed, the resulting mixture may be cured or dried.
As an alternative or addition to use of nanoscale distributed particles, one or more embodiments provide for the conductive/semi-conductive organic material 110 to be solvent soluble. In one embodiment, the conductive/semi-conductive organic material 110 is added to the binder and mixed with solvent. During the drying process, the solvent is removed, leaving the conductive/semi-conductive organic material 110 remaining uniformly mixed within the cured material. An example of solvent soluble material is poly-3-hexylthiophene. The solvent may correspond to toluene. As a result of the curing step in the formulation process 150, the poly-3-hexylthiophene remains in the VSD material 140.
Thus, as an alternative or addition to fullerenes, numerous other types of conductive/semi-conductive organic material are contemplated for use with VSD material, according to embodiments of the invention. These include: poly-3-hexylthiophene (as discussed above), Polythiophene, a Polyactetylene, a Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), a Pentacene, (8-hydroxyquinolinolato) aluminum (III), N,N′-Di-[(naphthalenyl)-N,N′diphenyl]-1,1′-biphenyl-4,4′-diamine [NPD, a conductive carbon graphite or carbon fiber, diamond powder, and a conductive polymer.
Thus, as an alternative or variation to an embodiment described, the organic material may correspond to a compound that is solvent soluble.
According to another embodiment, other kinds of conductive or semi-conductive organic material may be used. These include conductive/semi-conductive monomers, oligomers, and polymers. By classification, the conductive or semi-conductive organic material may correspond to variations of monomers, oligomer, and polymers of thiophenes (such as poly-3-hexylthiophene or Polythiophene), anilines, phenylenes, vinylenes, flourenes, naphthalene, pyrrole, acetylene, carbazole, pyrrolidone, cyano materials, anthracene, pentacene, rubrene, perylene, or oxadizoles. Still further, the conductive or semi-conductive organic material may correspond to Poly(3,4ethylenedioxythiophene)/poly(styrenesulfonate), (8-hydroxyquinolinolato) aluminum (III), N,N′-Bis(3-methylphenyl-N,N′-diphenylbenzidine [TPD], N,N′-Di-[(naphthalenyl)-N,N′diphenyl]-1,1′-biphenyl-4,4′-diamine [NPD].
The conductor/semi-conductor particles 120 may correspond to conductors or semi-conductors. One or more embodiments provide for use of inorganic semi-conductor particles that include silicon, silicon carbide, or titanium dioxide, boron nitride, aluminum nitride, nickel oxide, zinc oxide, zinc sulfide, bismuth oxide, cerium oxide, iron oxide, metal or/and complexes selected from a group consisting of oxides, metal nitrides, metal carbides, metal borides, metal sulfides, or a combination thereof.
The binder 130 may also be of various types. The binder 130 may be provided in the form of a binder that retains the conductor/semiconductor organic material 110 and the conductor/semiconductor particles 120. According to different embodiments, the binder 130 is formed from a material selected from a group consisting of silicone polymers, epoxy, phenolic resin, polyurethane, poly(meth) acrylate, polyamide, polyester, polycarbonate, polycrylamides, polyimide, polyethylene, polypropylene, polyphenylene oxide, polysulphone, solgel materials, and ceramers. According to one or more embodiments, the binder 130 is a binder that suspends and/or retains the organic material 110 and the conductor/semi-conductor particles 120, as well as other particles or compounds that comprise the VSD material 140. Additionally, the binder 130 may include solvents and other elements not specifically described herein.
VSD Formulation with Organisc Material
Broadly, embodiments provide for use of VSD material that includes, by percentage of volume, 5-99% binder, 0-70% conductor, 0-90% semiconductor, and 0.01-95% organic conductive or semi-conductive material. One or more embodiments provide for use of VSD material that includes, by percentage of volume, 20 to 80% binder, 10-50% conductor, 0% to 70% semiconductor, and organic material that is conductive or semi-conductive and having a volume of the composition in a range of 0.01-40%. Still further, one embodiment provides for use of VSD material that includes, by percentage of volume, 30 to 70% binder, 15-45% conductor, 0% to 50% semiconductor, and organic material that is conductive or semi-conductive and having a volume of the composition in a range of 0.01-40%. Examples of binder materials include silicone polymers, epoxy, polyimide, phenolic resins, polyethylene, polypropylene, polyphenylene oxide, polysulphone, solgel mateterials, ceramers and inorganic polymers. Examples of conductors include metals such as copper, aluminum, titanium, nickel, stainless steel, chrome and other alloys. Examples of semiconductors include both organic and inorganic semiconductors. Some inorganic semiconductors include silicon, silicon carbide, boron nitride, aluminum nitride, nickel oxide, zinc oxide, zinc sulfide, bismuth oxide, and iron oxide. Examples of organic semiconductors include poly-3-hexylthiophene, pentacene, perylene (or derivatives thereof), carbon nanotubes, C60 fullerenes and diamond. The specific formulation and composition may be selected for mechanical and electrical properties that best suit the particular application of the VSD material.
In step 220, metallic and/or inorganic conductors/semiconductors are added to the mixture. As described with an embodiment of
In step 230, a mixing process may be performed over a designated duration. In one embodiment, the mixing process is performed with mixing equipment, including sonic agitators, for a duration that that extends from between minutes to several hours.
In step 240, the mixture is applied to its desired target. For example, the mixture may be applied to across a 5 mil gap between two given electrodes of a particular device. At the target location, the mixture is cured into VSD material.
As described with an embodiment of
Example Formulation and Composition
A compound in accordance with embodiments described herein may be formulated as follows: Organic material, such as carbon nanotubes (CNT) are added to a suitable resin mixture. In one embodiment, the resin mixture includes Epon 828 and a silane coupling agent. NMP (N-methyl-2pyrrolidone) may be added to the resin mixture. Subsequently, conductor or semiconductor particles may be added to the mixture. In one embodiment, titanium dioxide is mixed into the resin, along with titanium nitride, titanium diboride, a curative compound or agent, and a catalyst agent. The mixture may be uniformly mixed for a mixing duration that lasts hours (e.g. 8 hours) using, for example, a rotor-stator mixer with sonication. NMP may be added as necessary for the mixing duration. The resulting mixture may be applied as a coating using #50 wire wound rod or screen print on a desired target. In one embodiment, the coating may be applied across a 5 mil gap between 2 electrodes. Subsequently, a cure process may take place that may be varied. One suitable curing process includes curing for ten minutes at 75 C, ten minutes at 125 C, 45 minutes at 175 C, and 30 minutes at 187 C.
Specific formulations may vary based on design criteria and application. One example of a formulation in which carbon nanotubes are used for organic material 110 includes:
*Curative Solution is a 15% by weight solution of Dyhard T03 dissolved in NMP.
Carbon nanotubes have the benefit of being a high aspect ratio organic filler. The lengths or aspect ratios may be varied to achieve a desired property, such as switching voltage for the material.
Embodiments recognize, however, that carbon nanotubes have considerable length to width ratio. This dimensional property enables carbon nanotubes to enhance the ability of the binder to pass electrons from conductive particle to conductive particle in the occurrence of a transient voltage that exceeds the characteristic voltage. In this way, carbon nanotubes can reduce the amount of metal loading present in the VSD material. By reducing the metal loading, physical characteristics of the layer may be improved. For example, as mentioned with one or more other embodiments, the reduction of metal loading reduces the brittleness of the VSD material 300.
Furthermore, while an embodiment of
As described with an embodiment of
Device 302 may correspond to anyone of many kinds of electrical devices. In an embodiment, device 302 be implemented as part of a printed circuit board. For example, the VSD material 300 may be provided as a thickness that is on the surface of the board, or within the board's thickness. Device 302 may further be provided as part of a semi-conductor package, or discrete device.
Alternatively, device 302 may be used with, for example, a light-emitting diode, a radio-frequency tag or device, or a semiconductor package.
As described with other embodiments, VSD material, when applied to a target location of a device, may be characterized by electrical properties such as characteristic (or trigger) voltage, clamp voltage, leakage current and current carrying capacity. Embodiments described herein provide for use of conductive or semi-conductive organic material in a mixture that enables adjustment of electrical properties such as described, while maintaining several desired mechanical properties described elsewhere in this application.
Still further, another electrical characteristic may correspond to current carrying capacity, measured as the ability of the material to sustain itself after being turned on, then off.
Table 1 and Table 2 several examples of VSD material, including VSD material composed with carbon nanotubes in accordance with one or more embodiments described herein. Table 1 and Table 2 each list generically measured electrical properties (meaning no differentiation is provided between forms of input signal and/or manner in which data for electrical properties is determined), as quantified by clamp and trigger voltages, that result from use of the VSD material in accordance with the stated composition.
With respect to Table 1, Example 1 provides a composition of VSD material that is a basis for comparison with other examples. In Example 1, no conductive or semiconductive organic material is used in the VSD material. Furthermore, the VSD material has relatively high metal loading. Example 2 illustrates a similar composition as to Example 1, but with the introduction of carbon nanotubes. The result is a reduction in trigger and clamp voltage. Trigger and clamp voltages may be reduced by adding carbon nanotubes at a given (constant) nickel loading
Example 3 also illustrates a VSD composition that lacks organic conductive/semi-conductive material, while Example 4 illustrates effect of including carbon nanotubes into the mixture, As shown, a dramatic reduction in the trigger and clamp voltages is shown. With regard to Example 3 and Example 4, both compositions illustrate compositions that have desirable mechanical characteristics, as well as characteristics of off-state resitivity and current-carrying capacity (neither of which are referenced in the chart). However, the clamp and trigger voltage values of Example 3 illustrate the composition, without inclusion of carbon nanotubes, is difficult to turn on and maintain on. Abnormally high trigger and clamp voltages thus reduce the usefulness of the composition.
Examples 5 and 6 illustrate the use of organic semiconductors with carbon nanotubes. In Example 5, the organic semiconductor is imidazoledicarbonitrile. In Example 6, the organic semiconductor is Methylaminoantracene.
Examples 7-10 shows various combinations of VSD material. Example 8 illustrates use of organic semiconductor (sexithiophene) and carbon nanotubes. Example 10 illustrates a VSD composition having multiple types of carbon nanotubes of different VSD compositions, illustrating various effects from use of conductive or semiconductive organic material, according to embodiments of the invention.
The performance diagrams shown with
Coated Conductive or Semi-Conductive Particles
One or more embodiments include a formulation of VSD material that includes the use of conductive or semi-conductive micro-fillers that are coated or otherwise combined onto a periphery of a metal particle. Such formulation allows for additional reduction in the size of the metal particle and/or volume that would otherwise be occupied by the metal particle. Such reduction may improve the overall physical characteristics of the VSD material, in a manner described with other embodiments.
As described below, one or more embodiments provide for the use of conductive organic materials as micro-fillers that coat or bond metal or other inorganic conductor elements. One objective of coating the inorganic/metal particles with organic particles is to generally maintain overall effective volume of conductive material in the binder of the VSD material, while reducing a volume of metal particles in use.
In one implementation, separate preparation steps are performed for the metal and metal oxide particles. Under one embodiment, step 410 may include sub-steps of filtering aluminum and alumina powder. Each of the powder sets are then coated with an organic conductor to form the conductive/semi-conductive element. In one implementation, the following process may be used for aluminum: (i) add 1-2 millimole of silane per gram of Aluminum (dispersed in an organic solvent); (ii) apply sonic applicator to distribute particles; (iii) let react 24 hours with stirring; (iv) weigh out Cab-O-Sil or organic conductor into solution; (v) add suitable solvent to Cab-O-Sil and/or organic conductor mix; (vi) add Cab-O-Sil and/or organic conductor to collection with Aluminum; and (vii) dry overnight at 30-50 C.
Similarly, the following process may be used by used for the Alumina: (i) add 1-2 millimole of silane per gram of Alumina (dispersed in an organic solvent); (ii) apply sonic applicator to distribute particles; (iii) let react 24 hours with stirring; (iv) weigh out Cab-O-Sil or organic conductor into solution; (v) add Cab-O-Sil and/or organic conductor to collection with Alumina; (vi) dry overnight at 30-50 C.
According to an embodiment, carbon nanotubes may be used in coating or preparing the conductive elements. The carbon nanotubes may be biased to stand on end when bonded with the metal particles, so as to extend conductive length of the particles, while at the same time reducing the overall volume of metal needed. This may be accomplished by placing a chemical reactive agent on the surface perimeter of the metal particles that are to form conductors within the VSD material. In one embodiment, the metal particles may be treated with a chemical that is reactive to another chemical that is positioned at the longitudinal end of the carbon nanotube. The metal particles may be treated with, for example, a Silane coupling agent. The ends of the carbon nanotubes may be treated with the reactive agent, to enable end-wise bonding of the carbon nano-tubes to the surface of the metal particles.
In step 420, a mixture is prepared. Binder material may be dissolved in an appropriate solvent. Desired viscosity may be achieved by adding more or less solvent. The conductive elements (or semi-conductive elements from step 410) are added to the binder materials. The solution may be mixed to form uniform distribution. Appropriate curative may then be added.
In step 430, the solution from step 420 is integrated or provided onto a target application (i.e. a substrate, or discrete element or a Light Emitting Diode or Organic LED), then heated or cured to form a solid VSD material. Prior to heating, the VSD material may be shaped or coated for the particular application of the VSDM. Various applications for VSD material with organic material coating metallic or inorganic conductors/semiconductors exist.
In
Conclusion
Embodiments described with reference to the drawings are considered illustrative, and Applicant's claims should not be limited to details of such illustrative embodiments. Various modifications and variations will may be included with embodiments described, including the combination of features described separately with different illustrative embodiments. Accordingly, it is intended that the scope of the invention be defined by the following claims. Furthermore, it is contemplated that a particular feature described either individually or as part of an embodiment can be combined with other individually described features, or parts of other embodiments, even if the other features and embodiments make no mentioned of the particular feature.
Claims
1. A composition comprising:
- organic material that is conductive or semi-conductive, wherein said organic material is either solvent soluble or dispersed within the composition at nanoscale; and
- conductor and/or semiconductor particles other than said organic material;
- wherein said organic material and said conductor and/or semiconductor particles are combined to provide said composition with a characteristic of being (i) dielectric in absence of a voltage that exceeds a characteristic voltage level, and (ii) conductive with application of said voltage exceeding said characteristic voltage level.
2. The composition of claim 1, further comprising a binder, and wherein the organic material and the conductor and/or semiconductor particles are distributed in the binder.
3. A composition comprising:
- a binder;
- organic material that is conductive or semi-conductive, wherein said organic material is either soluble in the binder or dispersed as nanoscale particles within the binder; and
- conductor and/or semiconductor particles other than said organic material, said conductor and/or semiconductor particles being distributed in the binder;
- wherein said organic material and said conductor and/or semiconductor particles are combined to provide said composition with a characteristic of being (i) dielectric in absence of a voltage that exceeds a characteristic voltage level, and (ii) conductive with application of said voltage exceeding said characteristic voltage level.
4. The composition of claim 3, wherein the conductive organic material and the conductor or semiconductor particles are substantially uniformly distributed in an overall thickness of the binder.
5. The composition of claim 3, wherein the organic material includes single and/or multi-walled carbon nanotubes.
6. The composition of claim 3, wherein the organic material includes C60 or C70 fullerenes.
7. The composition of claim 3, wherein the organic material includes a conductive or semi-conductive monomer, oligomer, or polymer.
8. The composition of claim 3, wherein the organic material includes electron donor and/or electron acceptor molecules or polymers.
9. The composition of claim 3, wherein the organic material includes a compound selected from a class of thiophenes, aniline, phenylenes, vinylenes, flourenes, naphthalene, pyrrolv, acetylene, carbazole, pyrrolidone, cyano materials, anthracene, pentacene, rubrene, or perylene.
10. The composition of claim 3, wherein the organic material includes a compound selected from Poly(3,4ethylenedioxythiophene)/poly(styrenesulfonate), (8-hydroxyquinolinolato) aluminum (III), N,N′-Bis(3-methylphenyl-N,N′-diphenylbenzidine [TPD], N,N′-Di-[(naphthalenyl)-N,N′diphenyl]-1,1′-biphenyl-4,4′-diamine [NPD].
11. The composition of claim 3, wherein said organic material includes a pure carbon compound corresponding to one of carbon graphite, carbon fiber, or a diamond powder.
12. The composition of claim 3, wherein the conductor and/or semiconductor particles includes a metal or a metal complex.
13. The composition of claim 12, wherein the metal complex is selected from a group consisting of oxides, metal nitrides, metal carbides, metal borides, metal sulfides, or a combination thereof.
14. The composition of claim 3, wherein the conductor and/or semiconductor particles include a titanium compound.
15. The composition of claim 14, wherein the conductor and/or semiconductor particles include titanium dioxide.
16. The composition of claim 14, wherein the titanium compound includes titanium diboride or titanium nitride.
17. The composition of claim 3, further comprising inorganic semi-conductor particles distributed in the binder.
18. The composition of claim 3, wherein the inorganic semi-conductor particles include particles selected from a group consisting of silicon, silicon carbide, boron nitride, aluminum nitride, nickel oxide, zinc oxide, zinc sulfide, bismuth oxide, cerium oxide, iron oxide.
19. The composition of claim 3, where at least some of the conductor and/or semiconductor particles are surface bonded by said organic material.
20. The composition of claim 19, wherein said organic material that surface coats the conductor and/or semiconductor particles includes carbon nanotubes.
21. The composition of claim 20, wherein the conductor and/or semiconductor particles includes one of titanium dioxide, titanium nitride, titanium diboride.
22. The composition of claim 19, wherein said organic material that surface coats the conductor and/or semiconductor particles includes organic conductive particles that are grafted onto a surface of individual conductive particles in the binder.
23. The composition of claim 3, wherein the binder material is formed from a material selected from a group consisting of silicone polymers, epoxy, polyimide, polyethylene, phenolic resin, polypropylene, polyphenylene oxide, polysulphone, solgel mateterials, ceramers.
24. The composition of claim 3, wherein said organic material includes a chemical moiety that covalently bonds to the binder.
25. A voltage switchable dielectric material having a quantity of carbon nanotubes distributed therein.
26. The voltage switchable dielectric material of claim 25, further comprising a binder, and wherein the quantity of carbon nanotubes is distributed as part of the binder.
27. The voltage switchable dielectric material of claim 26, further comprising titanium dioxide distributed in the binder.
28. A composition comprising:
- a binder that comprises at least a portion of a binder of the composition, the binder having a volume in the composition that is in a range of 20 to 80% of a composition volume;
- conductor particles, having a volume of the composition in a range of 10% to 60% of the composition volume; and
- organic material that is conductive or semiconductive and having a volume of the composition in a range of 0.01-40%;
- wherein the binder, conductor particles, and organic material combine to provide the composition with a characteristic of being (i) dielectric in absence of a voltage that exceeds a characteristic voltage level, and (ii) conductive with application of the voltage exceeding the characteristic voltage level.
29. The composition of claim 28, wherein said organic material is a solvent soluble in the binder.
30. The composition of claim 28, wherein said organic material is distributed as nano-scaled particles in the binder.
31. A method for creating voltage switchable dielectric material, the method comprising:
- creating a mixture containing (i) a binder that is dielectric, (ii) metallic and/or inorganic conductor or semi-conductor particles, and (iii) conductive or semi-conductive organic material that is distributed in the mixture as either a solvent soluble or as nano-scaled particles, wherein creating the mixture includes using a quantity of each of the binder, the metallic and/or inorganic conductor or semi-conductor particles, and the organic material so that the mixture, when cured, is (i) dielectric in absence of a voltage that exceeds a characteristic voltage, and (ii) conductive in presence of the voltage that exceeds the characteristic voltage; and
- curing the mixture.
32. The method of claim 31, further comprising applying the mixture to a target location on a device, and wherein curing the mixture includes curing the mixture at the target location.
33. The method of claim 32, creating a mixture includes creating the mixture using fullerenes as the organic material.
34. The method of claim 31, wherein the fullerenes are functionalized C60 or C70.
35. The method of claim 31, wherein the fullerenes are carbon nanotubes.
36. The method of claim 31, wherein the metallic and/or inorganic conductor or semi-conductor particles are selected from a group consisting of copper, aluminum, nickel, and steel, silicon, silicon carbide, boron nitride, aluminum nitride, nickel oxide, zinc oxide, zinc sulfide, bismuth oxide, cerium oxide, iron oxide.
37. The method of claim 31, wherein the metallic and/or inorganic conductor or semi-conductor particles includes a titanium compound.
38. The method of claim 31, wherein the metallic and/or inorganic conductor or semi-conductor particles includes a titanium dioxide.
39. A voltage switchable dielectric material formed by:
- creating a mixture comprising (i) a binder that is dielectric, (ii) metallic and/or inorganic conductor or semi-conductor particles, and (iii) conductive or semi-conductive organic material that is distributed as either a solvent soluble or as nano-scale particles in the mixture, wherein creating the mixture includes using a quantity of each of the binder, the metallic and/or inorganic conductor or semi-conductor particles, and the organic material so that the mixture, when cured, is (i) dielectric in absence of a voltage that exceeds a characteristic voltage, and (ii) conductive in presence of the voltage that exceeds the characteristic voltage; and
- curing the mixture.
Type: Application
Filed: Jul 29, 2007
Publication Date: Feb 7, 2008
Inventors: Lex KOSOWSKY (San Jose, CA), Robert Fleming (San Jose, CA)
Application Number: 11/829,946
International Classification: C25C 1/12 (20060101);