Automated device for erecting individual French fry containers and method
A device and method for erecting a collapsed individual portion-sized French fry type container of the type having opposed sidewalls connected by a collapsible container bottom are provided. The device includes a retrieving and container grasping device, which may be a suction cup, for grasping one of the opposed sidewalls, a restraining member for restraining the other opposed sidewall, and means for causing movement of the grasping device away from the restraining member to separate the sidewalls. The grasping device may be mounted to carriages for moving it in two dimensions. An inclined ramp may also be included to urge up the container bottom as it is dragged up the ramp, thus urging the container to an erected position. Additionally, a stream of compressed air may be injected into the open end of the container and towards the container bottom by an appropriate injecting means for assisting in the erecting.
This application is a division of U.S. application Ser. No. 10/419,523, filed on Apr. 21, 2003, pending. Application Ser. No. 10/419,523 is a continuation-in-part of U.S. application Ser. No. 10/127,202, filed on Apr. 22, 2002, pending; Ser. No. 10/127,203, filed on Apr. 22, 2002, granted, now U.S. Pat. No. 6,869,633; Ser. No. 10/127,309, filed on Apr. 22, 2002, granted, now U.S. Pat. No. 6,960,157; No. 10/127,311, filed on Apr. 22, 2002, abandoned; Ser. No. 10/127,369, filed on Apr. 22, 2002, pending; Ser. No. 10/127,390, filed on Apr. 22, 2002, abandoned; Ser. No. 10/127,398, filed on Apr. 22, 2002, granted, now U.S. Pat. No. 6,871,676; and Ser. No. 10/127,400, filed on Apr. 22, 2002, the entire disclosure of each of the foregoing applications is hereby expressly incorporated by reference.
FIELD OF THE INVENTIONThe invention relates to automated food processing. More particularly, the invention relates to automated food dispensing, frying and packaging into individual portion-sized containers such as at a quick-service type restaurant.
BACKGROUND OF THE INVENTIONIn restaurants, especially quick-service (fast food) restaurants, fast, consistent, efficient and safe food preparation is essential for a successful operation. The quality of the prepared food depends in large part on the consistency of food preparation. The food must be cooked under correct conditions for the proper time.
Consistency in food preparation can vary as a result of many factors. For example, people engaged in food preparation often must perform multiple tasks at frequencies that vary with time because of constantly varying customer demand throughout the day. For example, lunchtime and dinnertime may be extremely busy while other periods may be relatively slow. The product mix can vary from hour to hour and day to day. As a result, the consistency and quality of food may vary. Difficulties in proper scheduling of food production during peak and non-peak periods can cause customer delays and/or stale, wasted or unusable food.
Food preparation can be labor intensive, and thus, the labor cost can be a large portion of the total cost of the prepared food. An additional problem is that in sparsely populated and other areas where quick-service restaurants are located, such as along interstate highways, for example, recruiting sufficient numbers of suitable employees is difficult.
Quick-service restaurants must be able to effectively meet a variable customer demand that is time dependent and not subject to precise prediction. As a result, stores relying totally on human operators will at times be overstaffed and at other times be understaffed. Also, problems and potential problems can exist in restaurants where people directly prepare food. Health and safety concerns can also be present where food is prepared directly by people. By reducing or minimizing human contact with food and food cooking equipment, health and safety concerns can also be reduced or minimized. For example, in the frying of foods, some type of hot fluid, such as cooking oil or shortening must be utilized. The cooking temperatures required can present a concern for health and safety.
Although quick-service restaurants have existed for many years and now number in the tens of thousands, such establishments utilize manual labor to prepare and process food. While there have been various improvements in commercial equipment used for cooking food in quick-service restaurants, such restaurants are believed to be substantially all manually operated and relatively labor intensive.
Accordingly, a need exists for an automated, commercially suitable food dispensing, cooking and packaging device, system and method for fried foods that can be operated with a minimum of human intervention, control and maintenance. More particularly, a need exists for an automated device, system and method that is capable of, without human labor, frying various food products in desired quantities, such as French fries, seasoning the cooked food and packaging the cooked food in individual portion-sized containers.
SUMMARY OF THE INVENTIONIn accordance with the present invention, an automated food processing system and method is provided. The automated food processing system and method in accordance with the invention allows food to be dispensed, fried and packaged in a suitable container or alternatively dispensed to a food holding area for subsequent processing by a human operator.
In accordance with one aspect of the present invention, an automated module system for dispensing, frying and packaging food into individual portion-sized containers is provided. In one embodiment, any suitable automated dispensing device can be used. In another embodiment, the system includes an automated dispensing module capable of dispensing a desired quantity of food to be fried, an automated fry module adjacent the dispensing module to receive and fry the quantity of food dispensed from the dispensing module and to produce and dispense a quantity of fried food and an automated packaging module adjacent the fry module to receive and package the fried food from the fry module into an individual portion-sized container.
Advantageously, in one embodiment, the three modules are independent from each other and can be operated independently. Plus, in one embodiment, any one of the modules can be deactivated and a human operator can manually perform the function of the deactivated module with manually operated equipment.
In accordance with another aspect of the invention, optionally an automated seasoning device is present to apply seasoning to the food.
Typically, the automated dispensing module in accordance with the invention in one embodiment is capable of dispensing one or more of uncooked or unheated French fries, chicken nuggets, hash browns, chicken patties and fish filets or similar types of food items to be cooked and/or heated.
In accordance with another aspect of the invention, the automated dispensing module includes a freezer, a storage container located in the freezer for containing food to be dispensed, structure for dispensing a predetermined quantity of food from the storage container into a secondary or dump container, with the structure for dispensing and the secondary or dump container being located in the freezer, and structure for dispensing the quantity of food from the secondary or dump container to a location outside of the freezer.
In accordance with another aspect of the present invention, the fry module of the automated modular system includes a fry vat for containing and heating cooking oil, at least one circular fry wheel having at least a generally circular perimeter in a plurality of compartments, each compartment having an opening towards the perimeter, the fry wheel mounted for rotational movement relative to the radial axis of the fry wheel, which radial axis is disposed above the normal operating level of the frying oil or the cooking oil in the fry vat. A drive mechanism is provided for rotating the fry wheel. In one aspect of the invention, any suitable type of automated fry device can be utilized.
In accordance with another aspect of the present invention, a control system is provided for causing the drive mechanism to periodically rotate the fry wheel back and forth through a relatively small amount of angular rotation (such as about 2-10°, for example) to simulate shaking of a fry basket. Such control can be accomplished electronically by devices known to those skilled in the art.
In another embodiment, food is delivered from the fry module to a cooked food holding device, which can comprise a heated holding bin or bins.
In accordance with still another aspect of the present invention, the automated packaging module includes a rotatable food dispensing member having an inlet location to receive a quantity of cooked food at a discharge location to discharge cooked food, the packaging module also including a food dispensing chute positioned to receive cooked food from the discharge location of the rotatable food dispenser, the food dispensing chute having a discharge location.
In accordance with another embodiment of the invention, the automated modular system further includes a carton holding device for holding the individual portion-sized carton or container in position to receive food from the discharge location of the dispensing chute. The packaging module may further include a rotatable food collecting member disposed to collect food from the discharge location of a dispensing chute that is not deposited into the individual portion-sized food container. The so collected food may be subsequently deposited into the food dispensing chute for delivery to a container or alternatively to the rotatable food dispensing member or to a waste receptacle or chute.
In accordance with another aspect of the invention, the automated packaging device includes a conveyor system for transporting filled individual portion-sized food containers from adjacent the filling location to a filled food container holding area, for subsequent pick-up by a human operator, for example. In one embodiment, any suitable automated packaging device can be utilized.
In accordance with another aspect of the present invention, an automated food carton-retrieving device is provided for retrieving and grasping individual portion-sized food containers. The automated retrieving device comprises a movable member for selectively grasping and releasing the food container. In one embodiment, the retrieving device is capable of grasping and releasing an unerected food container on one side and the device further includes a second device for selectively grasping the unerected food container on the other side with structure for moving the retrieving device and the second device relatively apart when grasping the sides of the container to erect or partially erect the container.
In another embodiment, an automated urging structure is provided for urging the container bottom upwardly relative to the sides of the container when the sides of the container are moved relatively apart.
In accordance with another aspect of the invention, the automated modular system includes an electronic control system that receives current customer order information and the electronic control system causes the selection of a container from a plurality of different container sizes and further causes filling of food with the size of food container in response to a customer order. In one aspect, the electronic control system can receive customer order information and controls the dispensing rate of food dispensed from the food dispensing module to the fry module which dispensing automatically determines the amount of food being fried without further intervention by the electronic control. In one aspect, the control system can include a separate control system for each of the dispensing, fry and packaging systems or modules, each of which interface with a central control system, which in turn optionally interfaces with a POS (point-of-sale) system.
In accordance with another aspect of the invention, the automated modular system is suitable for dispensing, frying and packaging French fries into individual portion-sized containers.
In accordance with another aspect of the present invention, an automated method of dispensing, frying and packaging food into individual portion-sized containers is provided that includes dispensing a desired quantity portion of food to be fried from an automated dispensing module to an automated fry module and thereafter frying the portion of food dispensed from the dispensing module in the automated fry module adjacent the dispensing module to produce a quantity of fried food. Thereafter, the quantity of fried food is dispensed from the fry module to a packaging module where the fried food dispensed from the fry module is packaged into individual portion-sized containers with an automated packaging module.
In another aspect of the invention, the automated method further comprises seasoning the quantity of fried food with a seasoning device.
In accordance with another aspect of the invention, the dispensing includes dispensing a predetermined quantity of food from the storage container into a secondary container located in a freezer and dispensing the quantity of food from the secondary container to a location outside of the freezer.
In accordance with another aspect of the method of the present invention, the frying comprises a rotating fry wheel having at least a generally circular perimeter and a plurality of compartments, each compartment having an opening towards the perimeter, the food being contained in at least one of the compartments during the frying, the fry wheel being mounted for rotational movement relative to the radial axis of the fry wheel in a fry vat with the radial axis being disposed above a normal operating level of the cooking oil in the fry vat. In accordance with this aspect of the invention, the automated method further includes containing a drive mechanism to periodically rotate the fry wheel back and forth through a relatively small amount of angular rotation to simulate shaking of a fry basket during frying.
In accordance with another aspect of the invention, the packaging includes rotating a rotatable food dispensing member having an inlet location to receive a quantity of cooked food in a discharge location to discharge cooked food, the food dispensing member being rotated to dispense food into a food dispensing chute position to receive cooked food from the discharge location of the rotatable food dispenser and thereafter dispensing said food from the dispensing chute to a container to be filled.
In accordance with another aspect of the invention, the method further includes holding an individual portion-sized carton or container positioned to receive food from the dispensing chute with an automated carton holding device.
In accordance with still another aspect of the invention, the method further includes collecting food dispensed from the discharge location of the dispensing chute that is not deposited into the individual portion-sized food container with a rotatable food collecting member disposed to collect such not deposited food.
In accordance with another aspect of the method, the method includes electronically coordinating the operation of the three modules or devices within an electronic control system. In one embodiment, the method further includes electronically receiving current customer order information by the electronic control system which causes selection of a container from a plurality of different sized containers and filling the container with food of the ordered size of food container in response to a customer order by the packaging module. In accordance with another aspect of the method, customer order information is electronically received and the dispensing rate of food dispensed from the food dispensing module to the fry module is controlled, which dispensing automatically determines the amount of food being fried without further intervention by the electronic control system.
In accordance with another aspect of the present invention, an automated dispensing device for dispensing a quantity of food to be subsequently cooked is provided. In one embodiment, the automated dispensing device includes a freezer or refrigerated compartment, a storage container located in the freezer for containing food to be dispensed, structure for dispensing a predetermined quantity of food from the storage container into a secondary or dump container, the structure for dispensing the predetermined quantity of food being located in the freezer, and structure is provided for dispensing the quantity of food from the secondary or dump container in the freezer to a location outside of the freezer.
In one embodiment, the structure for dispensing a predetermined quantity of food includes a vibratory conveyor typically located in the freezer below the storage container. The structure for dispensing may further include a device for determining or sensing the quantity of food that has been deposited in the secondary container and structure is provided for terminating the operation of the structure for dispensing when a predetermined quantity of food is sensed in the secondary container.
In accordance with another aspect of the present invention, the secondary container has a bottom that is at least partially open and the secondary container is movable laterally between a filling position located within the freezer and a dispensing position for dispensing food through the container open bottom and out of the freezer. The secondary container may include a floor member that is located below the container having the at least partially open bottom. The floor member and the container are movable relative to each other between the first and second positions wherein in the first position the floor member is adjacent the open bottom and prevents food from being dispensed from the container and when in the second position food is free to fall through the open bottom of the container.
In one embodiment, a device for determining the quantity of food located in the second container is provided with structure for terminating the operation of the structure for dispensing food into the second container when a predetermined quantity of food is sensed in the secondary container. The device for determining the quantity may be on a volume or weight basis and thus can be a weighing mechanism, which can be a load cell. In one embodiment, a device is provided for moving the second container laterally sufficiently to the dispensing position so that food contained therein is dispensed. Such a device may be, for example, a suitable actuator, which can be an air or hydraulic cylinder, for example. In one embodiment, the automated dispensing device further includes a door that is located over an opening in the freezer compartment and positioned relative to the secondary container so that when the secondary container is moved laterally to the dispensing position, the food in the secondary container exits the freezer compartment through the open bottom and through the freezer compartment opening. Typically, the dispensed food will then be directed into the fry module.
In accordance with another aspect of the present invention, a vibratory conveyor is provided for conveying food items to the secondary container. The vibratory conveyor in one embodiment may have a serpentine or a zigzag food travel pathway.
In accordance with another aspect of the invention, the tray for vibratory conveying of food articles from a hopper may include a tray body, a food inlet portion and a food outlet portion, the food inlet including an upwardly extending dividing member for dividing the tray into at least two food inlet conveyor passageways, the inlet conveyor passageways merging into a single food passageway that extends to the food outlet portion after which the food passing therethrough is dispensed into the secondary container. In one embodiment, the single food passageway may be nonlinear and may have a zigzag or a serpentine pathway or configuration. In one aspect of the invention, the dividing member of the tray for vibratory conveying of food articles is saddle-shaped. The tray for vibratory conveyance of food articles can be configured and dimensioned so that the single food passageway causes food of a particular size, such as the size of chicken nuggets, for example, to be conveyed in a single file arrangement. This allows for a precise vibratory dispensing of the food articles permitting them to be dispensed one at a time from the vibratory conveyor to the secondary container. Such an arrangement permits accurate metering of the food articles and precise control of the batch sizes that are cooked and subsequently packaged and served to customers. This permits more economical and efficient and reproducible operations.
In accordance with another aspect of the present invention, the vibratory conveyor includes a tray that has a bottom portion with a plurality of spaced apart holes to permit relatively small undesirable particles, such as ice particles and small particles of food to pass therethrough so that such material is not dispensed into the secondary container. To accomplish this, typically the holes will be less than about 0.25 inches in diameter and can be located in a suitable array as desired.
In accordance with another aspect of the invention, a generally vertically extending declumping member is provided that can interact with food contained in the vibrating conveyor. Preferably, the declumping member is in the form of a cylindrical member or pin that extends generally vertically towards the vibrating conveyor from a position located above the vibrating conveyor. Typically, the declumping member will be stationary relative to the vibrating conveyor so that as food, in particular, such as French fries, pass the declumping member as they travel along the vibrating conveyor clumps of French fries can be separated into smaller clumps or individual French fries. This facilitates the subsequent frying of such food materials.
In accordance with another aspect of the present invention, the automated dispensing device includes structure for dispensing a predetermined quantity of food that comprises a food magazine capable of dispensing individual pieces of food on a piece by piece basis. In accordance with a more specific aspect of this embodiment, the magazine comprises dual rotatable spiral flights with the spiral flights having a spacing therebetween to allow placement of a food item, such as a chicken patty, for example, to be supported by both spiral flights.
In accordance with another aspect of the invention, the magazine dispenser is suspended from a slide mechanism permitting removal of the magazine from the freezer or refrigerated compartment. A plurality of the magazines can be located on a single slide mechanism. An array of the magazines may be located in the freezer, such as a 3×5 array or a 3×4 array, for example.
In one embodiment, a separate drive motor is associated with each food dispensing magazine for selectively rotating spiral flights of a magazine dispenser for dispensing a desired number of the food items. The drive motor may also be located in the freezer.
In accordance with another aspect of the invention, an automated method of dispensing a quantity of food to be cooked is provided. The method includes storing food items in a storage container located in the freezer, dispensing food items from the storage container to a conveyor, conveying the food items on the conveyor to a secondary or dump container located in the freezer, monitoring the amount of food items delivered to the secondary container, terminating delivery of the food items to the secondary container when a desired amount of food items are determined to be present in the secondary container as determined by the monitoring, and dispensing the food items from the secondary container and out of the freezer by at least partially inverting the secondary container. In accordance with another aspect of this embodiment, a freezer or refrigerated compartment is not utilized.
In accordance with another aspect of the present invention, the method includes storing food items in a storage container, dispensing food items from the storage container to a conveyor, conveying the food items on the conveyor to a secondary container having at least a partially open bottom with a floor member adjacent the open bottom, monitoring the amount of food items delivered to the secondary container, terminating delivery of the food items to the secondary container when a desired amount of food items are determined to be present in the secondary container as determined by said monitoring and dispensing the food items from the secondary container and through the open bottom of the secondary container by relative movement of the floor member to the open bottom of the container.
The conveying may comprise vibratory conveying, as desired.
In one embodiment, the secondary container with the at least partially open bottom moves relative to the floor member that remains stationary.
In accordance with another aspect of the present invention, a device for the automated frying of foods is provided. The device in one embodiment includes a fry vat for containing and heating cooking oil, at least one circular fry wheel having at least a generally circular perimeter and a plurality of compartments with each compartment having an opening towards the perimeter, the fry wheel mounted for rotational movement relative to the radial axis of the fry wheel which radial axis is disposed above the normal operating level of the frying oil in the fry vat. A drive mechanism is provided for rotating the fry wheel and a control system is included for causing the drive mechanism to periodically rotate the fry wheel back and forth through a relatively small amount of rotation (such as about 2-10°, for example) to simulate shaking of a fry basket. Such control can be accomplished electronically by devices known to those skilled in the art.
In accordance with another aspect of the present invention, the small amount of rotation is in the range of from about 2° to about 20°. The back and forth rotation in one direction may be of a larger angle or amount of rotation than of the rotation in the other direction.
In one embodiment, a control system is provided that causes periodic incremental rotation of the fry wheel in one direction to cause food deposited into one of the compartments to travel through the cooking oil in the fry vat over a period of time to fry the food and to move the compartments out of the cooking oil for subsequent discharge of the food from the compartment. In one embodiment, the periodic incremental rotation is based on 360° divided by the number of compartments in the fry wheel.
In accordance with another aspect of the present invention, a control system is provided for operating the drive mechanism to rotate the fry wheel in one direction to cause food deposited into one of the compartments to travel through the cooking oil in the fry vat over a period of time to fry the food and out of the cooking oil for subsequent discharge of the food from the compartment, wherein the control system adjusts the speed of rotation based on the level of cooking oil in the fry vat. In one embodiment, the control system causes incremental periodic rotation of the fry wheel and the control system adjusts the period of time between incremental rotations based on the level of cooking oil sensed in the fry vat. The period of time between incremental rotations can also be based on the temperature of the cooking oil in the fry vat.
In accordance with another aspect of the invention, a curved baffle is provided that is disposed in the fry vat adjacent the axial periphery of the portion of the fry wheel that is disposed in the cooking oil for preventing food contained in one or more of the fry wheel compartments from falling out of the compartments.
In accordance with another aspect of the invention, a device for the automated frying of food is provided that includes a fry vat for containing and heating cooking oil, at least one circular fry wheel having at least a generally circular perimeter and a plurality of compartments each having an opening towards the perimeter, the fry wheel mounted for rotational movement relative to the radial axis of the wheel which radial axis is disposed above the normal operating level of the frying oil in the fry vat, a drive mechanism for rotating the fry wheel and an overflow passageway having an inlet that is located above the normal operating level of the frying oil in the fry vat. Preferably, the overflow passageway is located in a foam deck that is adjacent a side of the fry vat. The foam deck has a surface located above the normal operating level of the frying oil in the fry vat. In one embodiment, the overflow passageway comprises an elongated slot in the foam deck. The foam deck is preferably located adjacent or in proximity to the food inlet location for supplying a quantity of food to be fried in the fry wheel.
In accordance with another aspect of the present invention, an automated method of frying food in a fry vat having a heated cooking oil contained therein is provided. The method includes placing food in a fry wheel compartment, each of the compartments having an opening towards the perimeter of the fry wheel, rotating the fry wheel so that the compartment containing the food travels submerged in the heated cooking oil and periodically rotating the fry wheel back and forth in a relatively small amount of rotation to simulate shaking of the fry basket while the food is submerged in the cooking oil. In accordance with another aspect of the method of the present invention, the method comprises rotating the fry wheel in one direction to cause the food deposited into one of the compartments to travel through the cooking oil in the fry vat over a period of time to fry the food and to move the food out of the cooking oil for subsequent discharge of the food from the compartment, wherein the speed of said rotating is related to the level of cooking oil in the fry vat. In accordance with this aspect of the present invention, the rotating may comprise incremental periodic rotation with the period of time between incremental periodic rotations being based on the level of cooking oil sensed in the fry vat. The period of time between incremental periodic rotations may also be based on the temperature of the cooking oil in the fry vat.
In accordance with another aspect of the invention, an automated method of frying food is provided that includes placing food to be fried in a fry wheel compartment of a fry wheel having at least a generally circular perimeter and a plurality of compartments, each having an opening towards the perimeter, the fry wheel mounted for rotational movement relative to the radial axis of the wheel which radial axis is disposed above the normal operating level of the frying oil in a fry vat having heated cooking oil therein, providing an overflow passageway having an inlet that is located above the normal operating level of the frying oil in the fry vat, collecting in the overflow passageway at least some of the water containing foam that results when food to be fried and placed in the fry wheel contacts the frying oil and rotating the fry wheel so that the compartment containing the food travels submerged in the heated cooking oil. The method may further include periodically rotating the fry wheel back and forth with a relatively small amount of rotation to simulate shaking of a fry basket while food is submerged in the cooking oil.
In accordance with another aspect of the present invention, an automated method of packaging cooked food, which may be food such as French fries, chicken nuggets and other types of food, in an individual portion-sized container is provided. The method includes delivering a quantity of a cooked food to a rotatable dispensing member, rotating the dispensing member to cause the food items to fall from one or more compartments of the dispensing member into a food dispensing chute and thereafter dispensing the food from the chute and depositing the food into the individual portion-sized food container.
In accordance with one aspect, the method may further include weighing the food in the chute before dispensing the food to the container.
In accordance with another aspect of the invention, the method includes applying seasoning to the food and may further include applying the seasoning by using gravity to cause the seasoning to travel through a nozzle and onto the food.
In accordance with another aspect of the invention, the method further includes shaking the individual portion-sized food container after the dispensing. The shaking may be automated and can include back and forth movement of the container through an arc as desired, and may be in a generally vertical axis. The arc may be a generally circular arc and the rotating back and forth may encompass an arc in the range of from about 3° to about 20°. In addition, the container may be raised and lowered before, during or after the rotating to further simulate shaking or in connection with further container handling.
In accordance with another aspect of the invention, when dispensing food from the chute to the individual portion-sized container, some of the dispensed food is not deposited into the individual portion-sized container and the method further includes collecting the not deposited food. Typically, the not deposited food will be collected in a collection device that returns the not deposited food to the chute for subsequent dispensing. In one embodiment, the collection member is rotatable and can be rotated to deposit the collected food to the chute. This helps to ensure that the not deposited food is subsequently deposited into a container on a first-in, first-out or a generally first-in, first-out basis.
In accordance with another aspect of the present invention, an automated method of packaging food, including food such as French fries, in an individual portion-sized container is provided that includes delivering a quantity of food to a food dispensing chute, selecting and holding with an automated device an individual portion-sized container of a desired size from a plurality of different sizes of individual portion-sized containers that can be selected and held by the automated device. The selected individual portion-sized container is moved by the automated device to a location for receiving food from the dispensing chute and food is dispensed from the chute and into the container. The method may further include depositing the filled food container onto a conveyor by operation of the automated device and transporting the deposited container by the conveyor to a human operator food pickup location.
In accordance with another aspect of the foregoing method, the individual portion-sized food container is unerected and the method further includes after the selecting, erecting the selected individual portion-sized food container by the automated device. In one embodiment, the automated device includes a partial vacuum suction device for holding the individual portion-sized food container and the holding includes applying a partial vacuum through a suction device to the food container. The food container can be released by reducing or eliminating the vacuum applied by the suction device to the food container sufficiently to cause the food container to be disengaged from the automated device.
In accordance with another embodiment of the method, the filled food container is placed in an upright position on a transportable member or container-receiving receptacle which in one embodiment contains a single food container and is maintained in an upright position on the transportable member by cooperation of the recessed volume of the transportable member and the food container.
In accordance with another aspect of the invention, the transporting is performed by a magnetic conveyor.
In accordance with another aspect of the invention, an automated method of packaging cooked French fries in individual portion-sized French fry containers is provided. The method includes delivering with a mechanical device cooked French fries to a French fry holding bin and mechanically scooping with a mechanical device an open French fry container into the cooked French fries in the holding bin to fill the French fry container with French fries. After filling the French fry container, the method further includes mechanically depositing the filled French fry container at a drop-off location. Typically, the drop-off location will include a location that is convenient for a human operator to access the filled French fry containers for subsequent service to a customer.
In accordance with this aspect of the invention, typically the delivering of cooked French fries to a French fry holding bin will be accomplished by receiving the French fries from an inlet chute which chute is traversed by the French fries prior to entering the French fry holding bin. When used with a fry module in accordance with the invention or some other type of fry apparatus including a manual fry operation, the French fries enter the inlet chute after being dispensed from the fry module or other arrangement.
The automated method of packaging cooked French fries may further include applying seasoning to the French fries which may occur while on the inlet chute. The application of seasoning is preferably done by an automated system which may include a seasoning device or a salting device as hereafter described in detail.
In accordance with another aspect of the invention, the inlet chute includes structure for vibrating the inlet chute to facilitate transport of French fries down the inlet chute.
In one embodiment, the inlet chute includes a first gate that is movable to a position that restrains the French fries from traveling down the chute. This provides a convenient time during which to apply the desired seasoning to the French fries. The gate may include a plurality of reciprocable fingers that are configured for up and down movement. The fingers may be configured such that in a retracted position the fingers do not extend above the surface of the inlet chute and in an extended position the fingers extend outwardly above the surface of the inlet chute sufficiently to prevent the passage of French fries. In addition, in one embodiment, the fingers are periodically reciprocable in an up and down direction so that the fingers have a declumping action on French fries passing through the chute at the location of the reciprocable fingers.
In accordance with another embodiment of the invention, the method includes further restraining the French fries from exiting the inlet chute at a location downstream of the gate after passing the first gate. The further restraining can be performed by a second gate located downstream of the first gate. Preferably, when utilized, the second gate will be located downstream of the first gate a sufficient distance so that a desired quantity of French fries can be stored on the chute between the first and second gates. The second gate can be moved to a position that does not restrain the French fries so that the French fries are free to travel into the holding bin.
In accordance with another aspect of the automated method of packaging cooked French fries, the method further includes mechanically shaking the filled individual portion-sized French fry container prior to the depositing. The shaking may include back and forth movement through an arc in which the end-of-arm tool of the mechanical device travels, thereby causing the filled individual portion-sized French fry container to travel in that arc which can be any generally vertical axis. In accordance with one embodiment, the mechanical device is a mechanical arm which can perform the mechanical scooping, shaking and depositing steps as desired. In addition, the method may further include holding the individual portion-sized French fry container with a mechanical arm of the mechanical device while performing the scooping, shaking and/or depositing. The shaking may be accomplished by up and down vertical movement of the mechanical arm.
In accordance with another aspect of the invention, the method further includes mechanically obtaining an unerected individual portion-sized French fry container to be filled from a stack of unerected individual portion-sized French fry containers. The method can still further include mechanically erecting the unerected individual portion-sized French fry container prior to the scooping. The method may further include, before the obtaining of the unerected carton, selecting and holding with the mechanical device an individual portion-sized container of a desired size from a plurality of different sizes of individual portion-sized containers that can be selected and held by the automated device.
In accordance with another aspect of the present invention, a method of erecting a collapsed, individual portion-sized French fry container of the type having opposed sidewalls connected by a collapsible container bottom is provided. The method includes grasping the unerected French fry container, pulling the container against a restraining member and mechanically dragging the bottom of the container so that it traverses up an inclined ramp to urge up the container bottom to urge the container to an erected position. The method may further include injecting a stream of compressed air into the open end of the container and towards the container bottom for assisting in the erecting.
As used herein, the term “fill” or “filled” is not limited to completely filling or a completely filled container and thus includes partially filling or partially filled containers.
In accordance with still another aspect of the invention, an automated device for packaging cooked food into a desired container, which may be an individual portion-sized food container is provided. The device includes a rotatable food dispensing member having an inlet location to receive a quantity of the cooked food and a discharge location to discharge the cooked food. A food dispensing chute is positioned to receive the cooked food from the discharge location of the rotatable food dispenser and the dispensing chute has a discharge location. In one embodiment, the dispensing chute has a food holding area for holding a quantity of the cooked food deposited therein. A suitable weighing device can be associated with the dispensing chute to weigh the food that is contained in the chute or in the holding area of the chute. In one embodiment, the weighing device is a load cell.
In accordance with another aspect of the invention, the automated device includes a food carton or container holding device for holding the food carton in position to receive food from the discharge location of the dispensing chute. The carton holding device can include an axially rotatable generally vertically extending elongated first member and a second member that extends from the elongated member, the second member having a gripping member for gripping a food container, which may be an individual portion-sized food container. In one embodiment, the gripping member comprises a suction cup. A vacuum source may be supplied to the suction cup to create at least a partial vacuum, allowing the container to be held. In one embodiment, the carton holding device is capable of moving the food container through an arc of about or of at least about 180° and in which the carton holding device is capable of moving the food container up and down.
In accordance with another aspect of the present invention, the automated device comprises a conveyor system for transporting filled individual portion-sized food containers from adjacent the filling location to a filled container holding area. The conveyor system may comprise in one embodiment a continuous loop raceway and a plurality of discrete movable food container receptacles that are movable along the raceway. The conveyor system may include a continuous movable loop having at least one magnetic element capable of magnetically attracting one of the movable receptacles at a time for causing movement of the receptacle corresponding to movement of the magnetic element. A plurality of the magnetic elements may be spaced apart along the movable loop.
In one embodiment, structure is provided for preventing movement of the discrete receptacles when the structure for moving the discrete receptacles along the raceway is activated. The structure for preventing movement can be a barrier that is disposed across the raceway. In one embodiment, the barrier is selectively movable and in another embodiment the barrier is fixed. In one embodiment, the barrier prevents movement of the receptacles only for a receptacle that has a food carton or container disposed thereon. In this embodiment, the barrier may be located at a height that is above the top of the receptacles located on the conveyor system adjacent the barrier.
In accordance with another aspect of the invention, an automated device is provided to retrieve and grasp a food container, which may be an individual portion-sized food or French fry container or carton. The automated retrieving device includes a member for selectively grasping and releasing the food container and for moving the movable member horizontally and linearly.
In accordance with another aspect of the invention, a magazine is provided for holding a plurality of food containers in an unerected state.
In accordance with another aspect of the invention, the automated device includes a retrieving device that is capable of grasping and releasing an unerected food container on one side and further includes a second device for selectively grasping the unerected food container on the other side. A structure for moving the retrieving device and the second device relatively apart when grasping the sides of the container is provided. The automated device may further include an automated urging means for urging the container bottom upwardly relative to the sides of the container when the retrieving device and the second device are moved relatively apart when grasping the container.
In accordance with another aspect of the invention, the food dispensing member is a rotatable wheel having an open central area and an outer at least generally circular rim. The rotatable wheel has a plurality of open compartments spaced apart about the circular rim that extend inwardly from the circular rim and open interiorly of the circular rim. A baffle may be provided to prevent food contained in the one or more of the open compartments from falling out of the compartments when the wheel is rotated until the compartment is in position over the food dispensing chute. The baffle may be curved to follow the curvature of the inner part of the wheel and may also be perforated. The automated device may further include a rotatable food collecting member that is disposed to collect food dispensed from the discharge location of the dispensing chute which food is not deposited into a container held in position at the discharge location. Typically, the collection member will have a discharge location to discharge collected food. In one embodiment, the discharge location is the food dispensing chute. The collecting member may be a rotatable food collecting wheel having an open central area and an outer circular rim having a plurality of open compartments spaced apart about the circular rim that extend inwardly from the circular rim and that are open towards the rim interior. The rotatable food dispensing member and the rotatable food collecting member can be rotatable in one direction to discharge food at a discharge location and into a food dispensing chute and can be rotatable in an opposite direction to discharge the food at a second discharge location which may be to a waste chute. The discharge to the waste chute feature can be activated, for example, when the food is held in the dispensing device for too long a period of time.
The packaging device may also include an automated seasoning device for depositing a predetermined quantity of seasoning to food contained in the packaging device.
In accordance with another aspect of the invention, the device for applying seasoning includes a seasoning delivery tube having an inlet and a discharge location. A seasoning delivery head is positioned to deliver seasoning to the food to be seasoned with the head in communication with the outlet of the delivery tube and located below the inlet of the delivery tube. Structure is provided for depositing a predetermined quantity of seasoning into the inlet of the delivery tube so that the quantity of seasoning falls by gravity through the delivery tube and into and through the seasoning head and onto the food to be seasoned. Typically, the structure for depositing the predetermined quantity of seasoning will receive seasoning from a bulk hopper by gravity feed. The quantity of seasoning to be dispensed can be determined volumetrically, for example.
In accordance with still another aspect of the invention, an automated device for packaging cooked French fries into an individual portion-sized French fry container is provided. The device includes a mechanical arm having an end-of-arm tool capable of picking up and grasping an erected individual portion-sized French fry carton from an erected carton pick-up location, and scooping the erected carton while held by the end-of-arm tool into a quantity of cooked French fries located at a filling location to fill the French fry carton and thereafter depositing the filled French fry carton at a drop-off location spaced from the filling location. The automated device may further include a French fry holding bin for holding a bulk quantity of French fries at the filling location and a French fry inlet chute for receiving a bulk amount of French fries. In one embodiment, the automated device further includes structure for vibrating the French fry inlet chute. In accordance with another aspect of the invention, the automated device further includes structure for retaining French fries on the French fry chute and may further include structure for applying seasoning to the French fries contained on the inlet chute.
In accordance with another aspect of the invention, the structure for retaining French fries on the chute is composed of a plurality of vertically reciprocable fingers movable between an extended position for retaining French fries on the inlet chute and a retracted position for permitting French fries to travel on at least a portion of the chute. In one aspect, the movable gate may comprise a plurality of spaced apart fingers reciprocable in up and down directions to restrain French fries from sliding down the inlet chute when in an up position and for declumping French fries when the fingers are reciprocated up and down when French fries are traveling past the reciprocating fingers.
In accordance with another aspect of the invention, the automated packaging device may include a movable gate located between the discharge end of the inlet chute and the holding bin and movable between a raised position for retaining French fries on the inlet chute and a lowered position for permitting French fries to travel from the inlet chute to the holding bin.
In accordance with another aspect of the invention, the French fry holding bin may have a sensing device associated therewith for determining whether a desired quantity of French fries are contained in the French fry holding bin. The sensing device can be any suitable device that may be known in the art, such as a weighing device and can be a load cell, for example.
In accordance with still another aspect of the invention, a French fry carton storage and erection device is provided that includes an automated, unerected French fry carton retrieving device for retrieving and grasping an unerected individual portion-sized French fry container. The automated retrieving device includes a grasping member for selectively grasping and releasing a French fry container. The automated retrieving device may further include structure for linearly moving the movable member in two dimensions. The two dimensions may be generally horizontal dimensions and may be composed of one or more carriages, one for each of the dimensions.
In accordance with another aspect of the invention, a magazine for holding a plurality of individual portion-sized French fry containers in an unerected state is provided. In one embodiment, the magazine is capable of holding a plurality of segregated groups of individual portion-sized unerected French fry containers, each group in the plurality being of a different size container. In one embodiment, the magazine holds each group of unerected containers in a stack, which may be in either a generally horizontal or a vertical stack. The container retrieving device can be positionable to retrieve containers from the front of each stack.
In accordance with another aspect of the invention, the grasping member comprises a suction device for selectively grasping and releasing a French fry container. The suction device may comprise a suction cup located on the grasping member that is capable of grasping and releasing the French fry container by applying and releasing a vacuum, respectively, that communicates with the interior of the suction cup.
In accordance with another aspect of the invention, the retrieving device is capable of grasping and releasing a French fry container on one side thereof and the automated erecting device further includes structure for erecting an unerected French fry container of the type having opposed sidewalls connected by a collapsible container bottom. The automated device for erecting the container includes structure for urging the container from an unerected to an erected position and for urging the container bottom upwardly relative to the sides of the container which will occur typically when the retrieving device grasps the container and retrieves the container from the stack of containers. In one embodiment, the structure for urging comprises an inclined ramp while in another embodiment, the structure for urging includes an automated retrieving and container grasping device for grasping one of the opposed sidewalls of the unerected container and a restraining member for restraining from relative movement the other of the opposed sidewalls when the one sidewall is grasped by the grasping device and moved in a desired direction. In addition, structure may be provided for injecting a stream of compressed air into the open end of the container when the opposed sidewalls are at least partially moved apart from each other to help urge the opposed sidewalls apart to erect the container.
In accordance with another aspect of the present invention, the automated device further includes an elevator for moving an erected French fry container from a first location proximate the unerected container retrieving device to a second location. The elevator may comprise a rodless cylinder configured to carry a receptacle or other suitable structure for holding an erected French fry container with the receptacle being movable between first and second locations by the rodless cylinder. In one embodiment, the second location is proximate the mechanical arm so that a French fry container in the second position can be grasped by the end-of-arm tool.
In another embodiment of the invention, the mechanical arm of the packaging module is mounted to a carriage for providing lateral movement of the mechanical arm. The mechanical arm can be configured so that it can move the end-of-arm tool through a generally vertical compound arc as well as for selectively moving the end-of-arm tool linearly up and down. In one embodiment, the end-of-arm tool comprises a French fry scoop and further includes a gripping mechanism actuable between clamping and non-clamping positions wherein the gripping mechanism can grasp a French fry container when in the clamping position and release the previously grasped French fry container when the gripping mechanism is in the non-clamping position. The gripping mechanism can be capable of grasping one of the opposed sidewalls of an erected French fry container. In one embodiment, the gripping mechanism includes a finger-type structure with an actuator device for moving the finger structure between the clamping and non-clamping positions. The gripping mechanism can be configured to clamp an upper end of an erected French fry container between the finger structure of the gripping mechanism and the French fry scoop of the end-of-arm tool.
In another embodiment of the invention, the mechanical arm of the packaging module includes a plurality of pivotable links connected in series. In one embodiment, the mechanical arm includes at least two pivotable links and in another embodiment the mechanical arm includes three pivotable links. The mechanical arm can be configured so that each of the links is pivotable in the same or in parallel planes. In one embodiment, the mechanical arm is mounted to a carriage or other suitable structure for providing lateral movement of the mechanical arm. Typically, the lateral movement will be in a generally horizontal direction.
In accordance with another embodiment, the mechanical arm includes first, second and third links wherein the first link is connected to a generally horizontally movable carriage, the third link is connected to the end-of-arm tool and the second link is connected to the first and third links. A connection of one of each of the links to another link may comprise a pivot connection and an actuator may be provided for each pivot connection for pivoting the respective one of said links about the pivot connection which connects that link to another of the links to cause selective rotation of one link with respect to another of said links.
In accordance with another embodiment of the invention, the automated device further includes a structure for containing a plurality of French fry cartons that are filled with French fries, the structure having at least a portion that is in communication with the drop-off location of the mechanical arm. In one embodiment, the structure is a rack that can be constructed of any suitable material and configuration. In one embodiment, the rack is inclined in a direction away from the mechanical arm so that when the mechanical arm drops off a container filled with French fries, the container slides down the rack to a convenient location for pick-up by a human operator. In another embodiment, the structure comprises a rotatable carousel. In accordance with another aspect of the invention, the mechanical arm is configured to mimic the motion of a person's arm, wrist and hand action in scooping French fries into a French fry container while grasping the French fry container in one hand and moving the French fry container in a vertical arc and scooping the open end of the French fry container through a quantity of French fries and thereafter moving the French fry container to a generally upright position and shaking it sufficiently to cause loosely contained French fries to fall from the container. Typically, this action occurs with a French fry scoop attached to an upper end of the open French fry container as is commonly known in the art.
BRIEF DESCRIPTION OF THE DRAWINGS
General
In accordance with the present invention, an automated food processing system and method is provided. The automated food processing system and method in accordance with the invention allows food to be dispensed, fried and packaged in a suitable container or alternatively dispensed to a food holding area for subsequent processing by a human operator.
Referring to the Figures generally, where like reference numerals refer to like elements, and in particular to
To facilitate such modular construction and use, each of dispensing, fry and packaging devices 200, 400 and 600, and 1200, 1400 and 1600, respectively, can be contained in a separate wheeled cabinet, 202, 402 and 602, and 1202, 1402 and 1602, respectively, as illustrated in
A suitable control system for the dispensing, fry and packaging devices is also provided. As will be described more completely hereafter, in one embodiment, the control system includes a central control system 110 or 1110 that can interface with a point-of-sale system 112 or 1112, respectively. The central control system will communicate with separate subcontrol systems 114, 116 and 118 or 1114, 1116 and 1118, respectively, one for each of the dispensing, fry and packaging devices 200, 400 and 600 and 1200, 1400 and 1600, respectively. Alternatively, a single central control system (not shown) could be utilized in place of individual control systems for each of devices 200, 400 and 600 or devices 1200, 1400 and 1600. Similarly, as another alternative, a single central control system could be utilized to control the overall operation of automated food processing system 100 or 1100 as well as controlling the individual functions and aspects of dispensing, fry and packaging devices 200, 400 and 600 or 1200, 1400 and 1600, respectively.
The basic operations of dispensing devices 200 and 1200, fry devices 400 and 1400 and food packaging devices 600 and 1600 will now be briefly discussed and discussed in detail hereafter.
Briefly, dispensing devices 200 and 1200 each function to dispense a quantity of food to be fried to fry device 400 or 1400. In one aspect of the invention, any suitable food dispensing device can be utilized. Dispensing devices 200 and 1200 can include a cabinet 202 or 1202, respectively, to house the components of dispensing device 200 or 1200. In one embodiment, cabinet 202 or 1202 will be refrigerated, preferably below 32° F. so that the food contents therein will remain frozen. This allows the food stored in dispensing devices 200 or 1200 to remain therein for a long period of time, much longer than if the contents were merely refrigerated (above freezing) or merely at room temperature.
In the illustrated embodiments, dispensing devices 200 and 1200 include an uncooked bulk food dispensing container 204 and 1204, respectively. Uncooked bulk food dispensing containers 204 and 1204 may be utilized for food such as French fries or chicken nuggets, for example. Other types of food may also be contained in a dispenser such as uncooked bulk food dispensing containers 204 and 1204. Typically, those types of food would be in the form of relatively small pieces compared to relatively large food pieces such as chicken patties, for example.
For relatively large food pieces, a large food dispensing container is utilized. In one embodiment, the large food dispensing container is in the form of magazine food dispensers 206 and 1206.
Food dispensed from a dispenser of dispensing devices 200 and 1200 is deposited on a conveyor 208 or 1208, respectively, that, in turn, directs the deposited food to a secondary or dump container 210 or bottomless container 1210 for subsequent discharge from dispensing device 200 or 1200, respectively.
In the illustrated embodiments, uncooked bulk food dispensing containers 204 and 1204, magazine food dispensers 206 and 1206, conveyors 208 and 1208 and secondary containers 210 and 1210 are contained in cabinet 202 or 1202, respectively, which is a refrigerated environment, preferably maintained below freezing (32° F. or lower).
While any suitable conveyor can be utilized in one aspect, conveyors 208 and 1208 are each preferably a vibratory conveyor, vibrated by a suitable vibratory mechanism that vibrates conveyor bodies 214 and 1214, respectively. Conveyor bodies 214 and 1214 may each take the form of a suitably shaped tray, for example.
By containing the foregoing components in a refrigerated and preferably frozen environment, consistency in food preparation and dispensing is achieved, thereby contributing to the overall efficient, effective and uniform performance of automated food processing systems 100 and 1100.
Secondary containers 210 and 1210 can be of a form as desired and includes suitable weighing mechanisms 216 and 1216, respectively, to permit a determination of the quantity of food contained in secondary containers 210 and 1210. Weighing mechanisms 216 and 1216 can each be any suitable device to weigh the contents or otherwise determine the amount of food in secondary container 210 or 1210. Weighing mechanisms 216 and 1216 may comprise a load cell or a mechanism for determining the volume of food deposited into the respective one of secondary containers 210 and 1210, for example. In this manner, the amount of food that is charged to one of fry devices 400 and 1400 at a particular time can be determined. In addition, weighing mechanisms 216 and 1216 can be operated during operation of conveyors 208 and 1208, respectively, and the operation of conveyors 208 and 1208 continued until a desired amount of food is deposited in secondary container 210 or 1210. In this manner, a precise amount of food can be delivered to a respective one of secondary containers 210 and 1210, thereby permitting consistency and uniformity in the portion of food that is delivered to fry device 400 or 1400. This is also important to ensure that a sufficient quantity of food is being cooked by automated food processing systems 100 and 1100.
Prior to activation of dumping mechanisms 218 or 1218, discharge doors 220 or 1220 of cabinets 202 and 1202, respectively, are opened by operation of a door opening device which can be any suitable device as desired and in one illustrated embodiment is a cylinder 222 attached to discharge door 220 and movable up and down in the direction of arrow B. A respective one of discharge doors 1220 of dispensing device 1200 is opened by lateral movement of the associated one of secondary container 1210, as illustrated in, for example,
In the illustrated embodiments, dispensing devices 200 and 1200 each includes four dispensing lanes from which food is discharged from dispensing devices 200 and 1200, respectively, and to a suitable location such as one of fry devices 400 and 1400. After dispensing through discharge door 220, cylinder 222 is activated to close discharge door 220. Similarly, dumping mechanism 218 of secondary container 210 is activated to return secondary container 210 to its upright position to receive more food.
For dispensing device 1200, after dispensing through one of doors 1220, as the respective one of secondary containers 1210 is retracted, the associated one of doors 1220 closes by gravity, without the need for a separate closing mechanism.
Each of fry devices 400 and 1400 includes, respectively, a fry wheel 404, a fry vat 406 for containing and heating a suitable cooking oil and a drive mechanism 408 for suitably rotating fry wheel 404. It is to be understood that in accordance with one aspect of the invention any suitable frying device can be utilized.
In the illustrated embodiment of FIGS. 3, 11-16 and 74, fry devices 400 and 1400 include a plurality of, in this case four, separate fry wheels 404, 410, 412 and 414, as well as four separate fry vats 416, 406, 420 and 418 and a separate drive mechanism 408 for each fry wheel, each dedicated to a particular one of fry wheels 404, 410, 412 and 414.
In various embodiments, a separate drive mechanism is provided for each of fry wheels 404, 410, 412 and 414 and can be suitably located in cabinet 402 or 1402, preferably in a location that is above the level of cooking oil present in the associated one of fry vats 416, 406, 420 and 418, respectively. Fry module 1400 is similar to fry module 400, except that fry module 1400 includes a foam deck and overflow arrangement as hereafter described.
The suitable rotation of each of fry wheels 404, 410, 412 and 414 can be as desired to direct food articles loaded therein down and through the fry vat until reaching the other side of the fry vat whereupon the food articles are discharged. The rotation can be either continuous or a periodic incremental rotation. For example, a suitable drive mechanism can be provided to periodically rotate fry wheel 410 in a desired rotational increment, which may be based on the number of compartments contained in fry wheel 410. In the illustrated embodiments of
As described in more detail hereafter, each of compartments 422-436 is formed from a perforated curved compartment forming member 510.
In the rotation of fry wheel 410, a periodic incremental rotation can be based upon 360° divided by the number of compartments. Thus, for example, in the illustrated embodiments of
Similarly, compartment 426 has food contained therein that has gone through two incremental 45° rotations of fry wheel 410, compartment 428 has food contained therein that has undergone three incremental rotations and food compartment 430 has food contained therein that has undergone four incremental rotations of fry wheel 410 and compartment 432, which is now empty, has discharged the food contained therein upon the last incremental rotation of fry wheel 410. Thus, upon the next incremental rotation of fry wheel 410, which is in the clockwise direction as shown by arrow B of
Upon discharge of food, which in this case is a quantity of French fries from one of compartments 422-436 of a fry wheel, such as fry wheel 410 as illustrated in
For packaging module or device 600, from inlet chute 604, the food from inlet chute 604 and previously received from fry wheel 410 is deposited into dispensing member 606. Typically, dispensing member 606 will be compartmented into a plurality of compartments that are arrayed along the periphery of rotatable food dispensing member 606.
Rotatable food dispensing member 606 has a discharge location to discharge the food deposited therein. The discharge location is generally located towards an upper portion of rotatable food dispensing member 606. A food dispensing chute mechanism 608 is positioned to receive cooked food from the discharge location of rotatable food dispensing member 606. In a preferred embodiment, food dispensing chute mechanism 608 incorporates a device for weighing or otherwise determining the quantity of food that has been deposited into food dispensing chute mechanism 608. This ensures that when food is dispensed from food dispensing chute mechanism 608 a minimum quantity of food will be dispensed, thereby ensuring that a container 611 or other package that is to receive the food from mechanism 608 will receive a desired charge.
Food packaging device 600 preferably also includes a suitable automated container handling system 610. Automated container handling system 610 is capable of, in a preferred embodiment, selecting container 611 of a desired size, retrieving and grasping container 611, erecting unerected container 611 into an erected form and holding the erected container 611 in position to receive food dispensed from food dispensing chute mechanism 608.
After food container 611 receives food from food dispensing chute mechanism 608, automated container handling system 610 is capable of moving container 611 having food deposited therein to a container receiving receptacle 612 which receptacle 612 can be transported via a conveyor system 614 to a desired location for subsequent pickup of container 611 having food contained therein by a human operator, for example.
Preferably, a food overflow collection member is provided to collect any food dispensed by food dispensing chute mechanism 608 that is not deposited into container 611. In one embodiment, the overflow food collection device is a rotatable food collection member 613. Overflow food collection member 613 functions to collect food dispensed by food dispensing chute mechanism 608 that is not received in container 611 and to recycle food collected by overflow food collection member 613 into food dispensing chute mechanism 608 for subsequent dispensing to a container in a first-in, first-out manner so that overflow food is promptly recycled to dispensing chute 608 for dispensing to a container.
Preferably, food packaging device 600 is configured to include a provision by which food contained in packaging device 600 is routed to waste where it is not desired to dispense such food into a food container. Such a condition could arise, for example, if food is held for too long a period in food packaging device 600. This function may be accomplished, for example, by providing a waste discharge location which can be in the form of a waste chute 615 to which food from rotatable food dispensing member 606 and overflow food collection member 613 can be directed. In one embodiment, chute mechanism 608 is lowered and member 606 is rotated to dispense food to chute mechanism 608, which in turn dispenses into member 613. Member 613 is rotated counterclockwise to deliver food to waste chute 615. This process can be continued until all of the food in device 600 is so emptied, if desired.
Preferably, a suitable structure for applying a desired quantity of seasoning to food contained in food packaging device 600 is provided. In the embodiment illustrated in
Preferably, and in the embodiment illustrated in
Preferably, conveyor system 614 is composed of a raceway 620 that is an endless loop around the periphery of the top surface of cabinet 602 of food packaging device 600, which in one embodiment can be a modular, wheeled cabinet. Conveyor system 614 causes container receiving receptacle 612 to travel around raceway 620 to a food container pickup location 622 where a human operator can pickup food containers having food therein. Preferably, conveyor system 614 includes structure for stopping movement of a container/receiving receptacle 612 at a predetermined location when carrying a food container, such as at food container pickup location 622. Such structure in one embodiment may comprise a gate structure 928 or 928′ of
The basic elements of food packaging device 1600 may include an inlet chute 1604, preferably a salting device 1606, preferably gates 1608 and 1610 operatively associated with inlet chute 1604, a holding bin 1612 for French fries, an automated French fry container filling device 1614 that includes an automated mechanical arm 1616 and a carriage 1618, a filled French fry container drop-off location and holding structure 1620 and preferably, a container handling system 1622 typically for carton storage, carton erection and handling, suitable for use with French fry container filling device 1614, as hereafter described in further detail. As shown in
Briefly, the operation of packaging device or module 1600 is as follows.
Food from fry module 400 or 1400, such as from fry wheel 410 is deposited onto the inlet portion of inlet chute 1604. Typically, gate 1608 will be positioned to prevent the passage of French fries past gate 1608. Salting device 1606 then operates to apply a desired quantity of salt or other seasoning to the bulk amount of French fries on inlet chute 1604 contained upstream of gate 1608. Salting device 1606 can be laterally moved along a carriage 1606′ during dispersing of the salt or other seasoning to help ensure seasoning coverage over the entire quantity of French fries in inlet chute 1604 that are upstream of gate 1608. Alternatively, one or more salter devices 1606 can be mounted in a desirable stationary position above inlet chute 1604 or some other desirable location without a carriage. Salter device 1606 is similar to food seasoning device 616 described in detail hereafter.
Gate 1608 preferably is composed of reciprocable fingers that can be raised and lowered relatively rapidly so that as the bulk amount of French fries travel past gate 1608, the fingers provide a declumping action on the French fries. Gate 1610 can be in a position to retain the French fries at a lower portion of inlet chute 1604, such as if additional French fries are not needed in holding bin 1612. When gate 1610 is in an open or lowered position, French fries in the low portion of chute 1604 are free to travel into holding bin 1612.
A vibratory mechanism 1624 as shown in
French fry container filling device 1614 operates to fill erected French fry containers that typically will be individual portion-sized French fry containers, and is composed of a multilink mechanical arm 1616. Mechanical arm 1616 has an end-of-arm tool 1626 that is capable of grasping a French fry container, scooping it into French fries contained in holding bin 1612 to fill the French fry container with French fries, relatively gently shaking the filled French fry container to seat the French fries in the container and to dislodge any loosely contained French fries and depositing the filled French fry container at a drop-off location. Preferably, the filled French fry container is shaken over the holding bin so that French fries that are shaken from the container fall into holding bin 1612 and so that French fries become more firmly seated in the French fry container.
In one embodiment, automated mechanical arm 1616 can be configured and operated to mimic the arm, wrist and hand action of a human operator in scooping French fries into a French fry container to fill the container and shaking the filled French fry container to remove loosely contained French fries and to more firmly seat French fries contained in the container.
Food packaging device 1600 preferably also includes a suitable container handling system 1622. Container handling system 1622 is capable of, in a preferred embodiment, selecting a container 611 of a desired size, retrieving and grasping container 611, erecting unerected container 611 into an erected form and delivering erected container 611 to French fry container filling device 1614.
Referring to
Automated food processing systems 101 and 1101 also include fry devices 400 and 1400, respectively, which have been described.
One primary distinction between automated food processing systems 100 and 1100 and automated food processing systems 101 and 1101 is that automated food processing systems 101 and 1101 do not include an automated packaging device such as automated packaging devices 600 or 1600. In place of food packaging devices 600 or 1600, a food storage device 635 is provided, which may be contained on a movable cart 635′. Food storage device 635 allows food cooked by food frying devices 400 or 1400 to be stored in a heated environment for subsequent manual processing. As configured in
As illustrated in
It is to be understood that other devices or modules can be used in place of any of food dispensing device 200, fry device 400 and food packaging device 600. For example, referring to
Food Dispensing Device
Referring to the Figures generally and in particular to
In two embodiments, food dispensing devices 200 and 1200 are illustrated or partially illustrated in each of
Each lane 234, 236, 238 and 240 or 1234, 1236, 1238 and 1240 dispenses food that is subsequently directed to fry wheels 410, 412, 414 and 404, respectively.
The components of lane 238 will now be described in detail and it is to be understood that the components of lanes 234 and 236 are similar. Lane 238 includes uncooked bulk food dispensing container 207 and a food handling system 242 which in this embodiment is identical for each lane 234, 236, 238 and 240 as well as for each lane of food dispensing device 201. It should be noted that food handling system 242, as for example, illustrated in
Food handling system 242 includes conveyor system 208, secondary container 210, weighing mechanism 216 and dumping mechanism 218. Conveyor system 208 includes vibratory mechanism 212 and conveyor body 214.
Uncooked bulk food dispensing container 204 can be of a shape and dimension generally as desired. Preferably, uncooked bulk food dispensing container 204 has an upper opening to permit a supply of food to be placed in uncooked bulk food dispensing container 204. Upper opening 244 as illustrated is located in an upper rear portion of uncooked bulk food dispensing container 204 and can be conveniently accessed via a rear door 246 of cabinet 202. Rear door 246 preferably is insulated with suitable insulation material 224.
Uncooked bulk food dispensing container 204 is composed of a pair of opposed upper sidewalls 248, a pair of generally opposed lower sidewalls 250 and front and rear walls 252 and 254, respectively, which connect together upper sidewalls 248 and lower sidewalls 250 to provide uncooked bulk food dispensing container 204. Front wall 252 includes a lower portion 252′ that extends inwardly from top to bottom to further facilitate discharge of food contained in uncooked bulk food dispensing container 204. Preferably, lower generally opposed sidewalls 250 are slightly indented from top to bottom to facilitate the discharge of food that may be contained therein.
Uncooked bulk food dispensing container 204 includes a bottom opening 256 that permits the discharge of food contained therein. Bottom opening 256 can be configured as desired and in the illustrated embodiment the entire bottom of uncooked bulk food dispensing container 204 is open. In the illustrated embodiment, uncooked bulk food dispensing container 204 is particularly suited for use with food such as French fries and chicken nuggets as well as other types of food of relatively small size.
Uncooked bulk food dispensing container 204 is suitably mounted within cabinet 202. While a suitable mounting structure can be utilized, it is preferred to utilize a structure that will minimize heat transfer from the exterior and through cabinet 202 to uncooked bulk food dispensing container 204, particularly where cabinet 202 is refrigerated, especially where temperatures below freezing are utilized. In that regard, front mounting bracket 258 and rear mounting bracket 260 each are configured to minimize heat transfer from cabinet 202 to uncooked bulk food dispensing container 204. In that regard, front mounting bracket 258 and rear mounting bracket 260 include openings, 258′ and 260′, respectively, to minimize such heat transfer and to maximize airflow around the containers 204, 205, 207 and dispensers 206, 209, 211 and 213. Similarly, materials of low thermal conductivity can also be utilized, if desired, for brackets 258 and 260. Generally, to minimize heat transfer and to maximize airflow, the surface area contact and cross-sectional area of mounting brackets 258 and 260 should be minimized to reduce heat transfer and “hot spots” on uncooked bulk food dispensing container 204.
As illustrated in
A preferred type of vibratory mechanism is available from FMC Technologies, Inc. of Chicago, Ill. marketed under the model F-010-B and DF-010-B. Vibratory mechanism 212 is preferably an electromagnetic vibrating mechanism. Vibratory mechanism 212 in one embodiment produces a vibrating stroke at the surface of conveyor body 214. The stroke results from the action of an electromagnet that pulls conveyor body 214 sharply down and backward and then allows it to spring up and forward. Typical vibratory mechanisms of this type run at about 3,600 vibrations/minute at 60 Hz power. The power of the vibrating stroke can be controlled by a suitable drive module as is known in the art. In one embodiment, vibratory mechanism 212 can be operated at about 85% of full power during filling of secondary container 210 with food. For the first part of a fill cycle of secondary container 210, vibratory mechanism 212 can be run continuously, then pulsed by turning its power on and off periodically so that vibratory mechanism 212 operates about 50% of the time to finish filling secondary container 210 with a desired quantity of food, thereby providing better control on the last part of the food charged to secondary container 210.
Food dispensing device 200 preferably includes a suitable mechanism to determine the weight or volume of a charge of food delivered by conveyor 208 to secondary container 210. The amount may be determined either by weight or volume, for example. In the illustrated embodiment, weighing mechanism 216 is operatively interfaced with secondary container 210 to provide an indication of the weight of food contained in secondary container 210. The weight sensed in secondary container 210 by weighing mechanism 216 is communicated with subcontrol system 114 of food dispensing device 200. Subcontrol system 114 monitors and controls the operative functions of food dispensing device 200 as hereinafter described in greater detail.
Optionally, a level sensor can be employed in uncooked bulk food dispensing container 204 to provide an indication of the amount of food stored therein that is available for dispensing. Any suitable level indicator known in the art can be utilized in accordance with the invention such as photoelectric, weight, turning fork and others, for example.
Secondary container 210 can be considered as a dump container and has associated therewith, dumping mechanism 218 for rotating secondary container 210 through an arc as indicated by arrow B sufficiently to dump the contents of secondary container 210. Any suitable dumping mechanism can be utilized. Illustrated dumping mechanism 218 includes a dump cylinder 264 that is secured to a base 266. Dump cylinder 264 can selectively rotate a drive gear or wheel 268 that, in turn, is operatively associated with a follower gear or wheel 270 to cause rotation of follower gear or wheel 270. Secondary container 210 is rigidly secured to follower gear or wheel 270 so that when follower gear or wheel 270 is rotated by drive gear or wheel 268 secondary container 210 is rotated through an arc that causes secondary container 210 to rotate forward to a dumping position as illustrated in phantom lines in
An alternative embodiment for secondary container 210 is illustrated in
The components of lane 1234 will now be described in detail and it is to be understood that the components of lanes 1236 and 1238 are similar. Lane 1234 includes uncooked bulk food dispensing container 1204 and a food handling system 1242 which in this embodiment is identical for each lane 1234, 1236, 1238 and 1240 as well as for each lane of food dispensing device 1201. It should be noted that food handling system 1242 and components thereof, as for example, illustrated in
Food handling system 1242 includes conveyor 1208, secondary container 1210, weighing mechanism 1216 and dumping mechanism 1218. Conveyor system 1208 includes vibratory mechanism 1212 and conveyor body 1214.
Uncooked bulk food dispensing container 1204 can be of a shape and dimension generally as desired and can be similar to container 204 previously described. Preferably, uncooked bulk food dispensing container 1204 has an upper opening to permit a supply of food to be placed in uncooked bulk food dispensing container 1204. Upper opening 1244 as illustrated is located in an upper rear portion of uncooked bulk food dispensing container 1204 and can be conveniently accessed via a rear door 1246 of cabinet 1202. Rear door 1246 preferably is insulated with suitable insulation material 1224.
Uncooked bulk food dispensing container 1204 is similar to container 204 previously described.
Uncooked bulk food dispensing container 1204 includes a bottom opening 1256 that permits the discharge of food contained therein. Bottom opening 1256 can be configured as desired and in the illustrated embodiment the entire bottom of uncooked bulk food dispensing container 1204 above conveyor body 1214 is open. In the illustrated embodiment, uncooked bulk food dispensing container 1204 is particularly suited for use with food such as French fries and chicken nuggets as well as other types of food of relatively small size.
Uncooked bulk food dispensing container 1204 is suitably mounted within cabinet 1202, such as described with respect to food dispensing container 204.
As illustrated in
In accordance with another embodiment of the invention, a regulating device which may be an elongated rotatable device, may be provided at a lower portion of bulk food dispensing container 207 or 1204, or otherwise located between the bottom or a bottom portion of container 207 or 1204 and above or along an upper portion of conveyor 214 or 1214. The regulating device limits the quantity of French fries or other food that is delivered to conveyor 214 or 1214 so that conveyor 214 or 1214 does not get overloaded or jammed with food items. Such a device is illustrated in
As illustrated in
Container 1204′ can be otherwise similar to container 1204 and can be constructed of, for example, transparent walls 1267, 1269, 1271 and 1273 as illustrated in
Food dispensing device 1200 preferably includes a suitable mechanism to determine the weight or volume of a charge of food delivered by conveyor 1208 to secondary container 1210. The amount may be determined either by weight or volume, for example. In the illustrated embodiment, weighing mechanism 1216 is operatively interfaced with secondary container 1210 to provide an indication of the weight of food contained in secondary container 1210. The weight sensed in secondary container 1210 by weighing mechanism 1216 is communicated with subcontrol system 1114 of food dispensing device 1200. Subcontrol system 1114 is similar to subcontrol system 114 and monitors and controls the operative functions of food dispensing device 1200 as hereinafter described in greater detail.
Optionally, a level sensor can be employed in uncooked bulk food dispensing container 1204 to provide an indication of the amount of food stored therein that is available for dispensing. Any suitable level indicator known in the art can be utilized in accordance with the invention such as photoelectric, weight, turning fork and others, for example.
Secondary container 1210 is a bottomless box-like container having an open top and is composed of generally upstanding sidewalls. A floor or platform 1222 is stationary and is located beneath container 1210 when in the retracted or home position as shown in
Secondary container 1210 can be considered as a dump container and has associated therewith dumping mechanism 1218 for laterally moving secondary container 1210 to retracted and extended positions relative to stationary floor or platform 1222 as indicated by arrows B′, B″ and B′″ in
An alternative embodiment for conveyor body 1214, conveyor body 1214′, is illustrated in
Passageway 1214g may include a plurality of holes 1214h or perforations through bottom 1214i of conveyor body 1214′ to permit small unwanted ice crystals or food particles to pass therethrough so that such items are not dispensed to fry module 400 or 1400.
Referring to
Door edge overlapping members 1221a, 1221b and 1221c are hinged to swing open in a manner similar to doors 1220, 1220a, 1220b and 1220c. Door edge overlapping members 1221a, 1221b and 1221c are each associated with the respective adjacent doors 1220, 1220a, 1220b and 1220c as illustrated in
Referring to
As illustrated in
Referring to
Other configurations of declumping members may be used in place of members 1370 and 1372. Any structure that tends to declump or break apart a mass or frozen clump of French fries or similar food can be used.
Subcontrol system 114 coordinates the operation of the various functions of food dispensing device 200 and/or food dispensing device 1200. For example, when food dispensing device 200 or 1200 is ready to dump a charge of food from secondary container 210 or 1210 out of food dispensing device 200 or 1200, subcontrol system 114 activates cylinder 222 (only for device 200) to open discharge door 220 thereby permitting the food charge in secondary container 210 to be dumped by dumping mechanism 218 through open discharge door 220. Dump cylinder 264 or 1264 is extended causing secondary container 1210 of device 1200 to open door 1220 and dump the contents therein to fry device 1400. After dumping of the food charge is completed, subcontrol system 114 causes dump cylinder 264 or 1264 to be retracted thereby returning secondary container 210 or 1210 to a position ready to accept a further charge of food from conveyor system 208 or 1208. For device 200, cylinder 222 has one end rigidly secured to cabinet 202 or some other suitable location and the other end of cylinder 222 is attached to discharge door 220. Typically, discharge door 220 will have a suitable guide mechanism, which may be tracks, slots or other suitable apparatus to guide discharge door 220 to its open and closed positions. Cylinder 222 is operable to move door 220 up and down as indicated by arrow B in
Food dispensing devices 200 and 1200 can contain suitable refrigeration components 274 such as within a lower portion of cabinet 202 as shown schematically in
Referring to
Food dispensing device 201 has many similarities to food dispensing device 200 previously described where like reference numerals represent like elements. Thus, food dispensing device 201 includes cabinet 202, four product dispensing lanes 226, 228, 230 and 232 with each such lane incorporating conveyor 208, secondary container 210, vibratory mechanism 212, conveyor body 214, weighing mechanism 216, dumping mechanism 218, discharge door 220, cylinder 222, insulating material 224, food handling system 242, upper opening 244, rear door 246, uncooked bulk food dispensing container 204 which is associated with product dispensing lane 234, a dump cylinder 264 for each product dispensing lane, cavity 272, refrigeration components 274, storage compartment 276 and a storage compartment door 278. Product dispensing lanes 228, 230 and 232 each have associated therewith a plurality of magazine food dispensers 280-308 arrayed to provide in the embodiment illustrated in
Suitable mounting brackets 322 are provided which depend upwardly from magazine food dispenser support 310 for mounting to cabinet 202.
In addition, suitable mounting brackets 324 are provided which depend downwardly from magazine food dispenser support 310 for mounting slide assembly 312 thereto allowing magazine food dispensers 280-308 to depend therefrom.
Magazine food dispenser support 310 has a series of holes 326 and 328 therein. Holes 326 can be provided to allow increased airflow and cooling. Holes 328 can also be provided to provide increased airflow and cooling for magazine food dispensers 280-308.
Each of magazine food dispensers 280-308 and 206, 209, 211 and 213 briefly discussed with respect to food dispensing device 200 are similar in construction. Magazine food dispenser 206 will be discussed with respect to
Magazine food dispenser 206 includes a body or housing 330 that includes sidewalls 332 and 334, front walls 336 and 338 and corresponding rear walls (not shown) and can be attached in a removable manner if desired, including in a snap-on arrangement to facilitate cleaning. Magazine food dispenser 206 also includes a top member or cover 340 having mounted thereover a drive mechanism 342. Drive mechanism 342 includes a drive gear or wheel 344 and a driven wheel or gear 346. Depending from each of drive wheel or gear 344 and driven wheel or gear 346 is a spiral flight that is vertically or generally vertically oriented relative to the longitudinal axis of spiral flights 348 and 350. If desired, a single spiral flight dispenser (not shown) could also be utilized.
Body 330 of magazine food dispenser 206 can include substantial open portions such as front open portion 352 and a corresponding rear open portion (not shown). Such open portions may have a cover or access door thereover (not shown). Such open portions can be desirable to permit airflow through magazine food dispenser 206 since generally such dispenser will be contained in a refrigerated environment and such openings help ensure that food contained therein remains frozen or chilled as desired. A vertical divider (not shown) can be provided between spiral flights 348 and 350 if desired.
A plurality of generally vertically disposed and spaced apart rods 354, 356 and 358 may be provided at the front of magazine food dispenser 206 adjacent spiral flights 348 and 350 and similar rods can be provided at the back of magazine food dispenser 206. Rods 354, 356 and 358 prevent food pieces from falling out of spiral flights 348 and 350 and to maintain spiral flights 348 and 350 in a vertical orientation.
Magazine food dispenser 206 has an open bottom 360 through which food pieces can be dispensed during operation.
During operation, drive wheel 344 can be driven by a suitable electric motor, such as an electric motor 362, 364 and 366 shown with respect to magazine food dispensers 280, 282 and 284 in
As shown in
A suitable home position sensor 362′ can be utilized to indicate a home or start position of each of spiral flights 348 and 350. As illustrated in
Preferably, spiral flights 348 and 350 are offset by one rotation so that a single food item such as food item F1 or F2 in
Food dispensing devices 1200 and 1201 may incorporate magazine dispensers such as magazine dispensers 280-308 as previously described. Thus, dispensing device 1200 has a one-by-five array of magazine dispensers, such as magazine dispenser 206 and dispensing device 1201 incorporates magazine dispensers 280-308 as previously described for dispensing device 201. Food dispensing devices 1200 and 1201 utilize the conveyor system and food dump mechanism as previously described with respect to dispensing device 1200.
Preferably, food dispensing devices 200 and 1200 and food dispensing devices 201 and 1201 are constructed in modular form, an example of which is illustrated in
In accordance with another embodiment of the invention for dispensing modules 200 and 1200, a magazine dispenser, such as magazine food dispenser 1206 can be oriented horizontally instead of vertically. Such a horizontally oriented magazine dispenser can be configured to discharge food items onto an inclined chute contained within the freezer compartment or cavity of dispenser 200 or 1200 (for example cavity 272 of device 200) to receive dispensed food items, which chute is positioned with a discharge end oriented to deposit the food items directly into secondary container 210 of dispensing device 200 or secondary container 1210 of dispensing device 1200. Thus, the vibrating conveyor need not be used. The chute may be constructed in any suitable configuration, such as, for example, as non-limiting examples, chute 498, 1603 or 1554, as illustrated in
An example of the foregoing embodiment is illustrated in
In addition, a suitable sensor (not shown) may be utilized to sense or count the number of food articles being dispensed from the spiral flight or flights. The sensor can be any suitable type including, as non-limiting examples, either an ultrasonic or an optical sensor, which are well known in the art, or by weighing, such as a load cell.
Food Frying Device
Referring to the Figures generally, and in particular to
In one embodiment, fry device 400 includes cabinet 402, four fry wheels 404, 410, 412 and 414, four fry vats 406, 416, 418 and 420, four drive mechanisms 408, one for each of fry wheels 404, 410, 412 and 414. Each fry vat 406, 416, 418 and 420 is dimensioned to contain a desired volume of a suitable cooking oil. Each fry vat 406, 416, 418 and 420 is dedicated to one of fry wheels 404, 410, 412 and 414, respectively.
In operation in the preferred embodiment, fry device 400 is positioned to receive the food dispensed from a food dispensing device, such as food dispensing device 200 and food dispensing device 201. Consequently, it is advantageous to position fry device 400 adjacent food dispensing device 200 or 201 as illustrated in
Referring to
In one embodiment, outer peripheral edge 464 of each of disks 458a and 458b include a plurality of teeth 466.
Teeth 466 can be utilized to drive fry wheel 410 in a manner as hereinafter described. Referring to
It is to be understood that any suitable drive wheel and drive arrangement can be utilized. For example, in place of drive wheel 468 with pins 472, a drive arrangement could be utilized in which a drive gear is utilized to mesh with a corresponding gear located around the periphery of disk 458a and/or 458b, for example. Alternatively, a friction drive system could be utilized in which a friction drive wheel would contact the edge of one or both of circular disks 458 which could be of a design having no teeth therealong, such as illustrated in alternative embodiment wheels 479 and 481 described hereafter. Since the wheel will have cooking oil thereon, the coefficient of friction between the drive wheel and fry wheel will be decreased. Care should be taken to assure that when using a friction drive, sufficient pressure is maintained between the driving wheel and the fry wheel.
Referring to
Typically, it is important that the fry wheel is rotated in periodic increments for a compartment to be aligned with a respective discharge slide 498 of fry device 400 or other slide, ramp or discharge location after a periodic rotation. Typically, the leading edge 500 of a compartment bottom, such as compartment bottom 432′ of compartment 432 as shown in
In accordance with another aspect of the invention, it should be understood that the height of cooking oil in one of fry vats 406, 416, 418 and 420, such as the level of cooking oil indicated by reference letter H in
Referring to
Referring to
A plurality of compartment forming members 438 are mounted together in fry wheel 410 to provide a plurality of adjacent peripheral food compartments 422-436 as illustrated in
Referring to
As an alternative construction, compartments 422-436 could be constructed from compartment forming members 510 without opposed sidewalls 508a and 508b, in which case the compartment sidewalls could be formed from opposed circular disks 458a and 458b. In addition, it should be appreciated by one skilled in the art that any desired compartment shape can be utilized in accordance with the invention as long as the food can be loaded into the compartment, kept within the compartment during immersion in the cooking oil and which compartment shape discharges the food from the fry wheel.
Referring to
Referring to
Referring to
Referring to
Fry wheel 410 can be rotated as desired so that food deposited in one of compartments 422-436 travels through and out of the cooking oil 454 until that compartment reaches a discharge location. Thus, in the embodiment illustrated in
In accordance with the present invention, a basket shaking simulation can be achieved. Basket shaking simulation can be performed by a relatively slight back and forth rotation of the fry wheel, such as fry wheel 410. Thus, the drive mechanism is activated to rotate the fry wheel clockwise and counterclockwise through a relatively small degree of angular rotation to simulate shaking of a fry basket during frying. The back and forth rotation can occur relatively rapidly and typically the degree of angular rotation will be in the range of from about 2 to about 20 degrees. In addition, the periodic rotation in one direction may be of a larger angle of rotation than the rotation in the other direction.
Preferably, the degree of rotation during simulated basket shaking will be monitored, particularly where the rotation in one direction is greater than the rotation in the other direction so that the position of each basket relative to the discharge location can be monitored by the control system to ensure proper discharge of food from food compartments.
Referring to
A suitable air blower (not shown) can be provided to cause air flow to move within hood system 546 generally in the direction of arrows A1, A2 and A3. Filter 542 thus filters particulate matter in air flow A1 that passes through filter 542. Drip pan 544 catches any matter that drips from filter 542 that is located above drip pan 544. Preferably, hood system 546 substantially completely encloses the area above fry device 400 to reduce waste discharge into the operating environment of automated food processing system 100.
Fry module 1400 is similar to fry module 400 previously described and can be operated and controlled as described with respect to fry module 400. In addition, control system 1116 for fry module 1400 is similar to control system 116 previously described.
Food Packaging Device
Referring to the Figures generally, and in particular to FIGS. 1, 25-50, 74, 76 and 86-91, there are illustrated various embodiments of food packaging devices and elements thereof in accordance with the invention.
In one embodiment, food packaging device 600 is illustrated or partially illustrated and elements useful in connection with food packaging device 600 are illustrated in
Food packaging device 600 in the illustrated embodiment includes a food inlet chute 604, rotatable food dispensing member 606, food dispensing chute mechanism 608, automated container handling system 610, container-receiving receptacle 612, overflow food collection member 613, conveyor system 614, waste chute 615, food seasoning system 616 and raceway 620.
In the illustrated embodiment, food packaging device 600 includes a container storage device for containing cartons or containers of various sizes. During operation of packaging device 600, the device selects a container of a desired size from container storage magazine 638, erects the container into an erected form that is unerected while contained in storage magazine 638 and then positions the erected container to receive food dispensed from food dispensing chute mechanism 608. After receiving food from food dispensing chute mechanism 608, automated container handling system 610 is capable of moving the filled or partially filled container to container receiving receptacle 612 which is transported via conveyor system 614 to a desired location for subsequent pickup of the container by a human operator, for example.
In the embodiment illustrated in
Referring to
Rotatable food dispensing member 606 in the illustrated embodiment is a dispensing wheel that is mounted for rotation in dispensing device 600. Dispensing member 606 has a plurality of food containing compartments 640 that are arrayed around the periphery of rotatable food dispensing member 606. Each of compartments 640 is divided from another compartment by a compartment wall 642. Preferably, each compartment wall 642 is not normal to peripheral edge 644 of rotatable food dispensing member 606 but at a slight angle such as, for example, as illustrated in
Wheel 606 includes a pair of opposed rim portions 646a and 646b and a circular ring portion 648 that interconnects opposed rims 646a and 646b. Circular ring 648 is disposed close to the peripheral edges of rims 646a and 646b and defines peripheral edge 644. Preferably, circular ring 648 is constructed of a perforated metal material so that circular rims 646a and 646b have perforations 650 therethrough as illustrated in
In accordance with the illustrated embodiment, rotatable dispensing member 606 is configured as a rotatable wheel although other embodiments are within the scope of the invention. For example, a rotatable dispensing member in accordance with the invention could be a portion of a wheel, such as a semicircular or other configuration.
In the illustrated embodiment, rotatable food dispensing member 606 is rotated by a drive mechanism 652. Drive mechanism 652 consists of a motor 654 that drives a drive wheel 656. Drive mechanism 652 is controlled by a suitable control mechanism to cause rotation of drive wheel 656 and hence moves rotatable food dispensing member 606 in a desired direction and at a desired rate of speed. Drive wheel 656 can be a pressure roller or alternatively can be a drive wheel like or similar to drive wheel 468 previously described with respect to
Referring to
Overflow food collection member 613 is configured to collect food deposited from food dispensing chute mechanism 608 that is intended to be received into container 611 when held in position to receive food from food dispensing chute mechanism 608 which food does not stay in container 611. This can occur since oftentimes it is desirable to overfill container 611 so that food is mounded up above the top surface of container 611. Also, for food such as French fries, such food material fills container 611 somewhat randomly and it is typical for French fries to dangle over the sides of container 611. In the illustrated embodiment, overflow food collection member 613 is configured in a manner similar to rotatable food dispensing member 606 previously described. Thus, food collection member 613 includes opposed rims 668a and 668b and circular ring 670 having perforations 672. Circular ring 670 connects opposed rims 668a and 668b in a manner as previously described with respect to member 606. In addition, food collection member 613 has a plurality of inner compartments that are similar in construction to compartment 640 previously described with respect to member 606. Member 613 also has a drive rim 674 and is driven by a drive mechanism 676 that is similar to drive mechanism 652 previously described including a drive wheel 676′ and a motor 678. Drive mechanism 676 is configured to rotate food collection member 613 in either a clockwise or counterclockwise direction as hereinafter described in more detail.
Food collection member 613 also includes a plurality of compartment walls 680 that are similar to compartment walls 642 previously described with respect to rotatable food dispensing member 606, providing a plurality of food containing compartments 682.
Each of food dispensing member 606 and food collection member 613 has bottom portions that are disposed through an opening 684 in countertop surface 636 of cabinet 602. The construction of the illustrated embodiment permits food dispensing member 606 and overflow food collection member 613 to be readily removed from food packaging device 600 such as for cleaning and/or repair.
A heating system as described can be incorporated into food packaging device 600 to supply heat to food contained therein. For example, a heating system 681 can be provided, which is illustrated in
Referring to
Upper chute 686 preferably and as illustrated in the referenced figures, forms part of food dispensing chute mechanism 608, and has an inlet location 708 for receiving food dispensed from rotatable food dispensing member 606 and a discharge location 710 for dispensing food contained in food dispensing chute mechanism 608 and into a container, such as container 611 as illustrated in
Upper chute 686 of food dispensing chute mechanism 608 is positioned to receive pieces of food from a discharge location 712 of rotatable food dispensing member 606. Upper chute 686 has a food holding area 714 for holding food received from rotatable food dispensing member 606. A weighing device is associated with food dispensing chute mechanism 608 so that the amount of food contained therein, such as in food holding area 714, can be determined. Any suitable device can be utilized to determine the amount of food contained in food dispensing chute mechanism 608. In the illustrated embodiment, a load cell 702 is provided to determine the weight of food contained in food dispensing chute mechanism 608 and is illustrated schematically in
To dispense food from food dispensing chute mechanism 608, cylinder 700 is activated to extend cylinder rod 706 upwardly thereby causing upper chute 686 to drop. Since lower chute 688 is connected to upper chute 686 via connecting link 692, lower chute 688 also drops to the discharge position as illustrated in
Referring to
Base 716 typically can be in the form of a base plate and includes four apertures 720, 722, 724 and 726, each of said apertures corresponding to the profile of a different size collapsed carton. Apertures 720, 722, 724 and 726 are dimensioned to be able to retain a stack of cartons in a collapsed or unerected condition as illustrated in
Each aperture 720, 722, 724 and 726 and base 716 has associated therewith a plurality of guide members 730-760. In the illustrated embodiment, guides 730-760 are in the form of post or tubular-type members. Each set of four guide members is associated with a specific one of apertures 720, 722, 724 and 726 to define and permit stacking of a plurality of unerected French fry cartons or containers that generally correspond in size to the size of apertures 720, 722, 724 and 726, respectively. It is to be understood that other arrangements to define a container stack can be utilized in accordance with the invention. For example, in place of guides 730-760 other structure could be utilized, such as upstanding walls or partial walls or other types of guides.
Container storage magazine 638 may also include a suitable removable cover (not shown) to enclose base 716 and the volume defined over apertures 720-726 by guides 730-760.
Container storage magazine 638 is preferably positioned to permit ready access to the bottom of each container stack through the bottom of each of apertures 720-726 by automated container handling system 610, which is hereinafter described in detail.
Food packaging device 600 includes automated container handling system 610. Automated container handling system 610 is capable of retrieving an unerected container through any of apertures 720, 722, 724 and 726 of unerected container storage magazine 638, erecting the unerected carton, holding the erected carton in position at discharge location 710 of food dispensing chute mechanism 608 and depositing the filled container onto conveyor system 614, which conveyor system 614 subsequently transports the filled container to a desired location.
Referring to
Automated container handling system 610 is controlled by a suitable control system for food packaging device 600.
Container retrieving and grasping device 762 and portions thereof are best illustrated in
Mast 768 is carried by carriage system 770 which carriage system 770 allows for lateral translation of mast 768 and the components associated therewith, including movable rack member 772, pinion 774, frame 776, container grasping member 778 and linkage assembly 780. Carriage system 770 includes a guide member 782, a worm gear 784, a drive mechanism 786 and a carriage follower 788. Carriage follower 788 supports a vertical translation mechanism 790 that, in turn, carries mast 768.
Carriage guide 782 is an elongated guide that defines the lateral translation movement direction of carriage follower 788 and is secured within cabinet 602. Worm gear 784 is disposed parallel to carriage guide 782 and when rotated moves carriage follower 788 along carriage guide 782.
Worm gear 784 is driven by drive mechanism 786 which can include a drive motor 792, a drive gear or pulley 794 and a driven gear or pulley 796. Where drive and driven pulleys are used, typically a belt 798 will impart rotation from one pulley to another.
Drive motor 792 drives driven pulley 796 and causes worm gear 784, which is mounted for rotation, to be rotated by rotation of driven pulley or gear 796 in either direction. Drive motor 792 can be an AC or DC motor or a stepper or servo motor as desired. Suitable sensors can be employed (not shown) to determine the position of carriage follower 788 which determines the lateral position of container grasping member 778.
Carriage follower 788 is composed of a frame 800 having a guide aperture or slot 802 in which carriage guide 782 is disposed and a threaded aperture or slot 804 in which elongated worm gear 784 is disposed to impart lateral motion to carriage follower 788 by rotation of worm gear 784. Thus, carriage system 770 provides lateral movement in the direction of arrows Q as shown in
A suitable opening 806 is located in countertop surface 636 of cabinet 602 to permit mast 768 to extend therethrough.
Mast 768 can be raised and lowered in a vertical direction as indicated by arrow V in
Mast 768 can be vertically raised and lowered in the directions indicated by arrow V in
Mast 768 has mounted thereto frame 776, typically at an upper end thereof. Linkage assembly 780 is secured to frame 776 as well as pinion 774 and movable rack member 772.
Movable rack member 772 includes a frame 820 having a guide slot 822 vertically disposed therein and a rack 824 which meshes with pinion 774. Movable rack member 772 may also include extra mass in the form of a weight block 826 to help urge movable rack member 772 downwardly when not restrained.
A pair of guides 828 and 830 are rigidly secured to frame 776 and are disposed within slot 822 of movable rack 772. A spring 832 can be connected between an upper end of movable rack member 772 and guide 828 or 830 to urge movable rack member 772 to a lower position as illustrated in
In a preferred embodiment, movable rack member 772 includes a stop 834 which stop can be vertically adjustable. While stop 834 is located at the bottom of movable rack member 772 it is to be understood that a stop could be provided at another location provided that a suitable engaging surface at a proper location is provided.
Mounted to frame 776 is an axle 836 that is mounted for rotation relative to frame 776. Axle 836 has pinion gear 774 rigidly secured thereto as well as one end 838 of linkage 780. The other end 840′ of linkage 780 is securely mounted to frame 776 as illustrated in
Linkage 780 which carries container grasping member 778 is composed of a plurality of links so that container grasping member 778 is movable from a horizontal position as illustrated in
Linkage assembly 780 includes, in the illustrated embodiment, a first link 852, a second link 854 and third link 856.
First link 852 is rigidly secured to axle 836 and pinion 774. First link 852 is configured in an L-shape with the end of first link 852 opposite the portion connected to axle 836 pivotally connected to second link 854 having one end being pivotally connected to first link 852 via pivot connection 858.
Second link 854 is connected to third link 856 via a universal joint connection 860 a location spaced apart from pivot connection 858 as illustrated in, for example,
Third link 856 is, in turn, connected to frame 776 via a universal joint connection 864 which is at a distance removed from universal joint connection 860 which connects third link 856 to second link 854. An offset member assembly 866 is rigidly secured to frame 776 and includes an angled block 868 and an offset extension 870 to provide the desired angle and clearance for universal joint 864 and third link 856.
In operation, when movable rack member 772 is moved relative to mast 768, such as when stop 834 contacts a surface, such as in the illustrated embodiment, countertop surface 636 as illustrated in
In a typical operation, container retrieving and grasping device 762 will be operated to position suction cups 842 and 844 below a container to be selected from container storage magazine 638. Mast 768 will be raised by operation of vertical translation mechanism 790 to a desired height so that suction cups 842 and 844 engage a container contained at the bottom of container storage magazine 638. Vacuum source 846 is activated and mast 768 can be lowered to remove a container from a desired one of apertures 720, 722, 724 and 726 of container storage magazine 638. Carriage system 770 can be activated to move container retrieving and grasping device 762 laterally to a desired location. Such lateral movement can be controlled by properly positioned sensors 872, 874, 876, 878 and 880, for example. For example, sensor 872 can define the position to retrieve a container from aperture 720, sensor 876 to retrieve a container from aperture 722, sensor 878 to retrieve a container from aperture 724 and sensor 880 to retrieve from aperture 726. Sensor 874 can be positioned to define the proper location of container grasping member 778 to erect the container that has been retrieved from one of apertures 720, 722, 724 or 726 of container storage magazine 638, as hereafter described. After erecting the container, the vacuum applied to suction cups 842 and 844 is released by operation of release valve 848 which permits suction cups 842 and 844 to disengage and release the container that had been grasped. Mast 768 can then be raised causing stop 834 to be removed from countertop surface 636 and by action of weight 826 and operationally spring 832, causing rack member 772 to move downwardly relative to mast 768 thereby rotating pinion gear 774 clockwise relative to the position shown in
It is to be understood that any suitable automated device or system for retrieving, grasping and moving a container to a desired location as desired herein can be utilized in accordance with various aspects of the present invention. Thus, various aspects of the present invention are not limited by the particular embodiment of container retrieving and grasping device 762 and components thereof described herein. For example, an automated or robotic arm could be utilized to select, grasp and retrieve erected or unerected containers from a source as desired and then erect the carton or container in a suitable manner, followed by holding the erected container at discharge location 710 and after filling placing the filled container, such as container 611 onto a suitable conveyor to move the filled container to a desired location.
Container grasping device 764 of container retrieving and grasping device 762 will now be described, and in particular with reference to
Container grasping device 764 includes a rotatable and vertically translatable mast 884. Mast 884 can be rotated as illustrated by arrow P in
Suitable mounting structure 916 is provided to mount container grasping device 764 to a desired location, such as within cabinet 602. A slot and key arrangement between shaft 886 and mast 884 permits mast 884 to be vertically translated either up or down while shaft 886 is rotated.
Mounted on the upper end of mast 884 is a suction device 918 which includes a suction cup 920, a source of vacuum (not shown) for suction cup 920 and a release valve (not shown) for releasing the vacuum to suction cup 920. Vacuum can be supplied from within mast 884 to suction cup 920 by a suitable connection as is known in the art.
Container bottom urging device 766 consists of a mast 922 that is vertically translatable up and down by suitable apparatus (not shown). Such apparatus can be similar to vertical translation mechanism 790 previously described with respect to container retrieving and grasping device 762. Preferably, mast 922 has a blunt end 924.
In operation, container retrieving and grasping device 762 selects an appropriately sized container from container storage magazine 638 as directed by the control system for food packaging device 600. After retrieving the container, which in this case is container 611, container retrieving and grasping device 762 moves container 611 to a position as indicated in
Next, as shown in
Next, mast 884 is rotated approximately 90° by motor 890 to place container 611 in discharge position 710 of food dispensing chute mechanism 608. Food dispensing chute mechanism 608 is then lowered to discharge French fries FF therefrom and into container 611. Any French fries that are not received into container 611 are collected by overflow food collection member 613 which is then rotated clockwise in the direction of arrow X as shown in
Container-receiving receptacle 612 is then transported via conveyor system 614 which will now be described in detail.
Conveyor system 614 and portions or elements thereof are illustrated in various figures including FIGS. 1, 25-29 and 45-50.
Conveyor 614 includes, in the illustrated embodiment, raceway 620 which can be formed along the surface of countertop 636 or on some other surface as desired. Raceway 620 is preferably in the form of a continuous loop raceway and is defined by spaced apart guides 620a and 620b mounted to countertop 636 to guide receptacles 612. Conveyor system 614 includes one or more and typically a plurality of container-receiving receptacles 612 which are illustrated in detail in
Conveyor system 614 also includes structure for causing movement of container-receiving receptacle 612. In the illustrated embodiment, container-receiving receptacles 612 are moved via an endless loop 930 that can be located beneath countertop 636. Endless loop 930 carries a plurality of magnets 932 as illustrated in
Any suitable endless loop 930 can be utilized such as a belt or a chain. Pulleys could be used in place of sprockets 934-940. The route of endless loop 930 follows the route of raceway 620.
Container-receiving receptacle 612 typically includes a base 942 and a container-receiving well 944 located over base 942. Base 942 includes an enclosed compartment 946 which can be conveniently accessed by a base plate 948 located along the bottom of base 942 that is fastened to base 942 by suitable fasteners 950. Contained within enclosed compartment 946 is a magnet 952.
Container-receiving receptacle 612 follows the movement of magnet 932 due to magnetic attraction between magnets 932 and 952 thereby causing movement of container-receiving receptacle 612 along raceway 620.
Enclosed compartment 946 is dimensioned to permit magnet 952 to be free to rotate therein allowing container-receiving receptacle 612 to be readily guided by rails 954 and 956 that are raised above countertop 636.
Movable gate 926 prevents movement of container-receiving receptacle 612 located thereat as illustrated in
Referring to
Carton 1012 can be stacked in a collapsed configuration and stored in a suitable magazine, such as container storage magazine 638 as previously described. When in a collapsed position, carton 1012 is particularly suited to being opened or erected by pulling sidewalls 1014 and 1016 apart and urging bottom panel 1018 upwardly, as described with respect to the erection or opening of container 611 by automated container handling system 610. Container or carton 611 is of a design that is similar to carton 1012.
Carton 1012 also includes two supporting legs 1020, 1022 that extend downwardly from the lower portions of the overlapping edge portions of sidewall 1014 indicated by reference numerals 1014a and 1014b in
Carton 1012 is capable of standing on its own because of legs 1020 and 1022 that extend below bottom panel 1018 when carton 1012 is open or erected.
Carton 1012 can be constructed from a single blank of paperboard which is illustrated in
Bottom panel 1018 is specially configured to facilitate opening or erection of carton 1012 by an automated carton handling device such as automated container handling system 610, previously described in detail. Bottom panel 1018 includes intersecting lines 1024 and 1026. Intersecting lines 1024 and 1026 intersect at a generally central location of bottom panel 1018, which panel is generally oval even though it may incorporate straight edges 1028 and 1030, for example. Intersecting lines 1024 and 1026 may be fold lines, lines of weakening, score lines or even perforations. All such structures are referred to herein with respect to intersecting lines 1024 and 1026 of bottom panel 1018 only as “fold lines.” Typically, the intersection of fold lines 1024 and 1026 form an angle in the range of from about 60° to about 120°. In one embodiment, the intersecting bottom panel fold lines are oriented such that one of said lines (fold line 1024 in
Preferably, fold line 1024 extends from sidewall 1014 to sidewall 1016.
As previously mentioned, carton 1012 is foldable to a collapsed position with sidewalls 1014 and 1016 being planar and in contacting overlying relation to each other with bottom panel 1018 being divided into two overlying panels 1018a and 1018b by intersecting fold line 1026.
Preferably, bottom panel 1018 includes two additional fold lines 1032 and 1034 on either side of fold line 1024 that extend from one carton sidewall to the other, in this case from sidewall 1014 to sidewall 1016. Secondary fold lines 1032 and 1034 further facilitate the opening or erection of container 1012 with an automated device such as automated container handling system 610.
Preferably, carton 1012 is configured such that the width of the base is relatively narrow and the sidewalls 1014 and 1016 flare outwardly so that container 1012 is substantially wider at the top (from about 1.6 to 2 or more times the base width). This allows relatively large and tall containers to be placed in an automobile cup holder CH as depicted in
Referring to
Automated food processing system 101 also includes fry device 400 which has been described.
One primary distinction between automated food processing system 100 and automated food processing system 101 is that automated food processing system 101 does not include an automated packaging device such as automated packaging device 600. In place of food packaging device 600, a food storage device 635 is provided. Food storage device 635 allows food cooked by food frying device 400 to be stored in a heated environment for subsequent manual processing. As configured in
As illustrated in
Referring to
As illustrated in
Preferably, handled trays 645-651, such as handled tray 651 depicted in
Tray 651 may be constructed of any suitable material. In addition, a wire basket which can include a handle may be used as an insert for tray 651, in which case food CN is contained in the wire basket and tray 651 functions to collect excess oil from food CN, in which case tray 651 desirably would not include a handle.
Food packaging device 600 may optionally include food seasoning device 616, which is illustrated in detail in
Hopper 972 is configured to hold a desired bulk quantity of a seasoning material, such as salt S. Bulk hopper 972 includes a lid 982 that can be removed to replenish the supply of salt S contained therein. Hopper 972 can have a bottom with inwardly extending sidewalls 984 to facilitate the dispensing of material from bottom 986 of hopper 972 which may include a dispensing tube 988.
Metering wheel 974 is located beneath bottom 986 and dispensing tube 988 to receive a charge of salt or other seasoning therefrom. Metering wheel 974 includes a cavity 990 for receiving a charge of salt from dispensing tube 988. Metering wheel 974 is rotatably mounted in a housing 992 and can be rotated about the longitudinal axis of metering wheel 974 to cause cavity 990 to be directed downwardly which thereby causes the seasoning or salt contained in cavity 990 to fall by gravity therefrom.
Metering wheel 974 is suitably rotated by wheel drive system 976. Wheel drive system 976 can be controlled by a suitable electronic control system that can form part of the food packaging device 600. Typically, in operation, when French fries FF are dispensed from one or more of fry wheels 404, 410, 412 and 414 onto chute 604, a suitable sensing device (not shown) senses the presence of French fries and activates wheel drive system 976 of automated food seasoning device 616 to discharge a predetermined quantity of seasoning, such as salt, onto the French fries that traverse chute 604.
Dispensing head 618 can be located in a desired position to apply seasoning to the food traversing chute 604. As illustrated in
Wheel drive system 976 as illustrated in
A collection funnel 1002 is disposed at the discharge end of housing 992 and connects to dispensing tube 978. Dispensing tube 978 is, in turn, connected to dispensing head 618.
Dispensing head 618 can include a plurality of vanes 1004 for facilitating dispersion of seasoning dispensed therefrom. As illustrated, there are four vanes 1004 spaced 90° from each other.
Dispensing tube 978 has a lower end portion 1006 that terminates some distance above dispensing cone 1008 of dispensing head 618. In one embodiment, lower end portion 1006 of dispensing tube 978 may terminate approximately 0.25 inches from the tip of dispensing cone 1008.
Dispensing cone 1008 includes a plurality of holes 1010 that are arrayed through dispensing cone 1008 to facilitate the distribution of seasoning or salt. In operation, as salt or seasoning is dispensed through lower end portion 1006 of dispensing tube 978, the seasoning strikes the top portion of dispensing cone 1008 and is directed into four quadrants via vanes 1004. As the seasoning traverses the surface of dispensing cone 1008, some of the seasoning falls through holes 1010 in dispensing cone 1008. Note that not all of holes 1010 are labeled, for purposes of clarity in the Figures. Other salt or seasoning particles do not fall through holes 1010 but fall off the lower end of dispensing cone 1008. Still other seasoning particles bounce or are otherwise deflected off the top surface of dispensing cone 1008 and fall a lateral distance removed from dispensing cone 1008. In this manner, a good distribution of seasoning is achieved over a relatively large area.
In one embodiment, food packaging device 1600 is illustrated or partially illustrated and elements useful in connection with food packaging device 1600 are illustrated in
Referring to
Container storage magazine 1630 of container handling system 1622 includes a base 1632 that is suitably mounted to cabinet 1602. Preferably, container storage magazine 1630 is mounted to be readily removed to permit replacement and/or repair and to otherwise permit access to other portions of packaging device 1600.
As illustrated, magazine 1630 is composed of four individual magazines 1630a-d, although any desired number can be used. Each magazine 1630a-d includes a face plate 1636a-d defining apertures 1638a-d, respectively, each of said apertures corresponding to the profile of a different size collapsed carton. Apertures 1638a-d are dimensioned to be able to retain a horizontal stack of cartons in a collapsed or unerected condition as illustrated in
Each face plate 1636a-d and each aperture 1638a-d has associated therewith a plurality of generally horizontally extending guide members 1640a-d shown with respect to face plate 1636d consisting of four members each, for maintaining uniform stacks of unerected cartons. In the illustrated embodiment, guides 1640a-d are in the form of L-shaped elongated members. Each set of four guide members is associated with a specific one of apertures 1638a-d to define and permit horizontal stacking of a plurality of unerected French fry cartons or containers that generally are slightly larger in size than the size of apertures 1638a-d, respectively. It is to be understood that other arrangements to define a container stack can be utilized in accordance with the invention. For example, in place of guides 1640a-d other structure could be utilized, such as upstanding walls or partial walls or other types of guides.
Container storage magazine 1630 typically will also include a suitable urging device for each magazine 1630a-d to urge the stack of containers contained therein against respective face plates 1636a-d in direction ZZ of
Container storage magazine 1630 is preferably positioned to permit ready access to the front of each container stack through each of apertures 1638a-d by container handling system 1622, which is hereinafter described in detail.
Food packaging device 1600 includes container handling system 1622. Container handling system 1622 is capable of retrieving an unerected container through any of apertures 1638a-d of container storage magazine 1630, erecting the unerected carton and placing the erected carton in position on elevator 1628 for delivery to container filling device 1614.
Referring to
Container handling system 1622 is controlled by a suitable control system for food packaging device 1600, similar to the control system for packaging device 600 as hereafter described.
Container retrieving and grasping device 1646 and portions thereof are best illustrated in
Body 1654 is carried by X-carriage system 1650 that includes and is driven in a suitable manner such as a toothed belt 1660′ and drive and driven pulley arrangement 1660a and 1660b, which allows for lateral translation of body 1654 and the components associated therewith, including Y-carriage 1652 and movable rack member 1656, container grasping member 1648. Carriage system 1650 includes guide members 1650a,b, a drive mechanism 1660 that includes and is driven in a suitable manner such as a toothed belt 1660′ and drive and driven pulley arrangement 1660a and 1660b and carriage follower 1654. Carriage follower 1654 supports Y-carriage 1652, which allows for movement normal to the longitudinal axis of X-carriage 1650 of container grasping device 1648.
Guide members 1650a,b are each an elongated guide that defines the lateral translation movement direction of carriage follower 1654 and is secured within cabinet 1602. A suitable drive motor (not shown) is used to rotate drive pulley 1660a. The drive motor can be an AC or DC motor or a stepper or servo motor as desired. Suitable sensors can be employed (not shown) to determine the position of carriage follower 1654 which determines the lateral position of container grasping member 1648.
Carriage follower 1654 is composed of a frame 1662 having guide apertures 1664a,b in which carriage guides 1650a,b are disposed. Thus, X-carriage system 1650 provides lateral movement in the direction of arrows AA as shown in
Container grasping device 1648 can be horizontally moved towards and away from X-carriage 1650 in the directions indicated by arrow BB in
When container grasping device 1648 is in position adjacent container magazine 1630 as shown in
In a typical operation, container retrieving and grasping device 1648 will be operated to position suction cups 1670 and 1672 adjacent and in operative contact with a container to be selected from container storage magazine 1630 as shown in
For example, a container bottom urging device similar to container bottom urging device 766 could be used in place of inclined ramps 1653a-d. In addition, the opposed sidewalls of the French fry container could be separated by a device such as container handling system 610, which includes suction devices that attach to each side of an unerected container after the container is removed from a container magazine. For example, see
Elevator 1628 may be constructed in any suitable manner. In the illustrated embodiment, elevator 1628 is a rodless cylinder that carries a receptacle 1628′ which is well-shaped and suitable to contain an erected French fry container. Receptacle 1628′ is movable by elevator 1628 from a first or raised position as illustrated in
As shown in
Mechanical arm 1616 can be configured and operated to generally mimic the arm, wrist and hand action of a human operator in scooping French fries into a French fry container and to shake the filled French fry container to remove loosely contained French fries and to more firmly seat French fries contained in the container.
In the illustrated embodiment, which is best shown in
First link 1690 is pivotally connected to a mast 1696 via a pivot connection 1698. Mast 1696 is secured to a carriage follower 1712 and can be horizontally translated via carriage 1618. First link 1690 is connected to second link 1692 at adjacent ends thereof via pivot connection 1700 allowing second link 1692 to pivot relative to first link 1690. Adjacent an opposite end of second link 1692 to pivot connection 1700 is connected third link 1694 to second link 1692 via a third pivot connection 1702.
End-of-arm tool 1626 is rigidly connected to third link 1694 by a suitable structure, such as welding or use of a threaded fastener, for example. End-of-arm tool 1626 is configured as a French fry scoop or funnel and is configured to facilitate the filling of French fry containers which are held by end-of-arm tool 1626. End-of-arm tool 1626 includes a French fry container grasping mechanism 1704. French fry container grasping mechanism 1704 is composed of a movable finger 1706 and an actuator 1708 for movable finger 1706. Thus, when French fry scoop or funnel 1710 of end-of-arm tool 1626 is inserted into an erected French fry container C as illustrated in
Carriage 1618 for mechanical arm 1616 allows mechanical arm 1616 to be laterally moved in the direction of arrow AA to desired locations depending on the task that is to be performed by mechanical arm 1616 as indicated in
Carriage 1618 includes a carriage guide 1618′ and a carriage follower 1712 that traverses carriage 1618 and to which is mounted mast 1696. Lateral translation along carriage 1618 of carriage follower 1712 is accomplished by any suitable structure and may be by means of a rodless air cylinder. Carriages 1650, 1652 and 1608′ can also be driven by a rodless cylinder or any other suitable device.
Mechanical arm 1616 is composed of three links that are pivotally interconnected permitting movement so that each of the links are pivotable in parallel planes which in the illustrated embodiment are each in a vertical direction. Pivotable movement of each link is accomplished by a suitable actuator 1714, 1716 and 1718, one for each of pivot connections 1698, 1700 and 1702, respectively. Actuators 1714, 1716 and 1718 can be any suitable type of actuator to provide the desired rotational movement including, such as, an electric motor, an air driven motor and a stepper motor, for example. Actuator 1714 causes rotation of first link 1690 relative to mast 1696 about pivot connection 1698. Actuator 1716 causes rotation of second link 1692 in a vertical plane about pivot connection 1700 and actuator 1718 causes rotation of third link 1694 in a vertical plane about pivot connection 1702. Various movements of mechanical arm 1616 of first, second and third links 1690-1694, respectively, are illustrated in FIGS. 76, 89E-H and 90A-F, for example.
In one illustrated embodiment, filled French fry collection drop-off location and holding structure 1620 is configured as an inclined holding rack 1730 as illustrated in
Alternatively, a carousel-type structure may be provided, namely, holding carousel 1738, as illustrated in
The Control System and Method
In one embodiment, the System Master Controller comprises a Server (PC), a router/hub, and a touch-screen monitor (user interface). The Master can utilize existing technology to integrate, to manage, to control, and to coordinate information flow of and through the various subsystems for overall system operation. The network technology is fully compliant with the latest version of the industry's NAFEM Protocol.
Control System Features
Referring to
In one embodiment, the Control System is event and demand driven. That is, nothing happens unless a functional component or subsystem receives a command signal to initiate the action. In a normal operation mode, the POS will provide virtually all of the system order demands. These can take the form of a string of two-bit Order Events. Typically this will be a quantity and an item (for example, 2 each regular size fries). The product description can consist of both the food item and its portion size, treated as one bit of information.
The Control System information can be categorized into Order Events, Inbound Events, and Outbound Events. The Order Events come from primarily the POS system, the historical kitchen management system (KMS) data, or the touch-screen Monitor if a manager wants to override the automatic ordering. KMS is a database of information of, for example, the sales rate of various products versus day and time. The Order Events dictate and demand the operation and performance of the automation control system for production. The Inbound Events information includes messages generated by subsystem controllers other than the POS or KMS. The Outbound Events include typical command messages issued by the Master Controller specifying functions to be performed by individual subsystem controllers.
In one embodiment, the Master Controller is configured to monitor periodically or continuously the network for events to occur. Once an event takes place and a signal is sent on the network, the Master Controller identifies the source of the signal, then compares it to the programmed schedule of events within its memory, and reacts appropriately, either sending out a new command, showing a display, storing information in memory, or all of the above.
An important source of data for the Control System can be the Kitchen Management System (KMS). The KMS is a historical database of operational information. This information can be used to set the workstation configuration, process settings, inventory levels, and set a level of production in advance of actual customer demand orders. This interface can be a two-way connection, so that all operational data from the Fried Foods Workstation can be received and stored in the KMS and/or the Control System, or evaluated, adjusted, and re-entered to “fine-tune” the process on a continuing basis.
Generally, the Control System can comprise two loops, shown in
In accordance with one aspect of this embodiment of the Control System, the Fryer Module vat operation is not directly controlled by the production demand cycle. Each fry vat of the fry module will operate continuously and on a pre-set uniform operating cycle. Frozen product is dropped into the fry module when additional inventory is called for. The product is fried according to the pre-set cooking cycle and then is dumped into the Packaging (or Protein) Module receiving apron. None of the cooking cycle is affected by order demands, or inventory conditions. In one embodiment, the Control System can vary the time between incremental rotation and speed of rotation of fry wheel 410 to accommodate for varying conditions, such as the level of cooking oil in the fry vat. The level of cooking oil can vary as a result of the amount of product that is being fried in a particular fry vat, since product present in the fry vat displaces cooking oil, thereby raising the level of cooking oil in the fry vat particularly since the product is held below the cooking oil surface during a cooking cycle.
Preferably, to ensure the workstation reliability and system uptime, extensive control redundancy can be provided. As a result, the control subsystems for each Fryer Module vat and each Dispensing Module chute are designed and constructed as individual units that operate even if one or more subsystem fails.
Additionally, the control of the Dispensing Module freezer environment and operation can be an independent subsystem.
Preferably, the Control System includes the capability to operate all modules individually. This allows the operator to disconnect and remove a module from the network and operate the remaining modules in a semi-automatic method, manually performing some of the operations. Preferably, there are controls on each module that permit an operator to operate that module's functions locally.
Orders for product are preferably processed sequentially as they are received, although the specific products within a customer order may be arranged in a logical manner as desired. The Monitor will display all products being processed by the workstation from the time the order is received until it is removed from the workstation. The status of each product that is ordered can be tracked in its various stages including, for example, on order, packaged and ready to pick up, ready to manually package, and held too long.
Preferably, products in the process of being fried can also be tracked, and cooking times for each basket in each wheel will count down to when product is ready to package.
Master Controller
In one embodiment, the Master Controller 110 hardware may suitably comprise, or equivalent:
-
- Intel Pentium III (or higher) with 1.0 GHz (or higher) CPU
- Ethernet network interface and hub
- 256 MB (or more) system RAM
- 20 GB (or more) hard disk drive
- Touch-Screen Monitor Interface
- Plug and Play Touch-Screen Monitor
- SCK Gateway (Ethernet)
- Interconnect cabling (as needed)
- Optional Keyboard and pointing device (mouse) for installation and maintenance purposes
Typical operating system software requirements are:
-
- Windows 2000 professional (or server) SP4 or higher
- A suitable Database Server, such as Fast SCK Version 3.0 (or higher) from Fast, Inc. of Stratford, Conn.
- Fast SCK Version 3.0 (or higher) Utility Applications (SCK Editor, SCK Engine, SCK Events, and SCK Site Editor) from Fast, Inc.
The Subsystem Interface Modules provide the functionality to communicate specific control events (information) conditions, and/or commands to and from the Master Controller. These modules typically can be incorporated into the circuitry of controller boards. In cases where the network needs to interface with a control subsystem (such as PLCs, for example), appropriate imbedded memory interface (input-output) circuit cards known in the art can be utilized. All of the foregoing hardware and software or equivalent is readily available or can be produced by those skilled in the art.
Fryer Controller
The frying of the frozen product is controlled by a combination of cooking oil temperature and the time the frozen product is immersed in the cooking oil. Frying is accomplished by moving the frozen product through the heated cooking oil by a rotating fry wheel. As previously described, a programmable stepper or other motor can provide the desired precisely controlled movement of the fry wheel.
The following Table I lists typical control parameters and several optional parameters that can be used, if desired.
To ensure proper operation of the basket/fry wheel, including positioning the unit precisely for smooth loading and complete unloading, the basket/fry wheel position must be constantly synchronized. To do this, a “homing” sensor circuit can be utilized that resets the home position after every move of the wheel. This sensor preferably is electromagnetic and is impervious to dirt and grease build up and has no moving parts although any suitable sensor can be used.
Dispensing Controller
The Dispensing Module control system 114 separates functions by the product delivery lane they support. In one embodiment, where there are four delivery lanes, there are four control subsystems. Each subsystem controls a vibrating product conveyor, a portioning load cell, and a dump actuator. Additionally, there are optional module configurations that affect the controls design. If lanes 1, 2, and/or 3 are configured with bulk food hoppers, a product level sensor can be provided to alert operators to reload frozen product before the hopper is empty. If each of lanes 2, 3 and/or 4 is configured with an array of coil magazines for food items, the controls must sequentially switch power to each of the motors in the lane to maintain a constant flow of frozen product.
Table II lists defined control signal parameters for each of the Dispensing Module Lane controllers:
Freezer Controller
In addition to properly dispensing products into the Fryer Module, subcontrol system 114 for dispensing device 200 or 1200 must also maintain a proper frozen environment for all products. To accomplish this, another controller subsystem can be provided. Table III lists the applicable control signal parameters for the freezer subsystem. A safety circuit interrupts all dispensing activity when the aisle door is opened.
The separation of the Dispensing Module controls into these five subsystems, when there are five, makes for a convenient mechanical arrangement in the base of the module, and allows for the required flexibility given the configuration options.
In one embodiment, for manual operation, four “dispense” buttons are provided, one for each lane. One button would cause the release of a pre-set portion of the frozen product for that lane. The controls preferably should be located so the operator could by visual observation determine the appropriate fryer basket to make sure the product dispenses into the proper basket.
Packaging Controller
Packaging Controller 118 for the Packaging Module incorporates several event signal generators for the control system to sense or read. The main Packaging Module or device 600 and 1600 elements are depicted in
The Packaging Subsystem
The packaging control subsystem initially interfaces with the Packaging Module PLC and sends packaging device 600 or 1600 a signal to start the sequential operation of packaging one of an appropriately sized portion of French fries. The actions and reactions of all the electromechanical devices (e.g., for device 600: container handling system 610, dispensing member 606, overflow member 613, load cell 702 and chute mechanism 608 and for device 1600: container handling system 1622, elevator 1628, salting device 1606 and carriage 1606′, first and second gates 1608 and 1610, and container filling device 1614) can be, if desired, sequenced and controlled by the local on-board controller (i.e., PLC) and not Master Controller 110.
For device 600, once the container grasping device 764 sets the filled package of fries on conveyor 614 and the receptacle load gate 926 opens to allow receptacle 612 to move to the pick up area, a signal will be sent back to Master Controller 110 indicating that the particular order of fries is ready for pick up. Until that receptacle 612 moves to the return gate 928 (located at the operator right front of the Packaging Module) and the gate permits receptacle 612 to move therepast after receptacle 612 is empty, Master Controller 110 will believe (and display) that the order of fries is waiting to be picked up. Preferably, the crew member will pick up fries from right to left to ensure that the order sequence is followed and that the oldest fries are served first.
Because the number of receptacles 612 that can fit between gate 926 and return gate 928 typically is limited, Master Controller 110 intelligence preferably keeps track of how many orders of fries are in the pick up cue. This allows audible/visual alerts to be triggered on the Monitor to remind the crew that orders have been waiting. Also, even if orders are picked out of sequence, the Master Controller will remember what was on an empty receptacle 612 and clear it when it passes return gate 928.
Preferably, the Master Controller is configured to remember the hold time of each packaged fry order. If the order has not been picked up in time, the Monitor will alert the operator by audible/visual signal to “waste” that order.
For device 1600, once automated mechanical arm 1616 deposits a filled package of fries at drop-off location, Master Controller 110 will believe and display that the order is ready for pick-up from the particular lane of rack 1730 or from a particular compartment of holding carousel 1738, the rotation of which can be controlled by Master Controller 110.
The Secondary Loop
The remainder of control 118 for Packaging Module or device 600 or 1600 functions address the secondary loop, “buffer inventory replacement.” Preferably, there are two typical system requirements for the buffer inventory: (1) there must be a minimum amount of fries in member 606 or chute mechanism 608 (for device 1600, in holding bin 1612 and/or on chute 1604) to completely fill the next packaging order (that is, enough French fries to make one portion of a given size given the particular filling efficiencies of the filling device of packaging module 600 or 1600); and (2) the buffer inventory is low and needs to be replenished.
For the first requirement, if there is insufficient buffer inventory to fill the package, chute mechanism 608 or mechanical arm 1614 is disabled or held inactive and an error message alarm is sent. This condition should not happen, but the control intelligence prevents packaging device 600 or 1600 from under filling an order.
During normal operations, the level of fries in the buffer inventory will drop to a level where an inventory replenishment order will be initiated. In that event, Master Controller 110 can signal dispensing device 200 or 1200 to start its fill sequence. This process should typically start soon enough that the replacement product can be fried, salted, and added to the dispensing member 606 or to holding bin 1612 or on inlet chute 1604 before the “out-of-product” condition is reached. The KMS data can be integrated into the Master Control intelligence to help insure that there is replacement product in process before the actual need arises. This capability minimizes order delivery delays while also preventing the dispensing member 606 or in holding bin 1612 or inlet chute 1604 inventory growing beyond actual need.
The dispensing member 606 (or holding bin 1612 and/or inlet chute 1604) inventory can be managed in a number of ways, as desired. For example, any of the following can be utilized and implemented by one of ordinary skill in the art: (a) direct sensors; (b) a load cell that constantly weighs the buffer inventory; and (c) a dynamic empirical calculation.
The dynamic empirical calculation embodiment may use the Master Controller to constantly calculate how much product has been added to dispensing member 606 (or holding bin 1612 and/or inlet chute 1604), and subtract out the portion packaged, any bonus amount, waste, and a safety factor. This empirical total will then be compared to pre-set “reload” levels. The formula may also include how much product is in process. In all cases, the buffer inventory level can be adjusted during the day to reflect actual sales levels.
The controls system design for all other (i.e., non-salted French fries) products is that the same control process would be used, but that the “buffer inventory” for those products may be defaulted to zero. That is, an order for hash browns would immediately signal an “out-of-inventory” condition and launch an “inventory replacement” command to the dispensing device 200 or 1200. Later, if the need arises, controller intelligence would allow the operator to utilize some buffer inventory for these products.
Optionally, a provision can be made for unsalted French fries. Unsalted French fries would be handled like the non-French fries products. When an order for unsalted French fries is received, Master Controller 110 will signal the Packaging Module to move diverter bar 605. The next load of French fries coming from the Fryer Module will then be diverted to a portion of chute 604 of packaging device 600 for manual packaging. The extra unsalted fries can be manually returned to chute 604.
An important feature of the automated system is to maintain product integrity. One facet of that is to dispose of product that has exceeded its authorized holding time. Master Controller 110 will remember when each load of French fries came out of fry device 400. The mechanical design of packaging devices 600 and 1600 assures a substantially “first in-first out” product movement. How long the “oldest” fries have been in dispensing member 606 is tracked by Master Controller 110 or packaging device controller 118, as desired. Whenever the allowable holding time has been reached, Master Controller 110 will signal the Packaging Module subsystem Controller 118 to start the buffer waste cycle (or the packaging device Controller 118 can directly control this function). It is possible that some French fries in the buffer will not have reached their limit, but through control parameter refinement, this can be minimized. Table IV lists the control signals for one embodiment of the packaging control subsystem:
Holding Controller
The other control subsystem is that dedicated to holding product at proper temperatures. Generally, a standard temperature controller with timer channels to manage all holding functions can be utilized, as is known in the art.
Table V lists the various control parameters for the holding control subsystem for food holding device 635:
Touch-Screen Monitor
The Touch-Screen Monitor is the primary system user interface and can be considered part of the Master Controller configuration. The Monitor has four main functions: (1) display the status of fried foods orders; (2) allow the operator to manually control the system; (3) alert the operator to any needed manual intervention; and (4) allow the operator to reconfigure the workstation and/or change the individual operating parameters.
The Monitor display can be configured as desired. Preferably, the main display menu is simple, uncluttered and only presents the basic information needed to track ongoing order status. A sample Monitor display layout is shown in
In the illustrated embodiment, products on order would appear as horizontal rows of the appropriate product (type and portion size) icon, reading from the left edge of the screen. All products from a single POS customer order would appear on a single line. As additional POS orders are entered, the screen would refresh, moving the older orders down a line. Products on order, and not yet ready for pick up would appear as gold icons.
Across the bottom of the screen would appear the same number of locations as there are packaging device 600 receptacles 612 in the pick up zone. As packages of fries are placed on receptacles 612 and the receptacles 612 travel within the pick up zone, the appropriate icon will disappear from the “on order” line and reappear as a green icon in the spot where its receptacle is. When a package is removed from a receptacle and that receptacle passes return gate 928, the display icon will disappear from the screen.
In one embodiment, should the “hold timer” for a packaged product expire before it is picked up, its green icon will change color (i.e., to red) and/or flash. In another embodiment, an audible alarm can be provided as well, indicating clearly that this product should be wasted.
Across the top of the screen is a line of control “buttons.” There can be one for each product (again, type and portion size). The system is programmed so that touching the button on the screen will enter an order for one each of that product. There is also a screen button at the upper right corner of the screen that enables the operator to change the screen display to the “Settings” screen.
The “Settings” screen layout is depicted in
If required, a secure “manager only screen” can be configured to allow someone to adjust and/or reset selected operating parameters. Access to this screen and these settings would require some type of password to prevent any non-authorized store employee from changing basic system parameters.
Operator alert messages or alarms (e.g., bulk product low—refill now: “bridging/time out”—clear lane 2; etc.) will appear as an “error message box” in the center of the screen, along with some type of audible alarm.
While the invention has been described with respect to certain preferred embodiments, as will be appreciated by those skilled in the art, it is to be understood that the invention is capable of numerous changes, modifications and rearrangements and such changes, modifications and rearrangements are intended to be covered by the following claims.
Claims
1. A method of erecting a collapsed individual portion-sized French fry type container of the type having opposed sidewalls connected by a collapsible container bottom, comprising:
- grasping the unerected French fry container, pulling the container against a restraining member;
- mechanically dragging the bottom of the container so that it traverses up an inclined ramp to urge up the container bottom to urge the container to an erected position.
2. The method of claim 1 further comprising injecting a stream of compressed air into the open end of the container and towards the container bottom for assisting in the erecting.
3. An automated device for erecting an individual portion unerected French fry container of the type having opposed sidewalls connected by a collapsible container bottom, comprising:
- an automated retrieving and container grasping device for grasping one of the opposed sidewalls of the unerected container;
- a restraining member for restraining from relative movement the other of said opposed sidewalls when said one sidewall is grasped by the grasping device and moved in the desired direction;
- means for causing relative movement of the grasping device away from the restraining member while the grasping device grasps the unerected carton for causing the opposed carton sidewalls to move apart from each other.
4. The device of claim 3 further comprising an urging member for urging the carton bottom upwardly during the movement apart of the carton sidewalls.
5. The device of claim 3 wherein said grasping device comprises a suction cup for grasping one of the opposed container sidewalls.
6. The device of claim 5 wherein said grasping device comprises a vacuum source to apply at least a partial vacuum to the suction cup.
7. The device of claim 4 wherein said urging member comprises an inclined ramp.
8. The device of claim 3 further comprising means for injecting a stream of compressed air into the open end of the container when the opposed sidewalls are at least partially moved apart from each other to help urge the opposed sidewalls apart in erecting the container.
9. The device of claim 3 further comprising a carriage on which said grasping device is mounted for causing linear movement of said grasping device in a first dimension.
10. The device of claim 9 further comprising a second carriage for linear movement of said grasping device in a second dimension.
Type: Application
Filed: Nov 2, 2007
Publication Date: Mar 13, 2008
Inventors: Gerald Sus (Frankfort, IL), Glenn Schackmuth (Montgomery, IL), Craig Conley (Oswego, IL), Ron Dorsten (Oak Brook, IL), Henry Ewald (Roselle, IL), Jenny Hong (Palatine, IL), William Day (New Port Richey, FL), Benny Nunley (Half Moon Bay, CA), Curtis Pinnow (Libertyville, IL), Charles Rose (Hayward, CA), Chris Coul (Glendale Heights, IL), Mike Zizas (Bloomingdale, IL), Dusan Ivancevic (Carol Stream, IL), Gregery Billman (Schaumburg, IL), Steve Yagla (Bloomingdale, IL)
Application Number: 11/982,550
International Classification: B65B 67/02 (20060101);