COCAINE RECEPTOR BINDING LIGANDS

A class of binding ligands for cocaine receptors and other receptors in the brain. Specifically, a novel family of compounds shows high binding specificity and activity, and, in a radiolabeled form, can be used to bind to these receptors, for biochemical assays and imaging techniques. Such imaging is useful for determining effective doses of new drug candidates in human populations. In addition, the high specificity, slow onset and long duration of the action of these compounds at the receptors makes them particularly well suited for therapeutic uses, for example as substitute medication for psychostimulant abuse. Some of these compounds may be useful in treating Parkinson's Disease or depression, by virtue of their inhibitory properties at monoamine transporters.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This application is a continuation-in-part application of U.S. patent application Ser. No. 08/506,541, filed Jul. 24, 1995, which is a continuation-in-part of (1) U.S. patent application Ser. No. 07/972,472, filed Mar. 23, 1993, which issued May 9, 1995 as U.S. Pat. No. 5,413,779; (2) U.S. patent application Ser. No. 08/164,576, filed Dec. 10, 1993, which is in turn a continuation-in-part of U.S. patent application Ser. No. 07/792,648, filed Nov. 15, 1991, now U.S. Pat. No. 5,380,848, which is in turn a continuation-in-part of U.S. patent application Ser. No. 07/564,755, filed Aug. 9, 1990, now U.S. Pat. No. 5,128,118 and U.S. PCT Application PCT/US91/05553, filed Aug. 9, 1991, filed in the U.S. PCT Receiving Office and designating the United States; and (3) U.S. patent application Ser. No. 08/436,970, filed May 8, 1995, all of which are incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

This invention is directed to a class of binding ligands for cocaine receptors and other receptors in the brain. Specifically, a novel family of compounds shows high binding specificity and activity, and, in a radiolabeled form, can be used to bind to these receptors, for biochemical assays and imaging techniques. Such imaging is useful for determining effective doses of new drug candidates in human populations. In addition, the high specificity, slow onset and long duration of the action of these compounds at the receptors makes them particularly well suited for therapeutic uses, for example as substitute medication for psychostimulant abuse. Some of these compounds may be useful in treating Parkinson's Disease or depression, by virtue of their inhibitory properties at monoamine transporters.

DISCLOSURE OF PARENT APPLICATIONS

This application claims priority, inter alia, from of U.S. patent application Ser. No. 07/972,472 filed Mar. 23, 1993, now U.S. Pat. No. 5,413,779, the entirety of which is incorporated by reference. This application also claims priority from U.S. patent application Ser. No. 07/564,755, now U.S. Pat. No. 5,128,118, and U.S. PCT Application PCT/US91/05553 (the U.S. National Phase of which is U.S. Ser. No. 07/972,472), filed Aug. 9, 1991, both applications being incorporated herein by reference. In U.S. application Ser. No. 07/564,755, there is disclosure of a family of compounds exhibiting particularly high specificity and affinity for cocaine receptors and other neurotransmitter receptors in the brain of the formula:

Where the broken line represents an optional chemical bond and the substituents at 2 and 3 may be at any position;

The iodo substituent may be at o, m, p, or multisubstituted;

R1═CH3, CH2CH═CH2, (CH2)nC6H5 n=1-4;
R2═CH3, C2H5, CH3(CH2)3, (CH3)2CH, C6HS, C6H5CH2, C6H5(CH2)2;
X=pharmacologically acceptable anion
Sites of specific interest included cocaine receptors associated with dopamine (DA) transporter sites.

Subsequently, in the U.S. PCT Application from which priority is claimed, and which is incorporated herein by reference, the values for R1 and R2 were expanded, such that R1 may be an alkyl of 1-7 carbon atoms, CH2CR3═CR4R5 wherein R3-R5 are each, independently C1-6 alkyl, or phenyl compounds of the formula C6H5(CH2)y, wherein y=1-6. The PCT filing also reveals the affinity of these compounds for cocaine receptors associated with serotonin (5-hydroxytryptamine, 5-HT) transporters, and confirms, for the first time, that the in vitro binding reported in the earlier-filed application, is confirmed in in vivo testing. Specific disclosure for a variety of applications, including using the compounds in both PET and SPECT scanning, wherein either the iodine substituent, or one of the carbon groups is radioactive (I-123, 125 or 131 and C11) thus providing methods for scanning for the presence of specific cocaine receptors. Such scanning processes may be used to determine physiological conditions associated with dopamine and serotonin reuptabe inhibitors, which lead to behavioral and neurodegenerative disorders/diseases. Such disorders include depression, bipolar disorder, eating disorders, obesity, attention deficit disorder, panic attacks and disorders, obsessive-compulsive disorder, Parkinson's Disease, and cocaine, nicotine and alcohol addiction. These compounds, in addition to being used in treatment of these disorders, may be used to examine in general the density and distribution of specific cocaine receptors in various parts of the brain and/or body, to determine the efficacy of neurological treatments aimed at halting or reversing the degeneration of specific nerves in the brain, and for screening drugs, such as antidepressant drugs.

The affinity and specificity of these compounds, as reported in the applications incorporated, is surprisingly high, and compared with prior art compounds, such as [3H]WIN 35,428, the novel compounds of these applications exhibit extremely low IC50 values for binding inhibition.

In U.S. patent application Ser. No. 08/164,576, filed Dec. 10, 1993, also incorporated herein by reference in its entirety, a family of compounds was disclosed, having the formula:

Wherein Y is

Wherein

R1 is hydrogen, C1-5 alkyl
Ra is phenyl, C1-6 alkyl, C1-6 alkyl-substituted phenyl
Rb is C1-6 alkyl, phenyl, C1-6 alkyl substituted phenyl and
Z is phenyl or naphtyl bearing 1-3 substituents selected from the group consisting of F, Cl, I, and C1-6 alkyl.

These compounds exhibit unusually high affinity and specificity for binding to receptors for the dopamine transporter site, as well as the serotonin transporter site, based on inhibition of [3H]paroxetine binding. This high affinity makes certain of these compounds particularly well suited for use as therapeutic agents, as well as for imaging agents for dopamine and serotonin transporters.

SUMMARY OF THE INVENTION

Accordingly, one object of this invention is to provide novel compounds which bind to cocaine receptors.

Another object of the invention is to provide novel 3-(substituted phenyl)-2-(substituted)tropane analogs which bind to cocaine receptors.

Still another object of the invention is to provide 3-(substituted phenyl)-2-(substituted)tropane analogs which bind preferentially to the dopamine transporter.

Yet another object of the invention is to provide 3-(substituted phenyl)-2-(substituted)tropane analogs which bind preferentially to the serotonin transporter.

Another object of the invention is to provide a compound of the formula

wherein R is CH3, C2H5, CH2CH2CH3, or CH(CH3)2, R1 is CH3, CH2C6H5, (CH2)2C6H5, (CH2)3C6Hs, or

wherein X is H, OCH3, or Cl and Y is H, OCH3, or Cl, and n=1-8.

Another object of the invention is to provide compounds having the following formulas:

wherein
R1=hydrogen, C1-5 alkyl,
X═H, C1-6 alkyl, C3-8 cycloalkyl, C1-4 alkoxy, C1-6 alkynyl, halogen, amino, acylamido, and
Z=H, I, Br, Cl, F, CN, CF3, NO2, N3, OR1, CONH2, CO2R1, C1-6 alkyl, NR4R5, NHCOR5, NHCO2R6,
Rb is C1-6 alkyl, phenyl, C1-6 alkyl substituted phenyl

A further object of the invention is to provide a method for treating psychostimulant abuse, by administering to a patient in need of such treatment a pharmaceutically effective amount of a 3-(substituted phenyl)-2-(substituted)tropane analog.

A still further object of the invention is to provide method for inhibiting the action of a psychostimulant, by administering to a patient in need of such treatment a psychostimulant-inhibiting amount of a 3-(substituted phenyl)-2-(substituted)tropane analog.

Still another object of the invention is to provide a method for inhibiting neurotransmitter re-uptake by administering to a patient in need of such treatment a neurotransmitter transporter-inhibiting amount of a 3-(substituted phenyl)-2-(substituted)tropane analog.

Another object of the invention is to provide a method for treating neurodegenerative disorders, by administering to a patient in need of such treatment a pharmaceutically effective amount of a 3-(substituted phenyl)-2-(substituted)tropane analog.

Still another object of the invention is to provide a method for treating depression, by administering to a patient in need of such treatment a pharmaceutically effective amount of a 3-(substituted phenyl)-2-(substituted)tropane analog.

Briefly, the invention pertains to the discovery that certain cocaine analogs are particularly well suited for therapeutic use as neurochemical agents. These particular cocaine analogs, in modulating neurotransmitter actions, may also be useful for modulating the actions of pyschostimulant drugs, for modulating endocrine function, for modulating motor function, and for modulating complex behaviors.

With the foregoing and other objects, advantages and features of the invention that will become here in after apparent, the nature of the invention may be more clearly understood by reference to the following detailed description of the preferred embodiments of the invention and to the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:

FIG. 1 depicts the scheme for converting 3-(substituted phenyl)-2-tropane carboxylic acid (tropane acid) to 2-substituted tetrazoles, oxazoles, oxadiazoles, thiazoles, thiadiazoles and benzothiazole.

FIG. 2 depicts the scheme in which the carboxamide obtained from the tropane acid was treated to obtain nitriles and tetrazoles.

FIG. 3 depicts the scheme used to prepare 3-substituted isoxazoles.

DETAILED DESCRIPTION OF THE INVENTION

The present invention includes novel compounds having the following formula:

The compounds of this invention can be prepared according to the synthesis methods described in the parent applications. Alternative synthesis for related compounds will be apparent to those of ordinary skill in the art. Particular synthesis schemes are exemplified in U.S. Pat. No. 5,444,070, which is incorporated herein in its entirety. Additional schemes follow hereinbelow.

Preparation of 3β-(Substituted phenyl)tropane-2β-heterocyclic Analogues Chemistry

The known 3β-(substituted phenyl)-2β-tropane carboxylic acid (tropane acid) (Carroll et al., J. Med. Chem. 35:1813-1817 (1992)) served as the starting material for the synthesis of 2β-substituted tetrazoles, oxazoles, oxadiazoles, thiazoles, thiadiazoles and benzothiazole as shown in FIG. 1.

The tropane acid was refluxed with N-acetyl and benzoic hydrazide in phosphorous oxychloride to obtain the corresponding 5-substituted 1,3,4-oxadiazoles (Afanasiadi et al., Chem. Heterocyclic Compd. 397-400 (1995)). N-benzoyl hydrazide amide obtained by the reaction of the acid chloride of tropane acid with N-benzoic hydrazide was cyclized with Lawesson's reagent (El-Barbary et al., Acta Chimica Scandinavica 597-601 (1980)) in refluxing THF to the 5-substituted 1,3,4-thiadiazoles. The N-phenylacyl carboxamide obtained from tropane acid and 2-aminoacetophenone was cyclized by refluxing the amide in phosphorous oxychloride to obtain the required 5-substituted oxazoles (Carroll et al., Med. Chem. Res. 3:468 (1993)). Cyclization of the same amide with Lawesson's reagent (El-Barbary et al., 1980) in refluxing THF gave the 5-substituted thiazoles respectively. The benzothiazole was obtained without the cyclization step by the reaction of acid chloride obtained from the appropriate tropane acid with 2-aminothiophenol.

The previously reported carboxamide (Carroll et al., 1993) obtained from the tropane acid was dehydrated with trifluoroacetic acid and pyridine in THF to the nitrites (Campagna et al., Tet. Letts. 22:1813-1816 (1977)) as shown in FIG. 2. Cycloaddition of trimethylsilylazide to the nitrile afforded the corresponding tetrazoles (Saunders et al., Med. Chem. 33:1128-1138 (1990)).

FIG. 3 outlines the route used to prepare 3-substituted isoxazole. The known tropane compounds (Carroll et al., J. Med. Chem. 34:2719-2725 (1991)) were treated with dilithiated methyl or phenyl acetoneoximes, obtained by the treatment of acetone or acetophenoneoxime with n-BuLi at 0° C. The corresponding addition product was cyclized without isolation using sulfuric acid at reflux temperature to furnish the required isoxazoles (Saunders et al., 1990).

The therapeutic effects of the present cocaine analogs can be analyzed in various ways, many of which are well known to those of skill in the art. In particular, both in vitro and in vivo assay systems may be used for the screening of potential drugs which act as agonists or antagonists at cocaine receptors, or drugs which are effective to modulate neurotransmitter level or activity, in particular by binding to a transporter of that neurotransmitter.

The compounds of the invention may be prepared and labeled with any detectable moiety, in particular a radioactive element, and may then be introduced into a tissue or cellular sample. After the labeled material or its binding partner(s) has had an opportunity to react with sites within the sample, the location and concentration of binding of the compound may be examined by known techniques, which may vary with the nature of the label attached.

Illustrative in vitro assays for binding are described in Boja et al Ann. NY Acad. Sci. 654:282-291 (1992), which is incorporated herein by reference in its entirety. A particularly preferred in vitro assay involves the ability of a compound in question to displace the binding of a known labelled compound to binding sites in a tissue sample, isolated membranes or synaptosomes. Alternatively, the compounds may be analyzed by their ability to inhibit reuptake of a labelled neurotransmitter in a sample, in particular, in synaptosomes.

The compound or its binding partner(s) can also be labeled with any detectable moiety, but are preferably labelled with a radioactive element. The radioactive label can be detected by any of the currently available counting procedures, including the imaging procedures detailed in the disclosures of the parent applications. The preferred isotope may be selected from 3H, 11C, 14C, 11C, 32P, 35S, 36Cl, 51Cr, 57Co, 58Co, 59Fe, 90Y, 125I, 131I, and 186Re.c,

As noted in the parent disclosures, the binding of the labelled compounds may be analyzed by various imaging techniques, including positron emission tomography (PET), single photon emission computed tomography (SPECT), autoradiogram, and the like. Such imaging techniques are useful for determining effective doses of new drug candidates. By performing in vivo competition studies, it is possible to use brain imaging studies to determine the oral doses of new drug candidates, which produce significant receptor occupancy in the brain. In vivo displacement studies which determine in vivo IC50's which in turn reflect doses that occupy receptors in vivo are described in Cline et al ((1992) Synapse 12:37-46). In addition to its uses in determining in vivo potency/occupancy, these same brain imaging methods can be used to determine rate of entry of compounds into the brain (Stathis et al (1995) Psychopharmacology 119:376-384) and duration of action (Volkow et al (1995) Synapse 19:206-211).

The binding of the compounds of the invention may be at any location where a receptor for a particular psychostimulant is present, and more specifically, any location where a dopamine or serotonin transporter is present. Such locations are in general any area comprising a part of the dopamine or serotonin pathway, in particular at synapses. Examples of locations known to be associated with dopamine transport include the cerebral cortex, hypothalamus, substantia nigra, nucleus accumbens, arcuate nucleus, anterior periventricular nuclei, median eminence and amygdala. Examples of locations known to be associated with serotonin include the striatum, cerebral cortex, hypothalamus, Raphe nuclei, pre-optic area and suprachiasmatic nucleus.

By “psychostimulant” is meant any compounds whose abuse is dependent upon mesolimbic and mesocortical dopaminergic pathways. In particular, psychostimulant relates to cocaine. However, the compounds of the invention may also be used to treat abuse of compounds not traditionally classified as “psychostimulants,” but which act at a dopamine or serotonin transporter. Such abused compounds include ethanol and nicotine.

For in vivo studies, the compounds of the invention may be prepared in pharmaceutical compositions, with a suitable carrier and at a strength effective for administration by various means to a patient experiencing an adverse medical condition associated with cocaine receptor binding or neurotransmitter release and reuptake, for the treatment thereof. The action of the compounds may be analyzed by the imaging methods noted above, and also by behavioral studies. In particular, the pharmaceutical effects of the compounds of the invention may be reflected in locomotor activity, including the induction of ipsilateral rotation, stereotyped sniffing and the “swim test”, in schedule-controlled operant behavior (i.e., response for food or shock termination) or drug self-administration. In general, maximal behavioral effects are seen at near complete occupancy of transporter sites. Such protocols are described in Boja et al (1992), Balster et al Drug and Alcohol Dependence 29:145-151 (1991), Cline et al Pharm. Exp. Ther. 260:1174-1179 (1992), and Cline et al Behavioral Pharmacology 3:113-116 (1992), which are hereby incorporated herein by reference in their entireties.

A variety of administrative techniques may be utilized, among them oral or parenteral techniques such as subcutaneous, intravenous, intraperitoneal, intracerebral and intracerebroventricular injections, catheterizations and the like. Average quantities of the compounds may vary in accordance with the binding properties of the compound (i.e., affinity, onset and duration of binding) and in particular should be based upon the recommendations and prescription of a qualified physician or veterinarian.

The compounds of the invention preferably have a long duration of action, which is important to facilitate dosing schedules. In rats, the present compounds have a 7-10 fold longer duration of action than cocaine (Fleckenstein et al, “Highly potent cocaine analogs cause long-lasting increases in locomotor activity,” Eur. J. Pharmacol., in press, which is incorporated herein by reference in its entirety). In addition, the present compounds also preferably have a slow rate of entry into the brain, which is important in decreasing the potential for abuse (Stathis et al, supra, which is incorporated herein by reference in its entirety). The present compounds enter the brain more slowly than cocaine.

The therapeutic compositions useful in practicing the therapeutic methods of this invention may include, in admixture, a pharmaceutically acceptable excipient (carrier) and one or more of the compounds of the invention, as described herein as an active ingredient.

The preparation of therapeutic compositions which contain such neuroactive compounds as active ingredients is well understood in the art. Such compositions may be prepared for oral administration, or as injectables, either as liquid solutions or suspensions however, solid forms suitable for solution in, or suspension in, liquid prior to injection can also be prepared. The preparation can also be emulsified. The active therapeutic ingredient is often mixed with excipients which are pharmaceutically acceptable and compatible with the active ingredient. Suitable excipients are, for example, water, saline, dextrose, glycerol, ethanol, or the like and combinations thereof. In addition, if desired, the composition can contain minor amounts of auxiliary substances such as wetting or emulsifying agents, and pH buffering agents which enhance the effectiveness of the active ingredient. The compounds of the invention can be formulated into the therapeutic composition as neutralized pharmaceutically acceptable salt forms.

The therapeutic compositions are conventionally administered orally, by unit dose, for example. The term “unit dose” when used in reference to a therapeutic composition of the present invention refers to physically discrete units suitable as unitary dosage for humans, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent; i.e., carrier, or vehicle.

The compositions are administered in a manner compatible with the dosage formulation, and in a therapeutically effective amount. The quantity to be administered depends on the subject to be treated, the presence of other agonists and antagonists in the subject's system, and degree of binding or inhibition of binding desired. Precise amounts of active ingredient required to be administered depend on the judgment of the practitioner and are peculiar to each individual. However, suitable dosages may range from about 0.01 to about 1000, preferably about 0.25 to about 500, and more preferably 10 to 50 milligrams of active ingredient per kilogram body weight of individual per day and depend on the route of administration. However, the exact dosage must be determined by factoring in rate of degradation in the stomach, absorption from the stomach, other medications administered, etc. Suitable regimes for administration and are also variable, but are typified by an initial administration followed by repeated doses at one or more hour intervals by a subsequent injection or other administration. Alternatively, continuous intravenous infusion sufficient to maintain appropriate concentrations in the blood are contemplated.

The compounds of the present invention may be administered for their activities as surrogate agonist medications for cocaine, nicotine, alcohol, amphetamine and other psychostimulant abuse. Because of their favorable binding characteristics to transporters of neurotransmitters, they may be used for inhibiting the uptake of dopamine, norepinephrine, serotonin and other monoamines. The compounds of the present invention may find use as antipsychotics, antidepressants, local anesthetics, anti-Parkinsonian agents, anti-obesity drugs, drugs useful in the treatment of bipolar disorder, eating disorders, obesity, attention deficit disorder, panic attacks and disorder, obsessive-compulsive disorder, sexual dysfunction, as anticholinergic agents and as sigma receptor drugs.

The compounds of the invention may also be useful in treating neurodegenerative disorders, in particular for treating Parkinson's Disease, but also may be useful in the treatment of cocaine, nicotine and alcohol addiction.

The preferred compounds of the present invention are derived from the series of compounds designated RTI-4229. The physical properties of some of these compounds are given in Table I.

TABLE I Physical Properties of 2β-substituted Hetrocyclic Analogs of 3β-(4-Substituted-phenyl) Tropane and Cocaine Molecular code name Compound Formulaea mp° C. [α]D (c) MeOH Yield % RTI-188 C22H23Cl2N3Oe 160-162 +84.59 (0.36) 42 RTI-195 C23H26ClN3Oe 175-178 +97.22 (0.25) 40 RTI-194 C18H24ClN3Od 146 (dec) −43.05 (0.15) 58 RTI-200 C22H23Cl2N3Se 165-170 −42.81 (0.16) 58 RTI-199 C23H26ClN3Sd 180-185 −33.50 (0.20) 58 RTI-189 C27H29ClN2O7b,e 126 (dec) +101.43 (0.21) 49 RTI-178 C28H32N2O7b,f 175-181 −104.04 (0.60) 72 RTI-219 C23H24ClN2Sf 228-230 +27.43 (0.11) 30 RTI-202 C21H22Cl2N2Sc 140-150 (dec) −172.49 (0.28) 41 RTI-161 C15H18Cl2N2e >220 (dec) −71.00 (0.50) 77 RTI-158 C16H21ClN2 270 (dec) −76.40 (0.50) 67 RTI-163 C15H18ClN5e 296-300 −124.94 (0.39) 33 RTI-157 C16H23Cl2N5c >212 (dec) −110.97 (0.16) 88 RTI-165 C18H22Cl2N2O 235 (dec) −102.89 (0.46) 46 RTI-171 C19H25ClN2O 277 −107.28 (0.71) 62 RTI-180 C18H22ClN2Oc >235 (dec) −94.57 (0.39) 49 RTI-177 C23H24Cl2N2Oc 287 −97.50 (0.28) 50 RTI-176 C24H27ClN2O 270-295 (dec) −102.22 (0.68) 77 RTI-181 C23H24ClN2Od >2679 (dec) −91.11 (0.43) 56 RTI-184 C19H23ClN2O3d 117-121 −53.60 (0.25) 82 RTI-185 C24H25ClN2O3 205 −56.71 (0.43) 68 aHCl Salt; bTartrate Salt; c0.25 mol water; d0.5 mol water; e0.75 mol water; f1 mol water.

Many of the preferred compounds of the invention fall within the broad class of compounds described by the formula:

R1=hydrogen, C1-5 alkyl,

R2=hydrogen, C1-6 alkyl, C3-8, cycloalkyl, C1-4 alkoxy, C1-6alkynyl, halogen, amine, CH2C6H5, (CH2)2C6H5, (CH2)3C6H5 or

R3═OH, hydrogen, C1-6 alkyl, C3-8 cycloalkyl, C1-4 alkoxy, Cl, Br, I, CN, NH2, NHC1-6 alkyl, NC1-6 alkyl, OCOC1-6 alkyl, OCOC1-3 alkylaryl,

A=S, O or N

X═H, C1-6 alkyl, C3-8 cycloalkyl, C1-4 alkoxy, C1-6 alkynyl, halogen, amino, acylamido, C2H5, CH2CH3CH3, CH(CH3)2,
Z=H, I, Br, Cl, F, CN, CF3, NO2, N3, OR1, CONH2, CO2R1, C1-6 alkyl, NR4R5, NHCOR5, NHCO2R6, and
Q1 and Q2 may be the same or different and ═H, OCH3, or Cl,
wherein R4-R6 are each C1-6 alkyl, R and R1 are independently H, C1-6 alkyl, C1-6 alkene, C1-6 alkyne, phenyl, phenyl substituted with 1-3 of C1-6 alkyl, alkene, alkyl or alkoxy, C1-6 alkoxy, phenoxy, amine, amine substituted with 1-2 of C1-6 alkyl, alkene, alkyne, alkoxy or phenyl or phenoxy or R and R1 may combine to form heterocyclic structure including pyrrolidinyl, piperidinyl and morpholino moieties, unsubstituted or substituted with 1-2 C1-6 alkyl, alkene, alkyne or alkoxy groups.

The present inventors have surprisingly found that certain of the RTI-4229 series of compounds are particularly potent pharmaceutical agents in accordance with the present invention.

Preferred compounds of the RTI-4229 series include the following: RTI-4229-31, 32, 51, 55, 83, 96, 97, 98, 101, 105, 108, 110, 111, 112, 116, 121, 122, 127, 132, 139, 140, 142, 145, 146, 147, 150, 153, 178, 188, 189, 190, 191, 193, 195, 199, 200, 203, 204, 205, 206, 219, 230, 239, 240, 241, 242, 251, 252, 274, 277, 278, 279, 280, 281, 282, 283, 286, 287, 296, 304, 305, 307, 309, 318, and 330. The chemical structures of these compounds, along with their IC50 values for inhibition of radioligand binding are given below. DA is dopamine, 5-HT is 5-hydroxytryptamine (serotonin) and NE is norepinephrine, DA=[3H]WIN 35,428; 5-HT=[3H] paroxetine and NEN=[3H] nisofetine:

RTI-4229-31 DA5-HTNEN 1.12 ± 0.1 44.5 ± 1.34  37 ± 2.1 RTI-4229-32 DA5-HTNEN 1.71 ± 0.31240 ± 27   60 ± 0.53 RTI-4229-51 DA5-HTNEN 1.69 ± 0.2310.6 ± 0.2437.4 ± 5.2  RTI-4229-55 DA5-HTNEN 1.26 ± 0.044.21 ± 0.3436 ± 3  RTI-4229-83 DA5-HTNEN 55 ± 2  28.4 ± 3.834,027.87 ± 380.70   RTI-4229-96 DA5-HTNEN 2.95 ± 0.58 76 ± 2.8 520 ± 10.4 RTI-4229-97 DA5-HTNEN 3.91 ± 0.59181 ± 14 282 ± 30  RTI-4229-98 DA5-HTNEN 0.69 ± 0.2  0.36 ± 0.04710.97 ± 0.88  RTI-4229-101 DA5-HTNEN  2.2 ± 0.19 26 ± 3.2± RTI-4229-105 DA5-HTNEN 1.60 ± 0.05143 ± 25 127.2 ± 5.9  RTI-4229-108 DA5-HTNEN 2.64 ± 0.31 98 ± 8.7129.3 ± 15   RTI-4229-110 DA5-HTNEN 0.62 ± 0.094.13 ± 0.625.45 ± 0.21 RTI-4229-111 DA5-HTNEN 0.79 ± 0.083.13 ± 0.3617.96 ± 0.85  RTI-4229-112 DA5-HTNEN 0.82 ± 0.0510.5 ± 0.4136.2 ± 1.02 RTI-4229-116 DA5-HTNEN  33 ± 3.91,227 ± 176  967.55 ± 26.25  RTI-4229-121 DA5-HTNEN 0.43 ± 0.0566.84 ± 6.53 285 ± 7.6  RTI-4229-122 DA5-HTNEN 1.50 ± 0.35184.38 ± 21.91 3,791 ± 149   RTI-4229-127 DA5-HTNEN 19 ± 1 4,499 ± 557  3,444 ± 44   RTI-4229-132 DA5-HTNEN 3.48 ± 0.11208 ± 18 137.3 ± 10.5  RTI-4229-139 DA5-HTNEN 1.67 ± 0.13 85 ± 9.356.9 ± 2.6  RTI-4229-140 DA5-HTNEN 101 ± 16 5,701 ± 721  2,076 ± 285   RTI-4229-142 DA5-HTNEN 4.39 ± 0.2068.59 ± 2.02 18.78 ± 0.68  RTI-4229-145 DA5-HTNEN 9.60 ± 0.422,932 ± 181  1,478 ± 96   RTI-4229-146 DA5-HTNEN 2.05 ± 0.2398 ± 10144 ± 3  RTI-4229-147 DA5-HTNEN 1.38 ± 0.0312,393.99 ± 1207.03  3,949 ± 72   RTI-4229-150 DA5-HTNEN 3.74 ± 0.522,019 ± 133  4,738 ± 322   RTI-4229-153 DA5-HTNEN 1.06 ± 0.123.59 ± 0.27132 ± 5  RTI-4229-173 DA5-HTNEN 49.9 ± 7.3 8.13 ± 0.30122 ± 12  RTI-4229-178 DA5-HTNEN 35.4 ± 1.741,698.77 ± 166.68  677 ± 67.5  RTI-4229-188 DA5-HTNEN 12.56 ± 1.03 3,303.76 ± 195.85   929 ± 88.1 RTI-4229-189 DA5-HTNEN 19.71 ± 1.98 1,116.18 ± 107.148 496 ± 42.1  RTI-4229-190 DA5-HTNEN 0.96 ± 0.10168 ± 1.8  235 ± 8.39 RTI-4229-191 DA5-HTNEN 0.61 ± 0.0815.5 ± 0.72101.7 ± 10.5  RTI-4229-193 DA5-HTNEN 1.68 ± 0.141,066.38 ± 109.12   644 ± 27.7 RTI-4229-195 DA5-HTNEN 47.48 ± 4.76 22,310.9 ± 822.83  1,310 ± 36.7  RTI-4229-199 DA5-HTNEN 35.88 ± 3.40 51,459.7 ± 4,513.1024,320.8 ± 3,822.61  RTI-4229-200 DA5-HTNEN 15.29 ± 2.43 18,416.5 ± 1,508.794,142.08 ± 466.07   RTI-4229-203 DA5-HTNEN 9.37 ± 0.522,153.39 ± 143.18  2,743.73 ± 140.92   RTI-4229-204 DA5-HTNEN 3.91 ± 0.233,772.17 + 383.64  4,782.70 ± 487.10   RTI-4229-205 DA5-HTNEN 8.19 ± 0.905,237.30 ± 453.397 2,136.62 ± 208.52   RTI-4229-206 DA5-HTNEN 27.38 ± 1.47 1,203.39 ± 41.79  1,277.60 ± 117.68   RTI-4229-219 DA5-HTNEN 5.71 ± 0.3610,341.5 ± 76.11  8,563 ± 824   RTI-4229-230 DA5-HTNEN 1.28 ± 0.1757.41 ± 5.04  141 ± 16.1 RTI-4229-239 DA5-HTNEN 0.61 ± 0.07114.3 ± 3.69 35.6 ± 2.57 RTI-4229-240 DA5-HTNEN 1.38 ± 0.0338.4 ± 2.3184.5 ± 3.09 RTI-4229-241 DA5-HTNEN 1.02 ± 0.06618.5 ± 28   124 ± 3.56 RTI-4229-242 DA5-HTNEN 7.67 ± 0.31226.54 ± 27.37 510.1 ± 51.4  RTI-4229-251 DA5-HTNEN 1.93 ± 0.1410.1 ± 1.1  114 ± 13.1 RTI-4229-252 DA5-HTNEN 2.56 ± 0.2235.2 ± 2.45124.6 ± 8.3  RTI-4229-274 DA5-HTNEN 3.96 ± 0.2 5.62 ± 0.2 14.4 ± 1.3  RTI-4229-277 DA5-HTNEN 5.94 ± 0.612,909.71 ± 255.41  5,695.38 ± 214.72   RTI-4229-278 DA5-HTNEN 8.14 ± 3.732,146.50 ± 138.71  4,095.01 ± 413.45   RTI-4229-279 DA5-HTNEN 5.98 ± 0.481.06 ± 0.1074.3 ± 3.8  RTI-4229-280 DA5-HTNEN 3.12 ± 0.396.81 ± 0.41484.13 ± 51.6  RTI-4229-281 BIH-141-7 DA5-HTNEN 2.37 ± 0.2815.69 ± 1.5 820.5 ± 45.8  RTI-4229-282 BIH-141-2 DA5-HTNEN 68.53 ± 7.08 70.38 ± 4.13 3921.58 ± 130    RTI-4229-283 BIH-141-12 DA5-HTNEN 14.35 ± 0.3 3.13 ± 0.163125 ± 333  RTI-4229-286 DA5-HTNEN 20.7 ± 0.575062 ± 485 1231 ± 91  RTI-4229-287 DA5-HTNEN 325 ± 20 1686 ± 140 17,819 ± 440   RTI-4229-296 BIH-141-1 DA5-HTNEN 5.29 ± 0.5311.39 + 0.28 1592.23 ± 93.4   RTI-4229-304 BIH-141-11 DA5-HTNEN 15.04 ± 1.2 7.09 ± 0.712799 ± 300  RTI-4229-305 BIH-141-18 DA5-HTNEN 1.24 ± 0.111.59 ± 0.2 21.8 ± 1.0  RTI-4229-307 BIH-141-15 DA5-HTNEN 6.11 ± 0.673.16 ± 0.33115.6 ± 5.1  RTI-4229-309 BIH-141-17 DA5-HTNEN 1.73 ± 0.052.25 ± 0.1714.9 ± 1.18 RTI-4229-318 DA5-HTNEN 0.51 ± 0.030.80 ± 0.0621.1 ± 1.0  RTI-4229-330 DA5-HTNEN 310.2 ± 21  15.1 ± 0.97±

Particularly preferred compounds include RTI-4229-77, 87, 113, 114, 117, 119, 120, 124, 125, 126, 130, 141, 143, 144, 151, 152, 154, 165, 171, 173, 176, 177, 180, 181, 194, 202, 295, 298, 319, 334, 335, 336, 337, 338, 345, 346, 347, 348, 352 and 353. The chemical structures of these compounds are given below:

Particularly preferred compounds include RTI-4229-77, 87, 113, 114, 117, 119, 120, 124, 125, 126, 130, 141, 143, 144, 151, 152, 154, 165, 171, 173, 176, 177, 180, 181, 194, 202, 295, 298, 319, 334, 335, 336, 337, 338, 345, 346, 347, 348, 352 and 353. The chemical structures of these compounds are given below:

RTI-4229-77 DA5-HTNEN 2.51 ± 0.25±2,246.86 ± 238.99   RTI-4229-87 DA5-HTNEN 204 ± 29 29,391 ± 2,324 35,782 ± 6,245  RTI-4229-113 DA5-HTNEN 1.98 ± 0.052.336 ± 178  2.955 ± 223   RTI-4229-114 DA5-HTNEN 1.40 ± 0.131.404 ± 7.1 778 ± 21  RTI-4229-117 DA5-HTNEN 6.45 ± 0.856.090 ± 488  1.926 ± 38   RTI-4229-119 DA5-HTNEN 167 ± 13 40,615 ± 9,416 6.985 ± 635   RTI-4229-120 DA5-HTNEN 3.26 ± 0.0624,471 ± 1,515 5.833 ± 373   RTI-4229-124 DA5-HTNEN 1,028 ± 6533,085 ± 5,434 70,993 ± 3,563  RTI-4229-125 DA5-HTNEN 4.05 ± 0.572,584 ± 799  363 ± 36  RTI-4229-126 DA5-HTNEN 100 ± 6.3 3.824 ± 418  7,878 ± 551   RT-4229-130 DA5-HTNEN 1.52 ± 0.02195 ± 4.8 245 ± 13  RTI-4229-141 DA5-HTNEN 1.81 ± 0.19337 ± 43 835 ± 7.5  RTI-4229-143 DA5-HTNEN  4.1 ± 0.22404 ± 56 4,069 ± 177   RTI-4229-144 DA5-HTNEN 3.44 ± 0.36106 ± 10 1,825 ± 166 RTI-4229-151 DA5-HTNEN 2.33 ± 0.261,074 ± 125  60 ± 2  RTI-4229-152 DA5-HTNEN 494 ± 37 1.995 ± 109  22,689 ± 1,957  RTI-4229-154 DA5-HTNEN  6.0 ± 0.553,460 ± 245  135 ± 13  RTI-4229-165 DA5-HTNEN 0.59 ± 0.04572 ± 5816.1 ± 12   RTI-4229-171 DA5-HTNEN 0.93 ± 0.093,818.25 ± 348.14  254 ± 31  RTI-4229-176 DA5-HTNEN 1.58 ± 0.025,109.72 ± 187.101  398 ± 17.6 RTI-4229-177 DA5-HTNEN 1.28 ± 0.182,418.21 ± 135.58  504 ± 29  RTI-4229-180 DA5-HTNEN 0.73 ± 0.0436.35 ± 4.99 67.9 ± 5.25 RTI-4229-181 DA5-HTNEN 2.57 ± 0.14100 ± 9.0 868 ± 95  RTI-4229-194 DA5-HTNEN 4.45 ± 0.124,884.47 ± 155.42   253 ± 18.9 RTI-4229-202 DA5-HTNEN 1.37 ± 0.141,118.85 ± 120.00  402.8 ± 29.5  RTI-4229-279 BIH-141-4 DA5-HTNEN 21.31 ± 0.87 2.96 ± 0.041349 ± 105  RTI-4229-298 BIH-141-4 DA5-HTNEN  3.7 ± 0.1646.8 ± 5.8 346.6 ± 25   RTI-4229-319 DA5-HTNEN  1.1 ± 0.0911.4 ± 1.3 70.2 ± 6.28 RTI-4229-334 DA5-HTNEN 0.50 ± 0.033086 ± 153  120 ± 10.4 RTI-4229-335 DA5-HTNEN 1.19 ± 0.122318 ± 153  954 ± 97.3 RTI-4229-336 DA5-HTNEN 4.09 ± 0.445741 ± 421 1714 ± 38.5  RTI-4229-337 DA5-HTNEN 7.31 ± 0.6136,842 ± 3616  6321 ± 703  RTI-4229-338 DA5-HTNEN 1104.2 ± 54.6 7.41 ± 0.553366 ± 584  RTI-4229-345 DA5-HTNEN 6.42 ± 0.46>76,000 ±    5290.4 ± 448.99 RTI-4229-346 DA5-HTNEN 1.57 ± 0.105880.4 ± 179  762.01 ± 37.8  RTI-4229-347 DA5-HTNEN 1.86 ± 0.097256.95 ± 210    918.4 ± 108.34 RTI-4229-348 DA5-HTNEN 28.2 ± 1.9 34,674 ± 3954  2667.2 ± 6267.3 RTI-4229-352 DA5-HTNEN 2.86 ± 0.2164.9 ± 1.97 52.4 ± 4.9  RTI-4229-353 DA5-HTNEN 330.54 ± 17.12 0.69 ± 0.07148.4 ± 9.15 

It should be noted that compound RTI-353 is a highly potent compound at the serotonin site, and is selective relative to the dopamine and norepinephrine sites. This compound is particularly useful as an antidepressant, and as an imaging agent for serotonin transporters.

Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified.

EXAMPLES

All certified grade reagents or solvents were purchased from Aldrich Chemical Co. or Fluka Chemical Co. All reagents were normally used without further purification. When anhydrous conditions were required, solvents were distilled and dried by standard techniques immediately prior to use.

All air and moisture sensitive reactions were conducted under a prepurified nitrogen atmosphere in flame-dried glassware, previously dried at 150° C. Anhydrous solvents were transferred using conventional syringe or steel canula techniques under an inert atmosphere. Removal of solvents in vacuo was done on a Buchi rotavapor rotary evaporator operated at water aspirator pressure.

1H NMR and 13C NMR spectra were recorded at 250 Mhz on a Bruker AM250 spectrometer. Optical rotations were recorded on at the Sodium D line on a Rudolph Research Autopol III polarimeter (1 dm cell). Melting point was recorded on a Uni-melt Thomas Hoover capillary melting point apparatus in open capillary tubes and were uncorrected. Elemental analysis were performed by Atlantic Microlab, Inc., Norcross, Ga.

Reaction products were purified by flash column chromatography using silica gel (mesh size 230-400) purchased from VWR Scientific. Thin layer chromatography (TLC) was performed on Whatman 254 nm fluorescent silica gel 60A (1×3 inches, 250 [μL thickness]) precoated TLC plates using the solvent systems indicated. Developed chromatograms were evaluated under 254 nm UV light or with iodine.

Example 1 General Procedure for the Preparation of Amides

To a solution of 1 mmol of 3β-(4-Chlorophenyl)-tropane-2β-carboxylic acid or 3β-(4-Methylphenyl)-tropane-2β-carboxylic acid in 5 ml of methylene chloride was added dropwise with stirring under nitrogen 2.0 eq oxalyl chloride (2 M solution in methylene chloride). The resulting solution was stirred at room temperature for an hour after evolution of gas has ceased. The solvent was removed in vacuo at room temperature and then at high vacuum to remove residual traces of oxalyl chloride. The resulting residue of acid chloride was suspended in 5 ml methylene chloride under nitrogen at 0° C., and 2.0 eq of the amine hydrochloride containing 4.0 eq of triethylamine, or 2.5 eq of the amine free base was added. The mixture was stirred at room temperature overnight. Aqueous 3N NaOH (5 ml) was added to basify the reaction mixture, the organic layer was separated and the aqueous layer extracted with 3×10 ml chloroform. The combined organic layers were dried (Na2SO4), filtered and the solvent removed in vacuo to give crude product. The crude was purified by flash column chromatography or crystallization.

Example 2 3β-(4-Chlorophenyl)-2β-(5-phenyl-1,3,4-oxadiazol-2-yl)-tropane Hydrochloride (RTI-188)

To a solution of 0.59 g (2 mmol) of 3β-(4-Chlorophenyl)-tropane-2β-carboxylic acid (chloro acid) in 2 ml Of POCl3 was added 0.31 g (2-2 mmol) of N-benzoic hydrazide and refluxed under nitrogen- for 2 hours. The reaction mixture was cooled, poured into ice and rendered basic to pH 7-8 using concentrated NH4OH. To the ice cold aqueous layer was added 10 ml brine and extracted thrice with 10 ml methylene chloride. The organic layers were combined dried (NaSO4), filtered, and the solvent removed in vacuo to give 0.9 g of crude residue. Purification of the residue by flash column chromatography [50% (ether/triethylamine 9:1) in hexane] gave 0.33 g (42%) of pure oxadiazole (RTI-188) which was recrystallized from ether/petroleum ether: 1H NMR (CDCl3) 1.81 (m, 3H), 2.18 (s, 3H), 2.26 (m, 2H), 2.66 (m, 1H), 3.33 (m, 2H), 3.51 (m, 2H), 7.16 (m, 4H) 7.45 (m, 3H), 7.86 (m, 2H); IR (CHCl3) 2950, 1550, 1490, 1450, 1340, 1090 cm−1; [α]D −106.25° (c=0.08, CHCl3).

The oxadiazole was converted into hydrochloride salt: 1H NMR (MeOD) 2.08 (m, 1H), 2.57 (m, 5H), 3.0 (s, 3H), 4.01 (m, 2H), 4.15 (m, 1H), 4.39 (m, 1H), 7.24 (m, 4H), 7-52 (m, 5H): mp 160-162° C.; Anal calcd for C22H23Cl2N3O0.75H2O; C=61.47; H=5.74, N=9.78; Cl=16.50; found C=61.47, H=5.73, N=9.76; Cl=16.56; [α]D +84.59° (c=0.36, CH3OH).

Further elution gave as a second fraction 0.1 g (13%) of white solid which was characterized to be 3β-(4-Chlorophenyl)-2-(5-phenyl-1,3,4-oxadiazol-2-yl)-tropane: 1H NMR (CDCl3) 1.76 (m, 3H), 2.06 (s, 3H), 2.45 (s, 3H), 3.36 (m, 2H), 3.51 (m, 1H), 3.65 (m, 1H), 7-21 (m, 4H), 7.47 (m, 3H) 7.91 (m, 2H); mp 170-171° C.; Anal calcd for C22H22ClN3O; C=69.55; H=5.84, N=11.06; Cl=9.33; found C=69.49, H=5.85, N=11.01; Cl=9.41; [α]D +33.06° (c=0.18, CHCl3).

Example 3 3β-(4-Methylphenyl)-2%-(5-phenyl-1,3,4-oxadiazol-2-yl)-tropane Hydrochloride (RTI-195)

Reaction of 0.65 g (2.5 mmol) of 3β-(4-Methylphenyl)-tropane-2β-carboxylic acid (Methyl acid) as described above for RTI-188 gave after work-up and purification by flash column chromatography [(50% (ether/triethylamine 9:1) in hexane] 0.36 g (40%) of pure oxadiazole (RTI-195) which was recrystallized from ether/petroleum ether: 1H NMR (CDCl3) 1.83 (m, 3H), 2.18 (s, 3H), 2.21 (s, 3H), 2.3 (m, 2H), 2.67 (m, 1H), 3.33 (m, 1H), 3.41 (m, 1H), 3.53 (m, 1H), 3.61 (m, 1H) 7.0 (m, 2H).7.13 (m, 2H), 7.44 (m, 3H), 7.86 (m, 2H); IR (CHCL3) 2990, 1545, 1505, 1440, 1350. cm−1; [α]D −163.92° (c=0.2, CHCl3).

The oxadiazole was converted into hydrochloride salt: 1H NMR (MeOD) 2.05 (m, 1H), 2.21 (s, 3H), 2.51 (m, 5H), 2.99 (s, 3H), 3.86 (m, 1H), 3.95 (m, 1H), 4.14 (m, 1H), 4.35 (m, 1H), 7.02 (m, 4H) 7.53 (m, 5H); mp 175-178° C.; Anal calcd for C23H26ClN3O.0.75H2O; C=67.47; H=6.77, N=10.26; Cl=8.66; found C=67.58, H=6.79, N=10.34; Cl=8.78; [α]D +97.22° (c=0.25, CH3OH).

Further elution gave as a second fraction 0.18 g (20%) of solid which was characterized to be 3β-(4-Methylphenyl)-2α-(5-phenyl-1,3,4-oxadiazol-2-yl)-tropane which was recrystallized from ether/petroleum ether: 1H NMR (CDCl3) 1.77 (m, 2H), 2.0 (m, 4H), 2.25 (s, 3H), 2.47 (s, 3H), 3.33 (m, 2H), 3.51 (m, 1H), 3.69 (d of d, J=2.6, 12 Hz, 1H), 6.91 (m, 2H) 7.03 (m, 2H).7.45 (m, 2H), 7.45 (m, 3H), 7.89 (m, 2H); IR (CHCL3) 3020, 1540, 1510, 1415, 1250, 1215. cm−1; Anal calcd for C23H25N3O; C=76.85; H=7.01, N=11.69; found C=76.60, H=7.12, N=11.55; [α]D +40.73° (c=0.28, CHCl3).

Example 4 3β-(4-Methylphenyl)-2β-(5-methyl-1,3,4-oxadiazol-2-yl)-tropane Hydrochloride (RTI-194)

Reaction of 0.65 g (2.5 mmol) of methyl acid as described above for RTI-195 using 0.21 g (2.75 mmol) of N-acetic hydrazide gave after work-up and Purification by flash column chromatography [(75% (ether/triethylamine 9:1) in hexane] 0.29 g (39%) of pure oxadiazole (RTI-194) which was recrystallized from ether/petroleum ether: 1H NMR (CDCl3) 1.75 (m, 3H), 2.18 (s, 3H), 2.22 (s, 3H), 2.25 (m, 2H), 2.35 (s, 3H), 2.56 (m, 1H), 3.24 (m, 1H), 3.4 (m, 2H), 3.47 (m, 1H) 7.0 (m, 4H); 13C NMR (CDCl3) 11.06, 20.9, 25.08, 26.32, 34.11, 34.6, 41.83, 45.73, 61.97, 66.21, 127.11, 128.85, 135.85, 138.19, 162.5, 167.44; IR (CHCL3) 2950, 1590, 1510, 1450, 1350, 1215 cm−1; [α]D −108.47° (c=0.14, CHCl3).

The-oxadiazole was converted into hydrochloride salt: 1H NMR (MeOD) 1.99 (m, 1H), 2.23 (s, 3H), 2.27 (s, 3H), 2.47 (m, 5H), 2.94 (s, 3H), 3.72 (m, 1H), 3.79 (m, 1H), 4.10 (m, 1H), 4.23 (m, 1H), 7.05 (m, 4H); mp 146° C. (dec); Anal calcd for C18H24ClN3O.0.5H2O; C=63.06; H=7.35, N=12.26; Cl=10.34; found C=63.21, H=7.40, N=12.07; Cl=10.27; [α]D −43.05° (c=0.15, CH3OH).

Example 5 3β-(4-Chlorophenyl)-2β-(5-phenyl-1,3,4-thiadiazol-2-yl)-tropane Hydrochloride (RTI-200)

Reaction of 0.59 g (2 mmol) of 3β-(4-Chlorophenyl)tropane-2β-carboxylic acid as described above for the preparation of amides gave after purification of the crude by crystallizing from ethyl acetate/ether 0.52 g (66%) of pure N-[3β-(4-Chlorophenyl)-tropane-2β-carboxylic]-N′-benzoylhydrazide: 1H NMR (CDCl3) δ 1.76 (m, 3H), 2.24 (m, 2H), 2.41 (s, 3H), 2.51 (m, 1H), 2.68 (m, 1H), 3.18 (m, 1H), 3.44 (m, 2H), 7.22 (m, 4H), 7.46 (m, 3H), 7.78 (m, 2H), 9.02 (br s, 1H), 12.97 (br s, 1H); IR (CHCL3) 3385, 3035, 3000, 1620, 1570, 1485, 1450, 1215 cm−1.

A solution of 0.4 g (1 mmol) of N-[3β-(4-Chlorophenyl)-tropane-2β-carboxylic]-N′-benzoyl-hydrazide and 0.8 g (2 mmol) of Lawesson's reagent in 10 ml toluene was refluxed for 4 h under nitrogen. The reaction mixture was cooled and solvent removed in vacuo to give a yellow residue. To the residue was added 3 g of silica gel and 10 ml of methylene chloride, the resulting slurry was mixed properly and the solvent removed in vacuo. The crude compound impregnated on silica gel was loaded on a column and purified by flash column chromatography [50% ether/triethylamine(9:1) in hexane] to obtain 0.23 g (58%) of pure thiadiazole (RTI-200) which was further purified by recrystallizing from ether: 1H NMR (CDCl3) δ 1.75 (m, 3H), 2.20 (m, 3H), 2.32 (s, 3H), 3.30 (m, 3H), 3.78 (m, 1H), 6.86 (m, 2H), 7.08 (m, 2H), 7.43 (m, 3H), 7.97 (m, 2H); 13C NMR 25.55, 25.88, 34.60, 36.09, 41.55, 49.73, 61.48, 65.33, 127.59, 128.28, 128.78, 128.88, 130.37, 130.88, 132.19, 139.27, 168-29, 169.56; IR (CCl4) 2940, 1490, 1460, 1340, 1245, 1100, 1010 cm−1

The thiadiazole was converted into hydrochloride salt: 1H NMR (MeOD) δ 2.06 (m, 1H), 2.53 (m, 5H), 2.97 (s, 3H), 3.92 (m, 1H), 4.17 (m, 2H), 4.39 (m, 1H), 7.11 (m, 2H), 7.26 (m, 2H), 7.51 (m, 3H), 7.79 (m, 2H); mp 165-170° C.; Anal calcd for C22H23Cl2N3S.0.75H2O; C=59.26, H=5.54, N=9.42, Cl=15.90; S=7.19. found C=59.27, H=5.52, N=9.40, Cl=15.99; S 7.09; [α]D −42.81° (c=0.16, MeOH).

Further elution gave 0.08 g (21%) as a second fraction which was characterized to be 3β-(4-chlorophenyl)-2α-(5-phenyl-1,3,4-oxadiazol-2-yl)-tropane.

Example 6 3β-(4-Methylphenyl)-2β-(5-phenyl-1,3,4-thiadiazol-2-yl)-tropane Hydrochloride (RTI-199)

Reaction of 0.65 g (2.5 mmol) of 3β-(4-Methylphenyl)-tropane-2β-carboxylic acid as described above for preparation of amides gave after work up and purification by flash column chromatography [(50% CMA-80 in methylene chloride)] 0.48 g (51%) pure N-[3β-(4-Methylphenyl) Tropane-2β-carboxylic]-N′-benzoyl-hydrazide which was further purified by recrystallizing from ether/pet ether: 1H NMR (CDCl3) δ 1.75 (m, 3H), 2.20 (m, 2H), 2.27 (s, 3H), 2.42 (s, 3H), 2.51 (m, 1H), 2.67 (m, 1H), 3.18 (m, 1H), 3.47 (m, 2H), 7.11 (m, 4H), 7.48 (m, 3H), 7.81 (m, 2H), 9.06 (br s, 1H), 13.09 (br s, 1H); IR (CHCl3) 3385, 3045, 1625, 1570, 1460, 1420, 1100 cm−1;

Reaction of 0.29 g (0.75 mmol) of N-[3β-(4-Methylphenyl)-tropane-2β-carboxylic]-N′-benzoyl-hydrazide as described above for RTI-200 gave after work and purification by flash chromatography [40% ether/triethylamine(9:1) in hexane] 0.16 g (58%) of pure thiadiazole (RTI-199): 1H NMR (CDCl3) δ 1.70 (m, 1H), 1.88 (m, 2H), 2.20 (s, 3H), 2.23 (m, 2H), 2.21 (s, 3H), 2.38 (m, 1H), 3.21 (m, 1H), 3.32 (m, 1H), 3.39 (m, 1H), 3.78 (m, 1H), 6.81 (m, 2H), 6.92 (m, 2H), 7.43 (m, 3H), 7.97 (m, 2H); 13C NMR 20.98, 25.65, 25.95, 34.79, 36.25, 41.65, 50.05, 61.68, 65.49, 127.32, 127.65, 128.89, 128.95, 130.29, 131.11, 135.94, 137.68, 168.83, 169.45; IR (CCl4) 2935, 1510, 1450, 1250, 1120, 1100, 1060 cm−1

The thiadiazole was converted into hydrochloride salt; 1H NMR (MeOD) δ 1.95 (m, 1H), 2.17 (s, 3H), 2.41 (m, 5H), 2.89 (s, 3H), 3.76 (m, 1H), 4.05 (m, 2H), 4.30 (m, 1H), 4.22 (m, 1H), 6.89 (m, 2H), 6.99 (m, 2H), 7.39 (m, 3H), 7.67 (m, 2H); mp 180-185° C.; Anal calcd for C23H26ClN3S.H2O; C=65.62, H=6.46, N=9.98, Cl=18.42; S=7.62. found C=65.57, H=6.63, N=9.91, Cl=18.24; S=7.55; [α]D −33.5° (c=0.2, MeOH)

Further elution gave 0.04 g (15%) of a second fraction which was characterized to be 3β-(4-Methylphenyl)-2α(5-phenyl-1,3,4-oxadiazol-2-yl)-tropane.

Example 7 3β-(4-Chlorophenyl)-2β-(5-phenyl-oxazol-2-yl)-tropane Tartrate RTI-189)

Reaction of 0.73 g (2.5 mmol) of 3β-(4-Chlorophenyl)-tropane-2β carboxylic acid as described above for the preparation of amides gave after purification by flash column chromatography (15% CMA 80 in methylene chloride) 0.8 g (81%) of pure 3β-(4-Chlorophenyl)-tropane-2β-N-(phenyacyl) carboxamide: 1H NMR (CDCl3) δ 1.71 (m, 3H), 2.19 (m, 2H), 2.39 (s, 3H), 2.46 (m, 1H), 2.58 (m, 1H), 3.13 (m, 1H), 3.43 (m, 2H), 4.74 (m, 2H), 7.13 (m, 4H), 7.49 (m, 2H), 7.59 (m, 1H), 7.96 (m, 2H), 10.57 (br s, 1H); IR (CHCl3) 3135, 3010, 2930, 1695, 1650, 1590, 1530, 1485, 1450, 1355, 1220 cm−1.

A solution of 0.725 g (1.83 mmol) of 3β-(4-Chlorophenyl)-tropane-2β-N(phenyacyl)carboxamide in 6 ml POCl3 was heated at 125° C. under nitrogen for 2 hours. The reaction mixture was cooled and poured into ice and rendered basic to pH 7-8 using concentrated NH4OH. To the ice cold aqueous layer was added 10 ml brine and extracted thrice with 10 ml methylene chloride. The organic layers were combined dried (NaSO4), filtered, and the solvent removed in vacuo to 0.63 g crude oxazole. Purification of the crude by flash column chromatography [(40% (ether/triethylamine 9:1) in hexane] gave 0.34 g (49%) of pure oxazole (RTI-189) which was further purified by recrystallizing from ether/petroleum ether: 1H NMR (CDCl3) 1.79 (m, 3H), 2.22 (s, 3H), 2.27 (m, 2H), 2.66 (m, 1H), 3.27 (m, 1H), 3.40 (m, 2H), 3.53 (m, 1H), 7.11 (s, 1H), 7.16 (s, 4H) 7.31 (m, 5H); IR (CHCl3) 2950, 1540, 1490, 1445, 1350, 1120, 1090 CM-1; [α]D −70.37° (c=0.19, CHCl3).

The oxazole was converted into tartrate salt: 1H NMR (MeOD) 2.14 (m, 1H), 2.54 (m, 5H), 2.96 (s, 3H), 3.75 (m, 2H), 4.12 (m, 1H), 4.25 (m, 1H), 4.41 (s, 2H), 7.05 (m, 2H), 7.29 (m, 7H), 7.45 (s, 1H), 7.43 (s, 1H); mp 126° C. (dec); Anal calcd for C27H29ClN2O7.0.75H2O; C=59.78; H=5.67, N=5.16; Cl=6.54; found C=59.78, H=5.58, N=4.93; Cl=6.31; [α]D +101.43° (c=0.21, CH3OH).

Example 8 3β-(4-Methylphenyl)-2β-(5-phenyl-oxazol-2-yl)-tropane Tartrate (RTI-178)

Reaction of 0.52 g (2 mmol) of 3β-(4-Methylphenyl)-tropane-2β-carboxylic acid as described above for preparation of amides gave after work up and purification by flash column chromatography (15% CMA in methylene chloride) 0.54 g (72%) of pure 3β-(4-Methylphenyl)-tropane-2β-N-(phenyacyl) carboxamide: 1H NMR (CDCl3) δ 1.73 (m, 3H), 2.14 (m, 2H), 2.26 (s, 3H), 2.40 (s, 3H), 2.47 (m, 1H), 2.59 (m, 1H), 3.14 (m, 1H), 3.42 (m, 2H), 4.74 (m, 2H), 7.05 (m, 4H), 7.48 (m, 2H), 7.59 (m, 2H), 7.97 (m, 2H), 10.62 (br s, 1H); IR (CHCl3) 3155, 3005, 2930, 1690, 1650, 1520, 1450, 1355, 1215 cm−1

Reaction of 0.5 g (1.33 mmol) of 3β-(4-Methylphenyl)-tropane-2β-N-(phenyacyl)carboxamide as described above for RTI-189 gave after workup and purification by flash column chromatography [(40% (ether/triethylamine 9:1) in hexane] 0.1 g (31%) RTI-158 as a first fraction. Further elution gave 0.19 g (42%) of pure oxazole RTI-178: 1H NMR (CDCl3) 1.8 (m, 3H), 2.18 (m, 2H), 2.21 (s, 3H), 2.22 (s, 3H), 2.67 (m, 1H), 3.28 (m, 1H), 3.42 (m, 2H), 3.53 (m, 1H), 6.98 (m, 2H), 7.11 (m, 3H), 7.30 (m, 5H).

The oxazole was crystallized as the tartrate salt: 1H NMR (MeOD) 1.99 (m, 1H), 2.19 (s, 3H), 2.54 (m, 5H), 2.95 (s, 3H), 3.74 (m, 2H), 4.13 (m, 1H), 4.26 (m, 1H), 4.4 (s, 2H), 6.91 (m, 2H), 7.0 (m, 2H), 7.25 (m, 2H), 7.33 (m, 3H), 7.43 (s, 1H); mp 175-181 C; Anal calcd for C28H32N2O7.1H2O; C=63.87; H=6.51, N=5.32; found C=64.21, H=6.40, N=5.19; [α]D −104.04° (c=0.6, CH3OH).

Example 9 3β-(4-Chlorophenyl)-2β-(5-phenylthiazol-2-yl)-tropane Hydrochloride (RTI-219)

To a solution of 0.74 g (1.86 mmol) of 3β-(4-Chlorophenyl)-tropane-2β-N-(phenyacyl)carboxamide and 1.51 g (7.45 mmol) of Lawesson's reagent in 18 ml of toluene was refluxed under N2 for 5 hours. The reaction mixture was cooled and solvent removed in vacuo to give crude residue. To the residue was added 3 g of silica gel and 10 ml of methylene chloride, the resulting slurry was mixed properly and the solvent removed in vacuo. The crude compound impregnated on silica gel was loaded on a column and purified by flash column chromatography [(40% (ether/triethylamine 9:1) in hexane] to give 0.21 g (30%) of pure thiazole RTI-219: 1H NMR (CDCl3) 1.61 (m, 1H), 1.82 (m, 2H), 2.22 (m, 2H), 2.34 (s, 3H), 2.39 (m, 1H), 3.28 (m, 2H), 3.39 (m, 1H), 3.49 (m, 1H), 6.8 (m, 2H) 7.07 (m, 2H).7.32 (m, 3H), 7.57 (m, 2H), 7.60 (s, 1H); 13C NMR (MeOD) 25.51, 25.99, 35.01, 36.92, 41.72, 52.97, 61.58, 65.70, 126.45, 127.60, 128.13, 128.89, 129.05, 131.91, 132.43, 136.11, 139.91, 140.27, 168.97; IR (CHCl3) 2945, 1590, 1485, 1445, 1350, 1125, 1090. cm−1.

The thiazole was converted into hydrochloride salt: 1H NMR (MeOD) 1.99 (m, 1H), 2.51 (m, 5H), 2.93 (s, 3H), 3.79 (m, 2H), 4.15 (m, 1H), 4.28 (m, 1H), 7.02 (d, J=8.5 Hz, 2H) 7.21 (d, J=8.5 Hz, 2H), 7.39 (m, 5H), 8.06 (s, 1H); mp 228-230° C.; Anal calcd for C23H24ClN2S.H2O; C=61.47, H=5.83, N=6.23, S=7.13, Cl=15.78; found C=61.61, H=5.76, N=6.20, S=7.51, Cl=15.84; [α]D +27.43° (c=0.11, CH3OH).

Example 10 3β-(4-Chlorophenyl)-2β-(benzothiazol-2-yl)-tropane Hydrochloride (RTI-202)

Reaction of 0.59 g (2 mmol) of 3β-(4-Chlorophenyl)-tropane-2β-carboxylic acid as described above for preparation of amides gave after purification of the crude by flash column chromatography (50% CMA-80 in methylene chloride) 0.3 g (41%) of pure RTI-202 which was further purified by recrystallizing from ether/hexane: 1H NMR (CDCl3) δ 1.65 (m, 1H), 1.87 (m, 2H), 2.24 (m, 2H), 2.34 (s, 3H), 2.41 (m, 1H), 3.28 (m, 2H), 3.40 (m, 1H), 3.62 (m, 1H), 6.8 (m, 2H), 6.81 (m, 2H), 7.29 (m, 2H), 7.70 (m, 1H), 7.84 (m, 1H); 13C NMR (CDCl3) δ25.58, 26.07, 35.40, 36.95, 41.56, 53.09, 61.57, 65.47, 120.95, 122.42, 124.11, 125.20, 128.05, 129.03, 131.87, 136.72, 139.91, 151.33, 171.11; IR (CHCl3) 2940, 2795, 1495, 1445, 1305, 1130, 1105, 1015, 907 CM−1; [α]D −233.89° (c=0.09, CHCl3).

The benzothiazole was converted into hydrochloride salt: 1H NMR (MeOD) δ 2.02 (m, 1H), 2.43 (m, 4H), 2.89 (m, 1H), 2.98 (s, 3H), 3.90 (m, 2H), 4.23 (m, 1H), 4.34 (m, 1H), 7.02 (m, 2H), 7.13 (m, 2H), 7.45 (m, 2H), 7.81 (m, 1H), 8.16 (m, 1H); mp 140-150° C. (dec); Anal calcd for C21H22Cl2N2S.0.75H2O C=60.21, H=5.65, N=6.69, Cl=16.93; S=7.65: found C=60.14, H=5.74, N=6.60, Cl=16.89; S=7.71; [α]D −1 72.49° (c 0.28, MeOH).

Example 11 3β-(4-Chlorophenyl)-tropane-2β-nitrile (RTI-161)

To a solution of 0.95 g (3.5 mmol) of 3β-(4-Chlorophenyl)-tropane-2β-carboxamide in 20 ml dry THF was added 0.56 ml (7 mmol) pyridine. To the resulting solution at room temperature was added dropwise with stirring under nitrogen 0.35 ml (4.2 mmol) of trifluoroacetic anhydride. The reaction was stirred at room temperature for 30 minutes, and quenched with 10 ml water. The solvent was removed under vacuo and the residue was taken in 10 ml saturated aqueous K2CO3 and extracted thrice with 10 ml CHCl3. The organic layers were combined and washed with 20 ml brine dried (NaSO4), filtered, and the solvent removed in vacuo to give 0.26 g crude product. Purification of the crude by flash column chromatography (10% CMA in methylene chloride) gave 0.68 g (77%) of pure nitrile RTI-161 which was recrystallized from methylene chloride and hexane: 1H NMR (CDCl3) δ 1.70 (m, 3H), 2.22 (m, 3H), 2.35 (s, 3H), 2.80 (m, 1H), 3.04 (m, 1H), 3.34 (m, 1H), 3.43 (m, 1H), 7.26 (m, 4H); IR (CHCl3) 3700, 2950, 2225, 1490, 1470, 1090, 900 cm−1; mp 167-173° C.; Anal calcd for C15H18Cl2N2.0.75H2O; C=57.98, H=6.32 N=9.02, Cl=22.82; found C=58.22, H=6.12, N=8.48, Cl=22-89; [α]D −73.33° (c=0.48, MeOH).

Example 12 3β-(4-Methylphenyl)-tropane-2β-nitrile Hydrochloride (RTI-158)

Reaction of 0.26 g (1 mmol) of 3β-(4-Methylphenyl)-tropane-2β-carboxamide as described above for RTI-161 gave after work up and purification 0.16 g (67%) of pure nitrile (RTI-158): 1H NMR (CDCl3) δ 1.68 (m, 3H), 2.18 (m, 3H), 2.32 (s, 3H), 2.35 (s, 1H), 2.82 (m, 1H), 3.02 (m, 1H), 3.36 (m, 1H), 3.43 (m, 1H), 7.18 (m, 4H); IR (CHCl3) 3675, 3000, 2950, 2200, 1600, 1510, 1450, 1350, 1220, 1100 cm−1.

The crude product was crystallized as the HCl salt: 1H NMR (MeOH) δ 2.08-2.58 (m, 9H), 2.92 (s, 3H), 3.54 (m, 1H), 3.69 (br s, 1H), 4.12 (br s, 1H), 4.29 (m, 1H), 7.21 (m, 4H); mp 270° C. (dec.); Anal calcd for C16H21ClN2; C=69.42, H=7.65 N=10.12, Cl=12.81; found C=69.31, H=7.70, N=10.12, Cl=12.81; [α]D −76.4° (c=0.5, MeOH).

Example 13 3β-(4-Chlorophenyl)-tropane-2β-tetrazole (RTI-163)

To a solution of 0.13 g (0.5 mmol) of RTI-161 in 5 ml dry THF was added 0.28 ml (5 mmol) azidotrimethylsilane and the mixture was placed in a PTFE-lined autoclave. The solution was heated to 150° C. for 24 hours in an oil bath. The reaction mixture was cooled and transferred using MeOH. The solvent was removed in vacuo to give a brownish residue. Purification of the crude by flash column chromatography (20%-50% CMA in methylene chloride) gave 0.05 g (33%) of pure tetrazole (RTI-163): 1H NMR (CDCl3+1 drop MeOD) δ 1.73 (m, 1H), 2.44-2.02 (m, 4H), 2.6 (m, 1H), 2.68 (s, 3H), 3.33 (m, 1H), 3.65 (m, 1H), 3.73 (m, 1H), 3.97 (m, 1H), 6.68 (d, J=8 Hz, 2H), 7.07 (d, J=8 Hz, 2H); mp 296-300° C.; Anal calcd for C15H18CIN5.0.75H2O; C=56.78, H=6.19 N=22.07, Cl=11.17; found C=56.69, H=6.22, N=22.09, Cl=11.15; [α]D −124.94° (c=0.39, MeOH).

Example 14 3β-(4-Methylphenyl)-tropane-2β-tetrazole Hydrochloride (RTI-157)

Reaction of 0.12 g (0.5 mmol) of RTI-158 as described above for RTI-163 gave after workup and purification of the crude by flash column chromatography (100% CMA) 0.14 g (88%) of pure tetrazole (RTI-157): 1H NMR (CDCl3+1 drop MeOD) δ 1.8 (m, 1H), 2.14 (s, 3H), 2.35 (m, 5H), 2.71 (s, 3H), 3.36 (m, 1H), 3.75 (m, 2H), 4.02 (m, 1H), 6.48 (d, J=8 Hz, 2H), 6.82 (d, J=8 Hz, 2H).

The purified product was converted into HCl salt: 1H NMR (MeOD) δ 2.01 (m, 1H), 2.27 (s, 3H), 2.69 (m, 5H), 2.97 (s, 3H), 3.81 (m, 2H), 4.18 (m, 2H), 5.5 (s, 1H), 6.76 (d, J=8 Hz, 2H), 7.02 (d, J=8 Hz, 2H); mp 212**C (dec); Anal calcd for C16H23Cl2N5.0.25H2O; C=53.26, H=6.56 N=19.41; found C=53.41, H=6.50, N=19.02; [α]D −110.97° (c=0.16, MeOH).

Example 15 3-(4-Chlorophenyl)-2-(3-methylisoxazol-5-yl)tropane Hydrochloride (RTI-165)

A solution of n-butyl lithium in hexane 5.9 ml (2.5 M. 14.6 mmol) was added to a stirred solution of acetone oxime 0.55 g (7.3 mmol) in dry THF (15 ml) at 0° C. under nitrogen. After 1 hour, a solution of 1.65 g (5.62 mmol) 3β-(4-Chlorophenyl)-2β-(carbomethoxy)tropane in 10 ml dry was added dropwise with stirring at 0° C. The solution was allowed to warm to room temperature over 18 hours. The mixture was poured into a stirred solution of concentrated sulfuric acid (3.2 g) in THF (15 ml) and water (4 ml) and was heated under reflux for 1 hour. The cooled solution was made basic using saturated aqueous K2CO3 (10 ml) and extracted thrice with 10 ml methylene chloride. The combined organic layers were dried (Na2SO4), filtered and solvent removed in vacuo to give 1.8 g of crude isoxazole. Purification of the crude residue by flash column chromatography (10% CMA in methylene chloride) gave 0.74 g (46%) of pure isoxazole RTI-165 which was further purified by crystallization from methylene chloride/hexane: 1H NMR (CDCl3) δ 1.71 (m, 3H), 2.10 (m, 3H), 2.18 (s, 3H), 2.24 (s, 3H), 3.20 (m, 2H), 3.32 (m, 2H), 6.18 (s, 1H), 6.9 (d, J=8 Hz, 2H), 7.14 (d, J=8, Hz, 2H); IR (CCl4) 2950, 1590, 1490, 1420, 1350, 1020, 910 cm−1; mp 154-156° C.; Anal calcd for C18H21N2OCl; C=68.28, H=6.68, N=8.84, Cl=11.19; found C=68.22, H=6.69, N=8.87, Cl=11.19; [α]D −125.58° (c=0.43, MeOH).

The isoxazole was crystallized as the hydrochloride salt: 1H NMR (MeOD) δ 2.04 (s, 3H), 2.19 (m, 1H), 2.30 (m, 1H), 2.48 (m, 2H), 2.60 (m, 1H), 2.70 (m, 1H), 2.90 (s, 3H), 3.68 (m, 1H), 3.81 (m, 1H), 4.04 (m, 1H), 4.15 (m, 1H), 5.55 (s, 1H), 7.04 (d, J=8 Hz, 2H), 7.14 (d, J=8 Hz, 2H); mp>235° C. (dec); Anal calcd for C18H22Cl2N2O; C=61.19, H=6.28, N=7.93, Cl=20.07; found c=60.98, H=6.38, N=7.91, Cl=19.96; [α]D −102.89° (c=0.46, MeOH).

Example 16 3β-(4-Methylphenyl)-2β-(3-methylisoxazol-5-yl)tropane Hydrochloride (RTI-171)

Reaction of 1.09 g (4 mmol) of 3β-(4-Methylphenyl)-2β-(carbomethoxy)tropane as described above for RTI-165 gave after workup 1.21 g crude isoxazole. Purification of the crude by flash column chromatography (15% CMA in methylene chloride) gave 0.73 g (62%) pure isoxazole (RTI-171): 1H NMR (CDCl3) δ 1.73 (m, 3H), 2.11 (m, 3H), 2.17 (s, 3H), 2.23 (s, 3H), 2.25 (s, 3H), 3.20 (m, 2H), 3.32 (m, 2H), 6.13 (s, 1H), 6.97 (m, 4H); IR (CCl4) 2935, 2785, 1590, 1510, 1460, 1421, 1350, 1125, 1010, 910 cm−1.

The isoxazole was crystallized as the hydrochloride salt: 1H NMR (MeOD) δ 2.01 (s, 3H), 2.24 (s, 3H), 2.32 (m, 2H), 2.42 (m, 4H), 2.81 (s, 3H), 3.61 (m, 1H), 3.78 (m, 1H), 4.03 (m, 1H) 4.15 (m, 1H), 5.45 (s, 1H), 6.96 (m, 4H); mp 277° C.; Anal calcd for C19H25ClN2O; C=68.55, H=7.57, N=8.42, Cl=10.65; found C=68.65, H=7.62, N=8.42, Cl=10.56; [α]D −107.28° (c=0.71, MeOH).

Example 17 3β-(4-Iodophenyl)-2-(3-methylisoxazol-5-yl)tropane Hydrochloride (RTI-180)

Reaction of 0.73 g (1.9 mmol) of 3β-(4-Iodophenyl)-2β-(carbomethoxy)tropane as described above for RTI-165 gave after workup 0.77 g of crude isoxazole. Purification of the crude by flash column chromatography (5% CMA80 in methylene chloride) gave 0.37 g (49%) of pure isoxazole RTI-180: 1H NMR (CDCl3) δ 1.71 (m, 3H), 2.12 (m, 3H), 2.18 (s, 3H), 2.24 (s, 3H), 3.17 (m, 2H), 3.33 (m, 2H), 6.18 (s, 1H), 6.74 (m, 2H), 7.49 (m, 2H); IR (CHCl3) 2940, 1600, 1485, 1450, 1420, 1355 cm−1.

The isoxazole was crystallized as the hydrochloride salt: 1H NMR (MeOD) δ 2.11 (s, 3H), 2.50 (m, 6H), 2.89 (s, 3H), 3.70 (m, 1H), 3.90 (m, 1H), 4.14 (m, 1H), 4.22 (m, 1H), 5.66 (s, 1H), 6.96 (m, 2H), 7.56 (m, 2H); mp>235° C. (dec); Anal calcd for C18H22ClIN2O 0.25H2O C=48.12, H=5.05, N=6.24, Cl=15.79; I=56.50; found C=47.84, H=5.05, N=6.19, Cl=15.77; I=56.46; [α]D −94.57° (c=0.39, MeOH).

Example 18 3β-(4-Chlorophenyl)-2β-(3-phenylisoxazol-5-yl)tropane Hydrochloride (RTI-177)

Reaction of 1.18 g (4 mmol) of 3β-(4-Chlorophenyl)-2β-(carbomethoxy)tropane as described above for RTI-165 gave after work up 1.46 g of crude isoxazole. Purification of the crude by flash column chromatography [20% (ether/triethylamine 9:1) in hexane] gave 0.75 g (50%) of pure isoxazole RTI-177 which was further purified by crystallizing from ether/petroleum ether: 1H NMR (CDCl3) δ 1.74 (m, 3H), 2.22 (m, 3H), 2.27 (s, 3H), 3.24 (m, 2H), 3.36 (m, 2H), 6.80 (s, 1H), 6.94 (m, 2H), 7.12 (m, 2H), 7.40 (m, 3H), 7.76 (m, 2H); IR (CHCl3) 2940, 1600, 1590, 1490, 1450, 1405, 1350 cm−1.

The isoxazole was crystallized as the hydrochloride salt: 1H NMR (MeOD) δ 2.35 (m, 6H), 2.84 (s, 3H), 3.73 (m, 1H), 4.09 (m, 1H), 4.21 (m, 1H), 6.12 (s, 1H), 7.14 (m, 4H), 7.34 (m, 3H), 7.57 (m, 2H); mp 287° C.; Anal calcd for C23H24Cl21N2O.0.25H2O C=65.79, H=5.88, N=6.67, Cl=16.89; found C=65.94, H=5.79, N=6.68, Cl=17.00; [α]D −97.5° (c=0.28, MeOH).

Example 19 3β-(4-Methylphenyl)-2β-(3-phenylisoxazol-5-yl)tropane Hydrochloride (RTI-176)

Reaction of 1.09 g (4 mmol) of 3β-(4-Methylphenyl)-2β-(carbomethoxy)tropane as described above for RTI-165 gave after work up 1.56 g of crude isoxazole. Purification of the crude by flash column chromatography [25% (ether/triethylamine 9:1) in hexane] gave 1.1 g (77%) of pure isoxazole RTI-176 which was further purified by crystallizing from methylene chloride/hexane: 1H NMR (CDCl3) δ 1.76 (m, 3H), 2.23 (m, 3H), 2.24 (s, 3H), 2.27 (s, 3H), 3.23 (m, 2H), 3.36 (m, 2H), 6.74 (s, 1H), 6.93 (m, 4H), 7.41 (m, 3H), 7.76 (m, 2H); IR (CCl4) 2935, 1590, 1455, 1410, 1215 cm−1

The isoxazole was crystallized as the hydrochloride salt: 1H NMR (MeOD) δ 2.08 (m, 1H), 2.15 (s, 3H), 2.45 (m, 5H), 2.84 (s, 3H), 3.68 (m, 1H), 3.88 (m, 1H), 4.07 (m, 1H), 4.22 (m, 1H), 5.97 (s, 1H), 7.0 (m, 4H), 7.33 (m, 3H), 7.54 (m, 2H); mp 270-295° C. (dec); Anal calcd for C24H27ClN2O; C=72.99, H=6.89, N=7.10, Cl=8.98; found C=72.91, H=6.91, N=7.15, Cl=8.98; [α]D −102.22 (c=0.68, MeOH).

Example 20 3β-(4-Iodophenyl)-2β-(3-phenylisoxazol-5-yl)tropane Hydrochloride (RTI-181)

Reaction of 0.73 g (1.9 mmol) of 3β-(4-Iodophenyl)-2β-(carbomethoxy)tropane as described above for RTI-181 gave after workup 1.46 g of crude isoxazole. Purification of the crude by flash column chromatography [20% (ether/triethylamine 9:1) in hexane] gave 0.5 g (56%) of pure isoxazole RTI-181 which was further purified by crystallizing from methylene chloride/hexane: 1H NMR (CDCl3) δ 1.72 (m, 3H), 2.15 (m, 2H), 2.28 (s, 3H), 3.22 (m, 2H), 3.35 (m, 2H), 6.74 (m, 2H), 6.79 (s, 1H), 7.44 (m, 5H), 7.75 (m, 2H); IR (CHCl3) 2940, 1580, 1480, 1475, 1450, 1400, 1355, 1005 cm−1

The isoxazole was crystallized as the hydrochloride salt: 1H NMR (MeOD) δ 2.54 (m, 6H), 2.92 (s, 3H), 3.79 (m, 1H), 4.05 (m, 1H), 4.19 (m, 1H), 4.33 (m, 1H), 6.18 (s, 1H), 7.02 (m, 2H), 7.43 (m, 3H), 7.63 (m, 4H); mp>267° C. (dec); Anal calcd for C23H24ClIN2O.0.5H2O C=53.55, H=4.89, N=5.43, Cl=13.75; I=49.21: found C=53.75, H=4.87, N=5.41, Cl=13.68; I=48.95; [α]D −91.11° (c=0.43, MeOH).

Example 21 Biochemistry of 3β-(Substituted phenyl)-2β-(heterocyclic)tropanes

Inhibition of radioligand binding data at the dopamine, serotonin, and norepinephrine transporters are listed in Table II, III and IV.

TABLE II 3β-(Substituted phenyl)-2β-(heterocyclic)tropanes A IC50 (nM) Code DA NE 5-HT NE/DA 5-HT/DA Name Het X [3H]-WIN 35,428 [3H]-nisoxetine [3H]-paroxetine Ratio Ratio RTI-163RTI-157 ClCH3 911 ± 6.1 1557 ± 196  17,386 ± 2050  32,478 ± 2078   5456 ± 64 43,574 ± 5420    19 21   6 28 RTI-165RTI-171RTI-180 ClCH3I 0.59 ± 0.040.93 ± 0.090.73 ± 0.04 181 ± 12 254 ± 31 67.9 ± 5.25  572 ± 58 3818 ± 346 36.4 ± 5.0   307 273 93  9704105 498 RTI-177RTI-176RTI-181 ClCH3I 1.28 ± 0.181.58 ± 0.022.57 ± 0.14 504 ± 29 398 ± 18 868 ± 95  2418 ± 136 5110 ± 187 100 ± 9.0   393 251 337 18893234 39 RTI-189RTI-178 ClCH3 19.7 ± 1.9835.4 ± 1.74  496 ± 42 677 ± 68  1116 ± 107 1699 ± 167  25 19  57 48 RTI-188RTI-195 ClCH3 12.6 ± 1.0347.5 ± 4.76 929 ± 88 1310 ± 37  3304 ± 196 23,310 ± 822    73 28  262 491 RTI-194 CH3 4.45 ± 0.12 253 ± 19  4885 ± 155   57 1098 RTI-200RTI-199 ClCH3 15.3 ± 2.4335.9 ± 3.4  4142 ± 466 24,321 ± 3822   18,417 ± 1509  51,460 ± 4513    271 677 12031434 RTI-202 Cl 1.37 ± 0.14 403 ± 30  1119 ± 120   294  817 RTI-219 Cl 5.71 ± 0.36 8563 ± 824  10,342 ± 76    1500 1811

TABLE III Comparison of Transporter Binding Potencies IC50 (nM) DA RTI 5-HT [3H]WIN NE No. R1 R2 [3H]Paroxetine 35,428 [3H]Nisoxetine 279 CH3 CH3 1.06 ± 0.39 5.98 ± 0.48 74.3 ± 3.8  353 C2H5 CH3 0.69 ± 0.07 331 ± 17  148 ± 9.2  Paro- 0.28 ± 0.02 623 ± 25  313 xetine* 5-HT = serotonin DA = dopamine NE = norepinephrine *Aropax; Seroxat; see Merck Index.

TABLE IV 3β-(Substituted phenyl)-2β-(substituted)tropanes IC50 (nM) Code DA NE 5-HT Name R X [3H]-WIN 35,428 [3H]-nisoxetine [3H]-paroxetine RTI-93 CH2OH Cl 1.53 ± 0.15 43.8 ± 6.4  204 ± 16  RTI-99 CH2OH Br 1.49 ± 0.05  51 ± 4.6 RTI-100 CH2OH F 47 ± 4.6 4741 ± 335  RTI-101 CH2OH I  2.2 ± 0.19  26 ± 3.2 RTI-102 CO2H I 474 ± 57  43,400 ± 5500   1928 ± 120  RTI-103 CO2H Br 278 ± 43  17,400 ± 1400   3070 ± 208  RTI-104 CO2H F 2744 ± 141  >100.000 >100,00 RTI-105 CH2OAc Cl 1.60 ± 0.05 127 ± 5.9  143 ± 25  RTI-108 CH2Cl Cl 2.64 ± 0.31 129 ± 15   98 ± 8.7 RTI-123 CH2OCOC6H5 Cl 1.78 ± 0.09 393 ± 30  3.53 ± 0.58 RTI-131 CH2NH2 CH3 10.5 ± 1.7  120 ± 20  855 ± 52  RTI-132 CH2N(CH3)2 CH3 3.48 ± 0.11 137 ± 11  208 ± 18  RTI-139 CH3 Cl 1.67 ± 0.13  57 ± 2.6  85 ± 9.3 RTI-145 CH2OCO2CH3 Cl  9.6 ± 0.42 1478 ± 96  2930 ± 181  RTI-158 CN CH3  57 ± 7.3 1624 ± 136  5095 ± 315  RTI-161 CN Cl 13.1 ± 0.76 2516 ± 253  1887 ± 134  RTI-164 CH2NHCH3 CH3 13.6 ± 2.03 280 ± 19  2246 ± 94  RTI-230 —C(CH3)═CH2 Cl 1.28 ± 0.17 141 ± 16   57 ± 5.0 RTI-239 CH(CH3)2 CH3 0.61 ± 0.07 35.6 ± 2.57  114 ± 3.69 RTI-240 CH(CH3)2 Cl 1.38 ± 0.03 84.5 ± 3.09 38.4 ± 2.31 RTI-241 CH2CO2CH3 CH3 1.02 ± 0.06  124 ± 3.56 618 ± 28 

This invention has been described in both generic terms, and by reference to specific description. No specific description or example is considered binding, unless so identified. Alternate forms and methods will occur to those of ordinary skill in the art, without the exercise of inventive faculty, and remain within the scope of this invention, save as limited by the claims set forth below.

Claims

1-42. (canceled)

43. A method of inhibiting the action of a psychostimulant, inhibiting neurotransmitter re-uptake, treating neurodegenerative disorders, treating depression, treating anorexia, treating cocaine addiction, treating nicotine addiction, treating alcohol addiction, treating bipolar disorder, treating eating disorders, treating obesity, treating attention deficit disorder, treating panic attacks, treating panic disorders, treating obsessive-compulsive disorder and/or sexual dysfunction, comprising administering to a patient in need of such treatment an effective amount of a 2β,3β-cis substituted compound having the formula:

or a salt thereof.

44. The method of claim 43, which comprises inhibiting the action of a psychostimulant.

45. The method of claim 45, wherein the psychostimulant is cocaine, nicotine, alcohol or amphetamine.

46. The method of claim 43, wherein the compound is in the form an HCl salt.

47. The method of claim 43, which comprises inhibiting neurotransmitter re-uptake.

48. The method of claim 47, wherein the neurotransmitter is dopamine, norepinephrine, serotonin or another monomaine.

49. The method of claim 47, wherein the compound is in the form an HCl salt.

50. The method of claim 43, which comprises treating neurodegenerative disorders.

51. The method of claim 50, wherein the neurodegenerative disorder is Parkinson's disease.

52. The method of claim 50, wherein the compound is in the form an HCl salt.

53. The method of claim 43, which comprises treating depression.

54. The method of claim 53, wherein the compound is in the form an HCl salt.

55. The method of claim 43, which comprises treating anorexia.

56. The method of claim 55, wherein the compound is in the form an HCl salt.

57. The method of claim 43, which comprises treating cocaine addiction.

58. The method of claim 57, wherein the compound is in the form an HCl salt.

59. The method of claim 43, which comprises treating alcohol addiction.

60. The method of claim 59, wherein the compound is in the form an HCl salt.

61. The method of claim 43, which comprises treating bipolar disorder.

62. The method of claim 61, wherein the compound is in the form an HCl salt.

63. The method of claim 43, which comprises treating eating disorders.

64. The method of claim 63, wherein the compound is in the form an HCl salt.

65. The method of claim 43, which comprises treating obesity.

66. The method of claim 65, wherein the compound is in the form an HCl salt.

67. The method of claim 43, which comprises treating attention deficit disorder.

68. The method of claim 67, wherein the compound is in the form an HCl salt.

69. The method of claim 43, which comprises treating panic attacks.

70. The method of claim 69, wherein the compound is in the form an HCl salt.

71. The method of claim 43, which comprises treating panic disorders.

72. The method of claim 71, wherein the compound is in the form an HCl salt.

73. The method of claim 43, which comprises treating obsessive-compulsive disorder.

74. The method of claim 73, wherein the compound is in the form an HCl salt.

75. The method of claim 43, which comprises treating sexual dysfunction.

76. The method of claim 75, wherein the compound is in the form an HCl salt.

Patent History
Publication number: 20080153870
Type: Application
Filed: Sep 28, 2007
Publication Date: Jun 26, 2008
Applicant: Research Triangle Institute (Research Triangle Park, NC)
Inventors: Michael J. KUHAR (Baltimore, MD), Frank I. CARROLL (Durham, NC), John W. BOJA (Baltimore, MD), Anita H. LEWIN (Chapel Hill, NC), Philip ABRAHAM (Cary, NC)
Application Number: 11/863,587
Classifications
Current U.S. Class: Tropanes (including Nor Or Dehydro Form) (514/304)
International Classification: A61K 31/439 (20060101); A61P 25/00 (20060101); A61P 25/24 (20060101); A61P 25/32 (20060101); A61P 25/34 (20060101); A61P 15/00 (20060101);