Method for assembling nano objects
A method for the self assembly of a macroscopic structure with a pre-formed nano object is provided. The method includes processing a nano object to a desired aspect ratio and chemical functionality and mixing the processed nano object with a solvent to form a suspension. Upon formation of the suspension, a substrate is inserted into the suspension. By evaporation of the solvent, changing the pH value of the suspension, or changing the temperature of the suspension, the nano objects within the suspension deposit onto the substrate in an orientational order. In addition, a seed crystal may be used in place of the substrate thereby forming single-crystals and free-standing membranes of the nano-objects.
Latest Patents:
This application is a divisional patent application from and which claims the benefit to the filing date of U.S. patent application Ser. No. 10/103,803, filed Mar. 25, 2002, the disclosure of which is incorporated herein by reference in its entirety.
GOVERNMENT INTERESTAt least some aspects of this subject matter were made with Government support under the sponsorship of the Office of Naval Research, Contract No. N00014-98-1-0597 and by a grant from the National Aeronautics and Space Administration (NAG-1-01061). The Government may have certain rights in this subject matter.
TECHNICAL FIELDThe present subject matter relates generally to methods to assemble nano objects into functional structures.
BACKGROUND ARTIn the description of the background of the present subject matter that follows reference is made to certain structures and methods. Such references should not necessarily be construed as an admission that these structures and methods qualify as prior art under the applicable statutory provisions. Applicants reserve the right to demonstrate that any of the referenced subject matter does not constitute prior art with regard to the present subject matter.
The term “nanostructure” material is used by those familiar with the art to designate materials including nanoparticles such as C60 fullerenes, fullerene-type concentric graphitic particles; inorganic and organic nanowires/nanorods composed of either single or multiple elements such as Si, Ge, metals, oxides such as SiOx, GeOx; carbides such as silicon carbides; nitrides, borides, or hollow nanotubes composed of either single or multiple elements such as carbon, BxNy, CxByNz MoS2, and WS2. One of the common features of nanostructure materials is the dimension of their basic building blocks. A single nanoparticle or a nanotube or a nanowire has a dimension that is less than 1 micron in at least one direction. These types of materials have been shown to exhibit certain properties that have raised interest in a variety of applications and processes.
U.S. Pat. No. 6,280,697 to Zhou et al. entitled “Nanotube-Based High Energy Material and Method,” the disclosure of which is incorporated herein by reference, in its entirety, discloses the fabrication of carbon-based nanotube materials and their use as a battery electrode material.
application Ser. No. 09/296,572 entitled “Device Comprising Carbon Nanotube Field Emitter Structure and Process for Forming Device” the disclosure of which is incorporated herein by reference, in its entirety, discloses a carbon nanotube-based electron emitter structure.
application Ser. No. 09/351,537 entitled “Device Comprising Thin Film Carbon Nanotube Electron Field Emitter Structure,” the disclosure of which is incorporated herein by reference, in its entirety, discloses a carbon-nanotube field emitter structure having a high emitted current density.
U.S. Pat. No. 6,277,318 to Bower et al. entitled “Method for Fabrication of Patterned Carbon Nanotube Films,” the disclosure of which is incorporated herein by reference, in its entirety, discloses a method of fabricating adherent, patterned carbon nanotube films onto a substrate.
U.S. Pat. No. 6,334,939 to Zhou et al. (application Ser. No. 09/594,844) entitled “Nanostructure-Based High Energy Material and Method,” the disclosure of which is incorporated herein by reference, in its entirety, discloses a nanostructure alloy with alkali metal as one of the components. Such materials are described as being useful in certain battery applications.
application Ser. No. 09/679,303 entitled “X-Ray Generating Mechanism Using Electron Field Emission Cathode,” the disclosure of which is incorporated herein by reference, in its entirety, discloses an X-ray generating device incorporating a nanostructure-containing material.
application Ser. No. 09/817,164 entitled “Coated Electrode With Enhanced Electron Emission And Ignition Characteristics” the disclosure of which is incorporated herein by reference, in its entirety, discloses an electrode including a first electrode material, an adhesion-promoting layer and a carbon nanotube-containing material disposed on at least a portion of the adhesion promoting layer, as well as associated devices incorporating such an electrode.
application Ser. No. 09/881,684 entitled “Method of Making Nanotube-Based Material With Enhanced Field Emission” the disclosure of which is incorporated herein by reference, in its entirety, discloses a technique for introducing a foreign species into the nanotube-based material in order to improve the emission properties thereof.
As evidenced by the above, nanostructure materials, such as carbon nanotubes, possess promising properties. Carbon nanotubes (CNTs) are one type of nano objects. CNTs are cylindrical carbon structures with a length between 0.1 μm and 100 μm and a diameter between 0.4 nm and 50 nm (see, e.g. M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, eds. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Topics in Applied Physics. Vol. 80. 2000, Springer-Verlag). CNTs can have either a single graphite shell per nanotube in which case CNTs are called single-wall carbon nanotubes (SWNTs). CNTs may also have concentric multi-shell graphite structures in which case CNTs are called multi-wall carbon nanotubes (MWNTs). Carbon nanotubes have exceptional mechanical properties with high elastic modulus, high ductility, high electrical and high thermal conductivity, thermal stability and chemical stability. CNTs are excellent electron field emitters since CNTs have a large aspect ratio and a sharp tip. (See, e.g. P. M. Ajayan and O. Zhou, in “Topics in Applied Physics, 80,” M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Editors. 2000, Springer-Verlag). In particular, carbon-nanotube materials exhibit low emission threshold fields as well as large emission current densities. Such properties make them attractive electron field emitters for microelectronic applications, such as lighting elements, field emission flat panel displays, gas discharge tubes for over voltage protection and x-ray generating devices. Other applications of carbon nanotubes include but limited to: sensors, composites, shielding materials, detectors, electrodes for batteries, fuel cells, small conduction wires, small cylinders for storage, etc.
Carbon nanotubes, nanowires and nanorods, nanoparticles are typically fabricated by techniques such as laser ablation, arc discharge, and chemical vapor deposition methods. In some cases they can also be made via solution or electrochemical synthesis. However, in most cases, the as-synthesized materials cannot be utilized without further processing. For example, carbon nanotubes produced by the laser ablation and arc discharge techniques are in the form of porous mats and powders. Device applications require assembling these nano objects into ordered, patterned films, membranes, crystals on desired supporting surfaces and the pre-determined locations. In addition, it is often advantageous to assemble elongated nano objects such as the carbon nanotubes into orientationally ordered macroscopic structures which provide properties such as anisotropic electrical, mechanical, thermal, magnetic and optical properties.
The conditions used to assemble the nano objects need to be compatible with the conditions used for device fabrications. For example, nano objects which are to be used as field emission cathodes in field emission displays should not have a fabrication temperature which exceeds the melting point of glass substrates (about 650° C.). Also, the temperature should be substantially lower when supporting surfaces of the nano objects are polymer. For such applications, direct growth of nano objects using chemical vapor deposition (CVD) techniques are not feasible since CVD techniques generally require relatively high temperatures (800° C.-1200° C.) as well as reactive environments. In addition, CVD techniques often result in defective multi-wall carbon nanotubes.
As such, a more desirable approach for fabrication of macroscopic structures of nano objects for applications is post-processing which includes synthesis of nano objects by arc discharge, laser ablation, or chemical vapor deposition techniques and assembly of these “pre-formed” nano objects into a macroscopic structure. Post-deposition processes that have been employed in the past include screen printing. (see, e.g. W. B. Choi, et al., Appl. Phys. Lett., 75, 3129 (1999)), spraying, and electrophoretic deposition (see, e.g. B. Gao et al. Adv. Mater., 13 (23), 1770, 2001) However, such techniques pose certain drawbacks. For instance, screen printing includes admixture of pre-formed nano objects with an organic or inorganic paste in order to form a thick paste. The thick paste is then placed on a substrate. After placement of the thick paste onto the substrate, the organic binder resides at an exposed surface of the paste. Therefore, an additional step is required to expose the nano objects within the thick paste. Typically, a plasma etching process or similar chemical process is used to expose the nano objects. In addition, the use of thick paste limits the size of a structure can be formed. In general it is difficult to form structures less than 20 microns-50 microns using the screen printing methods. Furthermore, screen printing methods requires considerable amount of materials. Spraying can be inefficient and is not practical for large-scale fabrication. Neither of these processes can control the orientation of the nano objects.
Therefore, a need exists for a process/method to assemble nano objects with a controlled structure, morphology, thickness, orientation, and ordering. In addition, a need exists for a method that operates at mild conditions acceptable for device fabrications. In addition, a need exists for an efficient and scalable assembly process.
SUMMARYThe present subject matter provides a method for forming microscopic and macroscopic structures using nano objects. The method of the present subject matter allows self assembly of nano objects onto a supporting surface, into a freestanding structure, or into a crystal. In addition, the present subject matter provides a method for assembling the nano objects into patterned structures with a controlled thickness, density and a controlled orientation of the nano objects. In addition, the present subject matter provides an efficient process to assemble pre-formed nano objects under mild conditions that are acceptable for a wide range of substrates and devices. The resulting structures are useful in a variety of devices including electron field emission cathodes for devices such as field emission displays, cold-cathode x-ray tubes, microwave amplifiers, ignition devices; electrodes batteries, fuel cells, capacitors, supercapacitors; optical filters and polarizers; sensors; and electronic inter-connects.
In one embodiment of the present subject matter, a method for assembling a macroscopic structure with pre-formed nano objects is disclosed. The method comprises processing the nano objects such that they form a stable suspension or solution in a solvent. Once the nano objects are processed, the nano objects are admixed with a solvent to form a stable suspension or a solution. Upon formation of the stable suspension or solution, a substrate is submersed into the suspension or solution. Upon changing either the concentration, temperature, or pH value of the suspension, the nano objects deposit on the surface of the substrate.
In a further embodiment of the present subject matter, a method for assembling pre-formed nano objects into a patterned structure is disclosed. The method comprises processing pre-formed nano objects such that they form a stable suspension or solution in a suitable solvent. After processing the nano objects, the processed pre-formed nano object is mixed with a solvent to form a stable suspension or a solution. A patterned substrate is then inserted into the liquid. Upon changing either the concentration, temperature, or the pH value of the liquid, the nano objects assemble on certain regions of the substrate surface to form a patterned structure comprising the nano objects.
In yet another embodiment of the present subject matter, a method for assembling pre-formed nano objects into a crystal or a membrane is disclosed. The method comprises processing the nano objects so that they form a stable suspension or solution in a solvent. The processed nano objects are mixed with a solvent to form a suspension or a solution in a container that does not attract the nano objects. Upon changing a concentration, temperature or a pH value of the liquid, the nano objects crystallize in the liquid. In this embodiment of the present subject matter, a seed crystal may be used to form the crystal.
In another embodiment of the present subject matter, a method for assembling pre-formed nano objects into multi-layered structures is disclosed. The method comprises first processing the nano objects so that they form a stable suspension or solution in a solvent. The processed nano object is then mixed with a solvent to form a suspension or a solution. After formation of the stable suspension or solution, a substrate is submersed into the suspension or solution. Upon changing the concentration, temperature or the pH value of the suspension or solution, the nano objects assemble on the surface of the substrate. The substrate is then removed from the suspension or solution. After removal, a second type of material is coated on the surface of the self-assembled nano objects on the substrate. The substrate is then submersed into the suspension or solution containing the nano objects. The process is repeated until a multi-layer structure with a desired thickness and number of repeating layers are obtained.
In yet another embodiment of the present subject matter, a method for assembling elongated nano objects into orientational ordered structures is disclosed. The method comprises forming a stable suspension or solution of the nano objects in a suitable solvent. A substrate is then submersed into the liquid and the solvent gradually evaporated. Upon evaporation of the solvent, the nano objects deposit on the surface of the substrate such that longitudinal axes of the nano objects align parallel to the substrate surface. The process can further comprise the use of an external field such as either an AC or a DC electrical field or a magnetic field during the assembly process.
In a further embodiment of the present subject matter, a method for assembling elongated nano objects into a vertically aligned structure on a supporting surface is disclosed. The method comprises first processing the nano objects such that a tail and a body of the nano objects have different affinities toward certain types of solvents. For example, the tails are hydrophobic and the bodies are hydrophilic. The processed nano objects are dispersed in a suitable solvent where the solvent has an affinity towards the tails of the nano objects. A substrate with one of the surfaces having the same affinity towards the solvent and the tails of the nano objects is submersed into the liquid. Upon changing the concentration, temperature, or pH value of the solvent, the nano objects deposit on the substrate with their tails bonded to the surface and longitudinal axes of the nano objects vertically aligned with respect to the surface of the substrate.
As may be appreciated, the present subject matter provides a method for self assembly of nano objects, such as carbon nanotubes, nanowires and nanorods, onto a substrate, into free-standing membranes, into a crystal, or a into multi-layer structure. The nano objects form into functional structures having long range ordering. In addition, the present subject matter provides a method for controlling the functionality of formed macroscopic structures. Some of the objects of the subject matter having been stated hereinabove, and which are addressed in whole or in part by the present subject matter, other objects may become evident as the description proceeds when taken in connection with the accompanying drawings as best described hereinbelow.
Objects and advantages of the subject matter may become apparent from the following detailed description of preferred embodiments thereof in connection with the accompanying drawings in which like numerals designate like elements and in which:
The present subject matter discloses a method for assembling nano objects. The nano objects formed in accordance with the present subject matter may be formed onto a supporting surface, into free-standing membranes and into multi-layer structures. The nano objects may be a variety of materials, including hollow nano tubes which are composed of single or multiple elements. The single or multiple elements may be carbon, boron, nitrogen, solid inorganic or organic nanowires/nanorods. Prior to assembling the nano objects, the nano objects are processed such that they form a stable suspension or a solution in a suitable solvent. The processing operation includes attaching chemical groups to the surface of the nano objects and reducing aspect ratios of elongated nano objects. After processing, a suspension or a solution is formed by admixture of the processed nano objects with a solvent. Upon formation of the suspension, a substrate, such as glass, is submersed into the substrate. After submersion of the substrate, the nano objects self assemble into uniform thin films on the substrate. The nano objects self assemble when either of the following occurs: evaporation of the suspension, a concentration change of the suspension, a temperature change of the suspension or a pH level change of the concentration. The nano objects which self assemble onto the uniform film may be any nano object, such as carbon nanotubes, silicon nanowires or the like.
Now making reference to the Figures, and more particularly
Returning attention to
Upon processing to the form of the nano objects, the nano objects 104 are admixed with a solution such as de-ionized water to form the suspension 102. In this embodiment, when the nano objects 104 are carbon nanotubes etched using the method described above, the nano objects 104 and the de-ionized water admix to form a homogeneous suspension which is stabilized with a carbon nanotube concentration up to 1.0 mg/mL without flocculation for several days. In accordance with alternative embodiments of the present subject matter, other solvents, such as alcohol, may also be used in the suspension 102.
Upon insertion of the substrate 100 into the suspension 102, the solvent 102 evaporates as shown with reference to
Now turning attention to
It should be noted that carbon nanotube film deposition occurs for the film 108 when the suspension 102 is super saturated. To further illustrate, when a concentration Co of the suspension 102 is less than a critical concentration C* of the suspension 102, deposition occurs during evaporation of the suspension, as previously described. For example, if the concentration C* of the suspension is 0.5 mg/mL and the critical concentration C* of the suspension 102 is 1 mg/mL deposition occurs at the triple line 106. Nonetheless, if the concentration Co of the suspension 102 is substantially smaller than a critical concentration of the suspension, even when the suspension 102 has a high evaporation rate (i.e., an evaporation rate of 1 mm/hour), the nano objects 104 may not deposit on the substrate. For example, when Co<0.1 mg/mL and Co=1 mg/mL, no deposition of SWNTs occurs on the glass substrate.
The nano objects 104 in the self-assembled film 108 are orientationally ordered such that longitudinal axes of the nano objects 104 which deposit on the substrate 100 lie along the triple line 106 direction. This is demonstrated in
Upon formation, the carbon nanotube film 108 displays anisotropic polarization of individual carbon nanotubes. The individual carbon nanotubes also demonstrate long-range orientational ordering. As those skilled in the art will appreciate, the electrical conductivity of the film 108 is higher when measured parallel to the alignment direction as opposed to being perpendicular with the alignment direction.
In addition, the substrate 100 may have a plurality of shapes in addition to the planar configuration shown with respect to the Figures. For example, the substrate 100 may also include a curved surface, a sandwich structure or the like. In embodiments where a multi-planar substrate is used, electrophoresis may be used to deposit the film 108 onto the substrate 100, as more fully discussed with reference to commonly owned application Ser. No. 09/996,695 filed on Nov. 30, 2001, the specification of which is herein incorporated by reference in its entirety.
One advantage of present subject matter includes strong bonding and selectivity of the nano objects 104 to the substrate 100. The nano objects 104 are both mechanically and chemically stable in certain solvents. The stability and selectivity of the self assembled nano objects are attractive from a fabrication standpoint and for use in device applications. To further illustrate, when nano tubes are carbon nanotubes and a substrate which includes glass and chromium is used, the nano objects bond strongly to the substrate. In this example, the nano objects may not be removed by mechanical scratching or through the use of a solvent such as acetone. Nonetheless, the nano objects may be removed by washing or sonication in water. When the nano objects are removed through the use of water, water is stirred into a suspension, such as the suspension 102, and the nano objects, such as the film 108, separate into smaller free standing membranes which float on a surface of the water.
Now with reference to
During the operation 204, the suspension is formed with the starting materials. The user admixes the processed starting materials at a given concentration with a solution in order to form the suspension. Returning to the example and
During the operation 206, a user inserts a substrate into the suspension. Once the user inserts the substrate into the suspension, an operation 208 is performed. During the operation 208, the suspension evaporates, thereby forming a nano object film on a surface of the substrate. Turning back to the example and
Now making reference to
In a further embodiment of the present subject matter, nano objects may be formed in a vertical structure, as shown with reference to
Upon dispersion of the nano objects 711 within the solvent 750, a substrate 760 with a surface 730 having the same affinity as the tails 720 is submersed into a container 740 that includes the solvent 750. After submersing the substrate 760 into the solvent 750, the substrate 760 is withdrawn from the solvent 750. Upon withdrawing the substrate 760 from the solvent 750, the nano objects 711 deposit on the substrate 760 with the tails 720 bonded to the surface 730 and longitudinal axes of the nano objects 711 vertically aligned with respect to the surface 730 of the substrate 760.
In one example, the nano objects 711 can be carbon nano tubes made hydrophilic by oxidation in acid. A hydrophobic chemical group can be attached to the ends of the carbon nano tubes 711 that are open after the oxidation process. In this example, the substrate may be glass coated with a layer of hydrophobic chemicals such that the carbon nano tubes vertically align with the structure. The vertically aligned structure is useful, for example, as sensors which detect biological systems, chemicals or gases. The vertically aligned structure may also be useful as an electron field emission cathode. It should be noted that it is also possible to make bodies of carbon nanotubes hydrophobic and tails of carbon nanotubes hydrophilic. A vertically aligned structure can also be formed using this type of carbon nanotube. In addition, in this embodiment, the solvent 650 may be hydrophilic. Thus, the hydrophilic tails attach to the surface 730 such that longitudinal axes of the nano objects are perpendicular to the surface 730.
Now turning attention to
The substrate 830 is re-submersed into the solution containing the nano objects to form a nano object film 810B similar to the nano object film 810A. The process is repeated until a multi-layer structure with a desired thickness and a desired number of repeating layers, e.g., layers 820B and 810C, are obtained as shown with reference to
A first layer electrode of the re-chargeable battery is carbon nanotubes 840 which are deposited on a conducting surface 830. The second layer 850 is an electrolyte material that can be deposited over the carbon nanotubes 840 using any suitable technique such as evaporation, pulsed laser deposition, sputtering or the like. A third layer 860 is a second electrode of the rechargeable battery which can be LixMnO4 or LixCO2. The third layer 860 can be deposited by any suitable technique including evaporation, pulsed laser deposition, sputtering or the like. The multi-layer structure can then be used as a re-chargeable battery or as a fuel cell.
In another embodiment of this subject matter, carbon nanotubes are assembled into a structure which can be used as an electron field emission cathode for applications such as field emission flat panel displays. SWNTs are first synthesized by the laser ablation method and then raw materials are purified. The average bundle length is then reduced from >10 μm to ˜0.5 μm by, for example, sonication in a mixture of HNO3 and H2SO4 for 30 hours. The short SWNTs are then rinsed in deionized water and annealed at 200° C. in 106 torr dynamic vacuum before use. A homogeneous suspension of shortened SWNTs is stabilized in de-ionized water at a nanotube concentration of 1.0 mg/mL.
Now making reference to
In a next operation, the glass slide coated with the SWNTs 930 is washed in a suitable solvent such as acetone, methanol, ethanol, buffered hydrochloric acid or the like. During the washing process, the remaining photoresist is removed and the SWNTs 930 remain on the glass surface. After removing from the remaining photoresist, the glass slide is heated in either air or vacuum at 200° C. to remove the residual solvent to achieve SWNTs 930, as shown with reference to
Electrical contacts 950 are coupled with each of the SWNTs 930 on the glass substrate 900 as shown with reference to
The present subject matter provides a method for the self assembly of preformed nano objects onto a substrate. As may be appreciated, the present subject matter allows for higher packing densities than those techniques used in the prior art. Forming nano structures with filtration techniques form nanotube papers which have a lower packing density than that of nano structures formed in accordance with the present subject matter. In addition, the present subject matter may be performed at room temperature as previously mentioned. The efficient room temperature deposition process provides an attractive alternative to chemical vapor deposition techniques, more specifically in display applications having low melting temperatures.
Variations of the above-described exemplary method, as well as additional methods, are evident in light of the above-described devices of the present subject matter. Although the present subject matter has been described in connection with preferred embodiments thereof, it will be appreciated by those skilled in the art that additions, deletions, modifications, and substitutions not specifically described may be made without department from the spirit and scope of the subject matter as defined in the appended claims. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation.
Claims
1. A method for assembling nano objects onto a macroscopic structure, the method comprising:
- (a) processing nano objects to a desired aspect ratio and chemical functionality;
- (b) admixing the processed nano objects with a solvent to form a suspension, the suspension having a concentration, a temperature and a pH level;
- (c) submersing a substrate into the suspension; and
- (d) changing the concentration to control deposition of the nano objects onto the substrate, thereby assembling the macroscopic structure onto the substrate.
2. The method of claim 1, wherein the nano objects comprise single wall carbon nanotubes (SWNTs) or single wall carbon nanotube bundles.
3. The method of claim 1, wherein the nano objects comprise multi wall carbon nanotubes (MWNTs).
4. The method of claim 1, wherein the nano objects comprise a mixture of single wall carbon nanotubes (SWNTs) and multi wall carbon nanotubes (MWNTs).
5. The method of claim 2, wherein the operation of processing the nano objects further comprises:
- (e) synthesizing the carbon nanotubes;
- (f) purifying the carbon nanotubes; and
- (g) modifying both a length of the carbon nano tubes and at least one chemical property of the carbon nano tubes.
6. The method of claim 2, wherein the operation of processing the nano objects further comprises:
- (e) synthesizing the SWNTs by a process selected from the group consisting of laser ablation, arc discharge, chemical vapor deposition, and pyrolysis;
- (f) purifying the SWNTs by selective oxidation and/or filtration; and
- (g) reducing an aspect ratio of the SWNTs by sonication in acid or mechanical cutting.
7. The method of claim 2, wherein the operation of processing the nano objects further comprises:
- (e) synthesizing the SWNTs by a process selected from the group consisting of laser ablation, arc discharge, chemical vapor deposition, and pyrolysis;
- (f) purifying the SWNTs by selective oxidation and/or filtration; and
- (g) chemically modifying the SWNTs.
8. The method of claim 6, wherein a length of the processed SWNTs is in a range between about 0.1 micron and about 10 microns.
9. The method of claim 2, wherein the solvent is selected from the group consisting of water, alcohol, and combinations thereof.
10. The method of claim 9, wherein the concentration of the suspension of carbon nanotubes in water is in a range between about 0.01 grams of carbon nanotube per liter of water and about 10.0 grams of carbon nanotube per liter of water.
11. The method of claim 2, wherein the substrate comprises a hydrophilic region and a hydrophobic region such that the SWNTs deposit on the hydrophilic region of the substrate.
12. The method of claim 11, wherein the substrate comprises hydrophilic glass patterned with a hydrophobic material.
13. The method of claim 12, wherein the hydrophobic material is selected from the group consisting of a polystyrene, a photoresist, a mono-layer of hydrophobic functional groups, and combinations thereof.
14. The method of claim 1, wherein the method further comprises patterning a surface of the substrate such that the substrate surface comprises a first region and a second region where the first region has an affinity to the nano objects and the second region has no affinity to the nano objects, where changing the concentration of the suspension deposits the nano objects on the first region of the substrate surface.
15. The method of claim 1, wherein the substrate has a planar configuration.
16. The method of claim 1, wherein the substrate has a curved configuration.
17. The method of claim 1, wherein the operation of changing the concentration of the suspension further comprises changing the concentration of the suspension by gradual evaporation of the solvent such that the nano objects deposit on the substrate along an air/liquid/substrate triple line of the substrate.
18. The method of claim 17, wherein the operation of submersing the substrate into the suspension further comprises submerging the substrate into the suspension in a vertical orientation relative to the suspension.
19. The method of claim 18, wherein longitudinal axes of the nano objects align in a direction of the air/liquid/substrate triple line.
20. The method of claim 1, further comprising:
- (e) removing the substrate from the suspension;
- (f) depositing a second material onto the nano objects assembled on the substrate; and
- (g) repeating operations (c) through (e) thereby forming a multi layer structure.
21. The method of claim 20, wherein the second material is selected from the group consisting of a metal, a semiconductor, a polymer, an inorganic material, an organic material, a biological material, and combinations thereof.
22. A multilayer structure prepared by the method of claim 20.
23. The multilayer structure of claim 22, wherein the multi layer structure is selected from the group consisting of an electrode, an electrolyte for a battery, and a fuel cell.
24. The multilayer structure of claim 22, wherein the multi-layer structure is selected from the group consisting of a capacitor, a super-capacitor, an electronic device, and a sensor.
25. A method for assembling pre-formed nano objects into a macroscopic structure, the method comprising:
- (a) processing the nano objects, wherein the processing of the nano object comprises: (i) synthesizing the pre-formed nano objects, where the pre-formed nano objects are single wall carbon nanotube (SWNT) bundles; (ii) purifying the SWNT bundles by reflux in a hydrogen peroxide solution and filtering the SWNT bundles; and (iii) cutting the purified SWNT bundles by reacting the SWNTs with HNO3 and/or H2SO4, and with ultra-sonication;
- (b) forming a suspension by admixture of the nano objects with a solution;
- (c) inserting a substrate into the suspension; and
- (d) gradually removing the substrate from the suspension during which the nano objects from the suspension deposit on the surface of the substrate.
26. The method of claim 25, wherein the substrate comprises a material selected from the group consisting of glass, quartz, aluminum, chromium, tin, and silicon or any other substrate with a hydrophilic coating on a surface of the substrate.
27. The method of claim 25, the substrate further comprising a hydrophobic coating, the hydrophilic coating and the hydrophobic coating forming a pattern on the substrate wherein the processed pre-formed nano objects form onto the substrate at the hydrophilic coating thereby forming a pattern corresponding to the pattern formed by the hydrophilic coating and the hydrophobic coating.
28. A method for assembling pre-formed nano objects into a macroscopic structure, the method comprising:
- (a) processing the nano objects;
- (b) forming a suspension by admixture of the nano objects with a solution;
- (c) inserting a substrate into the suspension; and
- (d) gradually removing the substrate from the suspension during which the nano objects from the suspension deposit on the surface of the substrate, wherein the nano objects form on an air/liquid/substrate triple line of the substrate.
29. A method for assembling nano objects into a free-standing macroscopic structure, the method comprising:
- (a) processing the nano objects such that the nano objects disperse or dissolve in a solvent;
- (b) admixing the processed nano objects with the solvent to form a stable suspension or a solution in a container that does not attract the processed nano objects;
- (c) submersing a seed-crystal into the suspension; and
- (d) changing a concentration of the suspension to bring the suspension into super-saturation such that the processed nano objects assemble into a free-standing macroscopic structure.
30. The method of claim 29, wherein the nano objects assemble into the macroscopic structure around the seed crystal such that a structure of the macroscopic structure is the same as a structure of the seed crystal.
31. The method of claim 29, wherein a thickness of the freestanding macroscopic structure is in a range between about 1 nanometer to about 10 microns.
32. The method of claim 29, wherein an area of the free-standing macroscopic structure is in a range between about 1 micron×1 micron and about 10 cm×10 cm.
33. The method of claim 29, wherein the nano objects are selected from the group consisting of single wall carbon nanotubes and multi wall carbon nanotubes.
34. The method of claim 29, wherein the nano objects comprise nanowires/nanorods, and wherein the nanowires/nanorods comprise at least one material selected from the group consisting of carbon, silicon, germanium, oxygen, boron, nitrogen, sulfur, phosphorus, and metal.
35. A free-standing macroscopic structure assembled by the method of claim 29.
36. A method for fabricating electron field emission cathodes by self-assembly of pre-formed nano objects, the method comprising:
- (a) processing the nano objects such that the nano objects disperse or dissolve in a solvent;
- (b) admixing the processed nano objects with the solvent to form a suspension;
- (c) submersing a substrate into the suspension; and
- (d) changing a concentration of the suspension to assemble the processed nano objects on certain regions of the substrate surface thereby fabricating the electron field emission cathode,
- wherein the substrate comprises a region A and a region B where the region A attracts the processed nano objects and the region B does not attract the processed nano objects where the nano objects deposit on the region A upon changing the concentration of the suspension.
37. The method of claim 36, wherein the nano objects comprise carbon nanotubes.
38. The method of claim 36, wherein a smallest lateral dimension of the region A is at least about 100 nm.
39. The method of claim 36, wherein the substrate comprises hydrophilic glass.
40. The method of claim 39, further comprising coating the substrate with a region of a hydrophobic polymer such that the region of the hydrophobic polymer forms the region B and an uncoated region of the substrate forms the region A.
41. The method of claim 40, further comprising removing the region of the hydrophobic polymer after deposition of the nano objects.
42. The method of claim 40, wherein the hydrophobic polymer is removed by washing in a solvent selected from the group consisting of acetone, methanol, ethanol, buffered hydrofluoric acid, and combinations thereof.
43. The method of claim 36, wherein the process further comprises annealing the substrate deposited with the nano-objects at a temperature in a range between about 100° C. and about 500° C. in a vacuum.
44. The method of claim 36, wherein the nano objects are single wall carbon nanotube bundles with an aspect ratio larger than about 10 and a bundle length in a range between about 300 nm and about 1 micron.
45. The method of claim 36, wherein the field emission cathode has a threshold electrical field in a range between about 1 V/micron and about 5V/micron for an emission current density of about 1 mA/cm2.
46. A field emission cathode fabricated by the method of claim 36.
47. A method for assembling nano objects onto a macroscopic structure, the method comprising:
- (a) processing nano objects to a desired aspect ratio and chemical functionality;
- (b) admixing the processed nano objects with a solvent to form a suspension, the suspension having a concentration, a temperature and a pH level; and
- (c) coating the suspension onto a substrate thereby assembling the macroscopic structure onto the substrate.
48. The method of claim 47, wherein the operation of coating the suspension onto a substrate further comprises a coating procedure selected from the group consisting of spin coating, spraying, and electrophoresis.
49. The method for assembling nano objects onto a macroscopic structure as recited in claim 47, wherein the substrate has a first region and a second region where the first region attracts the nano objects and the second region does not attract nano objects.
Type: Application
Filed: May 25, 2006
Publication Date: Aug 21, 2008
Applicant:
Inventors: Otto Z. Zhou (Chapel Hill, NC), Hideo Shimoda (Chapel Hill, NC), Soojin Oh (Dublin, CA)
Application Number: 11/441,261
International Classification: B05D 1/18 (20060101); B05D 1/36 (20060101); B05D 5/12 (20060101); H01J 9/02 (20060101);