Method Of Manufacturing A Fingerprint Sensor And Corresponding Sensor
The present disclosure relates to a fingerprint sensor device. The device comprises a sensor having a sensitive active region that is electrically connected to a substrate. The device further includes a first resin bump positioned proximate to the sensitive active region. The first resin bump forms a finger guide that positions the finger over the sensitive active region when the finger slides in contact with the first resin bump.
The invention relates to fingerprint sensors, and more particularly to a method of manufacture that minimizes the production costs and makes it easier to use the sensor and to protect the sensor against external attack.
A fingerprint sensor is produced from an integrated circuit, in principle based on silicon, comprising especially an array of sensitive spots for generating a representation of the fingerprint of a finger placed directly on the surface of the array. Fingerprint detection may be optical or capacitive or thermal or piezoelectric.
Some sensors operate when a finger is placed statically on the surface of a sensor, the rectangular or square active detection array of which has an area corresponding to the fingerprint area to be detected; other sensors operate by the finger sliding over a sensor, the detection array of which, having a much smaller area than the fingerprint to be detected, is a thin elongate strip.
In both cases, but especially in the case of finger-sliding operation, the integrated circuit must be protected by wear-resistant layers. These layers depend on the type of sensor (for example, if it is an optical sensor, it is obvious that the optional protective layers must be protected by transparent layers). It has been proposed to use protective lacquers or else mineral coatings, such as silicon oxide coatings. Moreover, the integrated-circuit chip forming the core of the sensor must be electrically connected to the outside (especially to supply sources, control circuits and circuits for processing the electrical signals representative of the fingerprint). Given that the finger has to be placed on (or has to slide over) the sensitive surface of the sensor, this surface must remain accessible. This is why, for such sensors, a conventional electrical connection solution is adopted, using bonded flexible wires that connect contact pads on the front face (active face) of the integrated-circuit chip to contact pads located on a surface on which the chip is mounted. In integrated-circuit applications other than sensors (for example, microprocessors, memories, etc.), these wires are conventionally protected by a thick protective layer, deposited or overmolded, which encapsulates the chip and its wires.
It is an object of the invention to propose a method of manufacturing a fingerprint sensor in which the following steps are carried out: a sensor chip is fabricated; this chip is mounted on a substrate; the chip is connected to the substrate by wire-bonding wires; the chip/substrate assembly is placed in a mold; a protective resin is poured into the mold so as to at least partly cover the chip and the substrate and to completely encapsulate the wires, the mold having a shape such that a bump of resin, projecting by at least 500 microns above a sensitive surface of the chip, is formed on at least one side of the chip, this bump protecting the wire-bonding wires and forming a positioning guide for the finger, the fingerprint of which it is desired to detect, so that the latter comes opposite a sensitive surface of the chip when the finger comes against the bump.
Preferably, at least one side of the chip will have no such guiding bump. In the case of detection by the finger sliding over a chip of elongate strip shape, perpendicular to the direction of sliding of the finger, two sides of the chip will have no such guiding bump: a bump will be provided either on one side of the chip or on two opposed sides (these facing each other in the long direction of the strip), but not on the other two sides.
In the case of a capacitive fingerprint sensor, the mold will be such that the sensitive surface of the chip is not covered with resin and the bumps will rise directly above the surface of the chip, leaving the sensitive surface of the chip free.
However, it is advantageous in the case of a thermal or piezoelectric sensor to cover the sensitive surface with a thin, molded resin layer that protects this surface (preferably a uniform layer approximately 20 to 60 microns in thickness); the bumps will rise a few millimeters above this thin resin layer.
The integrated-circuit chip thus encapsulated therefore includes, right from its fabrication, an ergonomic element (a finger-guiding element), so that this chip can be installed directly in applications without it being necessary to design the environment for these applications using specific guiding elements. For example, to install this sensor on a computer keyboard, it is unnecessary to redesign the keyboard casing. The sensor can be installed on a flat surface of this keyboard.
The substrate may be rigid or flexible and will include electrical contacts left free (not covered with molded resin) for connecting the sensor to the outside.
Preferably, the encapsulation by resin molding will be carried out on several chips simultaneously, the individual sensors thus encapsulated being subsequently detached from one another.
If a thin molded resin layer covers the active surface of the sensor, it is preferred to install, on the front face of the integrated-circuit chip, before the chip is placed in the mold, spacers of calibrated height, against which the bottom of the mold will bear, in order for the thickness of resin that will cover the active surface of the sensor to be perfectly defined. These spacers are preferably placed all around this active surface so as not to impede the operation of the fingerprint detection. They may consist of bumps, a few tens of microns in height, formed during the actual fabrication of the chip and consequently integrated into the chip. They may also consist of balls or cylinders of calibrated diameter, these being laid on the surface of the chip in areas precoated with adhesive.
To summarize, the aim of the invention is to end up with a fingerprint sensor comprising a sensor chip having a sensitive surface, a substrate provided with electrical connections and wire-bonding wires connecting the chip to the electrical connections, characterized in that it includes a molded protective resin at least partly covering the substrate and the chip and completely encapsulating the wire-bonding wires, and in that the resin forms, on at least one side of the chip and at most on three sides, a bump rising to at least 500 microns above the sensitive surface, this bump encapsulating the wire-bonding wires and constituting a guide for a finger, the fingerprint of which it is desired to detect. For a sensor designed to detect a fingerprint when a finger is slid perpendicular to the long direction of the chip, the latter being in the form of a strip, a resin bump is provided on at most two sides of the chip, these sides being the short sides.
Other features and advantages of the invention will become apparent on reading the detailed description that follows, this being given with reference to the appended drawings, in which:
In the example shown, the elongate chip 10 has a sensitive active region 12 that is subjected to the influence of the fingerprint relief and consists essentially of an array of several rows of elementary detectors, and a peripheral region comprising, on the one hand, circuits associated with the array (supply circuit, control circuit, circuit for receiving signals delivered by the array) and, on the other hand, conducting contact pads 14 used for connecting the chip to the outside.
The chip is conventionally mounted on a substrate 20 which itself includes corresponding conducting pads 22, electrical connections 24 connected to these pads 22, and contacts or pins 26 intended for connecting the chip/substrate assembly to elements external to the actual sensor (for example in order to communicate with a computer to which it will be desired to transfer, for processing and use, the electrical signals allowing the detected fingerprint image to be displayed).
The chip is mounted on this substrate 20 via its rear, inactive face; the front, sensitive face remains accessible to the finger. The most conventional method of connection, namely wire bonding, is preferably used to connect the pads 14 on the chip to the pads 22 on the substrate. The wire-bonding wires are denoted by 28 in
The encapsulation operation after the chip 10 has been mounted on the substrate 20 consists in mounting the integrated-circuit chip/substrate assembly in a mold into which a resin for protecting the delicate parts of the assembly is injected. These delicate parts include, of course, the wire-bonding wires 28. The resin is liquid and cures in the mold, forming a solid. Conventionally, it is a two-component resin.
The shape of the mold is designed so that the solidified resin forms one or more relatively thick bumps (in practice, the thickness is greater than that strictly needed to simply protect the chip and its wire-bonding wires 28) above the sensitive surface of the chip, on at least one side of the chip. The thickness of the bumps is preferably about one millimeter, but no more, above the surface on which the finger will rest during use. This means that, if the surface of the chip remains uncovered with resin, the bumps project by about one millimeter from the upper surface of the chip, but if the surface of the active part of the chip is itself covered with a thin resin layer on which the finger will press, the bumps will project one millimeter above this layer.
In the case of a sensor over which the finger slides, at most two bumps are provided. In the case of a sensor on which the finger remains static, with a square or rectangular chip, but not one in the form of a strip, up to three bumps may be provided, allowing three sides of the active surface to be defined, the finger being able to bear on two or three of these bumps.
The external connection contacts 26 are not covered with the molding resin. In the example shown in
The sensors are preferably manufactured by molding a batch of several sensors on a common substrate. The individual sensors, each comprising a respective chip and each provided with their bumps and their connections, are detached from one another after molding. Molding onto a continuous ribbon of substrates attached to one another is the preferred solution. Depending on the applications, several chips may be provided in one and the same sensor, these being encapsulated in just one operation. The resin used may be a transparent resin, in particular when the sensor is an optical sensor and when the active surface is covered with resin.
Claims
1. A device, comprising:
- a substrate;
- a fingerprint sensor having a first side and a second side, the first side attached to the substrate, the fingerprint sensor being electrically connected to the substrate and having a sensitive active region defined on the second side of the fingerprint sensor; and
- a first resin bump positioned proximate to the sensitive active region of the fingerprint sensor so that a finger that is in contact with the first resin bump is also in contact with the sensitive active region, the first resin bump forming a finger guide that positions the finger over the sensitive active region when the finger slides in contact with the first resin bump.
2. The device of claim 1, wherein the first resin bump has a height of at least 500 microns.
3. The device of claim 1, wherein the first resin bump is positioned over a portion of the fingerprint sensor and a portion of the substrate.
4. The device of claim 1, wherein a second resin bump is positioned at an opposite end of the fingerprint sensor from the first resin bump.
5. The device of claim 4, wherein the second resin bump is positioned over a portion of the fingerprint sensor and a portion of the substrate.
6. The device of claim 5, wherein a resin layer covers the sensitive active region to protect the surface of the active region.
7. The device of claim 1, wherein the electrical connection comprises wire bonding wire.
8. The device of claim 7, wherein the first resin bump covers the entire electrical connection.
9. The device of claim 1, wherein the first resin bump has a height that is less than one millimeter from the fingerprint sensor.
10. A fingerprint sensor, comprising:
- an integrated circuit chip having a first side that is longer than a second side;
- a substrate including electrical connections;
- an electrical wire connecting the second side of the integrated circuit chip to the electrical connections; and
- a protective resin that covers a portion of the substrate and a portion of the integrated circuit chip and encapsulates the electrical wire, the protective resin forming a first bump that constitutes a guide for a finger when the finger slides over the integrated circuit chip substantially perpendicular to the first side of the chip.
11. The fingerprint sensor of claim 10, wherein the first bump has a height of at least 500 microns.
12. The fingerprint sensor of claim 10, wherein the protective resin forms a second bump positioned at an opposite end of the integrated circuit chip from the first bump.
13. The fingerprint sensor of claim 12, wherein the second bump is positioned over a portion of the integrated circuit chip and a portion of the substrate.
14. The fingerprint sensor of claim 13, wherein a protective resin covers the integrated circuit chip to protect the surface of the integrated circuit chip.
15. The fingerprint sensor of claim 10, wherein the electrical wire comprises a wire bonding wire.
16. The fingerprint sensor of claim 10, wherein the first bump has a height that is less than one millimeter above the fingerprint sensor.
Type: Application
Filed: Jun 30, 2008
Publication Date: Dec 18, 2008
Applicant: Atmel Grenoble S.A. (Saint Egreve)
Inventors: Sebastien Bolis (Grenoble), Cecile Roman (Saint Nazaire Les Eymes)
Application Number: 12/165,529
International Classification: G08B 29/00 (20060101);