TUNABLE HYBRID BRACKET ASSEMBLY
A motor vehicle engine and cooling fan arrangement mounted together by means of a tunable bracket assembly. The bracket assembly includes a bracket member, a washer and a bushing. The bracket member has an angled configuration for attenuating vehicular noise, vibration and harshness and the washer integrally formed therewith. The bushing is received in the bracket member for attenuated attachment to the vehicle engine.
Latest FREUDENBERG-NOK GENERAL PARTNERSHIP Patents:
- High performance plastic radial bearings for rotating and reciprocating applications
- Rubber gasket with molded-in plastic compression limiter
- Thermally conductive electrically insulating thermoplastic materials
- Seal cartridge with electrically conductive non-woven grounding
- RUBBER GASKET WITH MOLDED-IN PLASTIC COMPRESSION LIMITER
The present disclosure relates to a bracket assembly suitable for mounting structures to one another and for absorbing vibration and movement therebetween. More specifically, the present disclosure relates to a tunable hybrid bracket assembly for mounting a fan to a vehicle engine.
BACKGROUNDThe statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
In operation, an engine transforms heat energy into mechanical energy. However, the heat energy is not completely consumed. Unused heat is retained by the engine and over time can cause engine temperature to increase to an undesirable level. A cooling system is used to remove the excess heat from the engine and maintain an ideal operating temperature. When at ideal temperature, the engine performs more efficiently, emissions are lower and component wear is minimized.
The cooling system employs various methods for achieving and maintaining the ideal temperature. Typically, a liquid coolant flows through pipes and passageways in the engine. As the coolant flows through the pipes and passageways, it absorbs the excess heat and transfers it to a radiator. The radiator has fins which conduct heat from the coolant flowing within the radiator to the surrounding air. When airflow is satisfactory, the heated air will be removed from the system. However, in unsatisfactory conditions, such as, stationary or slow-moving airflow conditions (i.e. when the vehicle is stopped or in heavy traffic), a fan may be operated to generate an additional airflow. The fan may be turned on and off at specific temperatures to maintain a desired system temperature for increased engine efficiency and can also be active during air conditioner and defroster activity.
In compact engine compartments such as, vehicle engine compartments, the fan may be mounted directly to the vehicle engine. Engine vibration can damage electrical components in the fan housing.
SUMMARYAccordingly, the design of the present disclosure includes a motor vehicle engine having a cooling fan for removing excess heat from the vehicle engine mounted together by means of a tunable bracket assembly. The bracket assembly includes a bracket member, a washer and a bushing. The bracket member has an angled configuration for attenuating vehicular noise, vibration and harshness and the washer integrally formed therewith. The bushing is press fit in the bracket member for attenuated attachment to the vehicle engine.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses.
The engine compartment 12 typically includes an array of parts such as an engine 14, an air induction system (not shown) and a cooling system 18 to name but a few. The cooling system 18 of the vehicle 10 may be used to remove heat from the engine 14 by means of various devices including coolant, a radiator, a cooling fan, etc. The coolant moves through pipes and passageways (not shown) in the engine 14, the radiator 20 uses fins to disperse heat, and a cooling fan 22 removes stagnant heat from the system. Each of these devices may be used singly or may be combined to obtain optimal system performance.
Referring now to
With reference to
The flange portion 40 of the first end 34 may contain a key-slotted hole 48 for receiving the key-slotted washer 28 as shown in
Referring again to
The tubular portion 42 may receive the bushing 30. The bushing 30 is inserted into the tubular portion 42 until the bottom portion 30a extends axially above the top surface 60 of the tubular portion 42. In order to provide for ease in assembly, a highly compliant material, such as a foamed elastomeric material or natural rubber may be used for the bushing 30. Enhanced acoustical properties, such as those found in microcellular polyurethane (MCU) may also be desired. While the exemplary embodiment may utilize an MCU material because of its special tuning range for low dynamic stiffness, the foamed elastomeric material may also be a fluorocarbon, highly saturated nitrile (HNBR), methyl acrylate acid polymer, silicone, EPDM, Neoprene®, thermoset elastomer, thermoplastic elastomer, Santoprene®, Geolast®, Sarlink®, Hytrel®, or any other elastomeric foamed material suitable for the application.
Referring now to
The description of the invention is merely exemplary in nature and, thus, variations that do no depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Claims
1. An engine system, comprising:
- an engine defining a plurality of cylinders and including cooling passages therein;
- coolant disposed in said cooling passages and in fluid communication with a radiator;
- a cooling fan for removing excess heat from the radiator;
- a bracket assembly for mounting said cooling fan to the engine, wherein said bracket assembly includes a bracket member having a first end and a second end, comprising an angled configuration for attenuating vehicular noise, vibration and harshness;
- a washer, received in said bracket member at said first end; and
- a bushing, received in said bracket member at said second end.
2. The vehicle engine of claim 1, wherein said bracket member is formed from a plastic material.
3. The vehicle engine of claim 2, wherein said plastic material may be one of a thermoplastic or a thermoset material.
4. The vehicle engine of claim 1, wherein said washer is formed from a metal material.
5. The vehicle engine of claim 1, wherein said bushing is formed from a foamed elastomeric material.
6. The vehicle engine of claim 5, wherein said foamed elastomeric material is microcellular polyurethane (MCU).
7. The vehicle engine of claim 1, wherein said bracket member further comprises at least one thru hole to which a wiring harness is connected.
8. The vehicle engine of claim 1, wherein said angled configuration of said bracket member includes a first bend at said first end and a second bend at said second end.
9. The vehicle engine of claim 8, wherein said angled configuration of said bracket member further includes a third bend.
10. The vehicle engine of claim 8, wherein said first bend is from about 90 degrees to 180 degrees from said bracket member.
11. The vehicle engine of claim 8, wherein said second bend is from about 90 degrees to 180 degrees from said bracket member.
12. A mounting bracket assembly, comprising:
- an elongated bracket member having a first end, a second end and an intermediate portion, said intermediate portion having a bent configuration, said second end being connected to a tubular portion;
- a washer, inserted in said bracket member at said first end;
- a bushing, inserted in said tubular portion of said bracket member.
13. The mounting bracket assembly of claim 12, further comprising a mounting hole extending through said intermediate portion of said bracket member.
14. The mounting bracket assembly of claim 12, wherein said bent configuration of said intermediate portion includes at least one bend at said second end and at least one bend at said first end of said intermediate portion.
15. The mounting bracket assembly of claim 12, wherein said tubular portion of said bracket member has an axis angled relative to said second end portion between 0 and 90 degrees.
16. The mounting bracket assembly of claim 12, wherein said first end is angled relative to said intermediate portion by an angle between 90 and 180 degrees.
17. The mounting bracket assembly of claim 12, wherein said second end is angled relative to said intermediate portion by an angle between 90 and 180 degrees.
Type: Application
Filed: Oct 12, 2007
Publication Date: Apr 16, 2009
Applicant: FREUDENBERG-NOK GENERAL PARTNERSHIP (Plymouth, MI)
Inventors: Joseph M. Lak (Plymouth, MI), Robert C. Michniewicz, Jr. (Livonia, MI), Mickey L. Love (Londonderry, NH)
Application Number: 11/871,538
International Classification: F01P 3/04 (20060101); F24H 9/06 (20060101);