Method of identifying therapeutic agents
The present invention relates to a method of identifying agents suitable for use in treating epilepsy and other brain disorders, including but not limited to bipolar disorder, schizophrenia and depression. The invention further relates to methods of treatment based on the use of agents so identifiable.
Latest DUKE UNIVERSITY Patents:
- Methods and systems for wastewater treatment
- MULTIFUNCTIONAL MICROELECTRONICS FIBERS AS IMPLANTABLE BIOELECTRONIC INTERFACES
- Modulators of prostate-specific g-protein receptor (PSGR/OR51E2) and methods of using same
- COMPOSITIONS AND METHODS FOR TARGETING GPCR FOR THE PREVENTION AND TREATMENT OF PAIN
- RISK DETECTION WITH ACTIONABLE GUIDANCE FOR NEURODEVELOPMENTAL DISORDERS
This application claims priority from U.S. Provisional Application No. 60/433,972, filed Dec. 18, 2002, the entire content of which is incorporated herein by reference.
TECHNICAL FIELDThe present invention relates to a method of identifying agents suitable for use in treating epilepsy and other brain disorders, including but not limited to bipolar disorder, schizophrenia and depression. The invention further relates to methods of treatment based on the use of agents so identifiable.
BACKGROUNDEpilepsies comprise a diverse collection of disorders that affect an estimated 1-4% of the population in the United States. Epileptic seizures, which are generally self limiting, are the outward manifestation of excessive and/or hypersynchronous abnormal activity of neurons in the cerebral cortex. The behavioral features of a seizure reflect function of the portion of the cortex where the hyper activity is occurring. Generalized seizures, which appear to involve the entire brain simultaneously, can result in the loss of consciousness only and are then called absence seizures (previously referred to as “petit mal”). Alternatively, the generalized seizure may result in a convulsion with tonic-clonic contractions of the muscles (“grand mall” seizure). Some types of seizures, partial seizures, begin in one part of the brain and remain local. An individual suffering a partial seizure may remain conscious. If the individual loses consciousness, the seizure is referred to as a complex partial seizure. Current drug therapies operate either by regulating postsynaptic responses to neurotransmitter or by blocking presynaptic transmitter release machinery at a step prior to exocytosis (e.g., by inhibiting calcium and sodium channels). Such therapies can reduce seizure frequency in the majority of patients but it is estimated that only about forty percent are free of seizures despite optimal treatment. Unfortunately, currently available drug treatments are often associated with onerous side effects because—in addition to preventing seizures—they affect normal brain function as well.
Synapsins are the most abundant proteins associated with synaptic vesicles (De Camilli et al, Annu. Rev. Cell Biol. 6:433-60 (1990)). They are present in all of the most common types of presynaptic terminals: those that are activated primarily by action potentials (APs) (De Camilli et al, Annu. Rev. Cell Biol. 6:433-60 (1990)). Because they are extensively phosphorylated in an activity dependent fashion, and reversibly tether reserve vesicles to cytoskeletal elements within presynaptic terminals (Greengard et al, Science 259:780 (1993)), they have long been thought to be involved in regulating the synaptic vesicle exo/endocytic cycle (De Camilli et al, Annu. Rev. Cell Biol. 6:433-60 (1990)). However, despite extensive molecular and physiological investigation, an identification of their role in neurotransmission has remained elusive-partly because techniques have only recently been developed that allow the individual rate-limiting steps in the vesicle cycle to be studied in isolation.
Several key experiments have implicated synapsins in the regulation of processes that afford synapses the ability to transmit signals during extended periods of heavy use. Synaptic strength temporarily weakens extensively during repetitive use, a phenomenon known as short-term depression (Zucker, Annu. Rev. Neurosci. 12:13-31 (1989)). Synapses with disrupted synapsin function (Pieribone et al, Nature 375:493-7 (1995), Hilfiker et al, Nat. Neurosci. 1:29-35 (1998), Humeau et al, J. Neurosci. 21:4195-206 (2001)), or synapses of mutant mice that lack synapsins (Rosahl et al, Cell 75:661-70 (1993), Rosahl et al, Nature 375:488-93 (1995), Li et al Proc. Natl. Acad. Sci. USA 92:9235-9 (1995), Terada et al, J. Cell Biol. 145:1039-48 (1999)), depress more quickly than do normal synapses, even though the basic cell biological machinery that underlies the exo/endocytic cycle seems to be intact (Rosahl et al, Cell 75: 661-70 (1993), Rosahl et al, Nature 375:488-93 (1995), Ryan et al, J. Cell Biol. 134:1219-27 (1996)). The precise kinetic role played by synapsins in short-term depression remains obscure.
Several of the kinetic components that underlie short-term depression by limiting the rate at which synaptic vesicles are prepared for release have been identified at excitatory synapses of the hippocampus (Stevens et al. Proc. Natl. Acad. Sci. USA 92:846 (1995), Stevens et al, Neuron 24:1017 (1999)). A typical synaptic terminal contains hundreds of vesicles laden with neurotransmitter but at any moment at most only a few percent of those are docked at the active zone, readily available to undergo exocytosis (Schikorski et al, J. Neurosci. 17:5858 (1997), Schikorski et al, Nat. Neurosci. 4:391 (2001)). These release-ready vesicles supply the transmitter used for intercellular signaling. During periods of heavy use, the readily releasable pool (RRP) of vesicles is quickly exhausted and the synaptic strength weakens because further transmission is only possible when new vesicles replace the spent ones within the pool.
The present invention is based, at least in part, on studies that have resulted in the elucidation of the biological mechanism responsible for synaptic fatigue. As a result of this understanding of mechanism, it has now been appreciated that agents that selectively reduce the size of the actively recycling vesicle pool at excitatory synapses can be used to prevent incipient seizures from developing into epilepsy. Such agents can be expected to avoid the onerous side effects inherent in currently available treatments as they should not affect synaptic function during periods of ordinary use.
SUMMARY OF THE INVENTIONThe present invention relates generally to a method of identifying therapeutic agents. More specifically, the invention relates to a method of identifying agents suitable for use in treating epilepsy and other brain disorders, including but not limited to bipolar disorder, schizophrenia and depression. In addition, the invention relates to treatment methods based on the use of agents so identifiable.
Objects and advantages of the present invention will be clear from the description that follows.
The present invention relates to a method of identifying agents that can be used to regulate the number of synaptic vesicles that are functionally available to participate in synaptic transmission during episodes of repetitive synaptic use lasting several minutes (these vesicles hereinafter being referred to as constituting the functional/recycling pool) and to agents so identified as being useful in the treatment of brain disorders such as, for example, epileptic seizures.
Synaptic transmission occurs when synaptic vesicles (small, subcellular, membrane delineated structures in the presynaptic terminal that store neurotransmitter) undergo exocytosis by fusing with the plasma membrane of the presynaptic terminal and thereby release neurotransmitter into the synaptic cleft. The liberated transmitter binds to receptors on the dendrites of the postsynaptic neuron, causing an electrical signal to be transduced. Most presynaptic terminals have hundreds of synaptic vesicles within them but, in excitatory terminals, only a few dozen routinely participate in synaptic transmission—these constitute the functional/recycling pool. Following exocytosis, spent synaptic vesicles are recycled (i.e., repackaged and refilled), this mechanism serves to replenish the functional/recycling pool.
The present invention is based, at least in part, on the realization that a form of short-term synaptic depression, referred to hereinafter as synaptic fatigue, or as fatigue, persists for several minutes after the functional/recycling pool has been exhausted. The functional/recycling pool becomes depleted during periods of heavy use because the bulk rate of vesicle recyclization is slower than the rate of vesicle use during such periods. The resulting synaptic fatigue is thus manifest as an effective attenuation of the efficacy of excitatory synapses during excessive use, such as during an epileptic seizure. This attenuation blocks the recurrent neuronal network excitation that is otherwise in part responsible for seizure propagation and expansion. Synaptic fatigue thus functions as a natural anti-seizure mechanism.
The present invention is also based in part on the realization that the onset of synaptic fatigue is super-linear with synaptic use (see
In one aspect, the present invention relates to a method of screening test compounds for their ability to modulate (e.g., reduce) the size of the functional/recycling pool of vesicles. The number of vesicles in the functional/recycling pool can be measured, for example, with well developed optical and biochemical techniques, making it possible to screen large numbers of reagents quickly. For example, synapses can be probed in vitro in the presence and absence of test compound and the relative number of functionally recycling vesicles determined. The determination of relative vesicle number can be made, for example, using fluorescent monitoring or standard synaptosomal assays.
Fluorescent monitoring of the size of the functional/recycling pool in synapses grown in cell culture can be effected, for example, by transfecting neurons with genetically encoded variants of green fluorescent proteins (GFP) that are targeted to synaptic vesicles and that only fluoresce when vesicles undergo exocytosis (synapto-pHluorins) (Miesenbock et al, Nature 394(6689):192-5 (1998)). A similar result can be achieved by harvesting neurons for cell culture from animal strains that have been transgenically altered to express synapto-pHluorins. Alternatively, recycling vesicles can be labeled with externally applied lipophilic dyes (such as FM1-43, and a family of derivatives with altered lipophilic and optical properties) during periods of activity (Ryan et al, Neuron 11 (4):713-24 (1993)). The first of these techniques measures exocytosis, the second endocytosis. In either case, fluorescence can be detected, for example, with standard (Stevens and Williams, Proc. Natl. Acad. Sci. USA 97(23):12828-33 (2000)), confocal (Ryan et al, Neuron 11 (4):713-24 (1993)), Sankaranarayanan et al., Biophys. J. 79(4):2199-208) (2000)), or 2-Photon fluorescence microscopic techniques. The functional/recycling pool size can be measured as the total amount of exo/endocytosis that occurs during several minutes of stimulation at the maximum rate (e.g., about 10 Hz or above), or with the application of standard salts for a similar period.
In the standard synaptosomal assay approach to determining the number of vesicles constituting the functional/reserve pool, purified preparations of synaptic terminals can be used (Sihra, T. S. in Posttranslational Modifications Techniques and Protocols (ed. Hemmings, H. C. Jr.) 67-119 (Humana Press, Totowa, N.J., 1997)). In accordance with this assay, the size of the recycling pool is determined by measuring the amount of neurotransmitter that is released upon depolarization (accomplished with the addition of standard salts). A test compound that alters the size of the functional/recycling pool will alter the amount of neurotransmitter released (the primary excitatory neurotransmitter in the brain is glutamate which can be detected, for example, using HPLC (Taupin et al, Brain Res; 644(2):313-21 (1994)), Afzal et al, Methods Mol. Biol. 2002:186:111-115 (2002)). Glutamate released from synaptosomes can also be monitored in real time, for example, fluorescently as NADP is transformed to NADPH via exogenously added glutamic acid decarboxylase by standard spectrophotometry methods (e.g., Jovanovic et al, Nat. Neurosci. 3(4):323-9 (2000)). Using similar approaches, the determination can also be made as to whether a test compound alters the number of functional/recycling vesicles in inhibitory, GABA-ergic nerve terminals (GABA=4-aminobutyrate (Taupin et al, Brain Res. 644(2):313-21 (1994)).
In a second aspect, the present invention relates to a method of determining which of the test compounds found capable of reducing the size of the functional/recycling pool at excitatory synapses do not similarly affect inhibitory synapses. Although the axons of the majority of neurons in primary cell cultures make excitatory synaptic connections, the cultures also contain a minority of neurons that make inhibitory synapses (Bekkers et al, Proc. Natl. Acad. Sci. USA 88(17):7834-8 (1991)). The functional/recycling pool can be monitored fluorescently at inhibitory synapses in the same way as at excitatory synapses.
Synapse type can be distinguished in several ways. For example, after determination of the functional/reserve pool size, standard immunohistochemical techniques can be used to stain synapses for proteins unique to inhibitory synapses (using, for example, antibodies raised against glutamic acid decarboxylase (Fukuda et al, J. Comp. Neurol. 395(2):177-94 (1998)) or unique to excitatory synapses (using, for example, antibodies raised against a vesicular glutamate transporter (Takamori et al, J. Neurosci. 21(22):RC182 (2001)). Identification of synapse type can also be performed in real time with fluorescent techniques, thereby avoiding the immunohistochemical step. Recently, transgenic mice have been generated that express GFP only in the fast-spiking inhibitory interneurons (Bartos et al, Proc. Natl. Acad. Sci. USA 99:13222-13227 (2002)). Neurons harvested from this strain of mice, or from others where a fluorescent marker is expressed differentially in inhibitory or excitatory neurons, can be grown in culture on isolated substrate “islands” (Bekkers et al., Proc. Natl. Acad. Sci. USA 88(17):7834-8 (1991)) allowing the efficient identification of synapse type (inhibitory versus excitatory). Overlapping fluorescence spectra due to the simultaneous use of two types of indicators (one to identify the neuron type, one to determine the effects of agents on the functional/recycling pool size) will not confound the basic assay as there are genetically encodable fluorescent proteins, as well as lipophilic fluorescent dyes in the FM1-43 family, of several colors. The requirement for growing neurons in isolation can be avoided by harvesting neurons from mouse strains expressing synapto-pHluorins or similar markers of vesicle turnover differentially in inhibitory versus excitatory synapses.
Once candidate therapeutic agents are identified using, for example, methods described above, such candidate agents can be screened for effectiveness in modulating the onset of synaptic fatigue using, for example, electrophysiological techniques in brain slices, such as those used to generate
Agents that modulate the size of the functional/recycling pool, and thereby the onset synaptic fatigue during heavy synaptic use, can then be tested in animals. Several animal models are available for confirming effectiveness at seizure prevention (Kupferberg, Epilepsia. 42 Suppl 4:7-12 (2001)); Loscher, Epilepsy Res. 50(1-2):105-23 (2002)).
The invention relates to the screening methods described above and to agents so identifiable. Agents of the invention can be formulated using standard techniques so as to yield compositions suitable for administration to mammals (human and non-human (e.g., dogs and cats)) in need thereof. The compositions can include, for example, a pharmaceutically acceptable carrier, excipient or diluent. The choice of the carrier, excipient, diluent, or the like, can be selected based on whether the resulting composition is to be administered, for example, orally, intravenously, intraperitoneally, intradermally, intramuscularly, intranasally, buccally or topically. For oral administration, compositions can be present in dosage unit form, e.g., as tablets, pills, capsules, granules, drops, or the like, while for parenteral administration, the composition can take the form, for example, of a solution or suspension (advantageously sterile). Compositions suitable for topical administration can be present as, for example, liquids, creams gels or ointments. Compositions suitable for inhalative administration can be present in forms suitable for use as sprays. Agents of the invention can also be formulated as depot formulations, e.g., in dissolved form or in a transdermal device, optionally with the addition of agents promoting penetration of the skin when percutaneous administration is contemplated. Orally or percutaneously usable forms can provide for the delayed release of the agents of the invention. The amount of agent administered will depend, for example, on the nature of the agent, the status of the patient and the effect sought. Establishment of optimum dosing regimens is well within the skill level of one in the art.
Since at least certain of the pharmaceuticals that are currently available to treat epilepsy also are effective in treating brain disorders such as schizophrenia, bipolar disorder, depression, mood disorders, dysthemia, headache, trigeminal neuralga, neuropathic pain, anxiety and sleep disorders, the present invention also encompasses the use of agents identifiable using the screening methods described herein in the treatment of such disorders. Agents identifiable using the present screens can also be used for sedation.
Certain aspects of the invention can be described in greater detail in the non-limiting Example that follows.
Example I Experimental DetailsColonies of synapsin I and synapsin II knockout mice were obtained from Jackson Labs and were crossed to obtain double knockout and heterozygous strains. Mice were genotyped by PCR analysis using oligonucleotide primers designed to recognize mutant and wt alleles as reported previously (Rosahl et al, Cell 75:661-70 (1993), Rosahl et al, Nature 375:488-93 (1995)).
Electrophysiological experiments were performed on 400 μm thick hippocampal slices of two to three week old mice. Briefly: the extracellular recording solution contained (in mM) 120 NaCl, 1.25 NaH2PO4, 26 NaHCO3, 10 glucose, 3.5 KCl, 2.6 CaCl2, 1.3 MgCl2, picrotoxin (50 μM), and usually APV (50 μM—except for the MK801 experiments when 5 μM DNQX was included instead), and was bubbled continuously with a mixture of 95% O2 and 5% CO2. Whole cell patch clamp recordings were performed using three to five megaohm pipettes, filled with (in mM) 130 Cs-gluconate, 5 CsCl, 5 NaCl, 2 MgCl2, 2 MgATP, 0.2 LiGTP, 1 EGTA, 0.2 CaCl2, and 10 HEPES. Synaptic responses were evoked with a monopolar silver/silver chloride stimulating electrode inserted into a glass pipette filled with recording solution (tip diameter between 20 and 40 μm) and placed in the Schaffer collaterals. Synaptic strength was measured as the current integrals of the resulting electrophysiological responses. Synapses were always given at least 4 minutes of rest before each experiment was initiated. Data were only accepted if the access resistance did not change throughout individual trials.
For some experiments, MK801 was included as indicated. For these, NMDA currents (recorded at −20 mV) were first monitored at low frequency (⅛ Hz) in the absence of NMDA receptor blockers. Following 10 minutes of rest during MK801 application, currents were again monitored as before.
Results:These studies result in the identification of the specific kinetic element in the synaptic vesicle cycle that is regulated by synapsin, and that underlies a component of short-term depression at Schaffer collateral synaptic terminals. Two kinetic elements of the cycle have been identified recently that limit the rate at which vesicles are prepared for release to support synaptic transmission during periods of heavy use at these excitatory hippocampal synapses (Stevens et al, Proc. Natl. Acad. Sci. USA 92:846-9 (1995), Rosenmund et al, Neuron 16:1197-207 (1996), Stevens et al, Neuron 24:1017-28 (1999), Pyle et al, Neuron. 28:221-31 (2000)) (see
Synapses missing synapsins I and II exhibit more short-term depression:
RRP replenishment rate is slower in mutant synapses after moderate amounts of use: Most of the extra depression exhibited by the mutant synapses occurred after the initial pool of readily releasable vesicles had been exhausted. Typical synaptic terminals contain hundreds of vesicles laden with neurotransmitter but at any moment at most only a few percent of these are docked at the active zone, readily available to undergo exocytosis quickly: these vesicles are collectively referred to as the readily releasable pool (RRP) (Schikorski and Stevens, Nat. Neurosci. 4:391-5 (2001)). After these vesicles have been expended—as they are during the first several seconds of 20 Hz stimulation—the rate at which they are replaced plays a major role in determining the synaptic strength. The time course of the more severe short-term depression in mutant terminals thus suggested that they have a defect in one of the kinetic processes that control the overall rate at which synaptic vesicles are supplied to replenish the RRP.
To determine if the kinetic defect is related to the overall rate at which vesicles are supplied for release, the time course of RRP replenishment was monitored both for mutant (synapsin II knockout (syn II) and DKO) and wt synapses after being depressed by either moderate (80 APs—
It took substantially longer for the RRPs of mutant terminals to be replenished after the moderate (80 APs) stimulation when compared to wt (
The overall RRP replenishment rate would be slower if a larger fraction of the vesicles supplied for release were prepared via the slower trafficking mode, or if the kinetics of either of the modes were themselves slowed (see
All recovery time courses after moderate and extensive amounts of stimulation, for both mutant and wt synapses, proceeded with the same stereotypical double exponential function with fixed time constants (see the theoretical curves in FIGS. 3A and 3B)—as demonstrated previously for wt synapses (Stevens et al, Neuron 24:1017-28 (1999)). That is, the recovery time courses were fit by:
where s(t) is the fraction of the RRP that has replenished after a rest interval of time t, τf=6 s, τs=60 s. (This equation is formally identical to Equation (1) in Stevens et al, Neuron 24:1017-28 (1999)—see this reference for wt recovery time courses after intermediate amounts of stimulation). As the two component exponentials that make up Equation (1) describe the time courses over which vesicles are prepared for release via the two vesicular trafficking modes (Stevens et al, Neuron 24:1017-28 (1999)), the observation that the time constants (6 s and 60 s) are the same in mutant and wt synapses indicates that the kinetics of the two modes themselves are not affected by the presence or absence of synapsins I and II.
The only variable in Equation (1) that was affected by synapsin II deletion was f, which is the relative weighting of the faster component exponential. This parameter represents the fraction of the vesicles that replenish the RRP via the faster mode, while (1−f) is the remaining fraction of vesicles that are prepared for release via the slower mode. After 80 APs, the entire RRPs in the wt terminals were replenished with vesicles prepared via the faster mode (
Mutant terminals fatigue more quickly than wt: Does the overall rate of RRP replenishment fatigue more quickly during heavy use, or is replenishment always slower in mutant terminals? To compare how the relative contributions of the two modes of vesicular trafficking change with synaptic use for mutant and wt synapses, the fraction of the overall RRP replenishment process that is governed by the faster mode was measured after a series of 20 Hz trains of various lengths in a set of experiments similar to the ones documented in FIG. 3—in this case with a fixed time interval of 20 s. Initially, the overall RRP replenishment rate was just as fast at mutant terminals compared to wt; after the shortest stimulus trains (20 APs), all of the vesicles that were readied for release were supplied via the faster mode at both wt and DKO synapses. After all other stimulus trains (60 or more APs), however, a smaller fraction of the vesicles were prepared for release via the faster mode in mutant terminals. This indicates that the complementary, slower mode of vesicular trafficking (1−f) emerged to play a substantial role sooner in mutant than in wt synapses, and that the overall RRP replenishment rate thereby fatigued earlier in mutant terminals during extended periods of stimulation.
The fraction of releasable vesicles that were readied via the faster trafficking mode is plotted against the cumulative amount of transmitter release elicited during the first stimulus train of each pair in
Allele-dosage dependence of fatigue onset: To determine a possible dosage dependence of fatigue onset on the number of missing synapsin I and II alleles, the amount of fatigue in the overall RRP replenishment rate was measured for synapses of animals missing either one or both synapsin II alleles, in both wt and synapsin I null backgrounds. The time course of RRP replenishment was determined after trains of 120, and 2000 stimuli (20 Hz) for the expanded data sets as above. The fraction of the release-ready vesicles prepared via the slower trafficking mode (1−f) following the shorter trains is plotted in
Synapsin II is involved in regulating a kinetic element of the exo/endocytic cycle: The more rapid onset of fatigue in the overall rate at which vesicles are supplied for release strongly suggests that synapsin II is directly involved in regulating the RRP replenishment process but an alternate possible explanation is that the difference could instead be the indirect result of a heretofore hidden enhancement of the release machinery in the mutants. That is, since fatigue results from the use of transmitter stores (Stevens et al, Neuron 24:1017-28 (1999)), synapses that initially release more transmitter might also be expected to exhibit fatigue more quickly. Arguing against this alternative, however, is the observation that synaptic strength depresses more quickly at mutant compared to wt synapses (
To test this, the time course of MK801 blockade of synaptic responses carried by the NMDA subtype of glutamate receptors was measured during low frequency stimulation at both DKO and wt synapses (Rosenmund et al, Science 262:754-7 (1993), Hessler et al, Nature 366:569-72 (1993), Huang et al, J. Neurophysiol. 78:2870-80 (1997)). There was no difference in the time course of blockade between mutants and wt (
Summarizing, these studies identify the kinetic difference between the synapses of mice with and without synapsin II that causes the mutants to depress more quickly when used heavily. When both types of synapses are fresh, it takes several seconds for synaptic vesicles to be readied to undergo exocytosis to support intercellular communication. However, during extensive episodes of intense activity, presynaptic terminals become fatigued, and many vesicles are prepared for release via a much slower mode that takes minutes. Mutant terminals missing synapsin II fatigue substantially more quickly and eventually more extensively than their wt counterparts (
What is the mechanism for fatigue in the RRP replenishment process? A recent report has suggested that the vesicles that are prepared for release via the faster trafficking mode might be recycled locally at the active zone via fast “kiss and run” exo/endocytosis, and that the slower mode reflects recruitment of vesicles from the classically studied reserve/recycling pools that reside in the interior of the terminals (Pyle et al, Neuron. 28:221-31 (2000)). This model does not fit well with the kinetics reported here and elsewhere (Stevens et al, Neuron 24:1017-28 (1999), Stevens et al, Neuron 21:415-24 (1998)), however, because reserve vesicles take seconds and not minutes to be prepared for release (Pyle et al, Neuron. 28:221-31 (2000)). Instead, the rate of reserve vesicle mobilization matches better with the kinetics of the faster trafficking mode (compare the time constant of 6 s reported here to the time constant of 7 s for the mobilization of fluorescently labeled reserve vesicles reported in Pyle et al, Neuron. 28:221-31 (2000).
A model that elegantly incorporates the cell biological findings with several recently reported kinetic properties of synaptic physiology is that synapsins control the onset of synaptic fatigue by determining the size of a functional reserve pool of vesicles. Although the kinetics of fatigue onset and recovery are incompatible with the classic idea that the number of vesicles within the reserve pool determines the RRP replenishment rate by a massed action mechanism (Stevens et al, Neuron 24:1017-28 (1999)), synaptic terminals might be forced to switch to the slow mode of vesicle preparation for release after they had exhausted their standing supply of reserve vesicles (see
Consistent with this idea, several studies have indicated that synapsins do regulate an intraterminal store of vesicles (Greengard et al, Science 259:780-5 (1993), Chi et al, Nat. Neurosci. 4:1187-93 (2001), Mozhayeva et al, J. Neurosci. 22:654-65 (2002)). Also consistent is the observation that it takes a similar amount of presynaptic stimulation to drive the synapses into their most fatigued state as it does to elicit the exocytosis of all of the reserve vesicles at least once Ryan et al, Proc. Natl. Acad. Sci. USA 93:5567-71 (1996)), and, the time constant of the slower trafficking mode (60 s) is similar to the characteristic time required for vesicles to travel all the way through the exo/endocytic cycle Ryan et al, Neuron 11:713-24 (1993).
The machinery needed for controlling the size of a functional reserve pool is present within presynaptic terminals making regulation of synaptic fatigue a potentially dynamic process. It has recently become clear that there is a large inert pool of vesicles within synaptic terminals that normally do not participate in the exo/endocytic cycle, even during episodes of extensive, heavy use (Harata et al, Trends Neurosci. 24:637-43 (2001)). Already, certain peptide growth factors have been implicated in eliciting intraterminal second messenger cascades that might liberate vesicles from this inert store by phosphorylating synapsins (Jovanovic et al, Nat. Neurosci. 3:323-9 (2000)).
Example II Experimental DetailsExperiments were performed on 400 μm thick transverse hippocampal slices (with area CA3 removed) of two to three week old mice. Briefly, all synaptic responses were measured from patch clamped neurons held in whole cell voltage clamp mode. The extracellular recording solution contained (in mM) 120 NaCl, 1.25 NaH2PO4, 26 NaHCO3, 10 glucose, 3.5 KCl, 2.6. CaCl2, 1.3 MgCl2, picrotoxin (50 μM), and D (−) APV (50 μM). The intracellular solution contained (in mM) 130 Cs-gluconate, 5 CsCl, 5 NaCl, 2 MgCl2, 2 MgATP, 0.2 LiGTP, 1 EGTA, 0.2 CaCl2, and 10 HEPES. Preparations were always allowed at least 4 minutes of rest before each experiment was initiated. Data were only accepted if the access resistance did not change throughout individual trials, and also between trials for the experiments documented in
The main result is displayed in
The steady state release rate was substantially lower than the initial release rate during the first several seconds of stimulation; i.e. on average, 8.9 quanta were released during the first one second. The decrement in the probability of release was due to short-term depression as the synaptic efficacy subsequently recovered during 4 minutes of rest (Zucker, Annu. Rev. Neurosci. 12:13-31 (1989)). The sizes of the successful postsynaptic responses did not decrease during stimulation, indicating that the depression was presynaptic in origin (
On average, the synaptic terminals activated in these experiments released a total of 123 quanta (
20 Hz stimulation has been shown to be sufficiently rapid to drive the exocytosis of neurotransmitter near the maximum rate for some types of excitatory synaptic terminals (Abbott et al, Science 275(5297):220-224 (1997), Tsodyks and Markram, Proc. Nat. Acad. Sci. USA 94(2):719-723 (1997)). If this is also the case for Schaffer collateral synapses, then more rapid stimulation protocols should not elicit a higher exocytic rate. Synaptic strength was thus monitored during repetitive stimulation at both 20 and 35 Hz.
Since the purpose of these experiments was to compare release rates at times when the probability of release was substantially depressed, a higher intensity stimulus was used in order to simultaneously activate multiple afferent axons. Although it is often difficult to resolve the quantal content of the resulting postsynaptic responses during this sort of stimulation, the responses at individual Schaffer collateral synapses do sum linearly under the conditions of this type of experiment, allowing the composite response to be used as a linear proxy for transmitter release.
While the response sizes depressed more extensively over 90 s of stimulation at 35 Hz than at 20 Hz (
After the first several seconds of stimulation, however, the overall rate of transmitter release reached a similar level at both frequencies (
The rate of release elicited by both stimulus trains subsequently depressed substantially over the next 30 s, possibly reflecting depletion of the entire original supply of cycling vesicles (Zucker, Annu. Rev. Neurosci. 12:13-31 (1989), Ryan et al, Neuron 11(4):713-24 (1993); see also Stevens and Wesseling, Neuron 24(4):1017-1028 (1999)). The release rate depressed similarly at the two frequencies (
Although the minimal stimulus technique used above to monitor exocytic events at individual or small numbers of synaptic terminals is potentially biased towards synapses with a high initial probability of release and a large quantal size, the experiments conducted at the higher stimulus intensity avoided this problem because the responses were generated from the simultaneous activation of a larger population of synapses; the initial synaptic strength averaged 342 pA indicating about 75 synapses were activated simultaneously—given a quantal size of 13.5 pA (
Together, these results indicate that the maximum rate of transmitter release from individual Schaffer collateral terminals is less than one quantum per second during exhaustive use, although when well rested, these synapses can transiently release transmitter at much higher rates during sporadic bursts of activity. Since these terminals apparently only make use of several dozen of their synaptic vesicles, the low rate during exhaustive use corresponds to the steady state rate that would be expected if synaptic vesicles were recycled slowly as measured previously with several optical tracer techniques ((Ryan et al, Neuron 11(4):713-24 (1993) and references therein).
The contents of all documents and other information sources cited above are incorporated herein by reference.
Claims
1. A method of identifying a candidate anti-epileptic agent comprising screening test compounds for their ability to modulate the number of synaptic vesicles at excitatory synapses that are functionally available to participate in synaptic transmission during an episode of repetitive synaptic use, wherein a test compound that reduces the number of said synaptic vesicles is a candidate anti-epileptic agent.
2. The method according to claim 1 wherein the number of said synaptic vessels is determined optically.
3. The method according to claim 1 wherein the number of said synaptic vessels is determined biochemically.
4. The method according to claim 1 wherein said method is effected using cultured neurons.
5. The method according to claim 4 wherein said neurons are harvested from a mammal transgenically altered to express synapto-pHluorins.
6. The method according to claim 4 wherein the number of synaptic vesicles is determined by a method comprising transfecting said neurons with a nucleic acid encoding a protein that is targeted to synaptic vesicles and that fluoresces when synaptic vesicles undergo exocytosis.
7. The method according to claim 4 wherein said synaptic vesicles are labeled with an externally applied dye during a period when said synaptic vesicles undergo endocytosis.
8. The method according to claim 1 wherein the number of said synaptic vesicles is determined by a method that comprises measuring the amount of neurotransmitter that is released upon depolarization, wherein a test compound that reduces the number of said synaptic vesicles reduces the amount of neurotransmitter released.
9. The method according to claim 8 wherein said neurotransmitter is glutamate.
10. A candidate anti-epileptic agent identifiable by the method according to claim 1.
11. A composition comprising the candidate anti-epileptic agent according to claim 10 and a carrier, excipient or diluent.
12. A method of identifying a candidate anti-epileptic agent comprising screening test compounds for their ability to modulate the number of synaptic vesicles at excitatory synapses, but not at inhibitory synapses, that are functionally available to participate in synaptic transmission during repetitive synaptic use, wherein a test compound that reduces the number of said synaptic vesicles at excitatory synapses is a candidate anti-epileptic agent.
13. A method of identifying a candidate anti-epileptic agent comprising screening test compounds for their ability to modulate the number of synaptic vesicles differentially at excitatory and inhibitory synapses that are functionally available to participate in synaptic transmission during repetitive synaptic use, wherein a test compound that reduces the number of said synaptic vesicles at excitatory synapses is a candidate anti-epileptic agent.
14. A method of treating epilepsy comprising administering to a mammal in need of such treatment an agent that increases the rate of exhaustion of synaptic vesicles that are functionally available at excitatory synapses to participate in synaptic transmission during episodes of repetitive synaptic use, wherein said agent is administered in an amount sufficient to effect said treatment.
15. A method of treating a brain disorder selected from the group consisting of schizophrenia, bipolar disorder, depression, mood disorder, dysthemia, headache, trigeminal neuralga, neuropathic pain, anxiety and sleep disorder, comprising administering to a mammal in need of such treatment an agent that increases the rate of exhaustion of synaptic vesicles that are functionally available at excitatory synapses to participate in synaptic transmission during episodes of repetitive synaptic use, wherein said agent is administered in an amount sufficient to effect said treatment.
16. A method of sedating a mammal comprising administering to a mammal in need of sedation an agent that increases the rate of exhaustion of synaptic vesicles that are functionally available at excitatory synapses to participate in synaptic transmission during episodes of repetitive synaptic use, wherein said agent is administered in an amount sufficient to effect said sedation.
Type: Application
Filed: Apr 9, 2009
Publication Date: Oct 8, 2009
Applicant: DUKE UNIVERSITY (Durham, NC)
Inventor: John Wesseling (Durham, NC)
Application Number: 12/385,517
International Classification: A61K 31/439 (20060101); C12Q 1/02 (20060101); C07D 221/22 (20060101); A61P 25/08 (20060101);